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The two-dimensional Coulomb gas with logarithmic interaction is studied by Monte Carlo
simulation. We find clear evidence for the existence of a phase transition without referring to
any theory. The analysis relies on the duality between Coulomb gas and discrete Gaussian
model. The transition point T, is in excellent agreement with the Kosterlitz theory. The corre-

lation functions support the renormalization-group results and disagree with the mean-field

results.

I. INTRODUCTION

The two-dimensional Coulomb-gas and related
models have attracted considerable interest due to the
unusual nature of its predicted phase transition. A
large number of analytical studies! ™2 and numerical
simulations'>~!'® were performed to give quantitative
predictions about universal and nonuniversal critical
parameters. Recent arguments®3~!! support the
Kosterlitz-Thouless theory! (KT), that the critical ex-
ponents in the Coulomb-gas' (CG) and the discrete-
Gaussian®? (DG) model agree with the six-vertex
model,’ while in contrast variational calculations*
gave exponents differing by a factor of 2.

Considering correlation functions KT! and other
authors®® use renormalization arguments together
with an approximate treatment of certain fluctuations.
Alternatively a considerable number of numerical
studies'*~!® were performed which mostly claimed to
support KT. In our opinion, however, these previous
simulations (unlike simulations'?) of ordinary. critical
phenomena) do not settle the question of the ex-
istence of a transition. Tobochnik and Chester'®find
exponential decay of the spin-correlation functions at
high temperatures, while at low temperatures spin-
wave theory is in good agreement with their data. In
the latter regime, however, the vortex density is so
low that an exponential decay of the spin-correlation
functions, if it existed, could no longer be observable
for a limited system size. For instance they had a
difficulty to detect an exponential decay at a tempera-
ture 7 =0.95 higher than the critical point. In order
to describe an exponential tail, one needs to consider
a system with linear dimensions larger than the
characteristic distance between vortices. As for the
critical exponent v their value v =0.7 lies between
the values % and 1 from the renormalization®® and
variational calculations.>* We show below that there
is a strong variation of the correlation length due to
the noncritical effects. Because of this, Swendsen'?
originally found agreement with the mean-field tran-
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sition temperature. Furthermore the results obtained
by Shugard, Weeks, and Gilmer'® (e.g., the transition
point at K =1.46) depend on the choice of the inter-
val over which they fit the height correlation func-

tions to the KT theory, since they apparently did not
subtract the trivial saturation due to finite-size effect.

The reason for these previous problems obviously
is the small system size. If, according to KT, the
vortices (or charges) are the relevant excitations, one
has to have a sufficiently large vortex number near
the transition point in order to have sufficient statis-
tics. At vortex-pair densities of < 1072 near the
transition (Refs. 14 and 16 and below) one has only a
6 % 6 lattice of vortex pairs in a lattice of typically'®
N =607 sites. Such a small system size is below
everything that has been used'® in ordinary critical
phenomena. )

Our idea now is to move charges in a CG model
directly instead of single spins in an XY model,'®~!3
which give rise to vortices as a result of cooperation
only. Thus our method is the better the lower the
charge density becomes, and only unit charges are
considered in our simulation. We keep the charge
positions in tables and allow for creation and annihi-
lation of pairs and for diffusion of single charges.
About 107 configurations in an N =400 x 400 lattice
were produced at each temperature plus similar
amounts on smaller systems for comparison. Details
of the procedure are given in the Appendix.

II. COULOMB-GAS AND DISCRETE-GAUSSIAN
MODEL

In this section we summarize the basic formulas
concerning the duality relation between the two
models under consideration. The Hamilionian® of
our neutral Coulomb gas is

HKeg=—2m3 JnljIn(kD)Vy(i—jk—=1)
G,))#= (k1) :

(1)
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for a quadratic VN x+/N lattice. The charge unit e
and the lattice constant @ are taken as unity, the
charges n are integers between + oo, with the neutral-
ity condition 2(,._]) n(ij)=0. The interaction Vy is
given by the lattice Green’s function

1 —expli(g.k +q,1)]

1
Vn(k1)=——
(k1) 2 — cosg, —cosg,

4N
(qx,qy)#(0,0)

()

which reduces in an infinite lattice (N — o) and for
large separation to

V(1) =@m) " (Inl (k2 +2) 21+ m8+y) , (3)
the usual form of the logarithmically interacting neu-
tral Coulomb gas.® The constant p=— % (In8 +2v)

=— %w (with 7"=0.577 being Eulers constant), can

be interpreted as a chemical potential of a particle
with unit charge. The Hamiltonian of the DG

model*?3 is given by
Soc=J 3, ([h(j)—h(i+1,j)]2
(if)
+lh(ii))=nGji+1)]2) 4)

where the height # (jj) runs over all integers
between + co. The duality' relation between the two
models (1) and (4) provides a relation between the
temperatures: (wT)~'=7T/J =K, where T is the
temperature of the CG, and T of the DG model.
The height correlation function of the DG model

GyGi—kj—=1)=([n(ij)=h(k)]*)pg 5)

is related to the charge correlation function of the
CG by the equation® 1°

Gn(x,y)=2KVy(xy)—Q2nK)?
X 2 2 (n(i,j)n(k,/))c(;

) (kD)
x[Vy(x—iy—j)=Vy(ij)]

X [Vy(x—=ky—=1)—=Vy(ki)] .

Since the singularity predicted! at T, is extremely
weak for thermodynamic quantities, we concentrate
here on the correlation functions, basically in the no-
tation of Ohta and Kawasaki® (their K equals #K in
our notation).

At low charge densities the behavior of the system
is expected! to be dominated by the unit charges
n=*1. (This may be checked below.) With this ap-
proximation, the renormalization-group RG calcula-
tion® gives a transition temperature K,

K.=4/m+8exp(—gm?K) =148 ... . )

The correlation function (5) should behave® (near

(6)

K., N — o) as

G.(R)=

8 +£‘t|lnl-l—]nR, R>>1 (8)
m m 4

for t =0 where t=(T —T,)/T,, and
(C/m)=[2(K.—4/7) +w2/2(K, —47)? 1K,

giving C =3.025. .. .
Below T., the correlations (5) should saturate® as

LZEAim G.(R)

2 4 —1/2 =

E?ln§=ﬁ|t| N=r2. | )
where ¢ is the correlation length of height variables
in the DG model. The two regions, below or above
T., thus are characterized by saturation or logarithmic
divergence of the correlation functions G (R ) for
large R. In contrast to ordinary critical points, where
the transition is marked by peaks in certain functions,
the critical point here is only the boundary between
two regions of asymptotically different behavior.
This makes it much harder to locate the transition
point without referring to a quantitative theory.

Two minor corrections to the above formulas will
be useful for the interpretation of our data. First, at
low temperatures K — 0, the moment L? in the DG
model behaves!* as L2~ 4 exp(—4/K). We may
construct a simple rational multiplier which leaves the
renormalization form (9) unchanged near K, but
gives the correct asymptotic form for K — 0, and we
define a ‘“‘reduced”” moment L*:

=11+ =" ) me 1 L2 . (10)

Second, for large distances R we cannot expect a log-
arithmic divergence of Gy(R ), Eq. (8), due to the
finite size of our model. On the other hand, we
know how the finite size affects another closely relat-
ed [Eq. (6)] function: The interaction potential
Vx(R), Eq. (2), in a finite system is no more simply
logarithmic, but feels the finite size. We show this
effect in Fig. 1, where one also observes the anisotro-
py for the finite-size system. For a N =607 system,
for example, finite-size effects start to become visible
around x = 10, for a 400? system around x = 60.

We may expect that a very similar finite-size effect
will occur in Gy(R). In Eq. (6), we see that the first
term is directly proportional to Vy(x,y ), while the
second term also contains ¥y (x,y) in a more compli-
cated manner. Therefore, plotting Gy(R) vs Vy(R)
instead of In(R), the trivial finite-size effect from the
first term of Eq. (6) is cured. We thus may expect
very little finite-size effect to be left. In particular, if
we now find saturation of the correlations at large
values of Vy(R) it will be the physical saturation
related to the phase transition rather than a trivial
finite-size effect.
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FIG. 1. Two-dimensional lattice Green’s function Vy vs
logarithm of distance x for various system sizes N. The con-
tinuous curve is the value for the axial direction Vy(x, 0)
and the broken curve for the diagonal direction /
VN(x/\/-f,x/\/f). Both of them show logarithmic behavior,
Eq. (3), for intermediate distances, but there is saturation
for large distances due to the finite-size effect.

III. RESULTS AND DISCUSSION

In this section we give the results of the simulation
in three parts. First, we discuss the thermal proper-
ties, energy, and specific heat, then we present parti-
cle densities and correlation functions directly in the
CG system, and finally we discuss the phase transi-
tion in terms of the dual DG model.

Figure 2 shows the energy E plotted versus tem-
perature K = T'/J of the discrete Gaussian model
dual to the CG. This energy is related to energy Ecg
of our Coulomb gas by'®

E=[+(1-N"")=Ece/TIT . an

This plot allows for a direct comparison with
Swendsen’s results on the DG model.'>'* We note
that even though we only consider unit charges, our
results for all system sizes agree precisely with Fig. 1
of Ref. 14. Since the energies in our case are due to
long-range interactions, they depend sensitively on
the number of particles and on correlations between
particles. We, therefore, consider this agreement to
be an excellent test for the correctness of our simula-
tion procedure, for convergence to equilibrium and a
justification for using unit charges. The next plot,
Fig. 3, shows the specific heat (again in the DG
frame) versus K. The data agree well with Refs. 13
and 14, and the remaining fluctuations do not show a
systematic size dependence as the previous calcula-
tions'> ' on smaller DG lattices.

In Fig. 4, we show the concentration c, of charge
pairs per lattice site plotted versus temperature
K =1/(wT), where T is the temperature of the CG.
From Eq. (3) follows the Kosterlitz prediction
¢, ~exp(—2u/T) for T—0 (K — o). In our units
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FIG. 2. Energy per site of the DG model vs temperature
K. There is no observable size effect, and the result agrees
with that of Swendsen (Ref. 14).
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FIG. 3. Specific heat per site of the DG model vs tem-
perature K. The maximum of the specific heat is found at a
K value below the RG transition temperature K, ~ 1.48 and
also below the mean-field transition temperature (Refs. 3
and 4) KMF=4/7 ~1.27.
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FIG. 4. Density C, of oppositely charged particle pairs as Vn(x,y)

-a function of the inverse CG temperature K = (7w 7)~!. The
temperature dependence is of the activation type C,=13.8
¢35 K and no singularity is found at both the mean-field
KMF and the RG transition temperatures K.,..

this means ¢, ~ exp(—5.1 K), while we obtain an ex-
ponent of = 5.5 K. This slightly higher value may be
attributed to the presence of more-distant-neighbor
pairs, which require more energy. This is another
check for the correctness and convergence of the cal-
culation. Note that near the predicted transition
point, we find no obvious anomaly in the tempera-
ture dependence of the pair concentration. This
agrees with the observation found in the XY model!¢
at smaller system size. .

The next plot, Fig. 5, shows the short-range
charge-charge correlation. Because of the attraction
between opposite charge, the correlation is expected
to be basically negative. In order to minimize the ef-
fect of the lattice anisotropy, we plot the log of the
correlation function versus Vy(x,y) rather than
versus In[ (x2+y?)'/2]. The lines are the assumption
used in the renormalization calculation.®® They
come from the low-temperature (7 —0) result,?
respectively, K — oo,

(n(0,0)n(xy)) =—2expl—4m’KVy(xy)] , (12)

which basically means a power-law decay as a func-
tion of distance [see Eq. (3)]. Obviously this predic-
tion is confirmed by our calculation to a high degree
of accuracy, even including the prefactor, over the
whole ““critical’’ range of temperatures. Of course,
we cannot discriminate between a power-law or ex-
ponential decay (which would indicate a phase transi-

FIG. 5. Short-ranged charge correlation vs the two-
dimensional lattice Green’s function Vy. The lines are the
low-temperature T approximation: (n(0,0)n (x,y))
~—2expl—4wKVy(x,y)], used in the RG calculation.

tion) by looking only at these short-ranged correla-
tions. One way to look at the long-range correlation
is studying the long-wavelength behavior (¢ —0) of
the dielectric function:

e (g)=1-4n’KVy(q){(n(g)n(—gq))cc/N

This is plotted versus ¢/2 in Fig. 6. Here, e(q)
was averaged over the angle in the (q,,q,) plane.
For K =1.5, the plot indicates insulating behavior,
limy—g €(q) is finite, while for K =1.2, we see ap-
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FIG. 6.. Inverse dielectric function for long-wavelength ¢
region. Finite-size effects obscure the behavior for ¢ — 0.
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proximately metallic behavior: lim;—ge(g) =o0o. We
cannot say anything about the exponent of the diver-
gence in the latter case.

In the intermediate-temperature range, we observe
strong fluctuations due to limited statistical accuracy.
The wave number g where the inverse dielectric
function €'(g) takes the value half of its maximum
value measures the inverse of the correlation length
in the metallic phase. If the correlation length
diverges exponentially as the temperature approaches
some critical value K — K, (from K < K_), as
predicted by the Kosterlitz-Thouless theory,"®® even
the values at K = 1.4 might still be in the metallic
range K < K,. From this plot, we cannot draw a de-
finite conclusion about a phase transition, mainly due
to finite-size problems. ‘

In order to minimize the influence of finite-size ef-
fects in the analysis, we now transform the correla-
tions into the notation of the DG model by Eq. (6).
As already mentioned in Sec. II, we then plot the
function Gy(x, 0) vs Vy(x, 0), as shown in Figs.
7-9, for systems of N =602, 2002, and 4002. This
way of plotting eliminates the trivial size dependence
of Eq. (6). Although some size effect still could be
left in the second term of Eq. (6), we cannot detect
any sign of a systematic size dependence in these
graphs. In Fig. 7 at K =1.3, one can find a small
curvature but no saturation. From Fig. 7, one may
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FIG. 7. Height correlation function Gy in the DG-model
vs the two-dimensional lattice Green’s function Vy in the x
direction for the system with size N =602. Distances in
units of the lattice constant are plotted in the axis on top.
Parameters are the temperature K =T/J. Gy at K =1.3
shows only a small curvature and no saturation is observ-
able. Previous analysis (Ref. 15) was done for 7<x < 12.
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FIG. 8. Similar graph as in Fig. 7 for the larger system
with N =2002. The result at K = 1.2 for the system
N = 1002 is also included.

expect a phase transition to take place between

K =1.2 and 1.3, but increasing the system size shows
clear tendency for a saturation at K =1.3. At K =1.5
and larger, we cannot detect any curvature even for
the largest system size.

The average distance between different particle
pairs varies from =10 at K=13to =17at K =1.5
and thus cannot account for the difference in qualita-
tive behavior of Gy vs Vy. We therefore argue that
the curvature of the “‘lines’” Gy vs Vy is governed by
the correlation length and is associated with the sat-
uration of the correlations at large distances. Care-
ful inspection shows a small curvature still at K =1.4.
Thus we conclude that the transition temperature is
at larger K value than 1.4. Our best estimate agrees
with K, =1.48. Of course, like all experiments, this
does not prove the existence of a phase transition in
the rigorous sense. But for the first time we demon-
strate the changeover from a metallic to a nonmetal-
lic behavior in a system which is large compared to
all length scales except the correlation length £.

On this basis, we now compare our data with the
predictions from renormalization-group calcula-
tions."®? In Fig. 10, we show the slope 4 of the
correlations Gy (x,y) taken from Figs. 8 and 9, plot-
ted versus K for K > K. =1.48. For K < K, we
give in parentheses the slopes of the tangents to the
curves of Figs. 8 and 9 at the largest distances. The
broken line denotes the results obtained from mean-
field treatment,>* the full line is the renormalization®
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FIG. 9. Similar graph as in Figs. 7 and 8 for the largest
system N =4002. The saturation of Gy(x,0) at K =13 is
now clearly seen. Apart from small fluctuations no sys-
tematic size dependence is found, compared with Figs. 7 and
8. At K =1.5 no curvature can be detected, thus there is no
indication for saturation in this regime.

result, but here as a full solution to the renormaliza-
tion equations, not just the small-|7| approximation
(8). We find excellent quantitative agreement
between our Monte Carlo (MC) data and the renor-
malization results, without adjusting any parameter.
The mean-field result®* is clearly ruled out, since the
square-root behavior is obvious.

For values K < K,, we show in Fig. 11 the satura-
tion values L~2, Eq. (9), plotted versus K. We do
not use the values at K =1.4 and 1.45, since there
we would have to extrapolate (see Fig. 9). For com-
parison, we give both the leading term Lg&, Eq. (9),
from the RG calculation® and the small-K-corrected
values (10). We find striking quantitative agreement
with this latter relation, showing that the small-K
behavior is important up to the close neighborhood
of K.. The critical exponent v of the correlation
function, In £ ~ |#|~®, obviously cannot be deter-
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FIG. 10. Slopes 4 of the straight lines from Fig. 9
(K =1.5) vs K. The slopes of the tangents to the curves of
Figs. 8 and 9 at largest distance are given in parentheses.
The full curve shows the renormalization (RG) result, the
dashed line shows the mean-field (variational) result.

mined from this calculation. One would have to cal-
culate saturation values near K = 1.45, which leads

to a necessary system size of VN = 106 lattice units

(side length).

Finally, we include in Fig. 11 previous results'* of
MC simulations on the DG model (102 and 40? sys-
tem). These results are better than ours for K < 1.0,
since then in the DG model everything is short
ranged. Near K. and above, where our method is
most effective, those values are not useful anymore.

To summarize, we have obtained excellent quanti-
tative agreement with the renormalization calcula-
tions of correlation functions.” The mean-field
results®* cannot account for our data. We have set
the chemical potential such that the CG and DG
models are equivalent. We can also vary the chemi-
cal potential in order to investigate the critical line in
an activity versus temperature plot, but this is beyond
the scope of the present investigation.
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FIG. 11. Inverse saturation value L2 of the correlation

functions (Figs. 7 and 9) vs K. The broken line is the
linearized renormalization (RG) result [Eq. (9)], the full
line is our low-K corrected formula [Eq. (10)]. The low-K
behavior clearly is dominating up to a temperature
K <0.9K,.. The predicted square-root behavior near K,
thus could only be seen in a region within 3% below K.

Previous Monte Carlo data (Ref. 14) are included for com-
parison. .

APPENDIX: MONTE CARLO PROCEDURE

Our Coulomb-gas system is a grand canonical en-
semble, the particle number being not conserved.
The simulation process then consists of a creation
and an annihilation of pairs of particles with positive
and negative charges and of diffusion of single parti-
cles. Thus the total charge is zero.

Since the lowest energy barrier to create a particle
pair corresponds to a nearest-neighbor pair, we con-
sider only nearest-neighbor-pair creation and its re-
ciprocal process, nearest-neighbor-pair annihilation.
Although lowest, the barrier to create a pair 2u is still
larger than the thermal activation energy 7 = 7K™
near the critical point, and hence most attempts to
create a pair will be unsuccessful if the normal
Metropolis method is applied. Correspondingly
there are not many charged particles in the system.
At K =109, 1.6, and 1.3 there are — 63, ~ 310, and
~ 1750 particle pairs, respectively, in N = 4002
= 160000 system. Therefore using the Metropolis
method, most of the CPU time is spent without

changing the configuration.

We introduce a new method of simulation to speed
up the process. In the first stage, we decide whether
we try pair creation or annihilation according to a cer-
tain probability. The creation is tried with a constant
probability p..( < 1), but the annihilation is tried
with a probability p,,, proportional to the density
C,+_( << 1) of the nearest-neighboring particle pairs
with opposite charges multiplied by the factor e*/7
( >>1). Although C,_ is very small, the large fac-
tor ¢2#/T enhances the rate of annihilation trials.

In the second stage, if creation is being tried, we
pick up a lattice site and one of its neighbors at ran-
dom. Only if both sites are unoccupied we calculate
the energy change AF . associated with the pair crea-
tion, and otherwise we skip to the next process. If
the energy change is smaller than 2u, the pair is
created. If the energy change is larger than 2u, the
pair is created with probability expl— (AE,—2u)/T1
(=1). Compared with the Metropolis method, we
have shifted the energy reference from 0 to 2u, and
enhanced the creation rate by e2*/7 which coun-
teracts the enhancement of annihilation trials p,,. In
order to perform the annihilation process effectively,
we keep the location of the nearest-neighboring op-
posite charges in a table. If the annihilation is being
tried, we pick up a nearest-neighboring pair at ran-
dom from the table, calculate the energy change asso-
ciated with the pair annihilation; AE,,=—AE.. If
the energy change AE,, is smaller than —2u, the pair
is annihilated. If the change AF is larger than —2pu,
the annihilation is performed with probability
expl (=AE,,—2u1)/T1 (<1). With this method the
enhancement of annihilation rate in the first stage
and of creation rate in the second stage speeds up the
total process essentially by a factor e**/T ~ 102, com-
pared with the usual Metropolis method near the crit-
ical point.

The diffusion of positive or negative charges is per-
formed alternatingly with creation and annihilation
processes. We keep the positions of the positive and
negative charges in other tables, and we pick up a
particle from these tables at random. This increases
the number of the diffusion trials effectively. The
energy change is treated by the usual Metropolis
method.

Finally we give a few comments on the ‘‘logarith-
mic’’ interaction of the Coulomb-gas system. Our in-
teraction is not truely logarithmic but is essentially a
two-dimensional lattice Green’s function Vy in Eq.
(2). In the simulation Vy is evaluated numerically by
the ‘‘fast Fourier transform.’”” The interaction is not
divergent for large separation but it saturates as the
separation approaches the system size as shown in
Fig. 1, and is periodic with the period of system
length;

Vi(k +~N, 1) =Vy(k 1 +~N ) = Vy (k1)



23 TWO-DIMENSIONAL COULOMB GAS: A MONTE CARLO STUDY 315

In the usual Coulomb-gas system with truely long-
ranged interaction, we have to consider the image
systems periodically arranged around the original sys-
tem and it is necessary to calculate the energy
between the original system and all the image system
by Ewald summation in addition to the interaction

energy of the original system. In our case, however,
the periodicity of the DG model is incorporated in
the periodic potential Vy, and the interaction (1) is
effective only between the particles in the original
system. By this procedure we circumvent the neces-
sity to perform explicit Ewald summation.
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