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A simple model for the kinetics of two interacting interfaces moving at a prescribed
rate is proposed. It is a kinetic generalization for problems like wetting, pinning, sur-
face segregation, or surface reordering during solidification. Various types of non-

equilibrium phase transitions are predicted.
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Equilibrium phase transitions at coupled inter-
faces have recently received great attention.'”®
The common basis for the problems of wetting,’
pinning,®"* surface-induced disordering,’ etc., is
a model where a fluctuating internal interface be-
tween two coexisting phases interacts with a stiff
external surface or boundary. In a ferromagnet-
ic system, for example, this external boundary
is the surface while the internal interface sepa-
rates a down-spin region near the surface from
an up-spin region in the bulk. A simple phenom-
enological model for this situation was given in

“Ref. 5.

A different problem at first sight seems to be
the phenomenon of kinetic disordering,’ ® where
an ordered two-component crystal becomes dis-
ordered if the growth rate exceeds a critical val-
ue. The earliest observation of this phenomenon
was made by a computer simulation.® (The ex-
perimental situation is less clear, basically be-
cause of the competing effect of polycrystalline
growth.) In this Letter we present a simple phe-
nomenological model as an extension to Ref. 5
which gives a unified picture of the two classes
of phenomena and in addition predicts different
types of nonequilibrium phase transitions, de-
pending on the phase diagram and spatially inho-
mogeneous kinetics of the system under consid-
eration. The last point may be particularly im-
portant for applications in laser annealing of
compound material.® As a final point we note
that the mechanism of propagating pattern selec-
tion'® also becomes relevant in this problem.

For simplicity we will describe our analysis in
the language of kinetic disordering. Assume a
two-component crystal with two identical sublat-
tices to grow from a completely disordered liq-
uid phase. Assume the liquid to cover the half-
infinite space z <0, the solid covering z >0, z be-
ing the spatial coordinate normal to the solid-
liquid interface (= external boundary). Inside the
solid, close to the solid-liquid interface, the sol-
id is assumed to be also disordered (M =0), its
order increasing around z =z, towards the satura-
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tion value (M =1) at z =+, as seen in Fig. 1. In
the equilibrium case this is essentially the model
proposed in Ref. 5. Here we have chosen the
slightly simpler boundary condition M(z =0)=0
compared with Ref. 5, since in our case the dis-
ordered liquid [M (z <0)=0] directly serves as the
nutrient phase. But now we assume that the crys-
tal is growing, the solid-liquid interface at z =0
moving at constant rate V to the left. Here z,>0
denotes the distance from this interface in the
moving coordinate system. As an explicit model
we assume dissipative kinetics for the (noncon-
served) order parameter M :
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where k is a mobility (to be discussed later), the
zero on the left-hand side denotes stationarity,
and the V term represents the transformation to
the moving coordinate system z. F is a Ginzburg-
Landau free energy
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FIG. 1. Schematic plot of the order-parameter pro-
file M(z). The surface at z <0 moves with prescribed
velocity V to the left; the internal profile follows at a
distance z; .

© 1983 The American Physical Society



VOLUME 51, NUMBER 19

PHYSICAL REVIEW LETTERS

7 NOVEMBER 1983

Irrelevant constants are set equal to unity.

The plus sign in f(M) denotes case (A) in Fig. 2,
the minus sign case (B). In case (B), the disor-
dered state M =0 is unstable (spinodal decomposi-
tion), in case (A) it is metastable, the stable
state in both cases being M =1. The value of M,
and the realization of either (A) or (B) depends
on the phase diagram of the particular system.
Case (A) corresponds to a phase diagram where
the disordered solid is metastable, while in case
(B) it is unstable. Around z, an interface be-
tween the disordered and the ordered solid will
be formed.

When we look for stationary solutions, the
equation of motion (3) to be solved is simply

oM oM _ of (M)
522"V T a0n) (3)

with boundary conditions M (z =0)=0 and M (z — «)
=1. This is identical to a simple damped oscilla-
tor, where 7=-2z corresponds to time, M takes
the role of the time-dependent coordinate, and
U= ~-f(M) is a potential. The velocity V corre-
sponds to the damping constant. Since the de-
rivative of f(M) at M(z,) =M, is discontinuous,

we have to require continuity for M (z) and aM (z)/
8z at z, as internal matching conditions.

The qualitative behavior of the system (3) is
easily visualized in terms of this mechanical an-
alog of a particle moving in an external potential
U, keeping in mind that the potential U has the
opposite sign from f. At z =+ (T==x) the “par-
ticle” starts at the unstable equilibrium point
M =1 (Fig. 2), reaches M =M, at z,, and finally
should reach M =0 at 2,=0 (or “time” 7=0). While
without doubt the path from M =1to M =M, is al-
ways possible for arbitrary damping V, V must
be small enough to allow the particle to pass from
M(@z,)=M,to M =0 in finite time. This condition
defines the value of z,,.
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FIG. 2. Potential f(M) depending on the order pa-
rameter M. Case (A) is an unsymmetric double-well
potential, (B) a single-well potential with maximum
at M=0.

If V is very small the particle passes the point
M =0 in both cases (A) and (B) at some value of
z, which can be set to zero by shifting z,. Hence
the boundary condition M (0) =0 can be fulfilled.
This is no longer the case if V is too large. In
case (A) of Fig. 2 the particle does not reach the
point M =0—a local maximum in the potential
U—any more and finally becomes trapped at M.
The critical value V, above which this occurs is

_2/3(1-2my)
VA _[1 - (1 _ 2M0)2]1/2 . (4)

In case (B) we have to discriminate between two
possibilities, depending on whether

My=>M* (5a)

or

My <M* (5b)

with M*=1-1/V2, as discussed below. First we
note, that for arbitrary values of V >0, in case
(B) the particle will ultimately be trapped at M
=0 in contrast to case (A). For small values of
V it performs damped oscillations about this
point. If V is slightly larger than a critical value

Vg=V8, (6a)

it approaches M =0 only asymptotically, without
ever passing it [under condition Eq. (5a)], or
passing it at most once [Eq. (5b)]. But even in
the latter case the particle will not pass M =0 if
V>V B

v _AM - 8M S +8M ) - 4M + 1
B 2M % = 3M 2+ M,

2 (6b)

and Vg>Vj.

Therefore, if V is larger than the respective
critical value, we have no stationary solution for
the motion of the two coupled interfaces a dis-
tance z, apart. Approaching V4 or either of Vj
and V; from below, the intermediate layer 0<z
<z, diverges:

Case (A): z,~=1In(V,=V); (7
Case (B): z,~ (Vg =V) Y2 (8a)
~=In(Vyz-V) (8b)

[depending on the model situation, Eqgs. (5a) and
(6a) or (5b) and (6b)].

The physical interpretation of this effect is sim-
ply understood. At small growth rates V an or-
dered crystal is formed from the liquid with an
intermediate disordered solid layer of thickness
z, near the solid-liquid interface. As V approach-
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FIG. 3. Three possible moving profiles for an in-
finite system with potential (B) (Fig. 2). (a) An oscil-
lating (slow) profile; (b), (c) two “overdamped » (fast)
profiles. (The positions of the three profiles along
the z axis here are arbitrary.)

es the critical velocity V, or either of V5 and Vg,
the thickness of the disordered layer diverges,
Eqgs. (7) and (8). For larger values of V a steady
state is not reached, but the disordered layer in-
creases continuously in thickness. This is our
nonequilibrium phase transition. It is “sharp” in
the sense that the metastable states involved in
the analysis are very long living, justifying a
Ginzburg-Landau approach. This is not a cru-
cial assumption in case (A), but in case (B) we
have to worry about spinodal decomposition.

Instead of going into details here, we would
like to add a modification of the kinetic equation
(1). Close to the solid-liquid interface one may
expect a region of fairly high mobility, while
deeper in the solid the mobility is drastically re-
duced, e.g., by the lower temperature. We may
model this by setting k=1 at 0<z <L (Fig. 1) and
k changing rapidly to k=0 for z > L. The bulk of
the growing crystal then maintains the order M (z
=L) all the way out to z - «. The qualitative be-
havior in case (B) will not be dramatically
changed, except that the mechanism of spinodal
decomposition becomes irrelevant as L becomes
small,

In case (A), however, we expect a change in
the nature of the transition. For z,>L, there is
no reason for the system to deform the order-
parameter profile from M(z)=0, z= 0,, since
this is at least a local minimum of the potential
f(). This implies a first-order transition for
the bulk of the crystal from M >0 to M =0 as soon
as z,< L, because of the competition of energies
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F(M(z<z,)) and F(M(z,<z<L)). Clearly, if z,

= L the system will remain in the state M =0.
Experimentally there does not seem to exist any
systematic investigation. It should not be hard
to determine the critical growth rate V,, V5. To
identify quantitatively the predicted logarithmic
singularity, however, may not be easy, since it
has to be discriminated from a first-order tran-
sition. So we leave this to future discussion.

To summarize, we have obtained a fairly gen-
eral formulation for the kinetic disordering tran-
sition for systems with nonconserved order pa-
rameter. Modifications to include diffusion are
easily possible in the frame of this piecewise
linear model. As a final point we note that the
critical velocity V5 [Eq. (6a)] is identical to the
ultimately selected® velocity arising in the prob-
lem of propagating pattern selection. Note, how-
ever, that our solutions [case (B)], Fig. 3(a),
correspond to the dynamically inaccessible states
of Ref. 10 because of the boundary condition M(z
=0)=0.
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