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Velocity of a propagating Taylor-vortex front
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We present finite-difference numerical solutions of the time-dependent Navier-Stokes equations
for propagating Taylor-vortex fronts into unstable Couette flow. The propagation velocities found
are in excellent quantitative agreement with the theoretical predictions for normal fluids. Devia-
tions of previous investigations reported in the literature can be explained in terms of transients.
Agreement is found also for front propagation in magnetic fluids, where a magnetic field modifies

the front velocity.

In many nonlinear dissipative systems, spatially period-
ic structures grow out of a homogeneous basic state when
the driving exceeds a critical value.! Taylor-vortex flow in
the annulus between concentric cylinders and convective
rolls in a fluid layer heated from below (Rayleigh-Bénard
system) serve as prototype examples for such dissipative
structures. After the driving has increased to a supercriti-
cal value, these structures start growing from small imper-
fections. If these imperfections are located in some region
in space, the pattern will then grow locally first and later
on spread out into the stationary unstable state, still exist-
ing in the rest of the system: the situation gives rise to a
front which connects the two states and moves with a sta-
tionary speed and stationary intensity profile into the
homogeneous unstable state (see inset, Fig. 1).

In recent years, this phenomenon of “front propaga-
tion” (a review is given in Ref. 2) has been discussed
theoretically for model systems which are simpler than the
equations of motions of most real systems,> > but some of
them are expected to become exact descriptions in the lim-
it e— 0. For small ¢ characterizing small supercritical
driving (e.g., ¢=NRga/NRra, — 1 , NRa is the Rayleigh num-
ber in a Rayleigh-Bénard system, e=N7/Nr,—1, Nt is
the Taylor number, proportional to the square of Vg, in-
dex c¢ for “critical”), these models and the equations of
motion of real systems can be approximated by a
Ginzburg-Landau-type equation® 8

00 '9,A=£3824+A(e—1A]?). ¢))

The complex amplitude A4 contains the slow variations of
the pattern and may, e.g., in the Taylor-Couette system,
be related to the radial velocity component u in the middle
of the gap by u « Nre(4e**). The scales & and oy de-
pend on the special system under investigation and follow
from linear stability analysis.

A striking fact is that, following from the analogy to the
Fisher-Kolmogorov equation,®!® Eq. (1) results in a front
propagation which occurs at a unique velocity 2>

v =5§00’0\/- s (2)

where v =2 is independent of a special system. Since this
selection principle is a general property of Eq. (1), which
also coincides with the marginal stability hypothesis for
Eq. (1), one expects that the prediction would apply to
real systems. Numerical'! and experimental!? investiga-
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tions in the Rayleigh-Bénard system are in excellent
quantitative agreement with Eq. (2). However, this is not
the case in the Taylor-Couette system: The experimental-
ly observed propagation velocity was about half the pre-
dicted value, ' numerical investigations are below 0 =2 by
about 10-15%.'* This discrepancy in the Taylor-Couette
system is still unsolved and in view of the situation in the
Rayleigh-Bénard system and the prototype character of
the Taylor-Couette system is quite unsatisfying.

In the Taylor-Couette system, a propagating front may
be generated by increasing the rotation rate of the inner
cylinder (i.e., the Reynolds number Ng.) instantaneously
from zero to some supercritical value. Then, in the bulk
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FIG. 1. Front propagation. The inset gives an impression of a
propagating front by showing the radial velocity component
u(v/d) in the middle of the gap at a certain time ¢. The straight
line on the right-hand side indicates the unstable Couette flow
into which the Taylor-vortex structure is propagating at
NRe=1.02NRc,. The main figure gives the distance the intensity
levels aumax (@ =0.1, 0.25, 0.5) of the front have traveled as a
function of time. It takes a long time to approach the stationary
front velocity where the dotted lines move parallel in a straight
line. The dashed lines obtained by using the data for
t = 39(d ?/v) correspond to this velocity. [z is given in units of
(d?/v); z is given in units of (d).]
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of the cylinder gap, unstable Couette-flow forms first,
while near the end plates of the gap (which are considered
to be fixed to the outer cylinder, at rest) localized vortex
flow shows up.'> These so-called Ekman vortices near the
ends generate a Taylor-vortex front which propagates into
the bulk of the gap. To investigate quantitative details of
this front propagation, we numerically simulated rotation-
ally symmetric flows of an incompressible fluid of kine-
matic viscosity v in a gap of radius ratio n=R;/R¢=0.95.
The Navier-Stokes equations are solved with an explicit
finite-difference method '*'%!7 on a grid, spaced equally in
axial and radial direction with 20 cells for the radial gap
spacing d =Ro— R;. It has been tested that this spacing
yields results of sufficient accuracy.!” To monitor the ve-
locity of the front, we determined positions z,(z) where
the Taylor-vortex flow has reached a fraction a =10, 25,
and 50% of the maximum bulk outflow intensity wumax
(disregarding the first maxima near the end plates). The
so-defined front moves piecewise continuously, as may be
seen in Fig. 1. A jump forward by approximately one vor-
tex diameter occurs whenever the vortex ahead of z, has
grown up to aumax. The propagation of the front can be
hindered and stopped by the front, starting from the oppo-
site end of the cylinder gap. This can be postponed by
choosing a gap with a large aspect ratio I' = length of the
gap/d. But then spontaneous nucleation of Taylor vortices
will occur in the bulk of the gap resulting from fluctua-
tions and symmetry-breaking perturbations that are al-
ways present in a real experiment. This competing growth
mode of vortices seems to limit the observation time'® of
front propagation in real experiments. '3

However, in a numerical experiment the above-
mentioned disturbances can be suppressed completely.
Numerical simulations allows for investigation of an ideal
system which only exhibits the attributes desired— an un-
stable Couette flow in the bulk and some nucleus for the
Taylor vortex front. Here we take I'=160 and mirror
boundary conditions at the right end of the computational
mesh. The last choice significantly postpones the genera-
tion of the counter-moving vortex front. '®

It takes a long time until the front becomes stationary.
Figure 1 shows at the beginning distinct deviations from
the front velocity observed at later times, where the three
positions of the front move parallel to each other on
straight lines. The final velocity is approached quickest by
the 10% position line (upper line in Fig. 1) and slowest by
the 50% one (lowest line in Fig. 1). Thus, experimental-
ists should use the smallest possible intensity value for the
determination of the front velocity, a hint already given in
Ref. 15. From a least-squares fit to the data in the time
interval 39-50(d?/v), together with values for o and &,
which are determined with high precision'”'® by a shoot-
ing method, '° one obtains, according to Eq. (2), a dimen-
sionless front velocity ¥ =1.953. The error, due to the
discrete nature of the data, can be estimated to be < 1%.
The importance in observing the propagating front in the
Taylor-Couette system for a sufficiently large distance
(=time) is stressed a second time by Fig. 2. From the
data shown in Fig. 1, the dimensionless velocities are
determined for differently centered time intervals and at-
tributed to the mean of the time interval. At larger times
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FIG. 2. Dimensionless front velocity ¢ obtained by least-
squares interpolation using the data over intervals of
~11(d?¥/v) centered at different times 7. The arrow marks the
expected theoretical value & =2. With increasing time of inter-
polation ¢, the velocities of the different front positions (circles
10%, squares 25%, and triangles 50% of #max) converge denoting
the formation of a stationary front. At smaller times, the high-
intensity front positions move slowest.

convergence can be clearly seen. Besides this, the veloci-
ties Dy1o%, V2s5%, and Usoe, agree within their errors, as ex-
pected. For smaller observation times, there are distinct
differences, a clear hint that the shape of the front is still
changing. Extrapolating the curves of Fig. 2 to t— o
would yield values between 1.965 and 2.02, depending on
the character of the fit function assumed. However, our
values for v presented in the remainder of this work are
actually observed ones which, from Fig. 2, mark a lower
boundary.

The results for the determination of the front velocity
are summarized in Fig. 3. Shown are the dimensionless
front propagation velocities for different values of the
driving. The results of the Rayleigh-Bénard system
(marked by squares) that have been included as well are
in good quantitative agreement with the theoretically pre-
dicted value v =2. In the Taylor-Couette s}ystem, the ex-
perimental values of Ahlers and Cannell'® are approxi-
mately a factor of 2 below 0 =2. The numerically ob-
tained data of Liicke ez al. ' give values of approximately
1.75-1.80, while the value of Neitzel'® is slightly above
v=2. The results of our numerical simulation of the full
time-dependent Navier-Stokes equations are marked by
the large filled circles in Fig. 3. Compared to all the other
data the agreement is excellent (one should remember
that these data represent a lower boundary; see Fig. 2).
Besides this, the € dependence of the observed front veloc-
ities corresponds to the one expressed by Eq. (2).

This investigation also clarifies why the numerical re-
sults obtained in the Taylor-Couette system so far'*!> are
below v =2: The authors used a traveling distance of only
15(d). At this time the front profile, and so the velocity,
is not yet stationary. Their data are in agreement with the
present results for this distance in Fig. 2. Besides this, the
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FIG. 3. Dimensionless front velocities as a function of the
driving €. We compare results of the present calculations (@)
for Taylor-vortex fronts as a function of € =T/T, — 1 with those
of Ref. 14 (0), Ref. 18 (A), and the experiments of Ref. 13
(0). Also shown are experimental results of Ref. 12 (@) and
numerical results of Ref. 11 (@) for convective fronts in the
Rayleigh-Bénard system, as a function of € =Ngra/Nra, —1. In
the present simulation and that of Refs. 11 and 14, ¢ =0 marks
the critical driving of the respective numerical simulation which
is slightly smaller (Refs. 14 and 17) than the theoretical one.

present investigation also very strongly suggests the con-
jecture that the experimentally observed fronts of Ahlers
and Cannell are not yet stationary at a distance of 15(d)
from the end plate. In these experiments, observations
could be made only for ¢t < 13(d?%/v). For longer times,
inhomogeneous nucleation intervened.'* For t <13(d?/
v), our numerical results are compatible with the mea-
surements within the uncertainty of the experimental re-
sults. We also mention that the slow early-stage evolution
of the front in our simulation of the full Navier-Stokes
equation differs in two important points from the tran-
sients found'? for the Ginzburg-Landau equation: Initial
transients there are short lived and seem to yield an ap-
parent front speed greater than v =2, in contrast to the
full Navier-Stokes system.

In the Rayleigh-Bénard system a traveling distance of
about 20(d) seems to be sufficient to determine the front
velocity accurately enough. There convection is started
locally and instantaneously by a heat pulse'!!'%!4 through
a sidewall. In the Taylor-Couette system, however, the in-
itial Ekman vortices have an intensity profile with a finite,
exponentially decaying extension.?’ 2> These differences
in the starting conditions of the fronts might be responsi-
ble for the fact that in the Taylor-Couette system, fronts
require a longer time to reach the final propagation speed.
However, the front velocity in the Taylor-Couette system
can be determined numerically with high precision and is
found to be in excellent agreement with the theoretical
predictions. Based on this experience we have determined
the vortex front propagation velocities also in magnetic
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TABLE I. Front velocities in magnetic fluids at ¢=0.0404
(Nre=1.02NR,) for differently oriented fields. The dimension-
less velocity & =v/(£oo0e€) deviates from &=2 by =< 3%, thus
the description by the amplitude equation is very good. (v is
given in units of v/d.)

Orientation of Front velocity v

magnetic field 2V ekoo0 Simulation v
SR 2.013 1.965 1.953
Axial 3.091 3.049 1.972
Radial 3.265 3.195 1.957
Azimuthal 3.006 2915 1.940

fluids instead of the normal liquid in the gap.

Magnetic fluids are suspensions of small magnetic par-
ticles of typical size 10 nm. Each particle is coated by
some surfactant to prevent agglomeration and sedimenta-
tion. In a magnetic field, the free rotation of the magnetic
particles, due to the local vorticity of the suspension, is
hindered by their tendency to align parallel to the magnet-
ic field. This gives rise to an additional anisotropic “rota-
tional viscosity v,,” leading to additional terms in the
momentum-balance equation for magnetic fluids. Details
on magnetic fluids may be found in Ref. 23.

Here, we investigate the influence of differently orien-
tated magnetic fields on the front propagation velocity in a
magnetic fluid in the Taylor-Couette system. Details on
the hydrodynamic equations and on the influence of mag-
netic fields on the critical Taylor number and wave vector
may be found in Ref. 16. Therein, all the information on
the magnetic field strength and on the specific properties
of the magnetic fluid is collected in one parameter,
S=v,/v. For example, for S =1 it is found'’ that axially,
azimuthally, and radially oriented magnetic fields change
the values of the parameters & and o¢ drastically, thus
from Eq. (2), the observable front velocities should
change too. Assuming v =2, the theoretically expected
values are tabulated in the first row of Table I for a few
representative parameter and field configurations. The
front velocities actually observed in computer simulation
of the proper field equations, corresponding to the mag-
netic field under consideration, are in very good agree-
ment with these theoretical predictions. The general in-
crease of the front velocity in a magnetic fluid may be un-
derstood by an increased coupling due to the additional
anisotropic rotational viscosity. On the other hand, v may
be transformed, according to Eq. (2), to a dimensionless
quantity &=v/(£yooVe). A comparison of these data
(third row in Table I) with & =2 shows that the deviations
are =< 3% and always negative. This is compatible with
the findings in Fig. 2. In summary, one also has to con-
clude that in magnetic fluids vortex front propagation can
be described by Eq. (1) and that the agreement is excel-
lent.




RAPID COMMUNICATIONS

496 M. NIKLAS, M. LUCKE, AND H. MULLER-KRUMBHAAR 40

*Permanent address: Institut fir Theoretische Physik,
Universitdt des Saarlandes, D-6600 Saarbriicken, West Ger-
many.

YCellular Structures in Instabilities, edited by J. E. Wesfreid
and S. Zaleski (Springer, New York, 1984).

2W. van Saarloos, Phys. Rev. A 37, 211 (1988).

3G. Dee and J. S. Langer, Phys. Rev. Lett. 50, 383 (1983).

4G. Dee, J. Stat. Phys. 39, 705 (1985).

SE. Ben Jakob, H. R. Brand, G. Dee, L. Kramer, and J. S.
Langer, Physica D 14, 348 (1985).

6A. C. Newell and J. A. Whitehead, J. Fluid Mech. 38, 279
(1969).

L. A. Segel, J. Fluid Mech. 38, 203 (1969)(

8A. C. Newell, in Propagation in Systems Far from Equilibri-
um, edited by J. E. Wesfreid et al., Springer Series in Syner-
getics, Vol. 41 (Springer, New York, 1988), p. 122.

9A. Kolmogorov, I. Petrovsky, and N. Pisconov, Bull. Univ.
Moscow Ser. Int. Sec. A 1, 1 (1937).

10D, G. Aronson and H. F. Weinberger, Adv. Math. 30, 33
(1978).

M. Liicke, M. Mihelcic, and B. Kowalski, Phys. Rev. A 35,
4001 (1987).

12J. Fineberg and V. Steinberg, Phys. Rev. Lett. 58, 1332
(1987).

13G. Ahlers and D. S. Cannell, Phys. Rev. Lett. 50, 1583
(1983).

14M. Liicke, M. Mihelcic, B. Kowalski, and K. Wingerath, in
The Physics of Structure Formation: Theory and Simula-
tion, edited by W. Giittinger and G. Dangelmayr, Springer
Series in Synergetics, Vol. 37 (Springer, New York, 1987).

I5M. Liicke, M. Mihelcic, and K. Wingerath, Phys. Rev. Lett.
52, 396 (1985); Phys. Rev. A 31, 396 (1985). In this work
€0=NRe/Nre (theory) — 1 is defined relative to the theoretical
critical Reynolds number.

16M. Niklas, Z. Phys. B 68, 493 (1987).

7M. Niklas, Kernforschungsanlage Jiilich Report No. Jiil-2246,
1988 (unpublished); Ph.D. thesis, Rheinisch-Westfilische
Technische Hochschule Aachen, 1988.

18G. P. Neitzel, J. Fluid Mech. 141, 51 (1984).

I9M. A. Dominguez-Lerma, G. Ahlers, and D. S. Cannell, Phys.
Fluids 27, 856 (1984).

20G. Ahlers, D. S. Cannell, M. A. Dominguez-Lerma, and R.
Heinrichs, Physica D 23, 202 (1988).

21p, Hall, Proc. R. Soc. London, Ser. A 372, 317 (1980).

22R. Graham and J. A. Domaradzki, Phys. Rev. A 26, 1572
(1982).

23R. E. Rosensweig, in Ferrohydrodynamics, (Cambridge Univ.
Press, Cambridge, 1985).



