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Abstract 

The formation of dendritic crystals in two dimensions by crystallization from 
a supersaturated solution is studied by a Green’s function method. The 
dendrites develop sidebranches in qualitative agreement with experiments in 
three dimensions. The size and the growth rate of the primary dendrite scales 
with respect to supersaturation and crystalline anisotropy in agreement with 
the results for needle-crystals. The wavelength of the sidebranches scales with 
the stability length as conjectured. 

1. Introduction 

The growth of dendritic crystals like snowflakes occurs fre- 
quently, when the relevant transport of heat or matter takes 
place in the fluid medium ahead of the moving interface. To 
be precise, the fluid must be supercooled or supersaturated, 
thereby being in a metastable state against the formation of 
the crystalline phase [l]. 

The introduction of surface tension with crystalline aniso- 
tropy was recently found [2-81 to select a needle-shaped 
almost parabolic form from the continuous set of Ivantsov 
parabolas, while in previous approximate treatments [ 11 of 
the surface tension the continuous set seemed to survive. 
In fact, surface tension causes an essential singularity turn- 
ing the mathematical problem into a nonlinear eigenvalue 
problem. The result is a discrete set of needle solutions [2-71. 
A recent stability analysis [5] of the needle-solutions indicates 
that the fastest moving solution is stable in the moving frame 
of reference and thus the natural candidate for the true 
dendrite. Experiments [9-121 on the other hand essentially 
always show dendrites, i.e., needles with sidebranches. 

The presently available results on the existence of a needle 
crystal solution are usually based on the symmetric model 
[3, 4, 71, where diffusion of heat takes place symmetrically 
both in the solid and in the melt. Experiments in two dimen- 
sions [9] are usually based on the one-side diffusion of 
material within the liquid rather than on diffusion of heat. A 
recent analysis [6] of the one-sided model shows the relation 
between the needle solution for the crystallisation and 
the Saffmann-Taylor problem, but is not yet as detailed as 
the results on the symmetrical model. The results on the 
boundary-layer model (BLM) [8] are not conclusive in the 
experimentally interesting range of small deviation from 
equilibrium although they seem to reproduce many details of 
the full problem. Despite some remarkable progress up to 
now it is still an open problem, how to describe the nonlinear 
mode of operation of a sidebranch-producing dendrite, but 
some progress has been made recently. The best experimental 
results for free dendritic growth were obtained in three 
dimensions [l 1 ,  121, in two dimensions there are problems 
with the non-planarity of the interface normal to the side- 

* Permanent address: Physics Dept., KEIO-University, Yokohama, Japan 

walls [9]. A further problem is the quantitative control of 
anisotropy both in two and three dimensions. 

We have performed a numerical simulation of the full 
diffusional problem in two dimensions on the one-sided 
model [13]. This is relevant for comparison with experiments 
on dendritic growth from solution. The well-known model 
[l-61 is defined as follows. 

U ,  = A - do(1 - E, COS (m0))K 

-DfiVu, z vri, 

Expression (1) is the diffusion equation in quasistationary 
approximation in a frame of reference moving at velocity v in 
z direction. Eq(2) is the boundary condition for the diffusion 
field U at the interface, at infinity one has U = 0. Equation (3) 
is the conservation law for the solute or impurity at the inter- 
face. u(x, z ,  t )  is the normalized diffusion field [l], A = 0 . . . 1 
is the normalized supercooling, D the diffusion coefficient, do 
the capillary length, E ,  the strength of the m-fold crystalline 
anisotropy and K the curvature of the interface. For do = 0 
one obtains Ivantsov-parabolas with tip-radius R, = pl ,  
where 1 = 2D/v is the diffusion length, and the Peclet number 
p is obtained from 

A = d G  exp ( p )  erfc (&); 2-dim. (4a) 

A = p exp ( p )  E , (p ) ;  3-dim. (4b) 
(The three-dimensional relation (4b) is included here just for 
comparison). 

In principle the anisotropy also enters in eq. (3), but in the 
limit of small A (or for a segregation-coefficient z 1) we may 
ignore it for better comparison with existing results on the 
two-sided thermal model. Equation (1) then is defined on the 
liquid side of the interface only. 

The use of the quasistationary approximation here is 
physically meaningful [ 11 for parameter-values where the 
diffusion length is large compared to other typical length- 
scales like radius of the tip of the dendrite or distance between 
sidebranches. At least for the smaller supercoolings used here 
this is definitely the case. 

We have converted (1-3) into an integral form by using 
Green’s formulas 

SdR { g L u  - u L + g }  

au ag 2 
= - $dr{g5; ;  - u -  an + -n,gu 1 

where L is the differential operator defined in eq. (1) for the 
spatial derivations, L+ is the adjoint operator, n is the normal 
vector on the surface r directed into the liquid region 0. The 
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Green’s function is defined by 

L; g(v, Y ) = - h(v  - U’) (6) 
and can be given in closed form [13]. 

obtains 
Evaluating eq. (5) fornially for a point r on the surface. 

The coefficient c(I”) would be unity in the bulk of the liquid. 
If we discretize the boundary into a polygon with an inner 
angle cp(v’) at a corner I“ ,  then c(r’) = cp(r’)/271. This dis- 
cretization into a fine mesh along the boundary converts 
(eq. (7)) into an N x N matrix problem for the unknown 
normal derivatives of U, and with eq. (3) for the normal 
velocities. We start with a parabola pointing in z-direction 
symmetrical about the z-axis. U(/) then is given at the poly- 
gonal corners by eq. (2). The Green’s function depends on the 
yet unknown velocity U of the moving frame. We start with 
the velocity of the corresponding Ivantsov parabola. Then we 
define a time step 6 t  and displace the interface into normal 
direction. We now have the new velocity from the tip of the 
deformed parabola and can repeat the process, simulating 
growth of the crystallization front. 

To handle the asymptotic tail of the dendrite we have 
divided the interface into three parts along z, a tip-region, a 
transition-region and the tail. The tail is an Ivantsov parabola 
of length > 51 defined by the growth rate U. It is displaced 
along with the tip. Careful1 handling of this tail is important 
for the global conservation of the field-variable (chemical 
concentration or energy, resp.), as was also noticed in Ref. 
[7]. The missing sidebranch structure there does not seem to 
be important as we conclude from extrapolations to infinite 
system size, but i t  may affect the noise in the system. The 
tip-region is fully treated as described above. In the transition 
region at each time step the diffusion flux is calculated as 
above. but the displacement of each point is continuously 
modified down the curve such that i t  always connects to the 
tail. Time step and grid-spacing are dynamically adjusted, the 
typical grid-spacing being < 0.05 R,, smaller than used 
for the needle-crystal calculation [7]. Further details of the 
numerical procedure will be published elsewhere. 

The result of such a calculation is shown in Fig. 1 as 
stroboscopic picture at equal time-intervals with d, = 0.001. 
The other parameters A = 0.25, = 0.1 are comparable to 
typical experimental values, since from A a peclet number 
< 0.03 follows, while c4 corresponds to the anisotropy of 
the capillary length of succinonitrile. The 1.h.s. in growth 
direction shows the tip-region only, the r.h.s. includes the 
transition-region, the parabolic tail is not shown. The den- 
drite converges to a stationary side-branch producing state 
independent of initial conditions. The dependence of the 
results on the length of the tip region considered was very 
weak, as long as z 3 sidebranches were contained. We have 
varied the length of the tip region, the grid-spacing and the 
initial condition for each of the parameter-sets A = (0.5, 
0.25); c4 = (0.05, 0.1, 0.15) for an extrapolation to infinite 
length and zero mesh. The growth rate z, for the needle crystal 
is predicted [7] to scale as 

being a function of the anisotropy. 
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Fig. I .  Stroboscopic plot of the simulation of an  almost parabolic dendrite. 
Parameters are A = 0.25. E( = 0.1. Graphs were produced at equal time- 
intervals. 

The results for the scaled growth-rates versus anisotropy 
are shown in Fig. 2, compared with the needle-results [7] for 
the symmetrical model at A -+ 0. Dendritic growth requires 
nonzero anisotropy. The raw data already scale with c4 as 
predicted [7] apart from a constant factor of z 2, the extra- 
polated data (broken line) are only by a constant factor of 
= 1.3 higher than the prediction. We estimate a maximal 
error of 20 percent for the extrapolation. A recent calculation 
for needles in the one-sided model [I41 gives o-values larger 
by exactly a factor 2. 

(as suggested in 
the limit p -+ O), the scaled numerical data obtained at two 
A-values would differ by a factor 3! This shows, that the 
results scale as U - p’ at least up to A = 0.5, in agreement 
with a recent prediction for the needle [14]. 

In Fig. 3 we show the ratio of the tip actual radius R and 
the corresponding Ivantsov radius R, versus anisotropy in 
comparison with data for the symmetrical needle [7]. Again 
we find striking agreement. 

In Fig. 4 we show the scaled wavelength of the sidebranches 
plotted versus anisotropy. We have defined the inverse wave- 
length A-’ as the number of sidebranches produced per time 
unit, divided by the growth rate U. This appears to be a rather 
“robust” definition of the wavelength. Definitions based on 
geometrical considerations suffer from the facts that the 
wavelength may slightly vary in the tip-region and that side- 
branches once generated may disappear or split during the 
nonlinear coarsening process further down the shaft. The 

Replacing p z  -+ A4 in the definition of 
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Fig. 2. Normalized growth rate versus anisotropy for A = 0.25, 0.5. The 
broken line is our extrapolation to zero grid-spacing and infinite size, the full 
curve corresponds to the needle [7] in the symmetrical model. The scaling 
appears to be universal. 

scaling relation 

il 2 i,, = 271 ,,OJ (9) 

used in Fig. 4 in dimensionless form was suggested by our 
previous studies [ 11. Recent approximate analytical treat- 
ments [15, 16-18] for the evolution of a wavepacket seem to 
confirm this scaling with &, at  least at a fixed distance from 
the tip. 

Note that the scaling form eq. (9) of Fig. 4 contains 
already the dependence on supercooling A and anisotropy E ~ .  

In other words: Both the Ivantsov radius R, and the wave- 
length scale with A s .  In the first case the scale factor depends 
on 0, in the latter case it appears to be constant. This scaling 
seems to contain the dependence on anisotropy, supercooling 
and even dimensionality. 

There are, of course, a number of important points rather 
open. The coarsening of the sidebranches down the shaft 
caused by competition between them, for example, is not 
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Fig. 3. Ratio of actual tip-radius R over Ivantsov-radius Ro corresponding 
to the same growth rate, plotted versus anisotropy. Again the scaling appears 
to be universal. 
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Fig. 4. Scaled wavelength i of sidebranches versus anisotropy. This supports 
the scaling hypothesis I, - 2, independent of A and c 4 .  

understood. While our computational scheme is obviously 
competitive with experiments concerning the questions dis- 
cussed above, we do not see a simple way to extend this to the 
coarsening problem. A three dimensional calculation base on 
a mode-analysis in the present frame appears to be feasible. 
Kinetic anisotropy could also be included, but even less is 
known experimentally about this. Finally, the closely related 
problems of directional solidification and eutectic growth still 
pose a number of intriguing questions in addition to their 
technological relevance. 

References 

1 .  Langer, J. S., Rev. Mod. Phys. 52, 1 (1980); Langer, J. S., Muller- 
Krumbhaar, H., Acta. Metall. 26, 1681; 1689, 1697 (1978); Muller- 
Krumbhaar, H .  and Langer, J. S., Acta. Metall. 29, 145 (1981). 

2. Pelce, P.  and Pomeau, Y. ,  Studies in Appl. Math. (to appear). 
3. Hong, D. C. and Langer, J .  S., Phys. Rev. Lett. 56, 2032 (1986). 
4. Kessler, D., Koplik, J. and Levine, H., Proceedings of the NATO 

A.R.W. on “Pattern, Defects and Microstructures in Non-Equilibrium 
Systems”, Austin, Texas, March (1986); Kessler, D. and Levine, H., 
Phys. Rev. A. 33, 2621, 2634 (1986). 

5 .  Kessler, D .  and Levine, H., “Stability of Dendritic Crystals”, Phys. 
Rev. Lett. (1986). 

6. Kessler, D., Koplik, J. and Levine, H., “Dendritic Growth in a 
Channel” Phys. Rev. A (1986). 

7. Ben-Amar, M.  and Pomeau, Y . ,  Europhysics Lett. 2,  307 (1986); and 
“Theory of the Needle Crystal” (preprint). 

8. Ben-Jacob, E., Goldenfeld, N., Langer, J. S. and Schon. G. ,  Phys. 
Rev. Lett. 51, 1930 (1983); Phys. Rev. 29, 330 (1984); Ben-Jacob, E., 
Goldenfeld, N., Kotliar, B. G. and Langer, J. S., Phys. Rev. Lett. 53, 
2110 (1984). 
Honjo. H., Ohta, S. and Sawada, Y. ,  Phys. Rev. Lett. 55, 841 (1985). 
Ben-Jacob, E., Godbey, R., Goldenfeld, N. ,  Koplik, J., Levine, H., 
Mueller, T. and Sander, L., Phys. Rev. Lett. 55, 1315 (1985). 
Glicksman, M.  E., Schaefer, R .  and Ayers, J., Metall. Trans. A 7, 1747 
(1976); Huang, S. and Glicksman, M., Acta. Metall. 29, 701, 717 
(1981); Glicksman, M. E. and Singh, B., in “Solidification and Fluid- 
Dynamics”, Proceedings of a workshop a t  Giesserei-Institut der 
RWTH-Aachen, Aachen, (1984). 

12. Dougherty, A., Kaplan, P. and Gollub, J., Phys. Rev. Lett. 58, 1652 
(1987). 

13. Goldbeck, G. ,  “Strukturbildung bei dendritischer Kristallisation” 
(unpublished); Muller-Krumbhaar, H, Goldbeck, G. and Saito, Y. ,  in 
Proceedings of the OJI-Seminar on Crystal Morphology and Growth 
Units, Yamagata, Japan, (1985); Saito, Y. ,  Goldbeck-Wood, G.  and 
Muller-Krumbhaar, H., Phys. Rev. Lett. 58, 1541 (1987). 

Caroli, B., Caroli, C., Misbah, C. and Roulet, B., (preprint). 
Pieters, R. and Langer, J .  S., Phys. Rev. Lett. 56, 1948 (1986). 
Caroli, B., Caroli, C. and Roulet, B., (preprint). 
Barber, M. N., Barbieri, A. and Langer, J .  S., (preprint). 

9. 
10. 

1 I .  

14. Misbah, C. (preprint). 
15. 
16. 
17. 
18. 

Physica Scripta Ti9 


