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Preface

This book, “Thermal Nonequilibrium”, is a compilation of the papers presented during the Eighth Interna-

tional Meeting on Thermodiffusion (IMT8) from June 9 to June 13, 2008, at the Gustav-Stresemann-Institut

in Bonn, Germany. The conference is jointly organized by the Forschungszentrum Jülich and the University

of Bayreuth.

IMT8 is the eighth conference in the IMT series that started out in 1994 in Toulouse with IMT1 and then

continued on a biannual basis: IMT2 (Pau 1996), IMT3 (Mons 1998), IMT4 (Bayreuth 2000), IMT5 (Lyngby

2002), IMT6 (Varenna 2004), and IMT7 (San Sebastian 2006). While the first meetings originated from

Francophone countries, the conference quickly became international. Now, the objective of the IMT confer-

ences is to bring together researchers in the field of thermodiffusion from all over the world and to provide a

regular platform for scientific discussion and exchange.

The participating researchers represent a substantial fraction of the scientific community currently working

in the field of thermodiffusion, and this compilation gives an overview of the current state of research in

these active groups. Following the structure of the meeting, the book is organized into sections that loosely

define the topics of the contributions: simple fluids, polymers, colloids, convection, and simulation.

We want to thank all authors for timely submitting well formatted contributions required for the compilation of

this book. We also express our thanks to many people who helped during the preparation of the conference,

especially Ursula Funk-Kath, Marie Göcking and Dorothea Henkel, who shouldered much of the organiza-

tional burden such as the design of the WEB pages, preparation of the abstract book and this proceeding

volume. The reasonable conference fee with a reduction for young researchers would not have been possi-

ble without financial support from the Forschungszentrum Jülich and the Deutsche Forschungsgemeinschaft

(DFG).

Simone Wiegand

Werner Köhler

Jan K. G. Dhont
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4.14 Stability of multicomponent convection in vertical layer with thermal diffusion 249

I. Ryzhkov and V. Shevtsova

5 Colloids 255
5.1 Single-particle thermal diffusion of charged colloids: double-layer theory in a temperature

gradient 257

J.K.G. Dhont and W.J. Briels

5.2 What Soret can learn from Seebeck 261

E. Bringuier

5.3 The Dynamics for the Soret Motion of a Charged Spherical Colloid 269

S. N. Rasuli and R. Golestanian

6 Simulations 275
6.1 New theoretical model for thermal diffusion: Prigogine’s approach revisited! 277

P.-A. Artola, B. Rousseau and G. Galliéro
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New approach in the prediction of the thermal 
diffusion factor in associating mixtures 
Alireza Abbasi1,2, M. Ziad Saghir1 and Masahiro Kawaji2

1Department of Mechanical and Industrial Engineering, Ryerson University, 
350Victoria St.,Toronto, Ontario M5B2K3, Canada 
2Department of Chemical Engineering, University of Toronto, Toronto, Ontario, 
M5S3E5, Canada 

E-mail: zsaghir@ryerson.ca

Abstract
The PCSAFT equation of state, by using two adjustable parameters calculated from 
experimental data, is used for evaluating thermodiffusion coefficient for different water-
alcohol mixtures. One of the adjustable parameters, the binary interaction parameters for 
the mixture of interest under a range of temperatures has been optimized by availability of 
experimental vapor–liquid equilibrium. A new equation was developed for predicting ratio 
of evaporation energy to viscous energy (second adjustable parameter) based on proposed 
viscous energy equation. Particularly, this approach is implemented to predict the sign 
change of thermal diffusion factor in associating mixtures, which has been a major step 
forward in thermodiffusion studies for associating mixtures. Firoozabadi's thermodiffusion 
model combined with PCSAFT equation of state was applied to calculate the Soret 
coefficient, as well as the thermodiffusion coefficient. 
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1 Introduction
For years, various attempts have been made to generate reliable thermodiffusion 
coefficient models for binary mixtures. However the prediction of the diffusion coefficient 
in associating mixture system is still a new subject. Firoozabadi et al. [1] developed an 
analytical expression for the thermal, molecular, and pressure diffusion coefficients for 
multicomponent mixtures. Their model has been widely applied in hydrocarbon mixtures 
as well as associating mixtures such as water–ethanol, water–methanol and water–
isopropanol [2]. In the case of hydrocarbon system, the properties of the fluid mixture at 
equilibrium were calculated using the Peng–Robinson (PR) equation of state as well the 
cubic plus association (CPA) equation of state. 

In this paper we calculate the molecular diffusion and thermodiffusion coefficients for 
binary mixtures of water-acetone, water-methanol, water-ethanol and water-isopropanol at 
different temperature with a newly proposed modified mixing rule. This approach relies 
on the calculation of the ratio of evaporation energy to viscous energy (second adjustable 
parameter). 

2 Ratio of evaporation energy to viscous energy 
One of the major difficulties of predicting thermal diffusion factor is finding i , the ratio of 
evaporation energy and viscous energy. Under the non-equilibrium thermodynamics 
framework, the thermodiffusion phenomenon in associating liquid mixtures has been 
studied by Pan et al. [2] and Saghir et al. [3]. In their first attempt, they simply used Cubic 
Plus Association (CPA) and PC-SAFT equations of state which are suitable for 
associating mixtures. It has been found that in aqueous alcohol solutions, the choice of i

= 4 proposed by Shukla and Firoozabadi [4] for hydrocarbon mixtures along with 
Dougherty and Drickamer’s [5] did not give a good agreement with experimental results. 
By increasing the value of  i  to 10 and above appears to provide a good match with 
experiment at low water concentration but failed to detect the change in the sign of 
thermal diffusion factor.  
These findings encouraged Pan et al [2] to suppose that i  may be a variable rather than 
constant over the entire concentration range. By suggesting that 01  and 12 ,
respectively, are the values for 1 and 2  when 1x1  respectively and, similarly 11 and

02 when 0x1 , a new expression for 1  and 2  as a function of 1x , 01 , 12 , 11

and 02  is proposed. Here 1 and 2  represent the effect of unlike intermolecular 
interactions and 01 and 02  represent the effect of alike intermolecular interactions. 
Pan et al. [2] proposed a simple mixing rule for calculation of the energy ratio i  having 
the following expression; 
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In general, predicting thermal diffusion factor with PC-SAFT EOS depends on two 
adjustable parameters. The first one is the binary interaction parameters for the mixture of 
interest which is optimized by the availability of experimental vapor–liquid equilibrium. 
The second one is the ratio of the energy of evaporation to the viscous energy that can be 
obtained by fitting the model with available experimental data.  

The energy of evaporation ievap ,U  is the difference between internal energy of gas and 
liquid phase at equilibrium condition. Using PC-SAFT equation of sate, equilibrium 
condition for specific temperature and pressure can be achieved. Thus ievap ,U  calculation 
for each mole fraction is manageable.  

However calculation of viscous energy ivis ,U  as a function of mole fraction doesn’t have 
any specific model. It can be calculated knowing the following energy ratios 01 ,

02 , 11  and 12  based on Shu’s simple mixing rule 1. We propose a modified mixing 
rule for estimating viscous energy as a function of mole fraction as follows 
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Estimating value of ivis ,U  using Equation 2 and predicting ievap ,U  leads to the 
calculation of i . By using Equation 2 the modified ration of energy i  becomes 
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Where 1  is the activity coefficient of component one. The required thermodynamic 
properties for thermodiffusion models, including 11 xlnd/lnd  , 11 x/ , iU , and iV
can be derived easily using PC SAFT equation of state. 
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Table 1: Modified mixing rule parameters for water – alcohol mixtures 

1  (organic compound) 2  (water) 

Mixtures
1a 2a 11y 12y 1a 2a 11y 12y

Water -acetone 3.2 -3.2 0.77 2.0 1.6 1.6 1.6 0.9 

Water methanol- -0.17 -0.17 0.1 3 -0.17 -0.17 1 1 

Water ethanol 0.8 -0.8 0.5 1.2 -0.7 -0.7 1 1.5 

Water isopropanol -1 -1 0.9 -1.6 -1 -1 1.2 0.9 

Fig. 1: Evaluation of thermal diffusion factor in a) acetone-water mixture. b) ethanol-
water mixture. c) Methanol-water mixture c) isopropanol-water mixture. 
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3 Results and discussion 
Figure 1 show the thermal diffusion factor calculated with modified and simple mixing 
rules and experimental result. Modified mixing rule was implemented to predict thermal 
diffusion factor for four different water – alcohol mixtures Results show modified mixing 
rule has very good agreement with experimental result. 

4 Conclusion
A new theoretical approach in the calculation of viscous energy and the ratio of 
evaporation energy to viscous energy was presented to evaluate the thermal diffusion 
factor in associating solutions. The Firoozabadi model combined with the PC-SAFT 
achieved in calculation thermal diffusion factor. It accomplished very good agreement 
between the experimental data and the calculated values. 

Acknowledgements
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Development of a new high pressure 
thermodiffusion cell 

H. Bataller1, C. Miqueu1, F. Plantier1, J.L. Daridon1, Z. Saghir2,
F. Dubois3, S. Van Vaerenbergh3

1Laboratoire des Fluides Complexes - UMR 5150, Université de Pau et des Pays de 
l’Adour, BP 1155, 64013 Pau, France 
2Ryerson University, 350 Victoria St, Toronto, ONT, M5B 2K3 
3Microgravity Research Center, Université Libre de Bruxelles, CP165/62, B-1150 
Bruxelles, Belgium 

E-mail: henri.bataller@univ-pau.fr

Abstract
In this work we present a new thermodiffusion cell designed to measure thermal and 
molecular diffusion coefficients of binary systems under high pressure. The cell is a 
horizontal cylinder closed by two plugs connected to two thermoregulated baths that 
impose a horizontal thermal gradient. To avoid the convection, a monolithic porous 
medium fills the almost-totality of the cell. At each extremities of the porous medium, two 
dead volumes are let to permit the passage of two laser beams through windows sapphires. 
The cell, connected to the circuit of filling and of setting under pressure, is installed in a 
Mach-Zender interferometer, each beam crossing one of the dead volumes. 
With short time experiments with pure ethanol and the binary 1,2,3,4-
tétrahydronaphtalène (THN)/dodécane (C12) at the mass fraction of 50% we have 
validated the design of the cell and have permitted to develop a procedure of 
determination of the variation of the refractive index between the hot and the cold side of 
the cell. 
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1 Introduction 
Several experimental methods have been developed on ground and in microgravity to 
measure with precision both thermal diffusion and Soret coefficients of binary mixtures at 
atmospheric pressure [1, 2, 3, 4, 5] in order to provide understanding of separation 
processes and molecular interaction. 

Recently high pressure measurements of thermal diffusion coefficients have been made 
with a thermogravitational column [6, 7]. In this work we present a new thermodiffusion 
high pressure cell with the ability to measure thermal diffusion coefficient as well as 
molecular diffusion coefficient of binary systems. 

2 Experimental setup and principle of the analysis 
The cell is a horizontal cylinder closed by two plugs connected to two thermoregulated 
baths that impose a horizontal thermal gradient. To avoid the convection, a monolithic 
porous medium fill the almost-totality of the cell. At each extremities of the porous 
medium, two dead volumes are let to permit the passage of two laser beams through 
windows sapphires. The cell, connected to the circuit of filling and of setting under 
pressure, is installed in a Mach-Zender interferometer, each beam crossing one of the dead 
volumes. 

Volumetric 
pump 

L
A
S
E
R

M2

M3

BS1

BS2

CCD 

Porous
media Vacuum 

pump 

Fluide

P

Convergent lens, f' = 2 cm 

M1

Fig. 1: Experimental setup

The inner diameter of the cell is e = 1 cm. The working P-T ranges are [1; 1000 bar] and 
[278,15; 313,15K]. Two thermocouples in the dead volumes give the value of the 
temperature difference at each side of the porous medium. A He-Ne laser ( 0 = 632,8 nm) 
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is used. The interferometer is set to obtain vertical delocalised fringes (by rotating the 
beam-splitter BS2). The interferogram (fig. 3) is displayed by a CCD video camera and 
recorded. 
At the beginning, each side of the cell is maintained at the low temperature T1. Only the 
bath connected to the plug of the left on figure 1 is put to the high temperature T2. T is 
the difference of temperature between the hot and the cold side. The variation of the phase 
difference between the beam having crossed the hot side and the beam having crossed the 
cold side is given by: 

ne2

0
(1)

where  is the total variation of the refractive index between the hot side and the cold 
side. For binary systems, the variation of refractive index is : 

n

c
c
nT

T
nn (2)

where c is the concentration difference of the densest component between the hot and the 
cold side. Coefficients  and Tn / cn /  are the so-called contrast factors [3]. The 
kinetics of thermal and molecular diffusion have a huge magnitude of difference [4, 8]. 
Hence their effects are completely decoupled. 

The phase difference is deduced from the analysis of the interferogram on a single line 
converted in term of intensity (gray levels, see figure 2). 
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Fig. 2: Gray level and adjustment of the first 150 pixels of the ligne 500 of an 
interferogram (THN/C12 mixture = 50% mass fraction; Tmean = 25°C; T = 3°C;  time = 
511,95 s).
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Light intensity is fitted by: 

cbxcosa)x(I 2 (3)

a, b and c being computed by a least-square method. c = /2 at x = 0. As adjustment 
constraint we impose that values of c must to be bounded between - /2 et + /2. c is 
corrected to take into account the progressive scrolling of fringes. 
Then the phase difference evolution is fitted by: 

'ct'bexp1'a)t( (4)

The total variation of the phase difference  due to the thermal effect is then a'.

3. Results 

3.1. Pure ethanol 
The interferograms obtained with and without porous medium are compared in figure 3.  

a) b)

Fig. 3: Interferogram of ethanol at Tmean = 25 °C and T = 5 °C after 300 s a) with 
porous media and b) without porous medium.

Without porous medium the bending is so important that beams do not interfere anymore. 
The behaviour is assigned to convection that clearly demonstrates the important role of the 
porous medium to avoid convection. 
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3.2. Binary mixture THN/C12 
In figure 4 are plotted the phase difference of 1,2,3,4-tétrahydronaphtalène (THN)/ 
dodecane (C12) (50/50 weight fraction) at Tmean = 25 °C, pressure P = 1 bar and P = 100 
bar for several thermal gradients. 

n is computed for each T from eq. (1) and  plotted in figure 4. By neglecting the 
concentration effect in eq. (2) (short times), one can compute contrast factor .   
At 25 °C and atmospheric pressure, for THN/C12 mixture we obtain until T =5°C an 
good agreement with the value of -4,39 10

Tn /

-4 K-1 established in the literature[3]. For T
7°C, the value of contrast factor Tn /  calculated is a little high. Convection in dead 
volumes can not be neglected from this T and eq. (2) is not suitable anymore. 
Finally, we can see that in figure 4 the measurement under pressure (P= 100 bar, T
=5°C) affects thermal diffusion. 
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Fig. 4: Phase difference versus time for THN/C12 for differents pressures P and 
temperature differences T.

4 Conclusions 
The good agreement of the contrast factor Tn /  with the literature value for the 
THN/C12 mixture at 25 °C and at the atmospheric pressure is the first step for the 
validation of the experimental setup. 

The second step of this validation will consist in the check of the molecular diffusion 
effect on the separation process that involves long times experiments (several weeks) and 
will be presented at the meeting if obtained on time. 
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Abstract
In the present study we measured and analyzed n-decane/n-alkane mixtures by 
thermogravitational column (TC) and thermal diffusion forced Rayleigh scattering 
(TDFRS) method. We studied the thermal diffusion behaviour of the n-decane/n-pentane
binary mixture at different mass concentrations at 27ºC. In addition, we studied the n-
decane in other n-alkanes from n-pentane to n-eicosane at a mass concentration of 50% at 
25ºC. The deviations of the results of both techniques agreed within the error bars. 
Compared to the recently published data we found deviations in the order of 30%. We 
analyze and discuss the possible reasons for the discrepancies for the present and the past 
publications.
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1 Introduction 
The phenomenon of thermal diffusion was discovered by C. Ludwig [1] and later more 
deeply analyzed by C. Soret [2]. The magnitude that describes this phenomenon is known 
nowadays as the Ludwig-Soret or Soret coefficient. Since its discovery, numerous 
investigations have been attributed to this phenomenon and observations in diverse fields 
such geology, biology, industry, physiology, environment and even the origin of the life 
[3] have been made. 

In the recent years due the limited energy resources mainly the characterization of 
petroleum reservoirs gained a lot of interest [4]. In this context especially the knowledge 
of transport properties of hydrocarbon mixtures such as linear alkanes and organic ring 
compounds are very important [5]. Different techniques exist to determine the thermal 
diffusive properties of liquid mixtures [6] and optical techniques such as thermal diffusion 
forced Rayleigh scattering (TDFRS) and thermogravitational columns (TC) have been 
validated in a benchmark test for three binary hydrocarbon mixtures [7]. 

In a recent work [8], the transport properties of water mixtures published latterly in the 
literature [9] have been compared with new experimental results obtained by three 
different thermogravitational columns. The differences reach more than 300% in some 
mixtures and sometime even different signs for the Soret coefficient are found. Presently, 
we repeat measurements for the thermal diffusion properties of binary n-alkane mixtures 
with n-decane as first component. Some of the n-decane/n-alkane mixtures have already 
been studied in the past by TDFRS method [10] and by thermogravitational technique 
[11]. Compared to the literature we found deviations up to 30%. In the present study we 
measured and analyzed n-decane/n-alkane mixtures by thermogravitational column and 
TDFRS method. Even for the volatile n-pentane/n-decane mixture the deviations agreed 
within the error bars of both techniques.

2 Experimental
In this experimental work we have used the thermogravitational technique and the thermal 
diffusion forced Rayleigh scattering method. Next we present briefly the experimental 
setup of each technique. For more details of each technique operation we refer to the 
literature (Refs. [12,13]) 

2.1 Thermogravitational column:  
The TC theory provides a relation between the stationary separation and the 
thermodiffusion coefficient . For more details see Ref. [14]: 

c
TD
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being  the mass fraction difference between the top and the bottom of the 

thermogravitational column, 

c
1

T
 the thermal expansion coefficient,

c
1  the 

mass expansion coefficient, 
z

 the vertical density gradient along the column at the 

stationary state,  the kinematic viscosity, the height of the column, the gap of the 
column,  the initial mass fraction of the reference component and  the gravity 
acceleration. Combining Eqs. (1) and (2) we obtain the expression which is used 
experimentally:  
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(3)

being  the dynamic viscosity. 

All the products used in the TC were purchased from Merck with a purity of over 99%. 
First we always filled in the less volatile component, i.e., the alkane with higher molecular 
weight; then the corresponding amount of the second alkane is added. The concentrations 
of the binary mixtures were adjusted by weighting both components separately. We used 
two scales for the preparation of the mixtures with a capacity up to 310 g and an accuracy 
of 0.0001 g. and with a capacity up to 4500 g and an accuracy of 0.01 g. The thermal 
expansion , the mass expansion  and the density  of all the mixtures have been 
measured with an Anton Paar DMA 5000 vibrating quartz U-tube densimeter. It has a 
reproducibility of 1·10 6 g/cm3 with a temperature accuracy of 0.001ºC. The sample 
volume needed to make one density measurement is roughly 1.5 ml. Dynamic viscosity 
has been determined by a HAAKE falling ball viscosimeter with an estimated accuracy of 
±1%. The temperature stability is ±0.1ºC. The volume needed to make one viscosity 
measurement is approximately 40 ml. The TC used in this work has been validated 
previously with experiments well documented in the bibliography [15], and also some 
experimental results of this TC have been contrasted with different installations [16] 
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2.2 Thermal diffusion forced Rayleigh scattering 
The thermal diffusion �uxiliary of the solutions was investigated by thermal diffusion 
forced Rayleigh scattering (TDFRS). A detailed description of the set-up can be found 
elsewhere [13]. The heterodyne diffraction signal het is evaluated by the equation: 

Dtq
Thet eccS

c
n

T
nt

2

1)1(1)(
1

(4)

with the refractive index increment with concentration at constant pressure and 
temperature cn , the derivative of the refractive index with temperature at constant 
pressure and concentration Tn and the collective diffusion coefficient .D

The alkanes n-pentane (>99%), n-hexane (>99%), n-heptane (>99.5%), n-octane 
(>99.5%), n-octadecane (>99%) and n-tetradecane (>99%) were purchased from Fluka; n-
decane (>99%), n-heptadecane (99%) and n-eicosane (99%) were ordered from Aldrich. 
The alkane mole fraction of all mixtures was adjusted by weighing the components. The 
TDFRS experiments require a small amount of dye in the sample. In this work, all samples 
contained approximately 0.002 wt% of the dye Quinizarin (Aldrich). This amount ensures 
a sufficient optical modulation of the grating but is small enough to avoid convection and 
contributions of the dye to the concentration signal.

Before each TDFRS experiment, approximately 2 ml of the freshly prepared solution were 
filtered through 0.2 m filter (hydrophobic PTFE) into an optical quartz cell with 0.2 mm 
optical path length (Helma) which was carefully cleaned from dust particles before usage. 
After each measurement we checked carefully by monitoring the change of the meniscus 
height in the two filling capillaries of the sample cell whether the volatile solvent 
evaporated during the measurement. The accuracy of this method is certainly better than 
1%. The total volume of the sample cell is in the order of 0.6 ml. Even for the n-decane/n-
pentane mixture with the lowest pentane content, the concentration change should be less 
than .01.0cx

An Anton Paar RXA 156 refractometer has been used to measure the refractive index 
increments with the mass concentration ( cn ). It has a repeatability of 2·10 5 and the 
temperature accuracy is ±0.01ºC. The volume needed to make one measurement is less 
than 1 ml. For all mixtures except for the system n-decane/n-pentane ( Tn ) was directly 
measured by an interferometer. In the case of n-decane/n-pentane ( Tn ) the reliability 
of the refractometer was better, because due to the long measurement time in the 
interferometer pentane evaporated partly, which lead to concentration changes in during 
the measurement. 
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3 Results and Discussion 

3.1 Mixtures n-decane/n-pentane 
Figure 1 shows the thermal diffusion coefficient  of the n-decane for the n-decane/n-
pentane mixtures at different molar fractions of n-decane. We estimated the error bars for 
the TC by error propagation taking into account the experimental uncertainties of the 
�uxiliary quantities such as viscosity (<1%), mass expansion (<1%), thermal expansion 
(<0.5%), variation of the density with height in the column (<2%) and geometrical 
parameters ( 2%). The error bars for the TDFRS data correspond to one standard 
deviation of the mean for repeated measurements. The highest deviation in comparison 
with the TDFRS data has been found for the lowest pentane content. This concentration is 
also most sensitive to evaporation of pentane. The same absolute loss of pentane leads to a 
much larger relative concentration change compared to concentrations with a higher 
pentane content. 

TD

The old TDFRS measurements [10] are systematically 10-20% lower than the present 
TDFRS data and the deviation with the TC data are in the order of 5-15%. The deviations 
between the two sets of TDFRS data can probably be explained by the fact that at that 
time the data had not been corrected by the so-called excitation function which accounts 
for time delays in the electrical switching of the Pockels cell. A detailed description of the 
procedure can be found in Ref. [13]. A comparison of the new TC and TDFRS data with 
simulation results for the system n-decane/n-pentane by Perronace et al. [10] leads to 
systematic deviations in the order 15-40%, which is slightly better than the agreement in 
the past and for the equimolar mixture the data almost agree within the error bars. 
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Fig. 1: Thermal diffusion coefficient  for n-decane in n-pentane in dependence of the 
molar fraction of n-decane at 27ºC. Results obtained by TC ( ) and TDFRS ( ). For 
comparison we show also the previous experimental ( ) and simulation results in the 
center–of–volume–reference frame ( )[10]. 
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3.2 Mixtures n-decane/n-alkane 
In addition we performed measurements for n-decane with various shorter and longer 
linear alkanes. Figure 2 shows the thermal diffusion for the experimental tests of the TC 
and the TDFRS as function of the number of carbon atoms of the second component. The 
mass fraction is 50% and the temperature is 25ºC. For comparison we show also the 
previous data [11] which have been recorded under the same experimental conditions. In 
this case, we do not show the error bars because of clarity of the figure. As expected, the 
thermal diffusion coefficient of n-decane in shorter alkanes is positive, and therefore 
the n-decane goes towards the cold region (n-decane is the densest), while it becomes 
negative when the mass of the second component becomes larger, which implies that n-
decane migrates to the warm side (n-decane is the less dense). We can observe the good 
agreement between the TC and the TDFRS data. The new data deviate from the previous 
data [11] between 10-30%. Compared to the previous TC [11], the TC used in this work 
allows a more accurate analysis of the mass separation between the top and the bottom of 
the TC due to the smaller gap and a better precision of the gap of = 1.0 ± 0.005 mm 
[15]. The TC used in [11] had a gap of 1.6 ± 0.02mm. This low precision of the gap 
dimensions causes an uncertainty of 5% in the determination of the thermal diffusion 
coefficient, not regarding the propagating errors due to uncertainties in the thermophysical 
properties, which are required to calculate the thermal diffusion coefficient (see Eq 3). For 
the TC used in this work the steady mass separation is 6.55 times greater compared to the 
TC used in Ref. [11]. Therefore, the difference in  determined with those two columns 
becomes larger for mixtures with a small mass separation. For instance, this tendency can 
be observed for the mixtures n-decane/n-heptane and n-decane/n-hexadecane where the 
differences are around of 30% between the average values of both techniques used in this 
study and previous data [11]. 
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Fig. 2: Thermal diffusion coefficient  for n-decane in some n-alkanes in function of 
the number of carbon atoms of the second n-alkane component at 25ºC andwith equal 
mass ratio. Results obtained by TC ( ) and TDFRS ( ) and compared with previously 
published experimental data ( ) [11]. 
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4 Conclusions
In this paper, we have studied some binary n-alkane mixtures by two different techniques, 
a convective method as thermogravitational columns (TC) and a non-convective method 
thermal diffusion forced Rayleigh scattering (TDFRS). In general we found a very good 
agreement between these two methods. However we found some discrepancies with data 
published in the literature. The observed disagreement between the published TDFRS [10] 
data for the binary mixture n-decane/n-pentane is probably caused by an improved data 
analysis algorithm, which accounts for finite rising times and slow drifts of the electro-
optic devices used in the experiment. Additionally we found discrepancies with recently 
published TC data [11]. We assume that the cause is the bigger gap  in their TC [11] 
compared to the TC used in this work. The bigger gap decreases the accuracy of 
determining the steady mass separation between the two ends of the TC. This is especially 
important for the binary n-alkane mixtures which both components are similar in mass and 
in length of the chain, because more similar they are less mass separation they have 
between the two ends of the TC. 
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Abstract
In this experimental work we present a primary relationship between the thermal diffusion 
coefficient  and the molecular weight of the mixture’s components for equimolar 
mixtures of n-alkanes. On the other hand, an empirical quantitative correlation has been 
obtained between , the molecular weights of the components, the viscosity and the 
thermal expansion coefficient of the mixtures.  
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1 Introduction 
Numerous researchers have studied the particular transport property of thermal diffusion, 
starting with C. Ludwig and C. Soret, respectively its discoverer and the first researcher of 
this phenomenon in the XIX century. Some researchers pointed out that [1] the study of 
thermodiffusion might help in a better understanding of intermolecular forces, although 
nowadays we still do not know which parameters are the most important in the 
thermodiffusion phenomenon or to what extent [2]. These parameters could be chemical 
interactions and physical properties like mass, moment of inertia and size of the molecules 
or particles [3]. In relation to this, recently a lot of work has been done, for instance, the 
work [4] in which a study of the influence of the molecular architecture on the Soret effect 
in binary mixtures of benzene in n-alkanes and in branched alkanes or the work [5] which 
studied the dependency of the Soret coefficient with the mass and moment of inertia 
difference and a chemical contribution in mixtures of benzene and cyclohexane. Also in n-
alkane binary mixtures some attempts have been made to show the dependency of the 
thermal diffusion coefficient with the chain length of the mixture’s components [6,7].  

In the last few years, the oil industry has been one of the industrial fields that have shown 
most interest in the thermal diffusion phenomenon, because of its implication in the 
distribution of the species in hydrocarbon reservoirs [8]. One example of this are the 
experiments realized in microgravity and on earth to determine the Soret coefficients in 
crude oils [8, 9], highlighting an increasing demand on experimental results of this 
transport property for hydrocarbon mixtures [8, 10] in order to be able to use the 
numerical codes [11] in non equilibrium thermodynamics [12] or in the field of molecular 
dynamics [13].  

Therefore, this work has been carried out to study the influence of the molecular weight 
(or length of the chain) in the thermodiffusion coefficient for liquid binary mixtures. The 
chosen mixtures are normal alkanes which are of interest to the oil industry because they 
are derived from petroleum. The thermodiffusion coefficient has been determined for 
different equimolar mixtures of n-alkanes at a temperature of 25ºC. These mixtures 
correspond to the following three series: 

nC12-nCi ; i = 5, 6, 7, 8, 9, 17, 18 
nC10-nCi ; i = 5, 6, 7, 15, 16, 17, 18 
nC6-nCi  ;  i = 10, 12, 14, 16, 18 

To determine the thermodiffusion coefficient the thermogravitational technique has been 
used, whose thermo-hydro dynamical behaviour is very well documented [14-16] both 
experimentally and analytically. The obtained results together with the previously 
published ones [6] for the series nC18-nCi have made it possible to establish a relation 
showing that the main parameter that determines  in each series is in relation to the 
molecular weights of the mixture’s components. 

TD
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2 Experimental

2.1 Materials and Equipment
The liquids used in this work are normal alkanes and were purchased from Merck with a 
purity of over 99%. An Anton Paar DMA 5000 vibrating quartz U-tube densimeter having 
a repeatability of 1 10-6 g/cm3 has been used to determine the density of the studied 
mixtures. The mixtures have been prepared using a 310 g capacity scale with an accuracy 
of 0.0001 g. Dynamic viscosity has been determined by a falling ball viscosimeter 
HAAKE with a ±1% precision. In this work a cylindrical thermogravitational column 
developed to work at high pressures has been used, although in the present work all the 
experimental tests have been carried out at atmospheric pressure. This thermogravitational 
column has been validated by several experimental tests realized for binary mixtures 
widely used in the literature. We invite the reader to see [17] for a general description of 
this thermogravitational column. 

2.2 Mathematical formulation 
Next we summarize the equation typically used to determine the thermal diffusion 
coefficient using the thermogravitational technique and which can be found elsewhere 
[18]:
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where
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Lc z (2)

being  the mass fraction difference between the top and the bottom of the 

thermogravitational column, 

c

c
1  the mass expansion coefficient, 1

T
 the 

thermal expansion coefficient, 
z

 the vertical density gradient along the column at the 

stationary state,  the kinematic viscosity, the height of the column, the gap, 
the initial mass fraction of the reference component and 

zL xL 0c
g  the gravity acceleration. 

According to our signs convention >0 when the reference component migrates towards 
cold regions. In fact, experimentally we use the next expression which is the result of the 
combination of Eqs. (1) and (2):  
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being  the dynamic viscosity. 
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3 Results and Discussion 
The thermophysical parameters like  and  are lineal for all the mixtures studied in this 
work as we can observe as an example for the mixture nC12-nC5 in Figs.1a and 1b 

respectively. In the steady state 
z

 is also linear for all the mixtures as we can see as an 

example in Fig. 1c. 
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Fig. 1: a)Mass expansion b) Thermal expansion c) Density gradient with elevation in the 
column of the mixture nC12-nC5 at 25ºC and molar fraction x = 0.5. 

We have found a correlation between the thermal diffusion coefficient  and the relative 
molecular weight difference 

TD
)()( ijij MMMMM , being  the molecular 

weight of the reference component and  the molecular weight of the second 
component. This correlation allows predicting the thermodiffusion coefficient of any 
equimolar mixture of two n-alkanes knowing only their molecular weights. The 
correlation is: 

jM

iM

)1(0 MMDD TT (4)

where  and 0TD  are constant parameters which depend on the reference component. In 
Fig. 2a we present as an example the thermodiffusion coefficient for the series of mixtures 
nC18-nCi.

26 Simple Fluids



As well, we have also found a linear correlation between the group TDcc )1( 00 and the 

molecular weight difference )( ij MMM . The good linear correlation of the 
experimental results shown in Fig 2b can be observed. An even better linear correlation is 
obtained when instead of kinematic viscosity , we take the dynamic viscosity . The 

group TDcc )1( 00  shows a quite better linearity of the experimental results as can be 

observed in Fig.3. In order to facilitate the visualization of the results we plot the 

quantity TDcc )1( 00  instead of the positive one. Both straight lines pass through the 

origin. We still ignore why this unexpected behaviour happens with equimolar binary 
mixtures of n-alkanes but it seems to be related to the viscosity and thermal expansion of 
the mixtures. 
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Fig. 2: a) Thermal diffusion coefficient of the series nC18-nCi with molar fraction 

x=0.5 and at 25ºC. b) The group 

TD

TDcc )1( 00 and the group TDcc )1( 00 in

function of the molecular weight difference )( ij MMM .

4 Conclusions
This is a first report of an accurate correlation for  in liquid mixtures. The results of 
this work allow predicting with accuracy the thermodiffusion coefficient  of any binary 
equimolar n-alkane mixture. A first correlation allows determining  only knowing the 
molecular weights of the mixture’s components. A better quantitative correlation let to 
determine accurately  knowing some parameters like the viscosity and the thermal 
expansion coefficient of the mixtures.  
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Thermal diffusion in multicomponent mixtures: 
theoretical modeling and experiments 
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Abstract
There has been much progress on thermal diffusion in two-component mixtures in recent 
years. The work on multicomponent (more than two species) mixtures is, however, 
limited. The focus of this presentation will be on the mathematical link between thermal 
diffusion, pressure diffusion, and Fickian diffusion, as well as promising measurement 
techniques for multicomponent diffusion coefficients. 
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1 Introduction 
Thermal diffusion is the selective movement of species due to temperature gradient. There 
are two other main diffusion processes: 1) Fickian diffusion caused by concentration 
gradient, and 2) pressure diffusion driven by pressure gradient. Thermal diffusion is the 
least understood and the most complicated form of diffusion. 

All of the three main diffusion processes have broad applications in nature and in industry. 
We will briefly review three of the fascinating examples. In two examples, all three 
diffusion processes may occur simultaneously. In one example, pressure diffusion is 
absent.

Dating of Abrupt Climate Changes – The understanding of the coupling between the 
atmosphere and climate can be made by studying ice-cores from the large glaciers in 
Greenland and Antarctica.  Both temperature and atmospheric condition are recorded in 
the air bubbles. All three diffusion processes are used in dating abrupt climate changes 
with composition.1,2

Origin of Life – One of the issues in the understanding of the origin of life relates to the 
mechanism for establishing highly concentrated solutions of biomolecules.3,4 An 
abstraction of the problem can be made by studying transport processes in a short and 
narrow cleft-like geometry with a closed bottom and an open top. The biomolecule 
concentration is fixed at the top in a highly dilute condition in the ocean. The 
hydrothermal emergence of life is suggested by the combined effect of thermal diffusion 
and natural convection when a large temperature difference is applied across the walls. 
Accumulation grows exponentially with molecular size of the biomolecule in the brine 
solution. 

Species Distribution in Hydrocarbon Reservoirs and Hydrocarbon Flowlines - In the 
subsurface where hydrocarbon reservoirs are found, there exists always a vertical thermal 
gradient. In some reservoirs, there is also a horizontal temperature gradient. These 
temperature gradients may have profound effects on distribution of various species in oil 
and gas reservoirs including salinity variation in the aqueous phase. There are cases in 
which one encounters a heavy phase floated on top of a light phase. Interestingly, the 
floatation of a heavy fluid on top of a light fluid in a large cavity was first predicted from 
theory5 in 1998. It was later confirmed from data in a gas reservoir in Japan6.

Another important observation from theory has been a significant effect of a small 
horizontal temperature gradient of the order of 4-6 K/km on species and phase 
distribution. All the three diffusion processes and natural convection affect the distribution 
of the species7,8.

Very recently, we have demonstrated that thermal diffusion has a significant effect on wax 
deposition and aging in flowlines9,10. When thermal diffusion is accounted for, the radial 
distribution of some of the species shows a maximum at the interface between the liquid 
and the gel region. This maximum is confirmed with measurements. 
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2 Modeling
In some of the problems in industry and in nature, there may be three and higher 
components which participate in diffusion.  The general expression for diffusion flux in 
such media is given by: 
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The following remarks may set the stage for understanding and for future research. 

In a mixture composed of three components, four Fickian diffusion coefficients 
describe Fickian diffusion flux. The three pairs of Fickian diffusion coefficients 
from two-component mixtures cannot describe the flux in a three-component 
mixture.  This is true even for an ideal gas mixture. An example is the mixture of 
CO2, N2 and H2 at 35 °C and 1 atmosphere13.

The Soret coefficient commonly measured in a two-component mixture does not 
have meaning in multicomponent mixtures. The ratio of DDT , even in a two-
component mixture, is a measure of two vastly different processes (molecular 
mobility and molecular disparity)14. Sign convention for thermal diffusion 
coefficients is neither necessary nor useful. Thermodynamic stability provides a 
sound framework in predicting the sign12.

There are two alternative approaches to describe Fickian diffusion and its 
coefficients.  Momentum balance has been in a clear way to derive Maxell-Stephen 
(MS) diffusion coefficients15. The effect of nonideality is, however, inserted in the 
flux expression. MS diffusion coefficients have simple features. Classical 
irreversible thermodynamics leads to general expressions for all three diffusion 
coefficients11. It also provides the link between various diffusion coefficients. The 
irreversible thermodynamic approach also allows to break down the diffusion 
coefficients in terms of various effects. 

There are two main approaches to formulate thermal diffusion coefficients. In one 
approach, the formulation is based on equilibrium thermodynamics16. The other 
approach is based on non-equilibrium phenomena.  Because of strong correlation 
of thermal diffusion coefficients with viscosity14, one may see the advantage from 
the non-equilibrium approach. 

3 Measurements 
There have been much data on thermal diffusion coefficients in two-component mixtures 
in the last decade17-19. There have been much more data on two-component Fickian 
diffusion coefficients. The number of data points for three-component mixtures are very 
limited for Fickian diffusion coefficients. The accuracy of cross diffusion coefficients for 
these limited data is low. For thermal diffusion coefficients, there are perhaps no more 
than two papers in the literature for three-component mixtures20. For improved oil 
recovery processes and CO2 sequestration, the need for such data is urgent.

There are perhaps three methods for measuring multicomponent Fickian and thermal 
diffusion coefficients. For two methods, the theory is well established. For the third 
method, the work is in progress for Fickian diffusion. We briefly discuss these three 
methods. 
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Thermogravitational column – Leahy-Dios, et al. 20 report both Fickian and thermal 
diffusion coefficients for ternary mixtures consisting of two normal alkanes and one 
aromatic. Data indicate that depending on concentration, the sign of the thermal diffusion 
coefficient of one of the species may change. Because of the issues with analysis, the 
method is currently limited to three species. Haugen and Firoozabadi21 present working 
equations to measure both Fickian and thermal diffusion coefficients from transient and 
steady state separation data. 

Laser beam deflection technique – Haugen and Firoozabadi22 have established the 
theory to measure both Fickian and thermal diffusion coefficients in multicomponent 
mixtures. The deflection of a beam of (n–1) wavelengths would provide data for an n-
component mixture. No data has yet been reported. The advantages of using optical 
methods include speed and limited analytical efforts. 

Use of non-equilibrium phases in constant volume cell - We have made progress in 
formulating the problem of pressure and level evolution when non-equilibrium gas and 
liquid phases in a multicomponent mixture are brought into contact. We use a constant 
temperature and constant volume cell to measure simultaneously diffusion coefficients of 
gas and liquid phases in nonideal multicomponent phases. We hope as the work is 
published, various groups will embark on its extension to non-isothermal conditions to 
obtain both Fickian and thermal diffusion coefficients. A major complexity in the 
methodology has been the formulation of a moving fluid boundary with three and higher 
species. When there are two species, the formulation becomes less complicated.
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Abstract

We have investigated the effect of isotopic substitution and of isomerism in cyclohex-
ane/decalin mixtures on the Soret coefficient at room temperature over the entire con-
centration range. As already observed for other mixing partners of cyclohexane, the
Soret coefficient ST of cyclohexane increases upon perdeuteration (C6D12) by ΔST ≈

0.84× 10−3 K−1 in case of cis-decalin and by ΔST ≈ 0.83× 10−3 K−1 in case of trans-
decalin. In either case ΔST is independent of concentration. Perdeuteration of the other
component, cis-decalin (C10D18), reduces the Soret coefficient of cyclohexane in cis-
decalin by 0.81× 10−3 K−1. In all systems investigated, the sign change is such that
perdeuteration renders the respective component more thermophobic. This observation
is in agreement with results from MD simulations. Contrary to isotopic substitution, the
replacement of cis-decalin by its configurational isomer trans-decalin results in a slightly
concentration dependent increase of ST of cyclohexane. This corresponds to a more ther-
mophobic tendency of the cis- than of the trans-form of decalin, which is also recovered
in the direct comparison of mixtures of cis- and trans-decalin, showing a positive ST . The
isotope and the isomer effect in cyclohexane/decalin mixtures are mutually independent
and additive. The Soret coefficients have been measured by means of a transient holo-
graphic grating technique and, in some cases, a Soret cell with optical beam deflection.
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1 Introduction

Experiments where molecular parameters of a binary liquid mixture are varied in a sys-
tematic manner are of crucial importance for a better understanding of the Soret effect.
One route for well-defined changes on the molecular level is isotopic substitution, where
the mass of a molecule and the mass distribution within a molecule can be changed while
leaving the chemistry unaffected and not or only slightly altering the intermolecular po-
tentials. Early experiments on H2O/D2O have already been performed by Prigogine [1].
Binary isotopic mixtures of organic liquids were investigated by Ma and Beyerlein and
Rutherford. These authors studied, among others, mixtures of benzene of various degrees
of deuteration, isotopically substituted mixtures of halogenated benzenes, mixtures of
partly and fully deuterated methanol, and isotopic mixtures of carbon disulfide by means
of the thermogravitational column technique (for references see [2]). Recent molecular
dynamics simulations of Lennard-Jones liquids have shown that the differences in molec-
ular mass, moment of inertia, diameter, and interaction strength contribute additively to
the Soret coefficient ST in such a manner that the molecules with the higher mass, the
higher moment of inertia, the smaller diameter, and the stronger interaction prefer the
cold side [3–7]. In order to obtain a systematic study of isotopic substitution, we have
performed studies on isotopically substituted benzene [8] and cyclohexane, the latter in
a number of different organic liquids [2]. The major result of these studies was a con-
stant isotope effect of the Soret coefficient of cyclohexane (ΔST ≈ −1.0 × 10−3 K−1),
independent of both the second component and the concentration of the mixture. With
good approximation the Soret coefficient can be decomposed into three contributions:
ST = S0

T + amΔM + biΔI. ΔM is the difference of the molecular masses and ΔI the dif-
ference of the molecular moments of inertia of the two components. S0

T is the so-called
chemical contribution. It accounts for the concentration dependence, and MD simulation
have shown that it is due to the interaction between unlike particles [9]. Besides isotopic
substitution, the substitution of one compound by an isomer is the second subtle change
that can be made to a binary mixture. Polyakov et al. have performed a systematic study
of alkanes in benzene, where they could show that the alkanes become more thermopho-
bic with an increasing degree of branching [10].
Motivated by the question about the effect of configurational isomerism, as compared to
the structural isomerism of the alkanes, and by the question about the interplay between
isotopic and isomeric substitution, we report about experiments on mixtures of cyclohex-
ane with the two configurational isomers cis- and trans-decalin. Both cyclohexane and
cis-decalin have also been used in the perdeuterated, besides the protonated, form.

2 Experimental

The experimental data shown here have been obtained by thermal diffusion forced Rayleigh
scattering (TDFRS) [11]. The contrast factors (∂n/∂T )p,c and (∂n/∂c)p,T have been mea-
sured interferometrically or with an Abbe refractometer, respectively. The typical diffu-
sion length in TDFRS experiments is 10μm, resulting in short diffusion time constants
of the order of 10ms. Although TDFRS combines a number of experimental advantages,
like the short diffusion times and the high sensitivity, there is the need to add some dye
for optical absorption. Especially for aqueous systems suitable dyes are scarce, and even
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in organic mixtures a possible influence of a dye is occasionally difficult to rule out [12].
Wiegand et al. [13] have employed an IR laser, which is directly absorbed by water to
circumvent the dye problem in aqueous systems.
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Fig. 1: Beam deflection signal for ethanol/water (15 weight percent ethanol, T = 20◦C)
The left figure shows the beam deflection after switching for various temperature differ-
ences between top and bottom plate. The upper right insert shows an enlarged part of the
measured curve (red) and the numerical solution (black). Note that the oscillations result
from measured temperature jitters caused by the temperature controller. They propagate
through the numerical integration and are part of the signal and not noise. The lower
figure on the right side shows the long time steady state deflection as a function of the
applied temperature difference.

In order to have an alternative experimental technique available, we have built a beam
deflection setup with optical readout, which relies on heating from the boundary instead
by optical absorption in the volume. Following the works of Meyerhoff [14], optical Soret
cells have been used by a number of authors [15–17]. Our instrument has been built, with
some modifications, according to the one operated in the group of Piazza [18]. The first
very promising results, obtained with a cell of 1 mm spacing and 40 mm path length, are
shown in Fig. 1.

Chemicals were obtained from Aldrich and Acros Organics (purity > 99%). Cyclohexane
has been used in its protonated (C6H12) and perdeuterated (C6D12) form. Decalin (dec-
ahydronaphthalene, C10H18) exists both in a cis and in a trans form. Both isomers have
been investigated as protonated and cis-decalin additionally as perdeuterated (C10D18)
compounds (Fig. 3).
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3 Results and Discussion

3.1 Isotope effect

Fig. 2 shows the effect of isotopic substitution for decalin/cyclohexane mixtures as a
function of the cyclohexane mole fraction. ST of cyclohexane is negative in either decalin
isomer (open squares and triangles in Fig. 2), meaning that cyclohexane migrates to the
hot side.
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Fig. 2: Soret coefficients ST of cyclohexane and
the two configurational isomers of decalin, respec-
tively, as a function of cyclohexane mole fraction x
at temperature T = 25◦. The lines are polynomial
fits. The filled symbols correspond to mixtures with
perdeuterated compounds. Upper curve (open cir-
cles): cis-decalin in trans-decalin as function of cis-
decalin mole fraction. The arrows are explained in
the text.

As already observed in case of
other mixtures [2, 8], deuteration
renders a compound more thermo-
phobic: the Soret coefficient of
C6D12 both in cis- and in trans-
decalin is larger than the one of
C6H12. This shift (arrows a in
Fig. 2) is independent of concentra-
tion and amounts to ΔST ≈ 0.84×
10−3 K−1 in case of cis-decalin and
0.83 × 10−3 K−1 in case of trans-
decalin. These almost identical val-
ues are, albeit more towards the
lower end of the variation, in rea-
sonable agreement with the iso-
topic shift of the Soret coefficient
of cyclohexane found in other mix-
tures [2].
In agreement with the increase
of ST upon deuteration of cyclo-
hexane, ST decreases in case of
deuteration of cis-decalin (filled di-
amonds on Fig. 2, arrow b). The
absolute value of the change is
0.81× 10−3 K−1 and, surprisingly,
almost identical to the one in case
of deuteration of cyclohexane.
Due to the strong correlation be-
tween molecular mass and moment
of inertia, both in case of cyclo-
hexane and decalin, a separation
into distinct contributions as done
in Refs. [2,8] has not been possible.
Additional measurements at differ-
ent temperatures have shown that all data can be well described by a common fit function

ST = α(x)β(T )+ cM
My −Mz

MyMz
(1)

with cM = 0.627uK−1. My and Mz are the molecular masses of the two components.
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Expression 1 differs slightly from the ones used in Refs. [2, 12], but a detailed discussion
is beyond the scope of this contribution. The solid lines in Fig. 2 result from a common
fit of Eq. 1 to all concentrations and temperatures between 10 ◦C and 55◦C.

3.2 Isomer effect

Isomers are ideally suited for the study of the influence of structural properties on the
Soret coefficient. While Polyakov et al. have investigated the effect of branching for the
structural isomers of heptane [10] in benzene, cis- and trans-decalin differ only by their
configuration (Fig. 3), thus representing a more subtle change of the molecules.
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H H
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Fig. 3: Trans (left) and cis (right) iso-
mers of decalin.

Fig. 2 also shows the effect of isomeric substitu-
tion of decalin for mixtures with protonated and
perdeuterated cyclohexane (arrows c). In either
case, the isomeric substitution of decalin leads
to the identical change of ST . Contrary to the
isotope effect, the isomer effect is, albeit only
weakly, concentration dependent and increases
slightly with increasing cyclohexane concentra-
tion. When comparing the absolute values, one
finds that the isomer effect exceeds the isotope
effect by more than a factor of two.
From the mixtures with cyclohexane it can be
seen that cis-decalin is more thermophobic than
trans-decalin. This property is retained in the mixtures of the two decalin isomers (open
circles in Fig. 2). There, the Soret coefficient of cis-decalin in trans-decalin is positive,
corresponding to cis-decalin migrating to the cold side (being more thermophobic).
As a result, we find that the change of ST upon isotopic substitution of cyclohexane is
independent of the decalin isomer and, vice versa, the change of ST upon replacement
of cis- by trans-decalin is independent of the deuteration of cyclohexane. Hence, isotope
and isomer effect are mutually independent and additive. The interesting question, as to
whether perdeuteration of the two decalin isomers leads to an identical shift of the Soret
coefficient, still awaits an answer.
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Cluj-Napoca, Romania 

E-mail: hodor@itim-cj.ro

Abstract
The cylindrical thermodiffusion column with an arbitrary cross-section is theoretically 
treated as a particular application of a general theory of the separation column previously 
developed by the author. The expression of the species-transport through the column is 
deduced and some applications are discussed. 
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1 Introduction 
The thermodiffusion (TD) column has been theoretically studied only for simple column 
cross-sections so far: Furry-Jones-Onsager (FJO) [1] and Marcoux-Costeseque [2] 
considered rectangular cross-sections with one side much greater than the other one, and 
Furry-Jones [3] considered the annular cross-section. The treatment of the general cross-
section case is useful for it can be specialised for any geometry of practical interest. For 
instance it can be particularised for squared cross-section with comparable sides, which is 
more realistic than the limit cases studied so far. In this paper the TD column with an 
arbitrary cross-section, for a binary fluid mixture, is treated by applying a general theory 
of the separation column developed previously [4-7]. 

2 Assumptions and preliminaries 
(a) The TD column is essentially cylindrical, upright and with an arbitrary cross-

section as suggested by Fig. 1. Impermeable walls limit the fluid mixture. A 
transversal temperature gradient gives rise to a TD separation effect and a 
countercurrent laminar convection. Thermodynamic equilibrium is locally attained 
and let = (temperature, pressure, mass fraction of the component 1) be the 
local independent state parameters. The mass flux of the species 1 is given by

),,( 1wpT

)ln( 21111 TwwwDw vJ (1)

where  is the mass density,  the local mass average velocity,  the mass 
fraction of component 2,  the mutual diffusion coefficient, and  the thermal diffusion 
factor. In principle, , , and  are state parameters depending on .

v 12 1 ww
D

D ),,( 1wpT

(b) Assume  is small and denote ~  where  is an infinitesimal constant and 
),,(~~

1wpT  a finite function. Let bt zzL  be the column length and 
 the separation, where t and b indicate the top and the 

bottom of the column, Fig. 2. Assume 
)//()/( 2121 bbtt wwwwS

1S  is finite, which involves  when 
.

L
0

Fluid mixture

Interior
impermeable wall

Exterior
impermeable wall

 z  x

 y

Fig. 1: Sketch of column cross-section. Rb

Rt
z

cs

Fig. 2: A sketch of the 
column.  
Rb, Rt, infinite reservoirs. 
cs, column segment of 

length ls.
zsm middle coordinate of 

cs.

zsm

zb

 zt

42 Simple Fluids



(c) Denote by  the coordinate  for which smz z sLzz bsm /)(  and consider a column 
segment of length  having the center in . Denote by  the coordinate  for 
which

sl smz sz z
),( 2

1
2
1

ssmssms lzlzzz  and by  the separation between the ends of 
the segment s . Now, assume that  is chosen so that the following not exclusive 
conditions are satisfied: if 

sS

sl
0  and L  then sl , , ,

and
0/ Lls 01sS

0)1/( sS . Corollary: If 0  then: , the segments are 
disjoint, and the set of segments is an infinite of Cantor’s cardinality 

sLzs /
1. Note that a 

position along column can be given either by  or by the pair ( , ).z s sz

(d) The boundary conditions that can be imposed at bzz  and  are of an infinite 
variety. However, these conditions have a strong effect only upon the end 
segments 

tzz

0s  and , while the effect is very limited for . Since only 
the theory for  is treated here, it is assumed without any restriction on 
generality that the column ends are connected to infinite reservoirs containing 
mixture of concentration  at the top and  at the bottom, and between which 
there is a pressure difference that gives rise to a net mass flow through the column 

, where 

1s )1,0(s
)1,0(s

tw1 bw1

z dydxv  is the cross-section of the working space.  

(e) The column can either separate or mix. Here we treat the separation, and in this 
case the following theorem is valid: If  is infinitesimal then (i)  and 1w  are 
infinitesimal of the -order and (ii) zwzw 11

~/  where  is of -order and zw1
~

is a finite function. Proof:

In Eq. 1, Tww ln21  is the source and 1w  the sink of separation. As the 
source is small, of the -order, the sink 1w  should also be of the -order; 
otherwise the separation can neither be produced nor maintained. 
In the steady state, if bt ww 11  then 0/1 zw , which means that 

zwzw 11
~/ , where  is an arbitrary constant determinable from boundary 

conditions. Since  is of 1w -order,  can be treated as an arbitrary constant 
of -order and zw1

~  as a finite function. 
Since  is of the order of 1w  one can write ),,(~)(),,( 111 zyxwzwzyxw
where )(1 zw  and ),,(~

1 zyxw  are finite functions. Using this expression of ,
the integration of Eq. 1 gives

1w

)(~)( 111 zzw (2)

where  is the mass transport of species 1 through the column and dxdy11 J )(~
1 z  is a 

finite function of . Since in a steady state  and z 1  are independent of  and the z
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variation of )(1 zw  along the whole column is larger than the -order, Eq. 2 is possible if 
and only if  and 1  are small of -order. 

3 Transport equation 
We have discovered the group or vector ),,(  composed of three independent 
parameters that, ideally, are infinitesimal and of the same order of magnitude;  is a 
property of the working fluid while  and  are arbitrary constants determinable from the 
boundary conditions imposed at the two column ends. Any process function  can be 
expanded into a power series and truncated by the model, 

F

0,,
)(

kji
ijk

kji FF ,
1

0,,
)()(

nkji

kji
ijk

kji
n FF (3)

The main purpose of the column theory is to derive a working expression for . The 
series (2) are extremely convergent, so that it is sufficient to find only the first order 
truncation

1

)1(1  in order to obtain what other authors have aimed. When 
then

)0,0,0(),,(

)1(1  is the exact solution of the problem and in this case we will say that the column 
is ideal.

The mathematical model of the TD column can always be written as  where 
 is a column-vector whose elements are mathematical expressions and (arg)  stands for 

arguments of interest. The system S  is composed of three subsystems, S
where , , and  are material, momentum and energy equations, 
respectively.

0SS (arg)
S

0ELM T],,[ ,
0M 0L 0E

Using the series expansion (3) for every vector component, the equation  becomes 0S

0SS
0,,

)(
kji

ijk
kji 0S )(ijk (4)

The expression for )1(1  can be deduced by using the equations of a segment . For 
this purpose, assume the segment has column symmetry in the sense that S  is invariant to 
any finite translation along the -axis, that is 

)1,0(s

z ),, s,(),,,( sss zyxzzsyx SS . Note that 
this is a global assumption, which includes particular assumptions; as for instance the
compressibility of the fluid in the segment  is assumed to be negligible. Now, we have to 
solve successively the system of equations 

s
0S )(ijk . The equation 0S ),,,()000( szsyx

gives: (i) a constant field of concentration , (ii) a temperature field  that 
does not depend on , and (iii) a velocity field having the components 

)()0(1 sw ),,()0( syxT

sz 0vv )0()0( yx

and . The next truncation of the concentration field is of the general form ),,(v )0( syxz
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)001(1)010(1)100(1)0(1)1(1 )( wwwsww (5)

The fields , , and  are solutions of the equations ,)100(1w )010(1w )001(1w 0M )100( 0M )010( ,
and  respectively. It is easy to show that 0M )001( 0)100(1w . The field  does not 
depend on  and can be expressed by 

)010(1w

sz

)0(

*

)0()0(2)0(1
)100(1)100(1 ),,(

T

T

dT
T

ww
syxww (6)

where *T  is an arbitrary constant temperature independent of x  and y . A key point of 
the present theory is that the field  has the following special form derived in [6, 4]:  )001(1w

ss zsyxzsyxw ),,(),,,( 0)001(1 (7)

By substituting this field in 0M )001(  one obtains the equation for 0

0)]([v 0)0()0()0()0( D xyxyz (8)

0)( )w(0xy (8a)

where stands for the operator xy  in the xy -plane. Eq. 8a represents the boundary 
condition at the wall and the subscript )w(  indicates the normal vector projection on the 
wall.

Using the obtained expression for , one obtains the transport)1(1w

)/)(( )1(1)0(2)0(1)0(1)1(1 sdc zwKKHwww (9)

dydxdT
T

H z

T

T
)0()0(

*

)0( v
)0(

(9a)

dydxK zc )0()0(0 v (9b)

dydxDKd )0()0( (9c)

4 Discussion
It needs to be emphasized that Eq. 9 is the exact expression for the transport  when 
approaches zero. Generally, one should use numerical methods in order to calculate some 

1
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integrals and equations. However, the numerical methods are much simplified by the fact 
that the -coordinate is absent. z

The velocity field  entering Eqs. 9a and 9b is produced by the temperature gradient 
alone. This is a proof that the influence of the concentration gradient upon the velocity 
field, called forgotten effect, is of second order. Hence, the forgotten effect should be 
forgotten. A special treatment of the forgotten effect was previously given [7].

)0(vz

Eq. 9 can be adapted and used in many ways, according to circumstances.  

The concentration  is constant in the segment  but varies from one 
segment to another. We can drop the iteration subscripts and use the coordinate  instead 
of the pair  and Eq. 9 becomes  

)()0(1)0(1 sww s
z

),( szs

)/)(( 12111 zwKKHwww dc (10)

Here  is a function of . If  is great and the state parameters ( ) strongly 
depend on concentration, then 

1w z bt ww 1 ...,, D
H , , and  should be treated as functions of 

concentration.  
cK dK

If  can be treated as constant, then dydxTH z )0()0()0( lnv , and Eq. 10 leads to 

a working equation for the computation of  from experimental concentration data. 

Eq. 9 is established in the assumption that ),(),( sss zszzs SS . It means that one can 
consider that  in which case Eq. (10) describes a cascade. Moreover, 
although  does not depend on , one can consider that it depends on , in which case 
one can write the equation for the unsteady state of the column/cascade,   

),(),( ss zszss SS

1 sz s

z
wKKHwww

zt
wh dc

1
211

1 )( (11)

where  is the holdup of the liquid mixture per unit length of column. h
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Abstract
Thermodiffusion coefficients were measured experimentally using a space hardware 
developed by the European Space Agency (ESA) and flown on board FOTON Soyuz 
rocket in September 2007 in collaboration with TOTAL France. Six different mixtures 
(Methane, Dodecane and n-Butane) were used to measure the thermal diffusion factor. 
The mixtures were maintained at a pressure of 35 MPa at an average temperature of 328 
K. On the theoretical aspect, using the irreversible thermodynamics theory, theoretical 
calculations were performed on different hydrocarbon and water alcohol mixtures using 
Peng Robinson, volume translated Peng Robinson and PCSAFT equation of state. This 
theory was used in determining the thermodiffusion coefficients for different binary water-
alcohol mixtures and hydrocarbon mixtures (nC5-C12) and then compared successfully 
with experimental data.  
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1 Introduction 
Since its discovery by Carl Ludwig and Charles Soret in 1800s, thermodiffusion has 
attracted great interest from a wide range of areas including petroleum engineering, 
biology, environmental studies, material science and metallurgy. Comprehensive 
thermodiffusion theories and accurate thermodiffusion experiments are of great 
importance to the understanding and optimization of diffusion-dominant industrial 
processes. The kinetic theory considers thermodiffusion as a stepwise activated process 
relying on the activation energy to break down cohesive bonds [1]. The lattice model uses 
a thermostatic approach to relate the Soret coefficient with the canonical partition function 
of a “two-chamber” system [2]. The theory of non- equilibrium thermodynamics models 
has provided a general definition of the thermal diffusion factor as a function of the net 
heat of transport and chemical potential. In the past, many researchers applied the theory 
of non-equilibrium thermodynamics in their thermodiffusion studies including Dougherty 
et al [3], Firoozabadi et al [4] and Pan et al [5].

In this paper, a comparison has been made for modelled and measured thermodiffusion 
coefficients for different binary n-alkane mixtures and water alcohol mixtures. The ground 
base experimental data are obtained through the technique of thermogravitational column. 
A theoretical model based on the theory of non-equilibrium thermodynamics is used to 
calculate the thermal diffusion factor T . Results revealed a good agreement with 
experimental data. Then estimated thermodiffusion coefficients of ternary hydrocarbon 
mixtures are revealed in preparation for comparison with experimental data from FOTON 
Soyuz rocket. 

2 Theoretical Model 
According to the theory of non-equilibrium thermodynamics, molar diffusion flux can be 
expressed in terms of phenomenological coefficients. In a binary mixture at a constant 
pressure, only molecular diffusion and thermodiffusion contribute to the diffusion flux, 
therefore

1
,1

1*
11

2
2

*
2

*
1*

111
1 x

x
L

Tx
T

T
QQLJ

pT

mol (1)

where is the molar diffusion flux of component 1 with respect to a molar average 
reference velocity.  is the net heat of transport of component i, and 

molJ1
*
iQ 1  is the chemical 

potential.  and  are the molar fraction of component 1 and 2, respectively.  is the 
phenomenological coefficient. Conventionally, diffusion flux can also be expressed in 
terms of molecular diffusion coefficient (or Fick’s coefficient) and thermodiffusion 
coefficient as follows: 

1x 2x *
11L

)( 2111 TxxDxDJ mol
T

molmolmol (2)
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A general equation for thermal diffusion factor T  for binary mixtures can be derived:  

pT

T

x
x

QQ

,1

1
1

*
2

*
1

(3)

It can be seen from eq. (3) that accurate thermodiffusion modelling relies on accurate 
prediction of the net heat of transport . By applying Eyring's viscosity theory, 
Dougherty et al [3] followed by Shukla and Firoozabadi [4] presented an expression Eq. 
(4) for thermal diffusion factor for binary mixtures;  
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where iU  is the partial molar internal energy of component i 0
igU  is the internal energy of 

the ideal gas at the same temperature.  is a parameter to represent the ratio of viscous 
energy to the cohesive energy. Eq. (4) requires accurate thermodynamics properties, 
namely, 

i

0
igi UU , 111 xx  and iV .  Therefore, ,iU 111 xx  and iV  can all be 

calculated accurately through equations of state. The choice of EOS depends on the nature 
of the fluid mixtures.  

3 Results and Discussion 
Different binary and ternary mixtures are investigated in this study. These mixtures are 
binary hydrocarbon mixtures nCi–nC12 (i=5~9), binary water-alcohol mixtures and ternary 
hydrocarbon of Dodecane-nButane-Methane.  

3.1 Thermal Diffusion Coefficient for Binary Hydrocarbon Mixtures 
A comparison of thermodiffusion coefficient obtained through modelling and experiments 
are listed in Table 1. Note that the thermodiffusion coefficients DT2 shown in these tables 
are for the second component, nC12.

The positive thermodiffusion coefficients indicates that the second components, nC12,
moves in a direction opposite to the temperature gradient.  
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Table 1: Thermal diffusion coefficient DT for nCi (1) – nC12 (2) at 25ºC 

DT2 , 10-12 m2/sK
ComparisonnCi – nC12

(50:50 wt%) 
i=5-9 Measurement Calculation

abs(DT_cal - DT_exp)
Relative Error 

(%) 
5 10.94 13.56 2.62 23.93
6 7.45 7.61 0.16 2.17
7 5.15 5.13 0.02 0.33
8 3.39 4.21 0.82 24.29
9 2.15 2.29 0.14 6.44

3.2 Thermal Diffusion factor for Binary Water-alcohol Mixture 
Predicting thermal diffusion factor with PC-SAFT equation of state depends on two 
adjustable parameters. One is the binary interaction parameters for the mixture of interest 
which can be optimized through available experimental vapor–liquid equilibrium data 
under a range of temperatures. The second one is the ratio of the energy of vaporization to 
the viscous energy. The energy of vaporization ievap ,U  is considered the difference 
between the internal energy of gas and liquid phase in equilibrium. Using PC-SAFT  EoS, 
equilibrium condition for specific temperature and pressure can be achieved. Thus 

ievap ,U  calculation for each mole fraction is manageable. However calculation of the 
viscous energy ivis ,U  as a function of mole fraction doesn’t have any specific model. 
Figure 1 shows a comparison between the calculated thermal diffusion factors calculated 
with modified and simple mixing rules and the experimental results. The calculation based 
on the modified mixing rule show very good agreement with the experimental result. 

3.3 Thermodiffusion Coefficients for Ternary Hydrocarbon Mixtures 
Using Peng-Robinson and volume translated Peng Robinson equations of state, the 
thermodiffusion coefficients at a pressure of 350 bar has been evaluated for six ternary 
mixture made of dodecane, n-butane and methane.  

As shown in Table 2, Methane the lightest component has a mole fraction of 20% and is 
maintained constant during the proposed six mixtures. In this calculation, methane is 
defined as the carrier (component 3), dodecane is the component 1 and n-butane is the 
component 2. Therefore DT1 is the thermodiffusion coefficient of dodecane in the mixture 
and DT2 is the thermodiffusion coefficient of n-Butane in the mixture. Figure 2 shows the 
calculated thermodiffusion coefficients for mixture 1 at different average temperature 
using PR EoS and vt-PR EoS. 
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(a) Water-acetone system (50%-50%) (b) Water-ethanol system (90%-10%) 

(c) Water-isopropanol system (90%-10%) 

Fig. 1: Evaluation of thermal diffusion factor. 

Table 2: Hydrocarbon Mixtures Composition in Mole Fraction 

Mixture Methane n-Butane Dodecane

1 20% 10% 70% 

2 20% 20% 60% 

3 20% 30% 50% 

4 20% 40% 40% 

5 20% 50% 30% 

6 20% 60% 20% 
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Fig. 2: Variation of the thermal diffusion coefficients as function of average 
temperatures.

4 Conclusions
This paper presents the theoretical calculations for thermodiffusion in both binary and 
ternary mixtures. The binary mixture includes n-alkane mixtures of nCi-nC12 (i =5~9), 
water-isopropanol, water-ethanol and water-acetone. The calculated results for those 
binary mixtures show very good agreement with the experimental data. The theoretical 
model verified through binary mixtures is then used to estimate the thermodiffusion 
coefficients in the ternary flight mixtures on board FOTON M3.  
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Abstract

We performed systematic temperature and concentration measurements of the Soret co-
efficient for two different groups of mixtures using Thermal diffusion Rayleigh scattering
method. The mixtures from the first group (carbon tetrabromide, tetraethylsilane and di-
tert-butylsilane in carbon tetrachloride) can be treated as ideal solutions. The Soret coeffi-
cient of CBr4 in CCl4 is positive and ST of both silanes in CCl4 is negative, which implies
that the heavier component always moves to the cold side. This is the expected behavior
for unpolar simple molecules. The results are discussed in the framework of thermody-
namic theories and the Hildebrand parameter concept. Additionally, the Soret coefficients
for both silane/CCl4 systems were determined by nonequilibrium molecular-dynamics
calculations. The simulations predict the correct direction of the thermophoretic motion
and reflect the stronger drive toward the warm side for di-tert-butylsilane compared to the
more symmetric tetraethylsilane. The values deviate systematically between 9% and 18%
from the experimental values. The mixtures from the second group (dimethyl sulfoxide
(DMSO), methanol, ethanol, acetone, methanol, 1-propanol, propionaldehyde in water)
are not ideal due to their ability to form hydrogen bonds. It was found, that for some of the
mixtures such as ethanol/water, acetone/water, DMSO/water and propionaldehyde/water
the concentration at which the Soret coefficient changes its sign does not depend on tem-
perature and is equal to the concentration where the Soret coefficient isotherms intersect.
While for propanol/water mixtures the sign change concentration is temperature depen-
dent. The dependence of the sign concentration of ST was analyzed in terms of the ratio
of the vaporization enthalpies of the pure components. The obtained results are related to
hydrophilic and hydrophobic interactions of the solute molecules with water.
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1 Introduction

Conceptually, binary mixtures of simple molecules can be divided into three groups:
mixture of spherical molecules without specific interactions, mixtures of non-spherical
molecules without specific interactions and associated mixtures. In the first group of mix-
tures the component with the larger mass or higher density moves to the cold side, and
this effect becomes stronger if the components are less miscible [1–3]. This empirical
observations still hold for some mixtures from the second group [1]. Associated mixtures
often show a sign change of the Soret coefficient with concentration [4] so that the direc-
tion of the thermal diffusion process is predominantly guided by excess properties and not
by the properties of the mixing partners like the difference in mass or moment of inertia.
On the other hand it was observed that the sign change concentration correlates with the
concentration at which the hydrogen bond network breaks down [4] and the concentra-
tion dependence of the Soret coefficient in aqueous systems seems to be universal [5].
Therefore it might be possible to relate the sign change concentration with properties of
the pure components and the structure of the mixture.

In this paper we investigated two groups of mixtures. For the first group we have cho-
sen rather simple tetrahedral, non-polar molecules, which can be well approximated by a
spherical shape: carbon tetrachloride (CCl4), slightly heavier carbon tetrabromide (CBr4)
and two isomers tetraethylsilane and di-tert-butylsilane. For the second group we have
chosen polar molecules like water, deuterated water, dimethyl sulfoxide (DMSO), ethanol,
acetone, methanol, 1-propanol, 2-propanol and propionaldehyde. Particular attention has
been given to the sign change concentrations. The Soret for all systems was measured
using Thermal diffusion Rayleigh scattering technique. For two mixtures of isomers with
CCl4 from the first group nonequilibrium molecular dynamic simulations were performed
additionally.

2 TDFRS experiment and NEMD simulations

Experimental details about the sample preparation and the description of the TDFRS ex-
periment can be found in [6] and references therein. A detailed description of reverse
nonequilibrium molecular dynamics method (NEMD) can be found elsewhere [7,8]. The
force field for carbon tetrachloride was taken from the work by Rey at al. [9]. For the
alkane chains of both silanes we applied the force field from Wescott [10]. A detailed
description of the composed force field can be found in Polyakov et al [6]. In the case of
tetraethylsilane, the Lennard Jones parameters σ and ε of Si, and for di-tert-butylsilane
those of SiH2 have been adjusted to reproduce experimental density and heat of vapor-
ization. The cell was elongated in z-direction, which is the direction of the heat flow
(Lx=Ly=Lz/3 ≈ 4 nm). The cutoff length for nonbonded interactions was 1.2 nm. The
time step was 2 fs. All NEMD simulations were performed at constant NVT conditions
(densities: 1047.2 and 1009.9 kg/m3 for equimolar mixtures of tetraethylsilane and di-
tert-butylsilane in carbon tetrachloride, respectively) with 960 molecules in the simulation
box. The average temperature was kept constant by the thermostat of Berendsen, with the
temperature coupling time being T = 1 ps.
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3 Results and Discussion

3.1 Mixture of spherical molecules

Fig 1 shows the experimental measured Soret coefficient of CBr4, Si(C2H5)4 and [C(CH3)3]2SiH2

in CCl4 at different temperatures as a function of concentration. The corresponding values
determined by simulations at around 303 K for a binary equimolar mixtures of Si(C2H5)4
and [C(CH3)3]2SiH2 in CCl4 are: −5 ± 0.3× 10−3 and −5.5 ± 0.3× 10−3 K−1. The
simulation results are larger than the experimental values and their magnitude is smaller
by 9 and 18 %.

Fig. 1: Soret coefficient ST of CBr4, Si(C2H5)4, [C(CH3)3]2SiH2 in CCl4 as a function
of concentration.

Those small systematic errors are probably due to the force field parameters, which were
developed to reproduce the density and heat of vaporization of the pure components but
not any transport coefficient. Another reason might be the sensitivity of the Soret coeffi-
cient to the chosen mixing rule.
Galliero et al [3] investigated the thermodiffusion behavior of equimolar mixtures of
”super methane” in methane. The parameters mass, m, diameter, σ, and depth of the
interaction potential, ε of super methane were different from those of methane. They
obtained three additive contributions Sm

T , Sσ
T and Sε

T to ST stemming from the mass, di-
ameter and interaction strength, respectively. We calculated these contributions for all
three investigated mixtures. The ratios of the diameter and the depths of the interac-
tion potential were estimated using the experimental molar volumes Vmol (at room tem-
perature) and enthalpies of vaporization Hvap (at boiling point) for the different compo-
nents. The mass contribution for CBr4/CCl4 mixture is positive 1.77 10−3K−1 while for
tetraethylsilane/CCl4 and di-tert-butylsilane/CCl4 it is negative -0.15 10−3K−1. This im-
plies that the component with the higher molar mass moves to the cold side. At the same
time the difference in size -0.36 10−3K−1 (-0.33 10−3K−1) and even more pronounced the
difference in the interaction potential 0.26 10−3K−1 (0.382 10−3K−1) leads to a stronger
(weaker) drive of di-tert-butylsilane (tetraethylsilane) to the hot side. The obtained ST
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values reproduce the correct direction of thermodiffusion motion for all three mixtures,
but they are one order of magnitude too small. As it is expected in our case the component
with the larger Hildebrand parameter (18.1MPa−1 for CBr4; 13.4MPa−1 for Si(C2H5)4;
12.7MPa−1 for (CH3C)2SiH2 and 17.0MPa−1 for CCl4) carbon tetrabromide (mixed with
carbon tetrachloride) and carbon tetrachloride (mixed with one of the silanes) accumulates
in the cold region.

Fig. 2: Sign change concentration x±s plotted versus the ratio of the vaporization en-
thalpies of the pure components. For aqueous systems where the solvent has two carbons
(�) x±s increases linearly with the ratio Hvapor

s /Hvapor
w , while solvents with three carbon

atoms (•) do not follow the line. Some data for DMSO/H2O and acetone/H2O have been
taken from the literature [4].

3.2 Mixtures of associated molecules

Experimental details about the associated mixtures studied can be found in [11]. For
aqueous solutions of ethanol, DMSO, acetone it was observed that the sign change con-
centration correlates with the concentration at which the hydrogen bond network breaks
down [4]. The sign change concentration can be determined by the hydrophilic (dipole
moment) and hydrophobic (number of carbon atoms in hydrophobic part) parts of the so-
lute molecules. In Fig. 2 the sign change concentration is plotted versus the ratio of the va-
porization enthalpies Hvapor

s /Hvapor
w of the pure components. Data for aqueous solutions

of solutes with a similar hydrophobic part (propionaldehyde, acetone, DMSO, ethanol)
follow the straight line, which indicates for those systems the importance of hydrophilic
interaction rather than effect of mass or moment of inertia. The isotopic substitution of
water decrease x±s , but the roughly 10% larger vaporization energy for heavy water com-
pensates this effect so that also those systems follow the line. At the same time decreasing
(or increasing) the hydrophobic part of the solute increases in case of methanol (or de-
crease in case of propanol) the concentration at which the sign change occurs. A similar
trend has been observed for the break down of the hydrogen bond network [12].
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4 Conclusions

The observed thermophoretic motion for three unpolar mixtures follows the common
rules, which state that the component with the larger molar mass and the larger Hilde-
brandt parameter accumulates in the cold region. We found a fairly good agreement
between the simulated and experimentally determined Soret coefficients for the systems
tetraethylsilane and di-tert-butylsilane in carbon tetrachloride. Both methods found that
di-tert-butylsilane accumulates slightly stronger in the warm region than the more sym-
metric tetraethylsilane. The dependence of the sign change concentration for associ-
ated mixtures versus the ratio of the vaporization enthalpies of the pure components
is explained by the hydrophobic and hydrophilic interactions of the solute with water
molecules.
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Abstract
The two-phase and critical behavior in non-isothermal binary liquid mixtures is examined 
using the mass transport equations obtained previously. Hydrodynamic approach 
developed earlier is used to calculate the necessary dynamic parameters. The stationary 
concentration distribution in the temperature gradient is calculated. At certain critical 
temperature and below, the resulting expression predicts a critical behavior and the 
layering of liquid phases in the mixture. At the critical temperature, the inflection point 
appears at the concentration distribution at the respective coordinate point. With decrease 
of temperature, this inflection is transformed into a jump in the concentration, which 
corresponds to the thermodynamically equilibrium concentrations of the components at 
the temperature established at this point. 
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1 Introduction 
The aim of this article is the analysis of critical and two-phase behavior in binary liquid 
systems placed in a temperature gradient using the mass transport equations obtained 
previously. When a liquid mixture is placed in a temperature gradient, there is movement 
of the components, generating a concentration gradient, what is known as thermodiffusion 
or the Ludwig-Soret effect. Experimental and theoretical results on thermodiffusion can be 
found in Ref. [1]. 

As the thermodiffusion experiments are based on the data on the temperature-induced 
concentration distribution, equations describing the mass transport are necessary. In our 
previous paper (Ref. [2]) the equations of the mass transport in thermodiffusion were 
obtained. This approach uses the standard form of the mass conservation equations for the 
components  

i
iJ

t
(1)

where i is the volume fraction of the ith component, iJ  is its mass flux, and t is time. The 
dynamic parameters (mass diffusion, cross-diffusion and thermodiffusion coefficients) are 
calculated by the hydrodynamic approach suggested in Ref. [3]. 
This hydrodynamic approach considers the flow of liquid around the particle caused by a 
local pressure gradient, as defined by the Navier-Stokes equation 

locloc fu (2)

where u  is the velocity of the liquid, loc  is the local pressure distribution around the 

particle,  is the dynamic viscosity of the liquid, and locf  is the local volume force in the 
surrounding liquid. 

Modifying the approach used in the theory of particle diffusiophoresis [4], we showed [3] 
that the local pressure distribution can be obtained from the condition of hydrostatic 
equilibrium in the uniform liquid taken together with condition of the local equilibrium in 
temperature gradients. These conditions give the local pressure gradient in a liquid around 
the molecule of ith kind 

1

N
iji

loc j j j
jj

T
v (3)

where j  is the cubic thermal expansion coefficient of the liquid of molecules of type j,

j  is the volume fraction of these molecules, jv  is the specific molecular volume for the 
molecule of the jth kind, and ij  is the interaction potential between molecules of the ith

and jth kind. 
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For liquids with low electrical conductivity 

3 6( ) 16 9ij i j i jr A A rr r (4)

where Ai and Aj are the respective Hamaker constants, r is the radial coordinate for a 
spherical molecule, and ri and rj are the molecular radii. Solving Eq. (2) for a spherical 
particle and calculating the respective hydrodynamic stresses, we have the following 
expressions for the partial cross-diffusion coefficient and the partial thermodiffusion 
coefficient defined as the velocity of a selected particle of the ith kind per unit 
concentration gradient of the jth component and per the unit temperature gradient, 
respectively: 

28 27Dij iH i j jb r A A v (5)

Tij j Dijb b (6)

where iHr  is the hydrodynamic radius of the particle. 

Substituting the drift flux of the considered component into respective Eq. (1), we obtain 
the mass transport equations. In a system, where a temperature and/or concentration 
gradient exist, a macroscopic pressure gradient should be established to keep the 
hydrostatic equilibrium in the system. The respective barophoretic mass fluxes also are 
included in the mass transport equations. In general case, the macroscopic pressure 
gradient is derived from the mass transport equations. For the closed steady-state systems 
it can be described by the Gibbs-Duhem equation (Ref. [5]). 

In a temperature gradient, the mass transport equations for the components can be written 
as

1
1 1 21 1 1vD P T

t kT
(7)

2
2 1 21 1H H

vD P T
t kT

(8)

where 2  and 11 are the volume fractions of the respective components, 1D , 2D
are their diffusion coefficients, 1v , 2v  are the partial volumes of the components, which 
are about the same as their specific molecular volumes 1v , 2v , 3

1,2 1,24 3H Hv r ,

11 1 1 1 14 3D Hb D v A v kT , 1 2 2 1v A v A , and 1 2 2 1H H Hv A v A . Excluding 
the pressure gradient from Eqs. (7, 8), we obtain the equation for the concentration 
distribution
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2 2 2 2
1 2

1 1 1

1 1 1 1 1
1 H

D v v v T
t v v v (9)

where 2 2 1 1v D v D is the parameter related to the dynamic pressure gradient established 
in the non-stationary system. In Eq. (9), the parameter  characterizes the value of the 
intermolecular interaction in one component, and the parameter characterizes the ratio in 
the intermolecular interactions between the components. It is equal to the ratio of the 
respective solubility parameters (Ref. [6]). 

2 Results and Discussion
The term  

2 2 2

1 1

1 1 1
1eff

D v vD
v v

(10)

in Eq. (9) is the effective diffusion coefficient. In stable systems, 0effD  (Ref. [5]). 
However, at 1, the diffusion coefficient becomes zero at the point 

1

2 11c v v (11)

2
1 1 14 1 3c HT v A v k (12)

At cT T , there is the two-phase domain described by the equilibrium curve

21 1 2c c cT T (13)

which separates stable equilibrium concentrations 1e T , 2e T from unstable 
region where 0effD , at the temperature T. The equilibrium concentrations are obtained 
from Eq. (13). 
Near the critical point, the stationary mass transport equation [Eq. (9)] can be written as 

2
1 21 1c c c c c T (14)

where 2 1 1 1H Hv v . This parameter can be both positive and negative, 
what corresponds for negative and positive thermodiffusion, respectively. The solution of 
Eq. (14) is 

3
1 2( ) 3 1 1c c c c c cx T T x (15)
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The concentration distribution described by Eq. (15) is the continuous function and it has 
the inflection point at the position cx , where c  and cT T . The similar conclusion on 
the critical behavior of the concentration distribution was made in [7] on the base of 
thermodynamics.  

-40 -20 0 20 40

0.5

1.0

-20 -10 0 10 20

0.5

1.0

                        (a) T x Tc                                                    (b) 0T x T

Fig. 1: A typical concentration distribution in binary mixture (a) around the critical point 
and (b) in the two-phase domain. 

The typical critical concentration distribution is shown in Fig. 1a. The condition of the 
mass conservation  

0

L

x dx L (16)

imposes some limitations on the concentration range, where critical concentration 
distribution with the inflection point can be established. Here, is the mean volume 
fraction of the second component in the uniform mixture, and L is the dimension of the 
measurement cell. 

Using Eq. (15), Eq. (16) for the determination of the critical point position cx  can be 
written as

4 4
43 3
3

0 1 2
3 1 3 1 1
4

c c
c c L c c c c c

x xT T T T
L L (17)

Here, T0 and TL are the temperatures at the respective walls. Eq. (17) may give the limits 
of the uniform concentration, where the critical point can exist. They correspond 
to 0,cx L , when the critical temperature is established at the respective walls. These 
limits are: 

4
3

1 2
3 3 1 1
4c c c c c T (18)
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where T is the temperature drop across the cell. For the liquids, the values of the thermal 
expansion coefficients are about 10-3 K-1 (see Ref. [6]). When the critical temperature is 
about the room temperature (about 3·102 K), the temperature drops about 102 K are 
available. According to Eq. (18), the maximal deviation in the initial mean volume 
fraction from the critical volume fraction 1 2c is about several percent.  

This situation possesses the characteristic “critical” features. It is realized only at the 
unique temperature and the concentration, and within narrow range of the initial uniform 
concentrations. 

When temperatures in the system are decreased below the critical point, the effective 
diffusion coefficient effD  [Eq. (10)] becomes negative for two volume fractions 1 2,e e ,
which are the equilibrium concentrations in the two-phase system at the temperature 
corresponding to some point 0x  (see Fig. 1). In the depth of the two-phase domain, 
where cT T ,

2
1e c cT T (19)

2
2 2 11e c cv T v T (20)

In this diluted two-phase system, the stationary Eq. (9) can be written in two different 
forms: 

1 1 1e e T
x

,     at 1e (21)

2 2e T
x

,     at 2e
(22)

The solution of Eqs. (21, 22) is:

1 1 1 02e T ex T x T ,

at 0 0T x T ; 0x , at 0 0T x T
(23)

2 2 2 02 1e T ex T T x ,

at 0 0T x T ; 0x , at 0 0T x T
(24)

The designations x , x  are used for the domains with the lower and higher 
concentration, respectively. The typical concentration distribution is illustrated in Fig. 1b.  
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The position of the point 0x  and temperature 0 0T x can be found by the condition of the 
mass conservation  

0

00

x L

x

x dx x dx L (25)

For systems, which are far from the critical point, Eq. (25) takes the form 

2
2 0 0 10

2
2 1 0 0

1
1 1

c c

c c

v T x v Tx
L v v T x T

(26)

In the raise of the mean volume fraction from 1e to 2e , the position 0x changes
gradually from L to zero, respectively, and the layers of different thickness may be 
obtained.

In two-phase domain, the position 0x of the concentration jump corresponding to the phase 
boundary may be controlled in a wide range. It may be done by the gradual change in the 
mean uniform concentration and by the scanning the temperature profile in the cell, 
while maintaining the same temperature drop between the walls. This situation allows for 
the control of the position of suspended particles in the two-phase mixture. It is possible, 
when the sign of the thermodiffusion coefficient of the particle is changed in the particle 
transition from one component to another. This sign change was seen in numerous 
experiments and predicted theoretically in [8]. Then particles may be focused around the 
phase boundary and be shifted together with it. It provides a method for the manipulations 
with the suspended particles.

3 Conclusions
The critical behavior and phase layering in non-isothermal binary liquid mixtures are 
examined using the kinetic mass transport equations. The stationary concentration 
distribution in the temperature gradient is calculated. Close to critical temperature and 
below, the resulting expression predicts a critical behavior and the layering of liquid 
phases in the mixture. At the critical temperature, the inflection point appears in the 
concentration distribution at the corresponding coordinate point. This situation may be 
seen in an experiment in a very narrow range of the concentrations, about several percent, 
around the critical concentration. With decrease of temperature, this inflection is 
transformed into a jump in the concentration, which corresponds to the 
thermodynamically equilibrium concentrations of the components at the temperature 
established at this point. At temperatures significantly lower than the critical one, the 
phase layering with the controllably changed position of the phase boundary can be 
obtained. This situation can be used to manipulate the suspended particles in the 
predetermined manner. 
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Abstract
A thermogravitational column that makes possible to carry out experimental 
measurements of a stationary separation produced in a mixture under high pressures has 
been built. The new device is able to work at pressures up to 50 MPa.

The column was validated at atmospheric pressure working with liquid mixtures which 
thermodiffusion and molecular diffusion coefficients are well known in literature, like, 
water-ethanol (60.9% mass fraction of water, at an average temperature of 22.5ºC); 
toluene-nhexane (51.67% mass fraction of  toluene, at 25ºC); 1,2,3,4-
Tetrahydronaphthalene(THN)-Isobutylbenzene(IBB), THN-n-Dodecane(nC12) and IBB-
nC12 (50% mass fraction of each component, at  25ºC). The stationary separation and 
thermodiffusion coefficient (DT) obtained with the new column show a repeatability of 
98% and the difference between the obtained data and data from the literature is within the 
experimental error.  

In this paper some experimental data for stationary separation at pressures up to 14 MPa., 
mean temperature of 25 ºC and 50% mass fraction, for the following mixtures: THN-nC12
and IBB-nC12 will be presented. 
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1 Introduction 
Throughout last years, the importance of thermodiffusion coefficient and transport 
properties knowledge in very different sectors has been stated, and the oil industry is the 
one which greatest interest has shown, in order to optimize the exploration and the 
exploitation of the oilfields [1], even some experiments for determining the transport 
properties have been carried out in microgravity [2] in collaboration with the European 
Space Agency (ESA) and the Oil Industry. Up to now, these expensive experiments have 
not offered conclusive results. There are some theoretical [3], numerical [4] and 
experimental [5] studies that confirm a dependency of transport properties with pressure, 
temperature and concentration. In addition the lack of experimental data for these 
coefficients in working conditions blocks further theoretical, numerical and industrial 
development [6,7]. 

Recently, in Benchmark values for the Soret, thermal diffusion and diffusion coefficients
[8], the efficiency of the themogravitational technique and the corresponding experimental 
method have been demonstrated for determining the transport properties of liquid 
mixtures. Up to now, the thermogravitational technique has been used, only at 
atmospheric pressure. Nevertheless, the conditions in which the hydrocarbons are found in 
oilfields, depending on the systems, imply high pressures. For all this, it was decided, to 
design and to build a new themogravitational installation that allows determining the 
thermodiffusion coefficient at various pressures, up to 50 MPa, for both liquid and 
liquefied mixtures. 

2 The new thermogravitational installation 
The new themogravitational installation (TGC-HP) has a cylindrical configuration and as 
it can be seen in figure 1 it is constituted by the following modules: 

1) Thermogravitational column 

2) Load system. 

3) Pressure generation system. 

4) Sample extraction and analyzing system. 

The key factors to have in mind when designing and manufacturing a thermogravitational 
column are: the dimensional, geometric and surface finish tolerances, compatibility of 
materials, structural calculation of the components that work under pressure, the materials 
and the whole column’s thermal behaviour, being hermetically closed up to pressures of 
50 MPa. The main features of the TGC-HP are: height 500 mm, it is made of stainless 
steel, it has five equidistant sample extraction taps and its gap width is 1 ± 0.005 mm.  
This installation has two external water thermostatic baths to create the temperature 
gradient between the gap’s two walls. 
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To collect reliable information about the gap's outer and inner walls temperatures, the 
previously described installation has four "J" type thermocouples, of 1 mm diameter. Two 
of them are in the top and the other two in the bottom of the column. In addition, it has a 
pressure transducer in the top part of column in order to know the pressure inside the gap. 

To guarantee a totally hermetic closing of the gap, single acting, spring-energized, PTFE 
seals are used. The spring supplies the load required for sealing at low pressures. The ”U” 
shaped jacket allows fluid pressure to energize the sealing lips, so total sealing pressure 
rises with increasing operating pressure. 

Once the steady state is reached the sample extraction for being analyzed can be done 
across the valves which are integrated in the outer tube of the column. Thanks to the 
valves design the extraction can be done, both, at atmospheric pressure and at high 
pressure. The valves assure hermetic closing while it eliminates all the possible dead 
volumes. 

Fig. 1: High pressure thermogravitational device 

Thermogravitational column 

Sample extraction 
and analyzing 

The mixture's loading is realized from the bottom of the column at controlled speed, due 
to compressed air’s pressure. This way, the liquid will evacuate all the air inside the gap, 
managing to eliminate all the possible bubbles that might try to remain into the gap.  For 
liquid loading, two different types of fluids can be acknowledged, on one hand there are 
the fluids that at atmospheric pressure and temperature are in liquid state and on the other 
hand those fluids that in these conditions are in gaseous state. In this work, liquids have 
been studied at different pressures. 

The working pressure is generated by pressure generation system, see figure 1, and the 
maximum pressure it can work is 50 MPa. This module is formed by a hydraulic system 
and a pressure intensifier, which can store 120 cm3 of liquid and its pressure ratio is 1 to 5. 

system

Pressure generation system 

Load system 
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The extracting liquid’s volume is controlled by means of cylinder displacement. In order 
to do this, the hydraulic cylinder has a displacement transducer which provides continuous 
information about the cylinder’s position. 

3 Experimental results 
The validation of the TGC-HP was realized [9, 10] at atmospheric pressure by means of 
tests of liquid binary mixtures which transport properties are sufficiently verified in the 
bibliography.

The used mixtures were: Water-ethanol (W-E):  = 0.6088; T = 22.5ºC and T = 25ºC; 
Toluene–n-hexane (Tol-nC6):  = 0.5167; T = 25ºC; 1,2,3,4-Tetrahydronaftaleno-
Isobutylbencene (THN-IBB): c = 0.5; T = 25ºC; 1,2,3,4-Tetrahydronaftalene–n-dodecane 
(THN-nC12): c = 0.5; T = 25ºC; Isobutylbencene–n-dodecane (IBB- nC12):  = 0.5; T = 
25ºC.

OHc
2

toluenoc

c

3.1 Experimental test at high pressure 
Once the correct operation of TGC-HP installation at atmospheric pressure was 
demonstrated, experimental test at a range of high pressure were carried out. To perform 
these experimental tests the following two binary hydrocarbons mixtures were chosen: 
IBB-nC12 y THN-nC12, in an identical conditions of mass concentration, mean 
temperature and thermal gradient, which were used in the validation process of the TGC-
HP column, (c= 0.5; T = 25 ºC).  

The relative pressure range at which the test has been carried out is between 0 y 14 MPa. 8 
tests for each mixture have been carried out, at following pressures 0, 2, 4, 6, 8, 1, 12, 14 
MPa., and each test has been repeated several times. Once the stationary state is reached 
the pressure is removed and the five samples are extracted for been analyzed measuring its 
density by means of a DMA 5000 ANTON PAAR’s densimeter.  

In table 1 the obtained values of stationary mass separation between the two ends of TGC-
HP are shown for the different tested pressures. It can be observed that the obtained 
separation decreases as the working pressure rises. The concentration varies 3,96% for 
IBB-nC12 and 7,85 % for THN-nC12 when relative pressure goes from 0 to 14 MPa. 

The mixtures concentration variation values along the columns from table 1 have been 
plotted in a Concentration variation-Pressure graph in figure 2, it can be appreciate that the 
variation of stationary separation with the pressure fits quite well to a straight line. 
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Pressure
(MPa)

c
IBB-nC12

c
THN-nC12

0,1013 0,0381 0,0792

2 0,0376 0,0781

4 0,0374 0,0763

6 0,0372 0,0756

8 0,0365 0,0749

10 0,0364 0,0739

12 0,0363 0,0730

14 0,0361 0,0720

Table 1: Concentration variation ( c) of IBB-nC12 and THN-nC12 for various working 
pressures

4 Conclusions
It is the first time that the steady state separation for liquid mixtures THN-nC12 and IBB-
nC12 at high pressure has been determined. The variation of stationary separation with 
working pressure depends on the studied mixture. A greater influence of pressure on 
THN-nC12 mixtures than on the other studied mixture IBB-nC12 can be appreciated on 
the chart 2, at least at pressures up to 14 MPa. 
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Fig. 2: Stationary separation in TGC-HP vs. working pressure 
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Thermodiffusion coefficient (DT) for binary 
hydrocarbon mixtures at high pressures 
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Abstract
In this study the thermal diffusion coefficient at high pressure has been determined for 
first time. The binary liquid mixtures that have been studied are n-dodecane (nC12),
isobutylbenzene (IBB) and 1,2,3,4-tetrahydronaphtalene (THN) for pressures going from 
the atmospheric pressure up to 14 MPa. The tests were carried out at 50 % of mass 
concentration and at a mean temperature of 25 °C. 

The chosen binary mixtures are the ones which were studied in the benchmark of 
Fontainebleau. They were also used in the calibration process at atmospheric pressure of 
the new themogravitational device (TGC-HP) developed in the University of Mondragon 
Unibertsitatea. 
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1 Introduction 
In the last decades many experimental works have been carried out to study the transport 
properties of binary liquid mixtures at atmospheric pressure by means of different 
techniques [1]. 
Having in mind that recently the oil industry has showed great interest to study the 
transport properties [2] and that the conditions under which the crude oil is found 
underground implies high pressure, it is considered very important to analyze the 
influence that pressure has on transport properties of liquid mixtures in order to be able to 
achieve a major reliability of the algorithms used for crude oil's simulation in the oilfields.  
In fact, the pressure in oil fields would be over 100 MPa. [2]. There are some theoretical 
[3] and numerical [4] works that confirm a dependency of transport properties with 
pressure [5], temperature and concentration. In addition, the lack of experimental data for 
these coefficients in working conditions represent a difficulty for further development in 
the industrial sector from the theoretical, numerical and experimental point of view [6]. 

2 Experimental determination of the thermodiffusion 
coefficient at high pressure 

Since K. Clusius has proposed the possibility to use the thermogravitational column as a 
method to measure the thermodiffusion coefficient DT [7], many theoretical and 
experimental works have been carried out with both, liquid and gaseous mixtures.  
In agreement with thermogravitational theory the stationary separation, c, between the 
ends of the column is given by: 

T
x

z Dcc
L
L

g
c 004 1504 (1)

where: : is the kinematics’ viscosity; : thermal expansion coefficient; Lx: gap’s width; 
Lz: total length of the column; c0: is the initial concentration of mixture; g: is the gravity 
acceleration; DT: is the thermodiffusion coefficient. 

In the thermogravitational column the variation of the density along the column's height 
z  is measured, and steady state mass separation c is determined by means of 

equation (2): 

z
Lc z

0
(2)

where : is the mass expansion coefficient; 0: is the mixture’s initial density. Considering 
equations 1 and 2 we get equation 3 to determine DT,
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where  is the dynamic viscosity. From equation 3 can be deduced that to determine DT it 
is necessary to carry out experimental measurement of following properties , , ,

z . In this work the liquid mixtures of IBB-nC12 and THN-nC12 has been carried 
out, at a mass fraction of 50 %, mean temperature of 25 ºC and relative pressures of : 
0.1013, 2, 4, 6, 8, 10, 12, 14 MPa. 

2.1 Thermophysical properties 
a) Thermal expansion coefficient 

The experimental method consists of measuring the density of a given liquid mixture in a 
small interval of temperatures around the testing temperature and at certain pressure. 
Tables 1 and 2 show the thermal expansion coefficients calculated by means of 

)(1
0 T   for the liquid mixtures studied in this work at different working 

pressures. As it can be observed in the table 1 and 2 the thermal expansion coefficient 
goes down slightly as the working pressure rises. 

b) Mass expansion coefficient

The experimental method consists of measuring the density of a given mixture in a small 
interval of concentrations around the concentration which is going to be studied, at 
constant temperature and at a certain pressure. Tables 1 and 2 show respectively the mass 
expansion coefficient’s values calculated with  )(1

0 c  for the liquid mixtures 
THN-nC12 and IBB-nC12. The mass expansion coefficient does not vary with pressure, at 
least up to 14 MPa. 

c) Dynamic viscosity 

To measure the viscosity a needle falling viscosimeter commercialized by Irvine-Park is 
used with an external thermostatic bath in order to control the test temperature (25 ºC). 
The fluid mixture in an inner tube of the viscosimeterr was compressed by a pump. 
Afterwards a needle of known density is dropped through the testing fluid, and the drop 
time between two marked points is measured. All the measurements were preformed three 
times and the mean value was calculated. The dynamic viscosity of the fluid is derived 
from:  

tK FN )( (4)

where, K is a calibration constant, N is the needle density, F the fluid density and t  is 
the average value of  the three measured times. The uncertainty of measured viscosity is 
estimated in 0.03 mPa.s. From the tables 1 and 2 it can be stated that the dynamic 
viscosity is rising when working pressure is increasing. 

1.12 79



d) Density variation along the column  

The TGC-HP has been used to determine the stationary separation in terms of working 
pressure. The experimental method to measure z  is described in [8]. In figure 1 it can 
be observed an example of the values obtained in one experimental set for THN-nC12 
liquid mixture at a pressure of 10 MPa.  

 = -31,49775 Lz  + 849,27246

R2 = 0,99998

834
836
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Fig. 1: Density variation through the column’s height for THN-nC12 with c0=0.5, at 
mean temperature of 25 ºC and pressure of 10 MPa. 

In tables 1 and 2 are shown the mean values of z  for all the tests performed for each 

working pressure. From the tables we can realize that it decreases when working pressure 
rises. It decrease 8,3 % for the mixture THN-nC12 and 4,9 % for IBB-nC12, when the 
working pressure varies between atmospheric pressure and 14 MPa.  

Pressure (MPa)  (10-4 K-1)  (mPa.s) 
z

0,1013 8,6 0,27 1,46 33,9331 
2 8,5 0,27 1,50 33,7663 
4 8,3 0,27 1,53 32,9975 
6 8,2 0,27 1,57 32,7018 
8 8,4 0,27 1,60 32,3807 
10 8,4 0,26 1,64 31,9700 
12 8,2 0,26 1,66 31,5466 
14 8,1 0,26 1,71 31,1112 

Table 1: Thermophysical properties , ,  and z for THN-nC12 with c0=0,5 (mass 

fraction), at 25 ºC and various pressures from atmospheric to 14 MPa. 
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Pressure (MPa)  (10-4 K-1)  (mPa.s) 
z

0,1013 9,3 0,13 1,09 7,8500 
2 9,0 0,14 1,11 7,7973 
4 8,9 0,13 1,14 7,7224 
6 8,8 0,13 1,16 7,7062 
8 9,0 0,13 1,19 7,5476 

10 9,0 0,13 1,22 7,6321 
12 8,9 0,13 1,24 7,5145 
14 8,8 0,13 1,26 7,4591 

Table 2: Thermphysical properties , ,  and z for IBB-nC12 with c0=0,5 (mass 

fraction), at 25 ºC and various pressures from atmospheric to 14 MPa. 

3 Discussion and Conclusions 
Considering equation 3, DT has been determined for the liquid mixtures THN-nC12 and 
IBB-nC12 at mass fraction of 50 %, mean temperature of 25 ºC and working relative 
pressures from 0 to 14 MPa. The obtained values are plotted in Pressure-DT graph (Fig. 2).

From the figure 2 it can be stated that for both mixtures the variation of DT with working 
pressure fits rather well to a linear variation. For first time the thermodiffusion coefficient 
(DT) of THN-nC12 and IBB-nC12 at high pressure has been determined experimentally. 
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Fig. 2: DT variation in function of working pressure of mixtures THN-nC12 and IBB-
nC12, at mass fraction of c=0.5 and mean temperature of 25ºC. 
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Abstract
Thermodiffusion or Soret effect is a phenomenon of mass transport in fluid mixtures 
driven by temperature gradients. In this paper, we have studied thermodiffusion 
coefficients for different binary n-alkane mixtures (equal mass fraction) through both 
theoretical and experimental methods. The theoretical model is based on the theory of 
non-equilibrium thermodynamics. The experimental data is obtained through a 
thermogravitational column. A good agreement is found between the theoretical results 
and the experimental data  
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1 Introduction 
Thermodiffusion has been studied through various theories. In the past, many researchers 
applied the theory of non-equilibrium thermodynamics in their thermodiffusion studies 
including Doughty and Drickamer [1, 2], Kempers [3], Firoozabadi et al [4] and Pan et al [5].
After decades of improvement, this line of theoretical development has made a great 
progress. Pan et al [5] model is capable in predicting sign change in thermal diffusion 
factors for binary small-molecule associating mixtures. Many techniques have been 
developed such as diffusion cell, laser Doppler velocimetry, Rayleigh-Benard 
configuration, thermogravitational column, laser beam deflection, thermal diffusion forced 
Rayleigh scattering (TDFRS) and microgravity method. These methods either create a 
convection-free condition thus to reduce the effect of convection or make use of the 
coupling with convection and then determine thermodiffusion coefficients through fluid 
mechanics analyses. Platten [6] has provided complementary reviews for current 
experimental techniques. In this paper, a comparison has been made for modelled and 
measured thermodiffusion coefficients for different binary n-alkane mixtures. The 
experimental data are obtained through the technique of thermogravitational column. A 
theoretical model based on the theory of non-equilibrium thermodynamics is used to 
calculate the thermal diffusion factor T .

2 Theoretical Model 
According to the theory of non-equilibrium thermodynamics, molar diffusion flux can be 
expressed in terms of phenomenological coefficients. In a binary mixture at a constant 
pressure, only molecular diffusion and thermodiffusion contribute to the diffusion flux, 
therefore

1
,1

1*
11

2
2

*
2

*
1*

111
1 x

x
L

Tx
T

T
QQLJ

pT

mol (1)

where molJ1 is the molar diffusion flux with respect to a molar average reference velocity. 
 is the net heat of transport. *

iQ 1  is the chemical potential.  and  are the molar 
fraction of component 1 and 2, respectively.  is the phenomenological coefficient.  

1x 2x
*
11L

Conventionally, diffusion flux can also be expressed in terms of molecular diffusion 
coefficient (or Fick’s coefficient) and thermodiffusion coefficient as follows: 

)( 2111 TxxDxDJ mol
T

molmolmol (2)

Compare eqs (1) and (2) and use the relation T = TST =TDT /D, a general equation for 
thermal diffusion factor T  for binary mixtures can be derived:  
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It can be seen from eq. (3) that accurate thermodiffusion modelling relies on accurate 
prediction of the net heat of transport . Many researches have been concentrated on 
interpreting  through physically meaningful and practically achievable ways. In 
Dougherty and Drickamer 

*
iQ

*
iQ

[12, 13], the net heat transport  was related to partial molar 
volumes (

*
iQ

iV ), and two energies – the energy needed to detach a molecule from its 
neighbors and the energy released when one molecule fills a hole. By further applying 
Eyring's viscosity theory, they presented an expression, eq. (4), for thermal diffusion 
factor for binary mixtures.  
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where iU  is the partial molar internal energy of component i. 0
igU  is the internal energy of 

the ideal gas at the same temperature.  is a parameter to represent the ratio of viscous 
energy to the cohesive energy. Eq. (4) requires accurate thermodynamics properties, 
namely, 

i

0
igi UU , 111 xx  and iV .

3 Experiment
Thermodiffusion coefficients of binary mixtures composed of n-alkane hydrocarbons, 
namely n-CiH2i+2 (i=5, 6, 7, 8, 9, 12, 18) are measured at the temperature of 25oC and the 
pressure of 1 atm. This column has a height of 50 cm and a gap of 1 mm and has been 
previously tested with other binary mixtures [24]. In this thermogravitational column, the 
evaluation of thermodiffusion coefficients is through the following relation: 

zcc
Lg

D x
T )1(504 00

4

(5)

where
z

 is the density gradient along the column at the steady state;  is the gap of the 

column (1mm in this study); 

xL

and are the thermal and mass expansion coefficients, 
respectively;  is the dynamic viscosity; g  is the gravitational acceleration and  is the 
initial mass concentration.  

0c
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4 Results and Discussion 
Seven n-alkane hydrocarbons are used to form binary mixtures in this study. They are n-
Pentane (C5H12), n-Hexane (C6H14), n-Heptane (C7H16), n-Octane (C8H18), n-Nonane
(C9H20), n-Dodecane (C12H26) and n-Octadecane (C18H38). Two groups of binary mixtures
nCi – nC18 (i=5~9, 12) and nCi – nC12 (i=5~9) at 25ºC, 1 atm will be investigated.  

4.1 Molecular diffusion coefficient 
Fick’s diffusion coefficients are calculated and listed in Table 1. In our model, these 
coefficients are calculated with the method recommended by Taylor and Krishna [22] and 
Hayduk–Minhas correlation was used to estimate the molecular diffusion coefficients in 
infinite dilution solutions.  

Table 1: Calculated molecular diffusion coefficient D at 25ºC 

nCi – nC18
(50:50 wt%) 

i=

D
10-10 m2/s

nCi – nC12
(50:50 wt%) 

i=

D
10-10 m2/s

5 12.14 5 23.90
6 13.12 6 19.22
7 10.34 7 15.70
8 8.57 8 13.68
9 7.13 9 12.04

12 4.48 18 4.48

4.2 Thermodiffusion coefficient 
A comparison of thermodiffusion coefficient obtained through modelling and experiments 
are listed in Tables 2 and 3. Note that the thermodiffusion coefficient DT,2 shown in these 
tables are for the second component, i.e., DT,2 in Table 2 represents the thermodiffusion 
coefficient of nC18; and DT,2 in Table 3 represents the thermodiffusion coefficient of nC12.
For both mixtures nCi – nC18 and nCi – nC12, DT,2 are positive, which indicate that the 
second components, nC18 and nC12, respectively, move in a direction opposite to the 
temperature gradient. For the mixture nC12 – nC18, the experimental result shows that nC18
moves to the cold side of the cavity; while the calculation shows a contradictory result. 
This discrepancy may be resulted from the state of nC18 at 25ºC. The triple point of nC18 is 
301.3K (28.15 ºC). The current operating temperature 25ºC is below the triple point. This 
means that nC18 at 25ºC is not stable and either gas phase or liquid phase or solid phase 
may be present. This uncertainty makes it very difficult to obtain thermodynamic 
properties required in the modeling at this temperature. In fact, some thermodynamic 
properties of nC18 under the triple point are not available therefore the properties slightly 
above the triple point are used instead. This approximation may be a source of the 
discrepancy as it is already known that thermodiffusion coefficients are sensitive to the 
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temperature (as the temperature increases, the Soret effect lessens). This may also explain 
why the calculated DT,2 for mixtures of nCi – nC18 are consistently smaller than the 
measured ones. The comparison with experimental data has suggested that the theoretical 
thermodiffusion model as detailed in Section 2 may be used in a temperature and pressure 
range where the mixture components are in stable states, i.e. the range away from the 
triple point and critical point. In such range, the thermodiffusion model can achieve 
moderate to good performance, as shown in the calculations for the mixtures of nCi – 
nC12; the average relative error is about 11% for this group of mixtures. With in mind the 
small magnitude of thermodiffusion coefficients, this accuracy can be regarded as very 
good.

Table 2: Thermodiffusion coefficient DT for nCi (1) – nC18 (2) at 25ºC 

DT,2 , 10-12 m2/sK

Comparison
nCi – nC18

(50:50 wt%) 
i= Measurement Calculation 

abs(DT_cal - DT_exp)
Relative Error 

(%) 
5 11.86 10.63 1.23 10.33
6 8.90 7.08 1.82 20.43
7 6.28 5.32 0.96 15.21
8 4.69 3.56 1.13 24.06
9 3.57 1.81 1.76 49.26

12 1.49 -0.92 2.41 161.77

Table 3: Thermodiffusion coefficient DT for nCi (1) – nC12 (2) at 25ºC 

DT,2 , 10-12 m2/sK

Comparison
nCi – nC12

(50:50 wt%) 
i= Measurement Calculation

abs(DT_cal - DT_exp)
Relative Error 

(%) 
5 10.94 13.56 2.62 23.93
6 7.45 7.61 0.16 2.17
7 5.15 5.13 0.02 0.33
8 3.39 4.21 0.82 24.29
9 2.15 2.29 0.14 6.44

1.13 87



5 Conclusions
Thermodiffusion coefficients of binary n-alkane mixtures, namely nCi - nC12 and nCi - 
nC18 (i = 5~9), have been investigated both theoretically and experimentally. It is found 
that the calculated results agree very well with the experimental data obtained through the 
thermogravitational method.  
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Abstract
In the present work we report on progress in the development of software tools for fluid 
flow prediction in the polymer processing industry. This involves state-of-the-art 
numerical techniques, in order to investigate realistic transient problems relevant to 
industrial processes. Particularly we study the effects of rheological parameters of fluid 
and heat transfer properties of the flowing materials in the flow, in a conical duct. 
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1 Introduction
This work is aimed at developing a computer code to simulate the types of flow which are 
important in the polymer processing industry [1-4]. In particular finite difference methods 
for incompressible viscous flows have been implemented for dealing with non-Newtonian 
materials under transient and thermal conditions. 

The originality of this study is to investigate the effects of some rheological parameters of 
fluid and some thermal properties of the flowing material [5]. 

2 Theoretical model 
The generalized equations of motion and energy for incompressible fluids are adopted. In 
conventional notation, the dimensional form of the momentum and mass conservation 
equations for the axisymmetric problem can be written as: 
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Where radial and axial coordinates are r and z, the fluid velocity is V u w, , P is the 
fluid pressure, is the density and a  is the fluid viscosity. 

Likewise the energy equation for the axisymmetric problem can be expressed as: 
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Where T is the fluid temperature, cp is the thermal heat capacity at constant pressure, K is 
the thermal conductivity. 

The thermal power-law model is of Arrhenius form for the capillary flow where the 
viscosity function a  is prescribed as [6]: 

a
T T
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1
0e (4)
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Where T0 is a reference temperature, m is the power-law index, 0 is a reference viscosity 
value (associated with a unit shear rate and the reference temperature T0) and is a 
material constant. 

The pressure gradient is unknown dimension in the duct, since we complete the above 
equations, which we cannot solve separately by a pressure equation: 
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Where R is the radius of the duct, is the half-angle at the duct top, p  is the parietal 
stress.

3 Method and process of solution 

3.1 Method of solution 
The system of equations of energy and flow are solved by using a finite differences 
scheme [7]. 

3.2 Process of solution 
Calculations start with an initial profile which can be whatever provided that it satisfies 
the boundaries conditions. However, and to reduce the calculating time, we choose an 
initial profile which is enough close to the exact one. 

The solution of the flow equations, then the pressure equation, allow having in all section 
and at every moment the values of radial and axial velocity and the gradient of pressure. 
From the solution of the energy equation, we determine the temperature profile; the 
process is repeated until convergence of the solution.

The test of convergence is related to the temperature. Let  the cycles' number of 
calculation and 1  a small quantity fixed beforehand, we impose: 
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4 Results 
The figure 1 shows the axial velocity profiles for a generalized Bingham fluid (m = 0.5) 
and a Bingham fluid (m = 1). We can verify that a diminution of m, which is translated by 
a more accented pseudo-plasticity, is accompanied by a decrease of the apparent viscosity 
that involves an increase in the velocity amplitudes. We obtain some qualitatively similar 
results to those of other authors in either the supple duct case [8-9] or rigid duct one [10]. 
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Fig 1: Axial velocity profiles at z =L/2 and t =T/2 for 2 power law index values m.

5 Conclusions 
This study allowed us to analyze the influence and the evolution of the phenomena 
bounded to the power law index and the viscoelasticity of the wall pipe. The results show 
the importance of taking into account the nature of the fluid and the arterial wall. 
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Abstract

The Ludwig-Soret effect was studied for aqueous and non-aqueous solutions of polysac-
charides, pullulan and dextran, in the temperature range of 15 < T < 55 ◦C by means
of thermal diffusion forced Rayleigh scattering (TDFRS). The thermally induced sign
change of the Soret coefficient was observed for these aqueous solutions. The sign of the
Soret coefficient is positive at high temperatures (T > 41 ◦C for pullulan and T > 45
◦C for dextran). While for low temperatures, a negative Soret coefficient has been ob-
served, which corresponds to a migration of the polymers to the warm side. For solutions
of pullulan in dimethyl sulfoxide (DMSO) and of dextran in 5 M urea water, the Soret
coefficient is only positive in the same temperature range. The result indicates that the
interactions via hydrogen bondings play a key role for the heat induced sign change of
the Soret coefficient in aqueous polysaccharide solutions. Additionally, we studied the ef-
fect of the addition of sodium chloride to aqueous solutions of pullulan using an infrared
laser to write the optical grating in the TDFRS experiment. The results indicate that the
existence of NaCl tends to weaken the amplitude of the concentration gradient. Addition-
ally, we performed light scattering experiments for the dilute solutions of pullulan and
dextran at a homogeneous temperature of 25 ◦C. The obtained solution properties such as
second virial coefficient, radius of gyration and hydrodynamic radius did not show any
pronounced correlation with the sign change behavior of the Soret coefficient.

2.2 97



1 Introduction

The Ludwig-Soret effect of water-soluble polymers in dilute concentration regime often
exhibits peculiar transport phenomena. One representative case is the sign change behav-
ior of the Soret coefficient ST and thermal diffusion coefficient DT of the polymers [1–4].
It has also been observed that the sign change behavior of ST depends on the solvent qual-
ity [5–7]. Recently, we reported the thermally induced sign change of ST for the solution
of dextran in water in the presence and absence of urea [7]. Dextran is a physiologically
inactive polysaccharide utilizing extensively for pharmaceutical and industrial applica-
tions. It is composed of α-(1,6)-linked glucose as the backbone with a minor amount of
branches by α-(1,3) linkage. It was observed at room temperature that the ST of dextran
is negative corresponding to the migration direction of dextran towards warm side in tem-
perature gradient. While in the high temperature range ( T > 45 ◦C), dextran moves to
the cold side of the fluid. To our best knowledge, this is the first observation of the sign
change of ST as a function temperature occurring in a binary system composed of poly-
mer and water. Studies of the effect of polar substance, urea, to the aqueous solution of
dextran revealed that the modification of local structure of water is associating to the sign
change of ST. However, the numbers of the studies for aqueous polysaccharide solutions
are limited. Systematic studies are then desired for better understanding of the thermal
diffusion of polysaccharide solutions.
In this report, we show the experimental results of thermal diffusion forced Rayleigh
scattering (TDFRS) for the solutions of pullulan and dextran. Pullulan is composed of α-
(1,6)-linked maltotriose, which is a trimer made up of α-(1,4)-linked glucose. This means
pullulan and dextran are composed of glucose as the basic constituent unit. However glu-
cose is the monomer only for dextran but not for pullulan because the repeating unit of
pullulan is maltotriose. Thus these polymers are different from each other in molecular
structure although the basic constituent molecule is identical. Additionally, we deter-
mined the Soret coefficient of glucose and maltotriose in water by means of IR-TDFRS,
which is the optimized setup for aqueous systems using an infrared-laser to write the op-
tical grating [8]. With the IR-TDFRS setup, studies of the effect of sodium chloride to the
aqueous pullulan solution was employed as well. Moreover, dimethyl sulfoxide (DMSO)
is used as the solvent of pullulan in order to compare with the results of aqueous solu-
tion. While DMSO is polar solvent able to dissolve pullulan, it does not form hydrogen
bonds. These systems could give a new insight for the mechanisms of thermal diffusion
of polysaccharides. The solution properties of pullulan and dextran at a homogeneous
temperature are investigated by light scattering which yields fundamental properties such
as the mass and size of polymers and thermodynamic parameters of the solutions.

2 Experimental

Pullulan (Hayashibara Co., PF20) was purified three times by a methanol precipitation.
The weight-averaged molecular weight of pullulan was obtained as Mw = 3.55×105 g/mol
by light scattering. Dextran (Polymer Standard Service, GmbH) was purified and frac-
tionated with methanol and the molecular weight was Mw = 8.67×104 g/mol. The details
of the sample preparation of dextran was reported elsewhere [7]. Water is distilled and
deionized one by a Milli-Q system (Millipore). Other chemicals were an analytical grade
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purchased from Sigma-Aldrich and Wako and used without further purification.
The experimental details of classical TDFRS and the IR-TDFRS have been described
elsewhere [8, 9]. Sample solutions for TDFRS measurements contain basantol yellow
(BASF) as a dye to create the temperature gradient [7], whereas solutions were prepared
without dye for IR-TDFRS measurements. The concentration of samples and the other
experimental conditions will be stated in each experimental result. The refractive index
increment with respect to the concentration, (∂n/∂c)T,P , and the temperature, (∂n/∂T )c,P ,
were measured individually for analyzing data of TDFRS [10].

3 Results and Discussion

Fig. 1: Soret coefficients of pullulan and dextran solutions as a function of temperature.
The concentration of polysaccharide is 5.0 g/L for all solutions. Symbols are assigned
as pullulan in water (•), pullulan in DMSO (�), dextran in water(◦), dextran in 2M urea
water (�), and dextran in 5M urea water (�). The lines are drawn to guide eyes.

Figure 1 shows the Soret coefficient ST (= DT/D) of polysaccharide solutions as a func-
tion of temperature obtained by TDFRS. Here, DT and D indicate the thermal diffusion
coefficient and the mass diffusion coefficient, respectively. The filled and open symbols
refer to the pullulan solutions and dextran solutions [7], respectively. The ST of pulluan
in water (•) increases with increasing the temperature, where a sign change is observed
at T = 41 ◦C. At lower temperatures (T < 41 ◦C) the ST of pullulan is negative which
corresponds to a migration of pullulan to the warm side. This behavior is similar to that
of the solution of dextran in water (◦). The good agreement of ST could be originated
from chemical contributions of glucose as the basic constituent of pullulan and dextran.
However, the mechanism leading to the sign change of these systems is not easy to un-
derstand. For instance ST for solutions of glucose in water and of maltotriose in water
is always positive and does not show a sign change [11]. These results indicate that the
thermal diffusion behavior of polysaccharides is associated with not only chemical contri-
butions but also intrinsic properties of polymers such as nonideal solution nature arising
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from the context of long flexible chain of polymers. There are still arguments for the
relationship between polymers and the monomer/oligomer unit on thermal diffusion of
polymer solutions [12]. Further systematic studies for these systems are required.
As shown with open symbols in Fig. 1, the sign change behavior of the dextran solution
is affected by the addition of urea; that is, the value of ST increases and the sign change
temperature shifts to lower values for dextran in 2 M urea/water (�). In 5 M urea/water
(�) ST of dextran does not change the sign in the investigated temperature range. The
negative ST of dextran tends to being positive with decreasing the strength of hydrogen
bondings by heating as well as by the addition of urea. The results imply a key role of
hydrogen bonding for the sign change behavior.
The filled triangle in Fig. 1 denotes the result of pullulan in DMSO. It is found that
the sign of ST is always positive and shows no temperature dependence. It might be
worthwhile to note the absolute value of ST for pullulan in DMSO is larger than that of
pullulan in water roughly 8 times at 25 ◦C. Measurements of the second virial coefficient
by static light scattering indicate that the solubility of pullulan in DMSO is good and
similar to the solubility in water. As mentioned above DMSO is a non-hydrogen bonding
solvent. Consequently, it is expected that the negative sign of ST of pullulan in water
might be governed by the interactions via hydrogen bondings which is analogous to the
results for dextran solutions.

Fig. 2: Normalized heterodyne signal of conventional TDFRS for pullulan in water (•)
with the dye, basantol yellow. As well as signal of IR-TDFRS for pullulan in water (◦),
pullulan in 0.1 M NaCl water (�), and pullulan in 0.2 M NaCl water (�) measured
without dye. The concentration of polysaccharide is 5.0 g/L for all solutions. The sample
temperature was kept at 25 ◦C.

Figure 2 shows the normalized heterodyne signal ζhet(t) for the solution of pullulan in
water (•) measured by TDFRS. It also includes the signal obtained by IR-TDFRS for
the solutions of pullulan in water (◦), pullulan in 0.1 M NaCl water (�), and pullulan
in 0.2 M NaCl water (�). The concentration of polymer is constant in all samples but
the NaCl content is varied. The decay signals correspond to the diffusion of pullulan un-
der the temperature gradient and the amplitude of the signal relates to the magnitude of
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the concentration gradient. As seen from open symbols the signal amplitude decreased
with increase the NaCl concentration. The aqueous solution of pullulan prepared with
the dye, basantol yellow, (•) showed the smallest amplitude, although it does not contain
NaCl. The result indicates that the dye possesses a charge effect. Indeed the dye basantol
yellow is a trivalent salt, which influences the solution in a similiar way as the addition
of NaCl [13]. Further considerations are necessary to reveal the effect of the ionic dye
especially for studies of aqueous system investigated by the classical TDFRS. The re-
sults demonstrate that studies with the IR-TDFRS in aqueous systems are necessary to
investigate the influence of charge effects on the systems.

4 Conclusions

The Ludwig-Soret effect for the solutions of pullulan and dextran is investigated in terms
of temperature, the effect of addition of urea, and different solvents (water and DMSO).
It is revealed that the heat induced sign change of ST for solutions of pullulan and dextran
in water are identical due to the chemical contributions of glucose as the basic constituent
molecule. It is also suggested that the sign change of ST depends on the intrinsic proper-
ties of polymers. In a non-hydrogen bonding solvent, DMSO, the ST is always positive.
These results imply that the thermal diffusion of polysaccharide is associated with the
strength of hydrogen-bonding of polysaccharide solutions.
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Abstract

We have studied the effects of thermal diffusion on the formation of compositional pat-
terns in a thin layer of a polymer blend. The coupling between the order parameter (com-
position) and the temperature gradient which is described by the Soret effect becomes
especially effective near the critical point. In the experiments on a PDMS-PEMS polymer
blend it has been found that the Soret coefficient is four orders of magnitude larger than
the values known for small molecules. Due to such strong coupling a polymer blend in an
inhomogeneous temperature field cannot be treated in terms of a quasi-equilibrium system
and even UCST-systems can be quenched into the two phase region by a local heating.
We discuss the formation of composition patterns both in the one- and in the two-phase
region. The quantitative theoretical description of the laser induced structures in the one-
phase region is based on the heat and the diffusion equations taking into account both
thermal diffusion and advection. The analysis of phase separation in the two-phase region
is based on the Cahn-Hilliard model including the thermal diffusion.
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1 Introduction

The influence of external fields on phase separation and structuring of thin polymer films
has received growing attention because of the possibility of controlling the demixing
morphology. It has been found that thin films of incompatible polymers resemble the
structure of the underlying pre-patterned substrate, if the characteristic wavelength of the
pre-patterning is compatible with the intrinsic length scale of the free spinodal demixing
morphology [1]. Small filler particles can trigger composition waves in phase-separating
polymer blends [2]. A variation of the morphology of thin PMMA/SAN films has been
achieved by changing the PMMA content [3]. Naturally, such an approach is not suitable
for the formation of, e.g., a single linear structure within an otherwise homogeneous film.
In the present work we show that local heating of a polymer blend in the vicinity of
the critical point by a focused laser beam can be utilized to create almost arbitrary two-
dimensional structures in a thin polymer layer both in the one- and in the two-phase
regime. The local composition variation is caused by the Soret effect, which accounts
for a concentration gradient that develops in a multicomponent mixture subjected to an
inhomogeneous temperature field.

2 Experimental Setup

CCD

sample with
heating stage

field
diaphragm

camera
lense

aperture
diaphragm

laser

halogen lamp

mirror

g

telescope

beam splitter

objective edge filter

mirror

Köhler illumination

Fig. 1: Experimental setup.

The large Soret coefficients for poly-
mer blend near a critical point can
be utilized to write almost arbitrary
composition patterns into a layer of
the polymer blend by localized heat-
ing [4–6]. A sketch of the experimen-
tal setup is shown in Fig. 1. It con-
sists of an inverted phase contrast mi-
croscope with a laser port. Two mir-
rors mounted on magnet closed loop
galvano scanners are situated in a con-
jugate confocal plane with a scanning
point in the sample. The conjugate
planes are formed with the help of two
lenses (telecentric system) and an ob-
jective. The latter serves both for fo-
cusing of the laser beam and for observation of the sample. The laser can be focused
down to below 1 μm and typical power values are between 0.1 and 100 mW. The cell is
mounted horizontally in a temperature-controlled xyz-stage in the focal plane of a phase
contrast microscope. It has a layer thickness of 100 μm and is sealed with two component
epoxy resin (Torr Seal).

3 Pattern Writing in the One-Phase Region

For the patterning experiments an almost symmetric PDMS(16.4 kg/mol)/PEMS(15.9 kg/mol)
polymer blend with a critical composition c = ccrit = 0.48 g/g and a convenient critical
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temperature Tc = 290.15 K has been chosen. Micrographs of the time evolution of the
pattern at two different temperatures of the sample (ΔT = 1 K and ΔT = 11.5 K) above
Tc are shown in Fig. 2.

y

x

70 mμ

T [ K ]Δ

BA

D E F

C

1

100 300 time [ s ]2000

11.5

Fig. 2: Spatial modulation of concentration
by scanning a laser along the y-axis with
a scanning frequency of 20 Hz and a laser
power of 1 mW at two different temperatures
above the critical temperature. Pictures A-C
taken at ΔT = 1 K after t = 100 s, t =
300 s, and t = 2000 s. Pictures D-F taken
at same time intervals but at ΔT = 11.5 K.
The intensity is normalized to the one of the
undisturbed sample (picture at t = 0 s). To
display positive and negative changes, 127 is
added to the 8-bit grey values. Grey values
greater than 127 represent an increase of in-
tensity, values smaller than 127 a decrease.

Due to the positive phase contrast tech-
nique, bright regions in the picture repre-
sent a lower refractive index (PDMS en-
riched) compared to the dark regions. Un-
til 100 s there is hardly a difference in the
amplitudes of the concentration modula-
tions, indicating an almost constant ther-
mal diffusion coefficient DT , which gov-
erns the early stage of the formation of
the concentration pattern. At such short
times, back diffusion as competing process
is still irrelevant. After 300 s this is no
longer the case for the higher temperature.
The growth of the structure becomes pro-
gressively limited by Fickian diffusion and
solutal convection of the polymer, which
aims at restoring the homogeneous state
and, eventually, the Soret coefficient ST =
DT /D determines the maximum modula-
tion depth. Close to Tc the structure is still
within the initial linear growth regime after
300 s. After 2000 s the line for ΔT = 1 K
becomes even more intense, whereas the
line for ΔT = 11.5 K remains almost unchanged.
The description of an incompressible binary mixture in the one-phase regime under inho-
mogeneous temperature field produced by light absorption is based on the heat equation
for the temperature T (r, t) and the diffusion equation for the concentration c(r, t).
The Navier-Stokes equation for the velocity v(r, t) is included to account for convection
due to local heating. To describe the temperature and concentration distributions in the
cross section of the polymer layer (x − z plane) located in the middle of the written line,
we consider a two-dimensional model supposing the line to be infinitely extended in the
y direction. Consequently, T , c and v are independent of y. Details of the simulation
technique can be found in Ref. [6]. We have used the measured values for the material
parameters D(T, c), DT (T ) [6] and all others were taken from the literature. The results
of the simulations are shown in Fig. 3 in comparison with the experimental data.

4 Pattern Writing in the Two-Phase Region

Fig. 4(I) shows the time evolution of one single line written into a PDMS(16.4 kg/mol)/PEMS
(22.0 kg/mol) blend (c = 0.512 g/g, Tc = 314.7 K, α ≈ 500 m−1) at a temperature 1.3 K
below Tc and a laser power of 1 mW. The width of the laser focus is about 1.6 μm, the
length of the line is almost 140 μm. Obviously, it is not possible to write a stable line
into the sample. After approximately 1000 s surface tension effects lead to a pearling
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Fig. 3: (left) Intensity profile along the x-axis, averaged over the length of the written
line, taken from images (Fig. 2) at t = 300 s and t = 30 s for ΔT = 1 K. The open
symbols show the result from the experimental pictures. The dashed lines show the nu-
merical simulation. An increase of intensity represents accumulation of PDMS. Far away
from the written line the sample remains unchanged. (right) Maximum intensity change
obtained from averaged images plotted versus time at a laser power of 1 mW (open sym-
bols) for different temperatures ΔT above the critical temperature. The vertical solid line
indicates the switch-off time of the laser. The solid lines show numerical simulations with
convection, the dashed lines without.

instability that eventually dominates the structure formation.

bound
ary

off on

off

off

A(II)

(I)

Fig. 4: Temporal evolution of one single line (I) (writ-
ten from t = 0 s until t = 2074 s at 1.3 K below
Tc, laser-power 1 mW). 21 parallel lines (II) (writ-
ten from t = 0 s with 8 mW at 1.5 K below Tc; “on”
and “off” refer to switching of the laser; “boundary”
means that only the outermost lines are written in or-
der to stabilize the central part of the pattern; see text
for details).

Fig. 4(II) shows the result if mul-
tiple parallel lines are written in-
stead of a single one. A grid pat-
tern evolves with a period com-
parable to the length scale of the
already coarsened spinodal pat-
tern. This grid pattern is sta-
ble as long as the writing pro-
cess continues (A). Turning the
laser off for 360 s leads to a be-
ginning degradation (B), but con-
tinued writing again stabilizes the
imposed structure (C). After turn-
ing the laser off again, some de-
formation due to bulging of the
left- and rightmost grid lines is
observable (D). Continued writ-
ing of only the outermost (longer)
lines allows for a continued sta-
bilization of the central grid pat-
tern (E). After switching the laser
off, surface tension takes over and
all parallel lines eventually decay
into spherical structures.

To model the effect of phase sep-
aration we use the Cahn-Hilliard equation taking into account an inhomogeneous tem-
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perature distribution which couples to concentration variation via the Soret effect (see
[7] for details). We have found that under spatially periodic temperature modulation
T = T0 + δT cos(qx) there exist a critical modulation amplitude δT above which the
spinodal decomposition ends up in the stationary periodic solution with the period of the
driving 2π/q. In Fig. 5 typical snapshots of 2D simulations are shown for the modulation
amplitude slightly above the critical one.

Fig. 5: Snapshots of the phase separation under the spatially periodic temperature modu-
lation slightly above the critical modulation amplitude. Time is given in the dimensionless
units.
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Abstract
A thermodynamic approach to mass transport is applied to liquid mixtures in a 
temperature gradient. The consistency of the Onsager equations for the component mass 
flux is evaluated with the resulting conclusion that heats of transport are equal to the 
chemical potentials of the components to eliminate thermodiffusion in pure liquids. In an 
open and/or non-stationary system, consistency between the Gibbs-Duhem equation and 
the Onsager equations is impossible. Using the original approach, the dynamic pressure 
gradient is calculated. Coefficients of thermodiffusion and mass diffusion are described 
over the entire compositional range of a mixture. It is shown that barodiffusion changes 
the second virial coefficient calculated from diffusion measurements, and that dynamic 
barodiffusion can explain the size dependence in the thermal diffusion of DNA. 
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1 Introduction
Certain refinements in non-equilibrium thermodynamics are necessary for non-isothermal 
mixtures when more than one of the components is not dilute. In order to simplify the 
problem, we examine here a binary mixture. Our motivation is based on three 
observations:

1. Current non-equilibrium thermodynamics approaches to mass transport fail to 
provide an unambiguous description of concentrated systems, in that component 
behavior depends on which component is considered to be the solvent.   

2. In the Onsager formulation, the component mass fluxes are expressed through 
kinetic coefficients. In thermodynamic theories of thermal diffusion, the heat of 
transfer is formulated into equations for the Soret coefficient. We argue that a 
component’s heat of transfer must equal its chemical potential. Without such 
equality, certain consequences follow that violate the condition of hydrostatic 
equilibrium.   

Usually, the Gibbs-Duhem equation is used to derive the pressure gradient. We will show 
that viscous drag in an open or/and non-stationary system causes additional dynamic 
pressure gradient.

2 Consistency Conditions for Onsager Mass Fluxes  
The thermodynamic approach is based on the rate of entropy production  [1, 2]:

1 2
1 2

1
eJ J J

T T T
(1)

Here, eJ is the energy flux, 1J and 2J are the mass fluxes of the two components, 1  and 

2  are their chemical potentials, and T is temperature. The energy flux and temperature 
profile are defined by the difference in temperature at the system boundaries ([2], Ch. 16), 
while the mass flux is defined by the following continuity equation: 

i
i

n J
t

(2)

Here in is the numeric volume concentration of the ith component and t is time. The mass 
flux is further defined by non-equilibrium thermodynamics as [1, 2]: 

1i
i i i i iQJ n L n L

T T
(3)

110 Polymers



where iL and iQL are the Onsager coefficients.  
In order to utilize Eq. (3) in a predictive capacity, it is transformed into a form that 
contains component concentrations and other physically measurable system parameters: 

2

1

k k
l k

l l

n v P T
n T (4)

where P is the internal macroscopic pressure of the system and kv  is the partial 
molecular volume. Substitution of Eq. (4) into Eq. (3) yields 

2

1

iQi i i i i
i k i

k k i

Ln LJ n v P T
T n T T TL

(5)

The term in square brackets on the right-hand side of Eq. (5) can be related to the enthalpy 
hi, entropy si, and heat of transport qi as follows: iii Tsh ; i is T ; and 

i iQ iq L L [1, 2].

The thermodynamic approach utilizes the Gibbs-Duhem equation [4, 5]: 

2 2

1 1

i i
i k

i k k

P n n T
n T

(6)

Eq. (6a) defines the pressure gradient required to maintain hydrostatic equilibrium. An 
equation similar to Eq. (6a) has been used to calculate diffusion and thermal diffusion 
coefficients [6], where the osmotic pressure  is introduced 
as *

1 1 2P v n , where is the difference between two isothermal cells 

connected by a thin conduit, and 2 2 1 1v v is the combined chemical potential. 
Substituting Eq. (6) into Eq. (5) we obtain 

1 1
1 1 1

2

1 2 1L v TJ T q
Tv T T

(7)

2
2 2 21 2L TJ T q

T T T
(8)

In formulating Eqs. (7) and (8) we have introduced the volume fractions 2 2 2n v  and 

1 1 1 1n v , and substituted specific molecular volumes 1v and 2v for the partial 
molecular volumes used in Eqs. (4) and (5). We have also utilized the 
equality * *

1 2 .
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Equations (7) and (8) are two non-equivalent expressions that relate mass flux to the 
volume fraction  of a component in a non-isothermal system. Consequently, the result 
will depend on which equation is used. In practice Eq. (8) is used to define the transport of 
the dilute component in a mixture, while transport of the solvent is defined through 
conservation of mass.  In mixtures where more than one component is concentrated, the 
result will differ depending on which component is selected as the solvent.  

In order for Eqs. (7) and (8) to be made consistent, the following conditions must be met: 

1 1q (9)

2 2q (10)

1 2 0J J (11)

The conditions defined by Eqs. (9) and (10) eliminate the motion of pure liquid in a 
temperature gradient, which would inconsistent with the Gibbs-Duhem equation.  

While the condition defined by Eqs. (9) and (10) should be accepted for any system, Eq. 
(11) is fulfilled only in a closed system that is stationary. Consequently, Eqs. (7) and (8) 
are incompatible with the Gibbs-Duhem equation for any system that is open and non-
stationary.

Combining either of Eqs. (7) and (8) with Eqs. (9-11), we obtain the equation: 

1 2 0T
T

(12)

which can be used to obtain the stationary concentration distribution and any related 
parameters. 

In a dilute solution (  << 1) the chemical potentials can be written as [7] 

0
1 1 2 akT v N (13)

0
2 2 lnkT (14)

where 0
1  and 0

2  are the chemical potentials of the pure component and the isolated 
specie of the second component in the solvent, respectively, and aN is Avogadro’s 
number. Then, we obtain the following expression for the Soret coefficient:  

0

1 2T
sS

T kT (15)
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Here, 0 0
0 2 1 2 1v v , and *

0 0s T  is the combined molecular entropy.  

Duhr and Braun used a priori a similar expression [8]. The analysis of results of Duhr and 
Braun says that: a) the entropy term in Eq. (15) is not the entropy of a single dissolved 
molecule or suspended particle. b)  A factor of 2 is missing from the denominator in 
their work. c)  The only term 0

2  in 0  is proportional to the particle surface area for large 
particles. It makes the explanation of the size dependence given in [8] less acceptable. 

3 The Dynamic Pressure Gradient and Barodiffusion  
In an open or non-stationary system, the total mass flux or the component fluxes can be 
non-zero.
Here, the mass transport equations can be obtained, calculating the pressure gradient using 
Eqs. (7) and (8), and considering P and  as unknown functions: 

1 2 2 1 2 2

1 1 1

1 2 2 1 1

2[ 1 ] [ 1 ]

1

L LJ T
L L T L TP

v D v D v
(16)

12

2 2 1 1

1 2
[ ]

1

JT
T LL

t T D v D v
(17)

Eq. (16) described the dynamic pressure gradient established in open and non-stationary 
systems. It is different of the Gibbs-Duhem pressure gradient predicted by Eq. (6). 

Similar equations were obtained using a kinetic approach [9, 10]. Compared to Eq. (12), 
the mass flux in Eq. (17) contains the term J  responsible for the solute drift in the open 
system. When the molecules entering through one boundary may leave the system through 
another, the component meets viscous resistance, which creates a dynamic pressure 
gradient and barodiffusion in the system. This situation is not considered in the Gibbs-
Duhem equation.  

For ideal solutions, the effective diffusion coefficient given by Eq. (17) can be expressed 
as

2 1
2

2 2 1 1

1
1eff

v v
D D

D v D v (18)

2.4 113



where iD is the Stokes-Einstein diffusion coefficient in the real liquid mixture. Eq. 
(18) accurately predicts the diffusion coefficient at any concentration. For dilute systems, 
the dynamic barodiffusion factor

1
2 2 1 11 D v D v  allows the effective diffusion 

coefficient described by Eq. (18) to be transformed into the Stokes-Einstein expression. 
Without such a factor the model of Dhont [6] fails to provide this physically reasonable 
behavior, even in ideal solutions. 

Eqs. (17) and (18) predict the concentration dependence of the effective diffusion 
coefficient measured by dynamic light scattering. In semidilute systems, the concentration 
dependence of the effective diffusion coefficient is typically described by the virial 
expansion coefficient B  [11].

2 2
2

2 1 1

2 30 1
2eff

D vBD D
v D v

(19)

When barodiffusion in the dynamic pressure gradient is ignored, the term 2 2 1 1D v D v in 
concentration dependence of the effective diffusion coefficient is absent [11]. 
By comparing Eq. (19) and its simplified form, we can evaluate the relative contribution 
of dynamic barodiffusion to the effective diffusion coefficient as 2 2 1 12 27 1D v D v .
In a mixture of methanol and ethanol with molar volumes of 41 and 58 cm3, respectively 
[12], and similar Stokes-Einstein diffusion coefficients [13], the contribution of dynamic 
barodiffusion is about 3%. For methanol/n-propanol, where 1 2 41 75v v , the 
contribution is about 6%. In concentrated mixtures of methanol and ethanol, for example, 
the relative barodiffusion change in the diffusion coefficient is about 17%; for methanol/n-
propanol it is 30%.

The effect of dynamic barrodiffusion on measurements of diffusion and thermodiffusion is 
even more significant for polymers and colloidal particles because parameter 2 2 1 1D v D v ,
which reflects the role of the dynamic pressure gradient, can be quite large. For example, 
in a study by Duhr and Braun of DNA molecules [8], the thermodiffusion coefficient of 
DNA was reported to decrease with chain length. To date there is no theoretical 
explanation for this observation.  
For dilute systems ( ), the expression for the thermodiffusion coefficient is 

*
02

2 2 1 11 2T
sDD

D v D v kT (20)

According to Eq. (20), the thermodiffusion coefficient may decrease with increasing 
particle size, provided 2 2 1 1 1D v D v . Therefore, Eq. (20) is consistent with the 
behavior of diluted DNA solutions reported by Duhr and Braun [8]. 
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4 Conclusions 
When the thermodynamic approach is evaluated, we find that the equations for mass flux 
are inconsistent unless the heats of transport are equal to the respective chemical 
potentials. Then, the unacceptable effect of motion in pure non-isothermal liquids is 
eliminated. This approach also verifies the dominance of entopic forces in the 
thermodiffusion.  

Our analysis also demonstrates that the Gibbs-Duhem equation is inadequate for open and 
non-stationary systems. By defining the dynamic pressure gradient, a distinction is made 
between the equilibrium pressure gradient predicted by the Gibbs-Duhem equation and the 
dynamic pressure gradient in an open and/or non-steady state system. Application of the 
model to semidilute systems indicates that dynamic barodiffusion should be incorporated 
into calculations of the second virial coefficient based on fluctuation dynamics. 

Highly structured macromolecules and colloidal particles suspended in a solvent can 
create large dynamic pressure gradients. It is found that such effects may qualitatively 
explain the measured size dependence of thermodiffusion in DNA experiments. 
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Abstract
The strong temperature dependence in thermal diffusion is examined. An effective 
interaction potential is calculated by averaging the standard interaction potential for the 
isolated molecules using the Boltzmann factor and accounting steric limitations. The 
strong temperature dependence is expected when the solute-solvent interactions are weak, 
and the hydrodynamic radius of the solvent is smaller than of the dissolved monomer or 
molecule. The theoretical results are used to obtain these parameters for poly(N-isopropyl 
acrylamide) in methanol, ethanol, and 1-propanol with the error about 5%. This result is 
used to calculate the respective parameters in 1-butanol, which are consistent with data for 
the other three alcohols.
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1 Introduction 
The goal of these studies is the qualitative explanation of the experimental data on the 
poly(N-isopropyl acrylamide) (PNiPAM) thermal diffusion in monohydric alcohols, 
where unusually strong temperature dependence of thermal diffusion and even the change 
in the direction of thermophoretic motion is observed [1]. The respective experimental 
data will be discussed further, when the basic theoretical expressions will be obtained and 
discussed.

In the hydrodynamic approach, the flow of liquid around an isolated particle is caused by 
a local pressure gradient around the particle, as defined by the Navier-Stokes equation [2]: 

2
loc locu f (1)

Here u  is the velocity of the liquid, loc is the local pressure distribution around the 

particle, 2
locf  is the volume force that results from the particle’s interaction with molecules 

of the liquid, and  is the dynamic viscosity of the liquid. In a temperature or 
concentration gradient, the pressure distribution becomes non-uniform due to the local 
interaction of a particle with non-uniformly arranged molecules of the surrounding liquid.  

The local pressure distribution can be obtained from the condition of hydrostatic 
equilibrium in the surrounding liquid (local equilibrium), in the absence of temperature 
gradient, using the assumption of uniform density in the surrounding liquid [3, 4]: 

0 21loc v1 (2)

where is the macroscopic pressure, which is not changed significantly at the molecular 
lengths, but should not be macroscopically constant,  is the specific molecular volume 
of the solvent, and is the interaction potential between the dissolved molecule and the 
solvent.  For liquids with low ion concentration: 

0

1v

21

3 6
21 1 2 1 2( ) 16 9H Hr A A r r r (3)

where Ai and Aj are the Hamaker constants, and 1
Hr and 2

Hr are the molecular 
hydrodynamic radiuses of the dissolved particle or monomer and the solvent molecule, r is 
the radial coordinate [5].

Using Eq. (3), we calculate the local pressure gradient around the selected molecule as 

21 1loc T T v (4)

where Tj  is the cubic thermal expansion coefficient in the solvent [3, 4]. 
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Using the condition of steady-state motion, we obtain the general expression for the 
molecular velocity U2:

2

2
2

2 1 0

2
6 H

T
H

r

U Sin d r dr T
r v 21 1(2)U (5)

Here  is the angle between r  and the outer temperature gradient T , and

3

1(2) 2 0 0 0 0 2 0 0 0 03 4 64 3H HU r r r u n u n r r u n u n (6)

where  and  are the unit vectors along 0u 0n 1 2U  and the radius vector r , respectively.

These reasonings can be applied to the solvent molecule in the temperature gradient, and 
the volume force should be established in the solvent with 1

1v molecules in the unit 
volume 

1

2
1 12

1 0

2
H

T

r

F Sin d r dr T U
v 1 1(1)

1 0

(7)

where is the solvent-solvent molecular interaction potential. In hydrodynamically 
stable t liquid, this volume force is cancelled by the respective macroscopic pressure 
gradient . In this pressure gradient, the barodiffusion force acts on the 
dissolved particle making the respective contribution to its thermophoretic velocity. 
Together, these factors give the thermodiffusion coefficient of the dissolved molecule or 
monomer 

11

0 F 2v

1
1 2 1

1 1

8
9

T H
T

H

vD A A
r v

F (8)

where
3

1 1
4
3H Hv r , 1 1 22 H H Hr r r , 2 1

1 2
1 2

2 5 3
2 5 2

v AF
v A

2 Thermal motion of molecules and cooperative inter-
molecular interaction potential 

The molecular interaction potential given by Eq. (3) is for the isolated couple of freely 
rotating and/or induced dipoles. In order to consider the effect of adjacent molecules, we 
calculate the effect on the force that acts on solvent molecule “1” when it is placed in a 
force field of a dissolved (solute) molecule “0”. The complete force acting on molecule 
“1” is [6] 
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int
"1"" ""1" "1"

" " 2"1" "1" "1"

N
i

ir r r (9)

where  is the effective potential of the pair interaction between molecules “0” and “1” 
after taking into account collective effects, 

"1"

"1"  is the dipole-dipole interaction potential 

for the isolated pair of these molecules, operator 
"1"r

 represents the gradient operator, 

is the number of molecules taking part in the interaction, and intN "1"" "i  is the potential of 
the interaction between molecules “1” and another solvent molecule “i”. In this section 
molecule “0” is the dissolved molecule or monomer, all molecules designated as “1”, 
“2”…“i” are solvent molecules, and the subscript "i” designates position.

Thermal motion of the solvent is considered by introducing a Boltzmann factor: 

" " "1"" " "1"" " " " " " " " "1"" " " " "1"

int

" "

i ii i i i i ir r r r r
kT kT

i
V

e dv e
r

where Vint is the volume of the entire system. Using this approach, Eq. (15) can be written 
as

"2" "1""2" "1""2" "2" "2" "2" "1""2" "2" "1"

int int

*
"1""2" "2" "1""1" "1"

int "2" "2"
"1" "1" "1"

r r r r r r
kT kT

V V

r r
N dv e dv e

r r r

(10)

where and are dipole-dipole interaction potentials between particles “0” and “2”, 
and “1” and “2”, respectively. After some algebra, we obtain 

"2" "1""2"

'2
"2" "2" 11 "1" "1""2" 111 1 11

1 1 1 0

[ , , ]2 1
m r Cos rr kT Sin Cos d

r r v

(11)

Incorporating a maximum angle m  precludes the impossibility of inserting any additional 
solvent molecule between particles “0” and “1” when "1" 11 12r r , where 11 12 Hr r and

12 1 2
H Hr r r are the closest approach radiuses. Considering the triangle with sides of 

length "1" , 11r , and " 2" 12r , we obtain 

2 2 2
12 11 "1" 11 "1"2mCos r r r (12)
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at "1" 11 12r r ; 1mCos  at "1" 11 12r r

Using Eqs. (11), (12), we obtain the equation for the pair interaction potential between a 
dissolved molecule or mer and a solvent molecule: 

2
21 1 11

1 1 1

1 m
r kT Cos

r r v

at "1" 11 12r r  ; 1 1

1 1r r
 at "1" 11 12r r

(13)

Solving Eq. (13), we obtain 

2 2 32 22 3
2 211 12

21 21 2
1

1 1 112 1
4 6 2 2 1 6

r rkT
v

1 1

at 1

(14)

12 12 at 1

where
12

r
r

. The respective effective interaction potential 11 for solvent molecules is 

obtained from Eq. (14) using 1  and 12 11r r .

3 Effective interaction potential and temperature 
dependence of thermophoresis 

Using Eqs. (3), (14), (5), (6) and making the same derivations that led to Eq. (9), we 
obtain

1 21 1
1 2

1 1 1

16 3 3
6 9

T H H
T

H

A Av vD F kT
r v v

F (15)

3 2 4 5
3 2

2 5
1

1 11 ln 1 0.055
8 4 2 6 2 2 2

vF
v

(16)
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Eq. (15) contains two terms that can be conditionally referred to as the temperature-
independent thermal diffusion coefficient (proportional to 1 2A A ), and the temperature-
dependent thermal diffusion coefficient (proportional to kT).

4 Thermophoresis of PNiPAM 
For PNiPAM dissolved in alcohols, the direction of thermophoresis changes as the carbon 
numbers is increased [1]. Using Eq. (15), we can represent the temperature dependence by 

0 01T TD T D T T (17)

where is the thermodiffusion coefficient at T0TD 0, and T0 is the temperature of zero 
thermodiffusion. The parameters in Eq. (17) can be related to those in Eq. (15) as follows: 

0 1 2 1 1 1 227 HkT v F v F A A (18)

2

0 1
2

01 116 3
T

T H

D v F
D v

(19)

where 01 0 16 HD kT r is the solvent self-diffusion coefficient at the temperature of 
thermal diffusion sign change . The literature physical parameters necessary to calculate 0T

 and 1 2A A  in several alcohols are shown in Table I, where only the literature 
parameters and the experimental results from [1] are set forth.

The numeric theoretical values are representing in Table II. The available literature data 
allow for the calculation of the PNiPAM hydrodynamic radiuses 2Hr in methanol, ethanol, 
and 1-propanol. As Table II shows, these values of the PNiPAM hydrodynamic radius for 
the alcohols are about the same, with the error  5%. This is an evidence of the validity of 
the theory.  

Table I: Literature Physical Parameters of the PNiPAM/Alcohol Systems 

Alcohol 
0TD , 0T , K, 

[1] 10-7 cm2/s.K, [1] 
01D ,10-5

cm2/s, [7] 
1Hr ,

10-8 cm,
[7] 

T , 10-

3 K-1, [8] 

,
10-2 g/s.cm, [7] 

1v ,
10-23 cm3, [8] 

MeOH 2.83 353 2.3 1.8 1.20 0.60 6.81 
EtOH 1.23 308 1.2 2.0 1.12 1.2 9.80 
1-PrOH 0.643 283 0.95 2.1 0.96 0.97 12.53 
1-BuOH 0.387 284 0.28* 0.95 2.95 15.34 
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Table II: Calculated Theoretical Parameters of the PNiPAM/Alcohol Systems  

Alcohol 
1F 2F 1 13 Hv v 02D ,

10-6cm2/s
2Hr , 10-8 cm 

1 2A A , ×10-14

erg
MeOH 0.189 26 0.56 1.07 17.2 0.85 
EtOH 0.195 24 0.55 1.02 18.5 0.88 

1-PrOH 0.197 23 0.53 0.92 19.2 0.85 
1-BuOH 0.268** 13** 0.38** 0.95** 1.83±0.10* 0.65 
*Average value in methanol, ethanol and 1-propanol with the standard deviation; 
**Calculated by Eq. (21) and the average value of 2Hr

The hydrodynamic radii of methanol, ethanol and 1-propanol are similar (0.18, 0.2, and 
0.21 nm, respectively [7]). The hydrodynamic radius of a spheroid-like particle is [2]. 

1 1 2H H Hr r r 3 (20)

where Hr  and are the respective equivalent half axes of the spheroid. This expression 
is valid when the particle can rotate freely. When the motion in some direction is hindered, 
the appropriate “partial” hydrodynamic radius should be removed from Eq. (20). The 
transverse and longitudinal dimensions of the PNiPAM monomer, based on the bond 
lengths taken from Ref. [9], are approximately 0.7 nm and 0.9 nm, respectively. The 
estimated hydrodynamic radius, [Eq.(20)] is about 0.9 nm, and the associated value of  

Hr

1 2 0.2H Hr r  which is greater than the value about 0.1 calculated from experimental data. 
The discrepancy can be further reduced by assuming that the motion of solvent is hindered 
in the transverse direction, due to the presence of adjacent monomers in the polymer 
chain. In that case, one obtains: 1 2 0.15H Hr r . Thus, the value of the parameter 
obtained by the present theory can be explained by the molecular shapes. As we have the 
reliable value for the monomer hydrodynamic radius, we could calculate the relevant 
physical parameters for 1-butanol. In this approach, we could use the known results on 
thermal diffusion to obtain the parameters for new solvents with the same dissolved 
PNiPAM molecule, using Eq. (19) in the form 

2 55
0 02 1 2 216 3 2T T HD D v v F (21)

where 02 0 26 HD kT r  and 2Hv  are the monomer diffusion coefficient and the 
hydrodynamic volume, respectively. Obtaining the value of the parameter  from Eq. (21), 
we can calculate the hydrodynamic radius for the 1-butanol. 

This value is present in Table I. Using the obtained dynamic parameters, we calculated 
energetic parameters 1 2A A  for PNiPAM in alcohols. The results are present in Table II 
and are in the range consistent with the physical nature of the considered system. 
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5 Conclusions 
The hydrodynamic approach to thermophoresis has been refined to account for 
cooperative interaction and thermal motion. When the model is applied to dilute solutions 
of PNiPAM in alcohols, it gives qualitative agreement with the experimental data. Strong 
temperature dependence occurs when the solute-solvent interaction is low and the 
respective ratio of hydrodynamic radii is large. The measurement of parameters related to 
the temperature dependence of thermal diffusion may provide new possibilities for the 
characterization of solvent mixtures and polymer solutions.  
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Abstract

We have studied the crossover from small-molecule to polymer behavior in the Soret ef-
fect of dilute solutions of polystyrene with molar masses ranging from the monomer to
M ≈ 103 kg/mol in the seven solvents cyclooctane, cyclohexane, tetrahydrofuran, ethyl
acetate, toluene, methyl ethyl ketone, and ethylbenzene. The thermal diffusion coefficient
DT is molar mass independent in the high polymer regime and the quantity ηDT is approx-
imately constant and independent of the solvent. For shorter chains below M ≈ 10kg/mol,
DT decreases monotonously with M and ηDT does no longer follow a common master
curve. For the two ‘monomers’ ethylbenzene and 3,3’-dimethyl-butylbenzene there is
even a sign change in several solvents. We conclude that the thermal diffusion coefficient,
albeit being molar mass independent in the high polymer limit, is not a property of the
monomer but rather of correlated segments of the order of the Kuhn segment. Hydro-
dynamic interactions dominate the behavior of the Soret coefficient for sufficiently long
chains, where swelling due to excluded volume interactions becomes important. For a
given molar mass the Soret coefficient depends only on the effective hydrodynamic ra-
dius of the polymer coil and, hence, on the solvent quality.
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1 Introduction

We discuss the interplay between isothermal and non-isothermal diffusion in dilute poly-
mer solutions. These diffusion phenomena are of particular interest for the emergence of
polymer properties, since isothermal diffusion is known to depend on the chain length,
whereas thermal diffusion has traditionally been regarded as being more a monomer than
a polymer property. Isothermal diffusion has extensively been studied and there exists a
well established picture for the diffusion coefficient D. In the dilute limit hydrodynamic
interactions play a dominant role and, according to the Zimm model, lead to a charac-
teristic molar mass dependence D ∝ M−ν. The scaling exponent ν is determined by the
excluded volume interaction and ranges from ν = 0.5 for ideal chains under theta condi-
tions to ν ≈ 0.6 for expanded chains in good solvents.
Under non-isothermal conditions an additional thermal diffusion current �jT = −ρc(1−
c)DT ∇T is driven by a temperature rather than a concentration gradient. The thermal dif-
fusion coefficient DT has been found to be independent of the polymer molar mass [1,2].
A theoretical explanation has been given by Brochard and de Gennes [3] based on the
absence of long-range interactions between distant monomers. Würger has analyzed ther-
mophoresis of colloids as originating from Marangoni forces [4]. Assuming slip boundary
conditions, he obtained a flow field without hydrodynamic interactions between particles.
Treating a polymer as a chain of spheres, he concluded that DT should be molar mass and
concentration independent. Zhang and Müller-Plathe investigated polymer thermal diffu-
sion by means of reverse nonequilibrium molecular dynamics simulations (RNEMD) [5].
They found a molar mass independent DT for polymer chains exceeding a few persistence
lengths and interpreted their results as being in qualitative agreement with predictions by
Schimpf and Semenov [6].
Here, we report on a systematic study of the molar mass and solvent dependence of the
thermal diffusion and the Soret coefficient of polystyrene (PS) in the dilute limit. The
work was partly motivated by own results for short polymer chains [7] and partly by the
request for experimental data on the effect of solvents and end groups raised by Zhang
and Müller-Plathe [5].

2 Experimental

CH3C

H

HCH2

CH3

CH3

CH3CCH2C

H

HC

H

[ ]

Fig. 1: Repeat unit of the PS chain (left),
ethylbenzene (middle), and 3,3’-dimethyl-
butylbenzene (PS162) (right).

All transport coefficients were mea-
sured by thermal diffusion forced
Rayleigh scattering (TDFRS) [8].
Polystyrene of various degrees of
polymerization and narrow molar
mass distribution was obtained from
Polymer Standards Service GmbH
(Mainz). Ethylbenzene is a model
compound for the repeat unit of PS.
3,3’-dimethyl-butylbenzene (PS162)
is effectively a PS oligomer with degree of polymerization of unity, including the tert-
butyl end-group (Fig. 1). The solvents were cyclooctane (> 99%, Aldrich), cyclohex-
ane (p.a., > 99.5%, Acros), toluene (> 99.9%, Merck), tetrahydrofuran (THF, > 99%,
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Aldrich), ethyl acetate (> 99%, Merck) and methyl ethyl ketone (MEK, > 99.5%, Merck).
The effective monomer ethylbenzene (> 99%, Fluka) also served as solvent from the
dimer on. The dilute limit was obtained by extrapolation to c = 0. The temperature was
T = 295K or, in some cases, 298K.

3 Results

In Ref. [9] we have found that the high molar mass plateau of DT is to a good approxi-
mation inversely proportional to the solvent viscosity. The proportionality constant only
depends on the polymer and not on the solvent, which suggests to plot ηDT as shown in
Fig. 2.
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Fig. 2: ηDT (left) and Soret coefficient ST (right) of PS in different solvents for T = 295K
or 298K. Included are data from [7] (a), [10] (b), [11] (c), [2] (d, computed from D and
DT ).

As expected, all curves collapse onto a common plateau for large M. For short chains
this universality gets lost completely. As already known for small molecules, there is
no simple theory to predict DT (or ηDT ), except for some phenomenological rules like
the more pronounced thermophobic behavior of heavier and more strongly interacting
species [12–16]. More insight is obtained when looking at the Soret coefficient as plotted
in Fig. 2. Again, two regimes can be identified. As shown in the insert, ST (logM)
increases with M for oligomers and short polymers up to a few kg/mol with a constant
slope. Here, a change of the solvent always leads to approximately the same change of ST

as indicated by the gray band. Both the absolute values of ST and the width of the band
are of the order of 10−2 K−1 which is typical for small molecules.
For molar masses above 10 kg/mol, where DT has reached its constant plateau value, the
solvent dependence of ST becomes more pronounced. As indicated by the shaded area in
the main part of the plot, all values now fall into a region whose boundaries are defined
by power laws Mν with the exponents ν = 0.5 and ν = 0.6.

4 Discussion

Let us now consider the same polymer in two different solvents s and s′ in the dilute limit.
The two solutions are characterized by (D, DT , ST ) and (D′, D′

T , S′T ), respectively. Let us
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further assume that a change of the solvent from s′ to s changes the Soret coefficient by
δST :

ST = S′T +δST (1)

The diffusion coefficient of the polymer can be expressed by the Stokes-Einstein relation
D = kBT/(6πηRh), where η is the solvent viscosity and Rh the effective hydrodynamic
radius of the polymer. Hence, exchange of the solvent leads to a change of the diffusion
coefficient

D = D′
η′R′

h

ηRh
. (2)

R′
h is the hydrodynamic radius of the polymer in solvent s′ of viscosity η′. Combining

Eqs. 1 and 2, the thermal diffusion coefficients in s and s′ are related by

DT = ST D = D′
T

η′R′
h

ηRh
+δST D . (3)

Monomers, oligomers, and short chains M ≤ 10kg/mol defines the regime where δST

does not depend on M and is only a function of the solvent. Excluded volume interaction
is not yet effective and the hydrodynamic radius of a polymer is solvent independent
(Rh = R′

h). Eq. 3 reduces to

ηDT = η′D′
T +δST

kBT
6πRh

. (4)

Eq. 4 reflects the scenario plotted in the left part of Fig. 2. For higher molar masses, but
still below M = 10kg/mol, the second term vanishes like 1/Rh and the left and right side
become equal (ηDT = η′D′

T ). For shorter chains with M � 10kg/mol the second term
becomes increasingly important and eventually dominates DT of oligomers and the two
effective monomers.

High polymers The high polymer limit above 10 kg/mol is characterized by a molar
mass independence of DT = D∞

T and by a molar mass and solvent independent value of
ηD∞

T ≡ Δ∞. Together with Eq. 2, the ratio of the Soret coefficients in solvent s and s′

becomes
ST

S′T
=

DT

D′
T

D′

D
=

η′

η
ηRh

η′R′
h

=
Rh

R′
h
. (5)

This remarkable result tells us that the ratio of the Soret coefficients of a high polymer
in two different solvents should only depend on the ratio of the hydrodynamic radii. The
hydrodynamic radius of a flexible polymer follows a scaling law Rh ∝ Mν. The exponent
ν is determined by the quality of the solvent. ν = 0.5 characterizes ideal chains in a theta
solvent and ν ≈ 0.6 is typical for chains expanded by excluded volume interactions in a
good solvent. Fig. 2 shows that above relation is fulfilled to good approximation. The
shaded area indicates the range between the two limiting scaling laws corresponding to
exponents of 0.5 and 0.6. Since chain expansion is only effective in the high polymer
limit, the pre-factor has arbitrarily been chosen such that both curves start with a common
value at M = 10kg/mol. All Soret coefficients for high molar masses fall into this region.
As expected, good solvents like toluene and THF can be found closer to the upper limit,
corresponding to more chain expansion. Marginal and theta solvents like ethyl acetate
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and cyclohexane tend towards the lower boundary defined by ν = 0.5.

Crossover from the monomer to the polymer In a previous work we investigated the
molar mass dependence of DT [7] and interpreted the bending down for low M as being
due to an end-group effect. The shortest oligomer investigated in Ref. [7] was the dimer,
consisting of two C8H8 repeat units and a butyl end-group. Now, we have extended our
investigations not only to a large number of different solvents but have also included
ethylbenzene and PS162 on the ‘polymer’ side. Following the analysis in Ref. [7], a sig-
nificantly smaller thermal diffusion coefficient would have to be expected for PS162 than
for ethylbenzene, which is obviously not the case. In addition, Zhang and Müller-Plathe
found a saturation of DT for chains exceeding a few persistence lengths in their recent
RNEMD simulations [5]. Based on this finding and on our new results with a continuous
increase of DT with increasing M for short chains, including the two monomers, we come
to the conclusion that an end-group model with a linear superposition does not yield an
adequate description.
Starting with ethylbenzene, the systematic increase of both DT and ST must be attributed
to the increasing mass and/or size of the molecules. As long as the PS chains are shorter
than the Kuhn segment, they may be regarded as rigid units. This increase of DT is in
accordance with the observation that heavier species are more thermophobic [12, 15, 16].
The Kuhn segment of PS comprises eight to ten monomers (M ≈ 1kg/mol) [17]. Indeed,
a small number of such Kuhn segments defines the range between 1 and 10kg/mol where
the high polymer plateau value of DT is reached. Hence, the molar mass independence
of DT observed in the high polymer limit does not imply that the thermal diffusion coef-
ficient is a monomer property. From our data it rather follows that there are units of the
size of the Kuhn segment that are the relevant entities for thermal diffusion. Within these
segments monomers are correlated and act cooperatively. Over larger distances this cor-
relation gets lost. Remarkably, the high polymer value of ηDT is even independent of the
solvent. However, the solvent quality determines the swelling of long polymer chains and
the effective hydrodynamic radius. Since hydrodynamic interactions with a long-ranged
flow field (∝ r−1) are only effective for Fickian but not for thermal diffusion, where the
flow field around a monomer decays like r−3 [4], a dependence on the solvent quality is
introduced in ST = DT/D according to Eq. 5 for longer chains.

5 Conclusion

Thermal diffusion of a flexible polymer is characterized by the presence of short-range
cooperativity and correlation between the monomers. Long-range hydrodynamic interac-
tions that dominate Fickian diffusion are absent in thermal diffusion. As a consequence,
despite the molar mass independence of DT , the units relevant for thermal diffusion of a
PS chain are correlated segments with a size comparable to the Kuhn segment.
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Abstract
In the present study the thermogravitational technique has been used to determine the 
thermodiffusion coefficients of the three components in the ternary liquid mixture of 
1,2,3,4-tetrahydronaphthalene-isobutylbencene-n-dodecane (THN-IBB-nC12) with equal 
mass and molar ratio (c = 1:1:1 and x = 1:1:1) at 25ºC. We have used two different 
thermogravitational columns (TC) with both configurations, parallepipedic and 
cylindrical. The results of both TCs agree within the experimental error. The comparison 
with recently published values shows that the differences are around 25%. 
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1 Introduction 
A lot of work have been made in the study of binary liquid mixtures, showing even that 
different techniques, convective and non-convective, agree within the experimental error 
[1,2]. But on the contrary, to our knowledge, in ternary mixtures there is no any 
comparative study between different techniques because of the difficulty of the 
experimental setup and experimental analysis. The latest experimental works of ternary 
liquid mixtures [3,4] have been made by means of the thermogravitational technique 
showing experimentally its potentiality to determine the transport properties of 
multicomponent mixtures, although the analysis methodology presented in those 
experimental works may not be adequate for some mixtures such as n-alkane ternary 
mixtures [5]. 
Although in the last years the interest in the study of transport properties in ternary 
mixtures has increased, especially in the oil industry [6,7], there are only few experimental 
works in multicomponent liquid mixtures published in the literature [3,4]. Additionally, 
the demand of experimental results has grown in order to verify numerical codes [8,9].  

Because of all these reasons, we present in this work the thermodiffusion coefficients of 
the three components in two different ternary mixtures made of THN-IBB-nC12 having 
successively mass fraction ( ic ) and molar fraction ( ix ) equal to 1/3, i.e, mass and molar 
ratio of 1:1:1. The mean temperature has been fixed at 25ºC. For the first time, in order to 
compare the results of ternary mixtures, two types of thermogravitational columns (TC) 
have been used, with both parallelepipedic and cylindrical configuration. The results 
between both columns have been contrasted and, in addition, the results of the ternary 
mixture with mass fraction ic =1/3 have been compared with those previously published in 
[3] and presented for the first time at IMT6.  

2 Experimental

2.1 Working equations 
In the thermogravitational technique the determination of the component’s concentrations 
after the thermodiffusion process is needed. This is made by means of a previous 
calibration. It consists on measuring the density and the refractive index of mixtures of 
known mass concentration previously prepared by weighing in a scale with a precision of 
0.0001g. The mixture with molar fraction 3/1ix  corresponds to mass fractions of 

3027.0THNc , 3073.0IBBc  and 3900.012nCc . In this study we have carried out a 
calibration for both mixtures of THN-IBB-nC12 (mass and molar fraction 3/1ii xc ).
We have prepared 66 mixtures of known concentration around the corresponding average 
initial mass fractions of THN (from 265.0THNc  to 365.0THNc ) and IBB (from 

265.0IBBc  to 365.0IBBc ) with increments of 01.0c .
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Next, we resume the working equations which are documented in previous studies of 
ternary mixtures [3,4]. As we are working with small variations of concentration we can 
assume that the density and refractive index as linear with the mass concentration of the 
components. We can state the density and the refractive index as: 

ji cdcba (1)

ji cdcban ''' (2)

being a, b and d the constant parameters of the density as a function of the mass 
concentrations of the components i and j in the ternary mixture (i+j+k). a’, b’ and d’ are 
the constant parameters of the refractive index as a function of the mass concentrations of 
the components i and j in the ternary mixture (i+j+k). Eqs. (1) and (2) must be 
independent to be able to determine the mass concentrations of each component from the 
measurements of the density and refractive index of the ternary mixtures [5]. The 
calibration planes of the mixtures of this study are shown in Fig.1. We chose THN and 
nC12 as components i and j respectively because they are the densest and the less dense 
components of the ternary mixtures. 
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Fig. 1: Calibration planes of density and refractive index for the mixture THN-IBB-nC12. 

The constant parameters of calibration planes are determined in such a way that the 
difference between the density and refractive index measured experimentally and the 
calculated ones from Eqs. 1 and 2 is minimised, considering all the mixtures of the 
calibration.

The thermodiffusion coefficient of component i in a multicomponent mixture is 
determined from the following relation: 

i
z

xi
T cg

L
L

D
504

4

(3)
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where bottom
i

top
ii ccc , being ic  the mass fraction difference of the component i

between the top and the bottom of the TC, 1
T

 the thermal expansion coefficient 

of the mixture,  the kinematic viscosity of the mixture, zL the height of the TC, xL the 
gap of the TC and g  the gravity acceleration.  

2.2 Materials and Equipment
The three components used in this study were purchased from Merck with a purity of over 
99%. An Anton Paar DMA 5000 vibrating quartz U-tube densimeter having a repeatability 
of 1 10-6 g/cm3 and an Anton Paar RXA 156 refractometer with a repeatability of  2 10-5

nD have been used to determine the density and refractive index of the studied mixtures. A 
scale of 310 g capacity with an accuracy of 0.0001 g has been used to prepare the mixtures 
of the parallelepipedic TC. A scale of 4500 g capacity with an accuracy of 0.01 g has been 
used to prepare the mixtures of the cylindrical TC. The cylindrical TC has been previously 
validated with experiments well documented in the bibliography [11], and also some 
experimental results of this cylindrical TC have been contrasted with different installations 
[12,13]. In this study, both TCs have 500 mm. height, a gap of 1 mm and 5 taking points 
equidistantly separated along the TC. A falling ball viscosimeter HAAKE with a ±1% 
precision has been used to determine the dynamic viscosity of the mixtures. 

3 Results and Discussion 

3.1 Calibration of the parallelepipedic TC 
The parallelepipedic TC has been designed and developed in MGEP. It has been also 
validated with experiments in binary mixtures well documented in the bibliography as it is 
shown in table I.

Mixture TD  (10-12 m2/sK)
Parallelepipedic TC 

TD  (10-12 m2/sK)
Cylindrical TC 

TD  (10-12 m2/sK)
Published

H2O/Etanol
c=0.6088 at 25ºC 1.34 1.33 1.32 [ref.14] ; 1.34 [ref.15] 

1.33 [ref.16] ; 1.36 [ref.17] 
Tolueno/nC6

c=0.5167 at 25ºC 13.7 13.7 13.1 [ref.18] ; 13.7 [ref.19] 
13.8 [ref.11] ; 14.1 [ref.17] 

THN/IBB
c=0.5 at 25ºC 2.93 2.90 2.8  0.1 [ref.1] ; 2.81 [ref.15] 

THN/nC12
c=0.5 at 25ºC 6.20 6.13 5.9  0.3 [ref.1] ; 5.88 [ref.15] 

IBB/nC12
c=0.5 at 25ºC 3.86 3.84 3.7  0.2 [ref.1] ; 3.85 [ref.15] 

Table I: Comparison between experimental data of parallelepipedic and cylindrical TCs 
and published values. 
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The differences in the experimental results between both TCs are in the order of 1%. The 
differences with published data are within the experimental error of 5%. Another example 
of its good operation is that the thermal diffusion coefficient TD , according with the 
theory, is independent of the applied temperature gradient between the two vertical walls 
of the TC. To do this, we chose the mixture n-hexane/toluene with a toluene mass fraction 
of c=0.5167 at 25ºC and we repeated the test several times at different temperature 
gradients. A comparison between both TCs is shown in Fig.2a. 
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Fig. 2: a) Thermodiffusion coefficient TD  in function of the temperature gradient 
applied between the two vertical walls. Mixture toluene/n-hexane with toluene mass 
fraction c=0.5167 at 25ºC. Comparison between both TCs: cylindrical and 
parallelepipedic. b) density  of the ternary mixture THN-IBB-nC12 with molar fraction 

3/1ix  at 25ºC in function of the height of the parallelepipedic TC. c) refractive index n
of the ternary mixture THN-IBB-nC12 with molar fraction 3/1ix  at 25ºC in function of 
the height of the parallelepipedic TC. 

3.2 Thermal Diffusion of ternary mixtures 
As happens in binary mixtures the density gradient with elevation in the TCs is also linear 
for ternary mixtures (see as an example Fig.2b). The refractive index has also a linear 
behaviour (see as an example Fig.2c). 
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Table II shows the thermal diffusion coefficients i
TD obtained with both TCs and the 

thermophysical properties of the ternary mixture with mass fraction 3/1ic  compared to 
published values [3,4]. The differences in i

TD  between the results of both TCs 
(parallelepipiedic and cylindrical) are of 2-4%, although the differences with previously 
published values are of 20-25%.

 (10-4 K-1) (10-3 Pas) 
THN
TD

(10-12 m2/sK) 

12nC
TD

(10-12 m2/sK) Mixture
This
work 

Refs.
[3,4]

This
work 

Refs.
[3,4]

Paral.
TC

Cyl. 
TC

Refs.
[3,4]

Paral.
TC

Cyl. 
TC

Refs.
[3,4]

3/1ic 9.142 9.344 1.289 1.370 1.087 1.110 0.874 -
1.251 -1.202 -1.02

3/1ix 9.188 - 1.274 - 1.094 1.083 - -
1.244 -1.214 - 

Table II: Comparison between experimental data of parallelepipedic and cylindrical TCs 
and published values [3,4] for the ternary mixture THN-IBB-nC12 with mass fraction 

3/1ic  and molar fraction 3/1ix  at 25ºC. We present the thermophysical parameters 
like thermal expansion  and dynamic viscosity .

In table II we also specify the thermal diffusion coefficients i
TD of the ternary mixture with 

molar fraction 3/1ix  found with both TCs. The differences between both TCs are less 
than 3%. Regarding the results of both ternary mixtures (mass and molar fraction 

3/1ii xc ) the thermal diffusion coefficients i
TD  of  each component hardly do not 

change due to the small differences in mass concentrations between both ternarys. This is 
also reflected in the viscosity and thermal expansion coefficients. For the third component 
of the mixture (IBB) we can not determine with accuracy its thermal diffusion coefficient 
because of its small separation throughout the TCs as can be observed in Fig. 3. THN 
moves towards the cold wall of the TC, nC12 moves towards the warm wall and IBB has a 
small tendency to go to the cold wall, but it is so small that we can not measure accurately 
its mass separation (less than 1%) between the two ends of the TC, at least with this 
analysis method. The error accumulation in the determination of mass concentration of 
IBB ( 121 nCTHNIBB ccc ) and the small separation of this component in the ternary 
mixture prevent the determination of its thermal diffusion coefficient with reliability. 
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THN-IBB-nC12 c i=1/3 at 25ºC
Paralelepipedic TC

c IBB =-0.00927L z + 0.34116
R2 = 0.87227

c nC12= 0.10743L z +0.30552
R2 = 0.99995

c THN=-0.09815L z +0.35333
R2 = 0.99915
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Fig. 3: Mass separation throughtout the parallelepipedic TC of the three components of 
the ternary mixture THN-IBB-nC12 with mass fraction 3/1ic . 

4 Conclusions
This is the first study in ternary mixtures where the experimental results of two 
installations with different configurations of TCs are compared. The agreement between 
both TCs, parallepipedic and cylindrical configurations, is excellent. The thermodiffusion 
coefficients i

TD of the components in the ternary mixtures with mass and molar fractions 
3/1ii xc  are quite similar due to the small difference in mass concentration of the 

components between both mixtures.  
It can not be determined accurately the thermodiffusion coefficient of the IBB because of 
its small mass separation between the two ends of the TC. Therefore, the i

TD  of the 
mixture THN-IBB-nC12 that we consider significant by means of this analysis method are 
the corresponding ones to the components THN and nC12 ( THN

TD  and 12nC
TD ).
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Abstract
Until now, in the few experimental works on ternary mixtures the analysis method of each 
component’s concentration consists of measuring the density and refractive index of the 
mixture. Knowing these two properties of the mixtures one can determine the mass 
concentration of each component after the thermodiffusion process in a 
thermogravitational column and therefore establish the thermal diffusion coefficient of 
each component in the ternary mixture [1,2]. The experimental study carried out in this 
work shows that the analysis method used in previous works on ternary mixtures is 
inappropriate when working with ternary liquid mixtures of n-alkanes because of the 
linear dependence between the density and the refractive index of the mixtures.  
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1 Introduction 
Up to now only a few experimental works exist where the thermodiffusion coefficients 

i
TD  in multicomponent mixtures of more than two components have been determined 

[1,2]. Bou-Ali and Platten [1] have presented a determination of the thermodiffusion 
coefficients i

TD  of the components of the ternary mixture nC12-THN-IBB together with a 
possible empirical correlation suggested a few years before [3] using the corresponding 
binary thermodiffusion coefficients obtained in the benchmark of Fontainebleau [4]. In a 
second work [2], Alana et al. have also presented the thermodiffusion coefficients of the 
components for the ternary mixture nC8-nC10-MN, as well as the molecular diffusion 
coefficients ijD . To carry out these experiments the thermogravitational technique (for 

i
TD ) and the open ended tube technique (for ijD ) have been used, showing experimentally 

their potentiality to determine the transport properties of multicomponent mixtures. 

The methodology used in both works to analyse compositions (i.e., to determine the two 
independent mass fractions 1c  and 2c ) of removed samples necessary to access the 
transport properties ( i

TD  and ijD ) is the same: measurements of the density mix  and the 
refractive index mixn  of the mixture, and comparison with prior calibration curves 

mix ( 1c , 2c ) and mixn ( 1c , 2c ). For more details about the methodology, see [1,2]. 

The n-alkane ternary mixtures selected in this work are n-hexane/n-dodecane/n-
octadecane (nC6-nC12-nC18), n-octane/n-dodecane/n-hexadecane (nC8-nC12-nC16) and 
n-heptane/n-nonane/n-hexadecane (nC7-nC9-nC16) with mass fraction ci=1/3 or a mass 
ratio of 1:1:1 and at 25ºC. In all these mixtures, the density and the refractive index are 
linearly dependent and therefore the calibration curves mix ( 1c , 2c ) and mixn ( 1c , 2c ) have 
the same behaviour with the mixture’s changes of concentration. Due to this fact, and in 
contradistinction with the n-alkane–aromatic systems, it is not possible to experimentally 
determine the mass fractions 1c  and 2c  in mixtures of n-alkanes only using the measured 
values of mix ( 1c , 2c ) and mixn ( 1c , 2c ).

2 Experimental
2.1 Materials and Equipment
The liquids used in this work are normal alkanes and were purchased from Merck with a 
purity of over 99%. An Anton Paar DMA 5000 vibrating quartz U-tube densimeter having 
a repeatability of 1 10-6 g/cm3 and an Anton Paar RXA 156 refractometer with a 
repeatability of  2 10-5 nD have been used to determine the density and refractive index of 
the studied mixtures. The mixtures have been prepared using a 310 g capacity scale with 
an accuracy of 0.0001 g.  
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2.2 Analysis method of mass concentration 
In the thermogravitational technique, to determine the thermal diffusion coefficients it is 
indispensable to reveal the mass concentration of each component in the mixture. In 
binary mixtures ij cc 1  and therefore, to determine the mass concentrations, a previous 
calibration is done from the measurements of a mixture property like density )( ic  [5] or 
refractive index )( icn [6]. However, in ternary mixtures the knowledge of two mass 
fractions is needed ( jik ccc 1 ), and consequently for the previous calibration two 
mixture properties are required, typically the density ),( ji cc and the refractive index 

),( ji ccn . As we are working with small variations of concentration we can suppose the 
density and refractive index as linear with the mass concentration of the components. We 
can express the density and the refractive index as: 

ji cdcba (1)

ji cdcban ''' (2)

being a, b and d the constant parameters of the plane formed with the density as a function 
of the mass concentrations of the components i and j in the ternary mixture (i+j+k) (see for 
an example the figure 1a). a’, b’ and d’ are the constant parameters of the plane formed 
with the refractive index as a function of the mass concentrations of the components i and 
j in the ternary mixture (i+j+k) (see for an example the figure 1b). These two equations 
must be independent to be able to determine the three mass concentrations from the 
density and refractive index measurements.  

We established two calibration planes (eqs. 1 and 2) for each one of the three ternary 
mixtures studied in this work. It consists of preparing up to 25 samples of known mass 
concentration around the mass fraction of interest c=1/3. In every preparation, first we 
introduce the less volatile component (the n-alkane with greater molecular weight), then 
the second component and finally the most volatile one. We would like to point out that 
one of the components used in this work, the n-octadecane, is solid at room temperature, 
therefore we heated it in a water bath until it became liquid. 
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Fig. 1: Calibration planes of density and refractive index for the mixture nC6-nC12-
nC18 around the mass concentration of ci=1/3.

3 Results and Discussion 
In this work we chose different ternary mixtures because we wanted to study the influence 
of the chain length of the components in the thermodiffusion coefficients of normal alkane 
ternary mixtures. The first ternary mixture studied in this work has been nC6-nC12-nC18.
There is six carbon atoms difference between the smaller, medium and greater 
components. The second mixture has been nC8-nC12-nC16. In this case, the difference is 
of four carbon atoms. In both cases, the plot (fig. 2a and fig. 2b) of refractive index as a 
function of the mixture’s density shows a linear dependency which indicates that both 
properties behave the same according to the changes of the mixture’s concentration. We 
thought that the effect of having the same carbon atom difference between the compounds 
could be the reason for this conduct. Therefore, we prepared another ternary mixture in 
which the carbon atoms difference between the compounds does not follow any 
proportion. We have chosen the ternary mixture nC7-nC9-nC16. In this last case, the 
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behaviour of the mixture’s density with the refractive index is the same as in previous two 
mixtures (see fig. 2c).  
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Fig. 2: Mixture density in function of the refractive index of the mixtures nC6-nC12-
nC18, nC8-nC12-nC16 and  nC7-nC9-nC16 at 25ºC. 

Therefore, taking into account equations 1 and 2 we can not determine the three 
independent mass concentrations only measuring the density and the refractive index of a 
n-alkane ternary mixture. Looking at these results, and due to the variety of ternary 
mixtures tested in this work, we can expect that this relationship between density and 
refractive index would be the same in any ternary mixture of n-alkanes. We would need 
another accurately measurable physical property to be able to determine the mass 
concentration of the components of a mixture. At the same time this property can not 
behave in the same way as the density or refractive index does dependent on mass 
concentration changes. Let us think that it would be even more difficult to use the 
deflection of different laser beams with different wavelengths as is proposed in [7]. 

4 Conclusions
In all the n-alkane ternary mixtures studied in this work the density and the refractive 
index are linearly dependent and therefore one can not determine the mass fractions of 
each component in the mixture with the analysis method used in the few experimental 
works up to now [1,2]. Consequently, we find it difficult to determine both the 
thermodiffusion coefficients and the cross and main diffusion coefficients of n-alkane 
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ternary mixtures if we can not reveal the mass concentrations of the components in a 
ternary mixture after the thermodiffusion and diffusion processes.  More work should be 
done to understand this unexpected behaviour between apparently independent physical 
properties such as density and refractive index. 
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Abstract

We studied the thermal diffusion behavior of the nonionic surfactant solution C12E6/water
at different concentrations and temperatures using Thermal Diffusion Forced Rayleigh
Scattering (TDFRS). Two different types of TDFRS setups have been applied. In the
classical TDFRS, we use an Argon laser to write the optical grating into the sample by
using a small amount of ionic dye to convert the optical grating into a temperature grating.
In the other setup, called IR-TDFRS, we use an infrared laser as the writing beam, which
utilizes the water absorption band to convert the optical grating into a temperature grat-
ing. The measurements by IR-TDFRS show a one-mode signal for all concentrations and
temperatures, while the signal in the classical TDFRS consists of two modes for higher
temperatures and lower surfactant concentrations [H. Ning et al., J. Phys. Chem. B., 110,
10746(2006)]. We find good agreement between the Soret coefficients determined in the
IR-TDFRS and the ones derived from the first fast mode in the previous studies. The
Soret coefficient of the nonionic solutions is positive and enhanced at the critical point.
In general, the Soret coefficient of the micelles tends to increase with temperature. We
found that the presence of the second mode observed in the classical TDFRS is related to
the addition of the ionic dye, but even with the ionic dye it is not possible to observe a
second mode in the IR-TDFRS. The origin of the second mode is discussed in terms of
charged micelles and an inhomogenous dye distribution in the temperature gradient.
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1 Introduction

Surfactant molecules, which show amphiphilic properties due to their hydrophilic and
hydrophobic part, form micelles in water, when the concentration of the monomer is be-
yond a critical micelle concentration (cmc). The size, shape and structure of the micelles
depend on concentration and temperature. Surfactant solutions are of great interest due
to their ample phase behavior, rich physical properties, and their extensive applications
in industry, agriculture, biology and daily life [1–3]. The study of the thermal diffusion
process in complex fluids is an interesting topic with numerous applications, which is
still not understood on a microscopic level. Several experimental techniques have been
used to study the thermal diffusion behavior of surfactant systems. Using a beam deflec-
tion and thermal lens setup, Piazza et al. investigated an ionic surfactant, sodium dodecyl
sulphate (SDS), in water [4,5]. The Soret coefficient of SDS shows an exponential depen-
dence on the temperature and 1/ST scales linearly with the concentration. For a mixture
of SDS and a nonionic surfactant β-dodecyl-maltoside (DM) a sign change of the Soret
coefficient was observed with increasing temperature [5]. Ning et al. studied a series of
nonionic surfactants in water in a wide temperature and concentration range using ther-
mal diffusion forced Rayleigh scattering (TDFRS) [6, 7]. For their measurements a small
amount of the ionic dye basantol yellow is added in order to create a sufficient tempera-
ture gradient. At higher temperatures and lower concentrations the concentration part of
the signal consists of two modes. Although it turned out that the two-mode signal can be
suppressed by the addition of a simple salt, such as sodium chloride (NaCl), the origin of
the second mode is still an open question.
The objective of this work is to get a better understanding of the origin of the second
concentration mode. Therefore we study the thermal diffusion behavior of C12E6 in water
using an IR-TDFRS setup, which avoids the addition of the dye.

2 IR-TDFRS experiment

A detailed description of the IR-TDFRS setup and the sample preparation can be found
in [8] and [9]. Two intersecting laser beams at λ = 980 nm create an optical grating into
the sample. Due to the weak absorption maximum of the water molecules at λ = 975
nm the optical intensity grating is converted into a temperature grating, which results in a
refractive index grating. This grating is probed by the diffraction of a He-Ne laser beam,
operating at λ = 633 nm. In contrast to the classical TDFRS setup the experiment is
simplyfied because the dye, which influences the phase behavior of nonionic surfactants
in water, is not needed.

3 Results

Fig.1 shows the phase diagram of the aqeous surfactant system. All our measurements
are performed in the isotropic L1 phase. The System C12E6/water shows a two phase
region (denoted as L1’+L1”) at high temperatures. Here, L1’ represents the more di-
lute surfactant phase and L1” the more concentrated one. Using the C12E6 ordered from
SIGMA-ALDRICH we found a critical concentration of wc = 0.021 ± 0.001 at a critical
temperature of Tc = 51.53 ± 0.02 ◦C, which slightly differs from literature [11]. It is
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Fig. 1: The phase diagram of C12E6 in water (taken from [10]) and influence of the
ionic dye basantol yellow. Measurements by IR-TDFRS (×) and by classical TDFRS,
which shows one-mode signal (●) and two-mode signal (©), respectively. The different
phases in the phase diagram are indicated as follows: diluted surfactant phase (L1’),
concentrated surfactant phase (L1”), hexagonal (H1), lamellar (L

α
) and isotropic sponge

phase (L3). Also shown is the critical micellar concentration (cmc). Lines in the figures
are guides to the eye.

known that C12E6 forms small spherical micelles in the L1 phase at low surfactant con-
centrations and low temperatures, while with increasing concentration and temperature
large cylindrical micelles are found [12]. In Fig.1 we can also see that the addition of
the dye shifts the two phase boundary towards higher temperatures. If the dye content is
kept constant (OD = 2, �), the shift of the two-phase boundary to higher temperatures
is more pronounced in the low surfactant region. On the other hand if we fix the ratio
of the weight fraction of the dye in the mixture of dye and surfactant to δ = 0.0444 (�)
(implying that the dye acts as a co-surfactant), the two phase boundary shifts parallel by
�T = 25 ◦C. The temperature shift of the two phase boundary in the presence of basantol
yellow is probably caused by the electrostatic repulsion between the micelles, which get
charged by the incorporation of the ionic dye molecules in the micelles.

With the classical TDFRS we performed systematic measurements of C12E6 in water
using a small amount of dye necessary to reach an optical density between 1.5-2 cm−1

at λ = 488 nm. As indicated in the phase diagramm a second mode occurred for the
measurements at lower surfactant concentrations and higher temperatures. We found, that
an increase of the dye content leads to a second mode, which becomes stronger if the
dye content is further increased [9]. Furthermore, we found in our previous work that the
addition of salt suppresses the second mode [7] and at the same time leads to a decrease
of the two phase boundary to its original position in the pure C12E6/water system. In the
IR-TDFRS experiment we obtain only one mode signals, even if we add the ionic dye.
This shows, that it is not only the presence of the ionic dye which causes the second mode.

The Soret coefficients of C12E6 measured by the IR-TDFRS setup are displayed in Fig.2.
All Soret coefficients are positive, which means that the micelles migrate to the cold
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side. For the system C12E6 at 40 ◦C, the Soret coefficient ST reaches a maximum close
to the critical concentration wc = 0.021, which is a consequence of the critical slowing
down [13]. For the lower temperatures at 25 ◦C and 20 ◦C, we observe an ambiguous
minimum around surfactant concentrations 0.005 and 0.025, respectively, while at higher
surfactant concentrations ST increases monotonically, which might be related with the
increasing viscosity. The variations at lower concentrations is probably a consequence
of structural changes in the surfactant solution, as can be seen in Fig.1 the transition
boundary between globular and large cylindrical micelles falls in the same region [12].
Also many other experimental and theoretical studies show that the Soret coefficient of
colloids and microemulsions depends on the particle size [14–16].

Fig. 2: The dependence of the Soret coefficient of C12E6 in water on the surfactant content
at different temperatures T = 20 ◦C (�), 25 ◦C (©), 30 ◦C (�) and 40 ◦C (♦) measured
by IR-TDFRS.

4 Discussion

We assume, that the inhomogeneous distribution of the dye molecules in the interference
grating plays an important role for the formation of the second mode. In the experiment
with the dye exists certainly a dynamic equilibrium between dye-infected micelles and
ordinary micelles + dye molecules in solution. The IR-TDFRS measurements show that
the ordinary micelles move to the cold site. An open question is whether the dye-infected
micelles migrate also to the cold side or to the warm side. The two possible scenarios are
sketched in Fig.3.
In model A we assume both typs of micelles move to the cold side, while in model B
dye-infected micelles move to the warm side. This assumption might be justified, because
we previously observed [9] that the addition of the SDS and basantol yellow decreases
the Soret coefficient, which means that charged micelles are more thermophilic. In model
A due to absorption of the blue light by basantol yellow a temperature grating is formed
and then both kinds of micelles move to the cold side (Fig.3A). Due to the enrichment
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of the dye in the cold region, the temperature gradient is weakened, which results in a
weakening of the concentration gradient, and a backward motion of part of the micelles
starts. This can cause a second mode.

In modell B (Fig.3B) the dye-infected micelles move to the warm side. After equilibration
of the temperature grating the ordinary micelles move to the cold side, while at the same
time the dye-infected micelles migrate to the warm side. This movement is reflected in
the first mode. Due to the enrichment of the dye in the warm regions of the grating, the
temperature gradient is strengthened and again a feedback mechanism starts, and more
dye-infected micelles will move to the warm side, which would lead to the negative second
mode.

5 Conclusions

In this work, we present the thermal diffusion behavior of C12E6 measured by the recently
developed IR-TDFRS setup [8]. The temperature gradient is achieved due to a weak ab-
soprtion band of water in the near-infrared and not as in the classical TDFRS experiment
through the absorpion of blue light by the dye basantol yellow [7]. While in the classical
TDFRS experiment the addition of the dye can lead to a second mode, this second mode
is not observed in the IR-TDFRS experiment, even if the dye is added. The nonionic sur-
factant C12E6 shows positive Soret coefficients in water, which indicates that the micelles
move to the cold side. The occurrence of a second mode in the classical TDFRS and
the absence of this mode in the IR-TDFRS can be explained by some sort of feedback
mechanism, which leads to a modulation of the grating in the case of the blue writing
laser.
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Abstract

In a liquid mixture subjected to a stationary temperature gradient, concentration fluc-
tuations exhibit a strong long-ranged nonequilibrium enhancement, arising because the
temperature gradient induces a concentration gradient through the Soret effect. Theory
and experiments have shown that the intensity of such nonequilibrium concentration fluc-
tuations varies as q−4 with the wave number q of the fluctuations. In this paper we in-
vestigate how a chemical reaction affects concentration fluctuations in a liquid mixture.
If the reaction-diffusion system is in thermal equilibrium, the decay rate of the concen-
tration fluctuations is affected by the chemical reaction, but the intensity is not. If a
temperature gradient is present, the induced concentration profile is characterized by a
penetration depth d. For diffusion-controlled chemical reactions the penetration depth is
large, whereas for reaction-controlled processes the penetration depth is small. The inten-
sity of the nonequilibrium concentration fluctuations depends on whether the wavelength
of the fluctuations is smaller or larger than the penetration depth d. When the wavelength
is smaller than d, the intensity still varies as q−4 with the wave number q, just as in the
absence of the chemical reaction. When the wavelength is larger than d, the intensity
will vary as q−2. Hence, observing the crossover of the intensity from a q−4 to a q−2

dependence by light scattering or shadowgraphy may in principle provide a method for
determining the penetration depth d of a chemical reaction.
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1 Introduction

In a non-isothermal fluid mixture concentration fluctuations are induced by the Soret ef-
fect [1]. In this paper we investigate how such nonequilibrium concentration fluctuations
are affected by the presence of a chemical reaction. We first briefly review the hydrody-
namic equations describing such a system. In Sec. 2, we discuss in detail the temperature
and concentration profiles in the steady state. Then, in Sec. 3, we present our main re-
sults by analyzing concentration fluctuations around the steady-state solution described
in Sec. 2.
A detailed treatment of non-equilibrium thermodynamics of chemically reacting fluid
mixtures can be found in the monograph (Section XI.8) of de Groot and Mazur [2] and we
basically follow the same approach [3]. We present here just the relevant hydrodynamic
equations, while briefly discussing the approximations and phenomenological relation-
ships upon which they are based. The balance laws applicable to our problem are balance
of mass, balance of momentum and balance of energy [1–3]. In terms of barycentric fluid
velocity v, mass density ρ, concentration of first species c1 ≡ c and temperature T , one
obtains the following set of hydrodynamic equations for a binary mixture [3]:

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + η∇2v,

ρ

[
∂c

∂t
+ v · ∇c

]
= −L

QJ
∇

2

(
1

T

)
+ L

JJ
∇

2

(
Δg

T

)
−

Lr

T
Δg,

ρc
p

[
∂T

∂t
+ v · ∇T

]
+ ρΔh

[
∂c

∂t
+ v · ∇c

]
= −L

QQ
∇

2

(
1

T

)
+ L

JQ
∇

2

(
Δg

T

)
,

(1)

which have to be combined with the equation of state Δg = Δg(p, T, c) and the divergence-
free flow condition (∇ · v = 0), which is the main assumption included in the derivation
of (1). In the hydrodynamic equations (1), p is the pressure, η the viscosity, c

p
the isobaric

specific heat capacity, and

Δh = μ1 − T

(
∂μ1

∂T

)
p,c

− μ2 + T

(
∂μ2

∂T

)
p,c

= Δg − T

(
∂Δg

∂T

)
p,c

(2)

is the difference in specific enthalpy between the two components of the mixture, with
Δg = μ1 − μ2 being the difference in specific Gibbs energy (or minus the affinity). It
is implicit that a chemical reaction exists between the two components of the mixture, so
that a mass ξ of species 1 is created by unit volume and unit time [3]. In Eqs. (1), the
dissipative fluxes are related to the physical gradients in the system by linear phenomeno-
logical laws:

Q = −L
QQ

∇T

T 2
− L

QJ
∇

(
Δg

T

)
, (3a)

J = −L
JQ

∇T

T 2
− L

JJ
∇

(
Δg

T

)
, (3b)

ξ = −Lr
Δg

T
. (3c)
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Because of their different tensorial character there is no coupling between the chemical-
reaction rate ξ and the heat Q and mass diffusion J fluxes [2]. The phenomenological
laws (3a)-(3c) are written in terms of Onsager coefficients L

QQ
, L

JJ
, L

QJ
, L

JQ
and Lr,

with L
QJ

= L
JQ

. It is convenient to relate these Onsager coefficients to the transport co-
efficients: the thermal conductivity λ, the diffusion coefficient D, and the dimensionless
thermal diffusion ratio k

T
[3]:

D =
L

JJ

ρT

(
∂Δg

∂c

)
p,T

, λ =
1

T 2

[
L

QQ
−

L2
QJ

L
JJ

]
, ρDTk

T
= L

QJ
− L

JJ
Δh, (4)

Notice that we neglect barodiffusion, implying that Δg = Δg(T, c) only.
It is worth mentioning that the linear phenomenological law (3c) for ξ is only valid for
small deviations from chemical equilibrium [2]. In this respect we mention that recent
developments [4] have shown that by introducing an internal mesoscopic variable to de-
scribe the advancement of a chemical reaction, a linear phenomenological law similar
to (3c) can be formulated in terms of that mesoscopic variable, thereby extending the
validity of linear non-equilibrium thermodynamics (and its associated theory of fluctuat-
ing hydrodynamics) beyond the classical limits. Extension of the fluctuation theory on
the basis of mesoscopic nonequilibrium thermodynamics will be considered in a future
publication.

2 Steady-state solution

Due to the presence of a chemical reaction, even a linear version of nonequilibrium ther-
modynamics gives nonlinear steady concentration profiles [2]. We assume a temperature
profile Ts(x) in the x-direction, such that at x = 0 the temperature Ts(0) = T1 and at
x = L the temperature Ts(L) = T2. We consider the stationary solution with v = 0 and
uniform pressure, and with J = 0 at the boundaries x = 0 and x = L. The stationary
temperature profile Ts(x) and the stationary reaction Gibbs-energy profile Δgs(x) are then
obtained by equating the LHS of Eqs. (1) to zero:

0 = −L
QJ

d2

dx2

(
1

Ts

)
+ L

JJ

d2

dx2

(
Δgs

Ts

)
− L

r

Δgs

Ts

, (5a)

0 = −L
QQ

d2

dx2

(
1

Ts

)
+ L

JQ

d2

dx2

(
Δgs

Ts

)
. (5b)

Here we include the Soret effect in the evaluation of the steady state, unlike a recent
publication on the subject [5]. For simplicity and following refs. [2, 5], we assume that
all Onsager coefficients are constants, independent of position. In the chemical literature,
the temperature dependence of the rate Lr is usually not neglected, and an Arrhenius
dependence [6], or other more complicated nonlinear kinetic expressions are assumed for
Lr(T ). These approaches lead to a system of nonlinear coupled differential equations
for the temperature and activity profiles, that can be solved only numerically. However,
it turns out that the non-equilibrium fluctuations around the stationary solution of (5)
depend only slightly on whether the linear or nonlinear approach is used. For simplicity,
we consider here the linear version of (5), extensively reviewed elsewhere [2]. Then, the
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steady temperature profile solution of (5) is:

T1T2

Ts(x)
= T̄ +
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Z̃L

{
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) (
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2
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L

2

)]}
, (6)

where T̄ = (T1 + T2)/2 and ΔT = T2 − T1. Furthermore,
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, (7)
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(8)

with the Lewis number Le = λ/ρc
p
D and

εD =
k2

T

c
p
T

(
∂Δg

∂c

)
p,T

, Δh̃ =
Δh

c
p
T

, (9)

being the dimensionless Dufour effect ratio and the dimensionless specific enthalpy of
reaction, respectively. Here we have slightly changed the definition of Z̃ as compared to
our previous publication on the subject [3].
The temperature profile (6) is expressed in terms of the boundary conditions and two
parameters: φ and d. The parameter d has units of length and is commonly referred to
as the “penetration depth” of the chemical reaction [2, 6]. For simplicity we consider
here the limit Le → ∞. In this limit we have φ = L/d exactly and, hence, only one
parameter (φ) is independent. As can be easily verified by substituting φ = L/d in Eq. (7)
for Z̃ and then in Eq. (6), it turns out that in the large Le limit the temperature profile
is always linear, regardless of the value of φ. In spite of this, the concentration profile
induced by the temperature gradient depends on φ even for large Le. This is shown in
Fig. 1, for concentration profiles obtained from Eq. (6), and the corresponding expression
for Δgs(x). Profiles displayed in Fig. 1 are for large Lewis number (φ = L/d), and
for k

T
Δh̃/εD = −0.1. The data are divided by L/2 times the concentration gradient

∇c0 = −k
T
ΔT/T̄ that would be present when Lr = 0.

For a so-called “diffusion-controlled” process d � L, corresponding to small values
of φ. Conversely, if d � L we have a “reaction-controlled” process (also referred to as
“activation-controlled” or activated processes), implying large values of φ. The limit φ →

0 corresponds to no chemical reaction present (Lr = 0), the system is extremely diffusive
and the concentration profile becomes fully linear. The limit φ → ∞ corresponds to a
extremely reaction-controlled process and the concentration profile is mostly determined
by the enthalpy of reaction, except in two small boundary layers.

3 Nonequilibrium fluctuations

We have evaluated the concentration fluctuations around the steady-state profiles de-
scribed in the previous section [3] by applying a standard version of fluctuating hydro-
dynamics [1], including fluctuating parts in the dissipative fluxes. To simplify the set of
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Fig. 1: Concentration profile for Le → ∞ and three values of φ. The limit φ = 0
corresponds to no chemical reaction present. Large values of φ correspond to a reaction-
controlled process.

governing equations we employed a large Lewis-number approximation, as in previous
work for nonreacting mixtures [7]. In this limit temperature fluctuations can be neglected
and only the coupling between velocity and concentration fluctuations needs to be con-
sidered.
One further simplification is that we identify the stationary concentration gradient that,
initially, is a position-dependent magnitude with its value at the center of the cell. This
approximation is consistent with having neglected the position dependence of all thermo-
physical properties of the mixture. With this approximation, the non-equilibrium structure
factor depends only on the value ∇cs|L/2 of the concentration gradient at L/2, and not on
the detailed cs(x). Hence, our final result will be only slightly sensitive to whether a linear
or a nonlinear (numerical) approach is used to obtain the stationary solution of (6). Fur-
thermore, we do not consider boundary conditions for the fluctuating fields in the present
work. In general, boundary conditions are not needed to reproduce the proper asymptotic
behavior of the non-equilibrium hydrodynamic fluctuations at small wave lengths (but still
large enough to be in the hydrodynamic regime) [1, 7]. Due to confinement, deviations
from our solution are expected for larger wavelengths.
After the chain of approximations summarized above, the intensity of nonequilibrium
concentration fluctuations in terms of a dimensionless wave number q̃ = qL is given
by [3]:

S
cc

(q) = S(E)
cc

{
1 + S̃(NE,0)

cc

q̃2
‖

q̃4 [q̃2 + φ2]

}
, (10)

where S
(E)
cc is the equilibrium intensity of concentration fluctuations [3], which is unaf-

fected by the presence of a chemical reaction [8], and S̃
(NE,0)
cc represents a normalized

non-equilibrium enhancement of the concentration fluctuations:

S̃(NE,0)
cc

=

(
∇cs|L/2

)2

νDL4

(
∂Δg

∂c

)
T

. (11)
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Equation (10) exhibits the typical structure of non-equilibrium fluctuations, containing a
non-equilibrium enhancement which explicitly depends on the wave number q, so that
the equal-time non-equilibrium concentration fluctuations are spatially long ranged. The
non-equilibrium enhancement exhibits a crossover from the well-known q−4 dependence
observed in nonreacting liquid mixtures [1] to a q−2 dependence for smaller wave num-
bers. The q−2 behavior is the one typically found when studying long-range nonequi-
librium fluctuations in isothermal reacting mixtures [1, 8, 9]. The crossover from a q−4

(nonisothermal nonreacting) to a q−2 (nonequilibrium but isothermally reacting) behavior
occurs at wave numbers of the order q̃CO � φ, which (in the large Le limit) is the inverse
of the penetration depth of the stationary solution, Fig. 1. Penetration depths in reacting
liquid mixtures typically vary from 0.01 to 1 cm [2], so that for a layer with L � 1 mm
dimensionless φ values range between 0.1 and 10.
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Fig. 2: Dimensionless enhancement of non-equilibrium concentration fluctuations as a
function of dimensionless wave number, q̃ = qL, for φ = 2. The crossover from the
asymptotic q−4 dependence to a q−2 dependence at smaller wave numbers is evident.

As an illustration of our results we present in Fig. 2 a plot of the dimensionless nonequi-
librium enhancement of the concentration fluctuations as a function of the dimensionless
wave number. The plot is for φ = 2, which is an intermediate value. Figure 2 shows a
clear crossover from the asymptotic q−4 dependence at larger wave numbers (unaffected
by the chemical reaction) to a q−2 dependence for smaller wave numbers. When the
process is diffusion controlled φ is small, the concentration profile is almost linear and
nonequilibrium fluctuations show a q̃−4 dependence in most of the range. Conversely,
for reaction-controlled processes φ is large and the q̃−2 dependence dominates plots like
Fig. 2.
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Abstract

Numerical simulations of convection in binary mixtures in 2-dimensional containers have
shown the existence of confined states that consist of regions of developed steady convec-
tion surrounded by quiescent fluid [1]. These localized states or convectons, in an infinite
domain can contain an arbitrary number of convection rolls [10].
The confined states are organized into a pair of branches that snake towards the spatially
periodic SOC state in the parameter space [6]. As this occurs the convectons add rolls in a
pairwise fashion, thereby becoming broader and broader until the entire cell is filled. We
also show that the snaking branches originate in an Eckhaus bifurcation from the uniform
steady state and that the width of the snaking region depends on the separation ratio of the
system. The existence of these states in 3-dimensional containers is also demonstrated.
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1 Formulation of the problem

Binary mixtures are characterized by cross-diffusion quantified by the separation ratio S.
When S < 0 the heavier component (of concentration C) migrates up the temperature
gradient. Thus in a layer heated from below the destabilizing temperature gradient com-
petes with a stabilizing concentration gradient that develops in response to the heating.
The system is described by the dimensionless equations

u
t
+ (u · ∇)u = −∇P + σR[(1 + S)θ − Sη]ẑ + σ∇2

u, (1)

θ
t
+ (u · ∇)θ = w + ∇

2θ, (2)

η
t
+ (u · ∇)η = τ∇2η + ∇

2θ, (3)

together with the incompressibility condition

∇ · u = 0. (4)

Here u ≡ (u, w) is the velocity field in (x, z) coordinates, P is the pressure, and θ de-
notes the departure of the temperature from its conduction profile, in units of the imposed
temperature difference ΔT = T1 − T0 > 0 across the layer. The variable η is defined
such that its gradient represents the dimensionless convective mass flux. Thus η ≡ θ−Σ,
where C = 1 − z + Σ is the concentration of the heavier component in units of the
concentration difference that develops across the layer as a result of cross-diffusion. The
system is specified by four dimensionless parameters: the Rayleigh number R providing a
dimensionless measure of the imposed temperature difference ΔT , the separation ratio S
that measures the resulting concentration contribution to the buoyancy force due to cross-
diffusion, and the Prandtl and Lewis numbers σ, τ , in addition to the aspect ratio Γ. We
adopt no-slip, fixed temperature and no mass flux boundary conditions at the horizontal
plates, and periodic boundary conditions in the horizontal direction, with period Γ.
Equations (1)-(4) are solved in two dimensions using a spectral code, with a Fourier ex-
pansion in the horizontal and a Chebyshev collocation method in the vertical. For the
time evolution a second order time-splitting algorithm proposed in [2] is used. Below we
describe our results for water-ethanol mixtures with parameter values used in different
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Fig. 1: Branches of odd and even confined steady states for a mixture with σ = 6.22,
τ = 0.009 and (a) S = −0.021, (b) S = −0.127, both in a Γ = 14 domain.
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Fig. 2: Temperature θ and concentration C in a large convecton almost filling the domain
(top of the snaking region).

experiments [3, 4]. In addition, to calculate steady solutions in an efficient manner we
have adapted a pseudo-spectral first-order time-stepping formulation to carry out New-
ton’s method [5], and implemented a continuation code to follow branches of stationary
solutions.

2 Branches of snaking solutions

We have seen that the convectons are organized into a pair of branches that snake towards
the spatially periodic SOC state [6]. As this occurs the convectons add rolls in a pairwise
fashion, thereby becoming broader and broader. We have attributed this behavior to the
presence of a pinning interval in the Rayleigh number characterized by fronts separating
the conduction and convection states, which are locked to the latter [7]. Although we
have not studied the stability of these states in detail we have confirmed the existence
of multiple coexisting stable convectons within the pinning region in sufficiently long
domains.
In figure 1(a) we show a pair of snaking branches for a mixture with S = −0.021 in a
Γ = 14 domain. Both solutions bifurcate from the SOC branch at R = 1752.10 below
the saddle-node. This bifurcation point corresponds to an Eckhaus instability of the SOC
state with n rolls to perturbations that break its invariance under the translations TΓ/n

.
We have independently calculated the location of this bifurcation using spatial Floquet
analysis with d = 1/n [8], and found a perfect agreement with the steady state branch
calculation. Thus we can predict the existence of different snaking branches using linear

T
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σ= 6.22 τ= 0.009  S=−0.021  R=1864 Γ=20

C
on

c.

Fig. 3: Temperature θ and concentration C in a small convecton at the bottom of the
snaking region.
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stability analysis, and compute these branches by adding a small perturbation to the SOC
state and following the branches into the snaking regime.
Figure 1(b) shows that the width of the snaking region depends on the separation ratio of
the system: the existence region of confined solutions is substantially wider when S =
−0.127 than for S = −0.021. This is a consequence of a larger interval of subcriticality
of the SOC state when S = −0.127. Note that the amplitudes of the snaking in the odd
and even branches differ, with the even branch snaking with a much larger amplitude.
Nonetheless both branches are born simultaneously in an Eckhaus bifurcation that takes
place at R = 1799.5.

Fig. 4: Three-dimensional convecton in a He3-He4 mixture. Confined steady steate (left)
and snapshot of a confined oscillatory steate (right).

3 3D states

All the solutions presented thus far assume that the dynamics are two-dimensional, i.e.,
that the rolls are invariant under translation along the roll axes, and that there are no in-
stabilities breaking this invariance. In experiments in narrow annular domains transverse
instabilities are suppressed, but the influence of the walls transverse to the rolls remains.
In previous work [9] we have analyzed how the stability of the basic state is modified in
the fully 3D case, and found significant differences from the 2D case. We show here, via
direct numerical simulation for He3-He4 parameters, that convectons persist in a narrow
3D cell. For these parameters 2D convectons are known to be present in a broad interval
of Rayleigh numbers [10]. We use a rectangular box of aspect ratio Γ

x
= 10, Γ

y
= 1,
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with a 200 × 30 × 20 grid. Preliminary results show that convectons are indeed present
and stable in this system, and exhibit the same properties as their 2D counterparts, i.e.,
coexistence of stable convectons with an arbitrary number of rolls, suggesting a snaking
structure. Surprisingly we have also found a completely 3-dimensional confined oscilla-
tory state that consists in a single cell attached to an end-wall.

4 Conclusions

We have shown the existence of confined steady states in binary fluid convection, and
explained some of their observed properties in the framework of the snaking fenomena
they display. We have also demonstrated the existence of these states using 3-dimensional
numerical simulations in a closed container with realistic boundary conditions. Unexpect-
edly we have also obtained a new kind of confined oscillatory state that have a completely
3-dimensional character.
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Abstract
The paper is devoted to studying the ferroparticle transfer in non-isothermal capillary 
porous layer in the presence of a steady uniform magnetic field. The examined two-
component ferrofluid consists of magnetite nanoparticles coated with oleic acid and 
suspended in tetradecane. The measured thermoosmotic pressure difference is directed 
toward the temperature gradient. The unsteady pressure curve primarily grows and after 
reaching a maximum starts to decrease exponentially. Homogeneous magnetic field B, 
directed normally to the membrane, causes a growth of the pressure difference. The 
measurement results are interpreted in frame of linear theory of irreversible 
thermodynamics. Three fluxes ji (the flow of solvent j1, the particle flux j2 and the heat 
flux j3) contain three summands proportional to thermodynamic driving forces i

(gradients of pressure p, particle chemical potential c and temperature T). Approximate 
solution of simplified filtration equations allows evaluating from measured pressure 
curves the filtration coefficient, the coefficients of solutal osmosis and thermoosmosis as 
well as (employing the Onsager relations) the coefficient of particle convective transfer. 
External magnetic field induces an additional pressure difference across the porous layer 
and evokes an increase in the chemical potential of particles. Due to dependence of fluid 
magnetization on both the particle concentration and the temperature, the field effects 
manifest themselves as an increase in thermoosmotic pressure and some reduction of 
solutal osmosis. The separation curves calculated in frame of such model employing the 
evaluated transport coefficients agree well with experiments performed in the presence of 
a uniform magnetic field oriented normally to the membrane.  
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1 Introduction 
Magnetic nanoparticles and ferrocolloids have interesting medical application 
possibilities. One the most popular novel idea is magnetic hyperthermia of tissues, 
particularly for cancer treatment. Unsteady magnetic field of relatively low amplitude and 
of median frequency may cause intensive energy dissipation in colloidal particles. The 
heating induces remarkable temperature gradients in surrounding medium and may cause 
a particle thermophoretic or thermoosmotic transfer. Since the heating intensity depends 
on particle concentration, it is important to investigate the dynamics of particle transfer in 
tissues. Besides, the nanoparticle transfer in porous media is an important problem also for 
technical applications. Preliminary experiments indicate significant changes in particle 
separation in non-isothermal porous layers [1] and strong intensification of particle 
thermal transfer through a grid in the presence of a magnetic field [2]. The present paper is 
devoted to studying the ferroparticle transfer in non-isothermal capillary porous layer in 
the presence of a steady uniform magnetic field. 

2 Experimental
The mass transfer experiments are performed employing two equal cylindrical volumes 
(V0 = 2.65 cm3) kept at different temperatures (lower temperature below) by water-flow 
thermostats and divided by chemically stable wide-pore capillary layer of thickness  = 
0.78 mm formed by five separate filter sheets. The porosity of the filter  = 0.8, the 
average pore diameter 1 m. The cross-sectional area of the filter S = 1.8 cm2. The 
volumes are connected to differential hydrostatic manometer. The manometer tubes of 
cross sectional area s = 5.7   mm2 are located outside the thermo-stated regions and have 
equal temperatures. Thermoosmotic pressure (difference of fluid level in tubes h) is 
measured by a web camera and processed by PC. The examined two-component ferrofluid 
consists of magnetite nanoparticles coated with oleic acid and suspended in tetradecane. 
Special efforts are made to remove any excess of surfactant (its part not chemically 
bounded with nanoparticles). The volumetric concentration of magnetic phase in colloid 

2 = 0.05, the mean “magnetic” radius of colloidal particles r = 4.1 nm. The measured 
thermoosmotic pressure is directed toward the temperature gradient. Unsteady pressure 
difference primarily grows but after reaching a maximum starts decreasing exponentially. 
A homogeneous magnetic field B, directed normally to the membrane, causes a growth of 
the pressure difference.  

3 Results and Discussion 

3.1 Phenomenological model and dynamics of thermoosmosis 
The measurement results are interpreted in frame of linear theory of irreversible 
thermodynamics [3]. Three fluxes ji (the flow of solvent j1, the particle flux j2 and the heat 
flux j3) contain three summands proportional to thermodynamic driving forces i
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(gradients of chemical potentials of solvent 1 and solute 2 and gradient of temperature 
T). The potential 1 is proportional to molar volume of solvent V1 and pressure p ( 1 =
V1 p), but 2 depends on ratio between volume fractions of solutes 2 and of solvents 1 =
1- 2: 2 = RT ln( 2/(1- 2). In colloids of low particle concentration ( 1 = 1, 2 = << 1) 
the mass fluxes of solvent and solutes can be written in the following form (V2 is molar 
volume of solute): 

T
TVRTVpV 113112

2
11111 /uj (1)

T
TVRTVpVV 223222212122 uj (2)

The phenomenologic coefficients ik are related to transport coefficients which can be 
detected experimentally by following dependencies: filtration gVa 2

111 , osmosis 
RTVd 112 , thermoosmosis TVdT /113 , reverse osmosis /2121 gVVA , mass 

diffusion /222VD  and thermodiffusion )/(223 TVDT . Then the equations (1) 
and (2) obey the following form: 

Tdd
g
pa T1u (3)

TDD
g
pA T2u (4)

Solvent flux (3) causes a development of liquid volume difference in both chambers which 
results in appearing a liquid level difference h in tubes subjected to both volumes for 
osmotic pressure measurement. Both the mass flux (4) and the solvent flux (3) cause 
development of particle concentration difference in both chambers. As a result the mass 
conservation equations for solvent and for solute are interrelated. To simplify the problem, 
the present analysis is preformed assuming that osmotic processes relax significantly 
faster than phoretic ones. Besides, a relatively slow relaxation of pressure curves allows 
considering steadiness of the concentration gradients in filter layer. Under such 
simplifications the solution of mass conservation equations with the account of (3) and (4) 
give:

)]exp(1[)]exp()[exp( tctth
(5)

where 2

2
s
Sa ,

0V
Sm , 2

2
ms

ndS ,
m
ndTd

s
Sc T2

2 , TDAhDdm Tee22

and )(2 AhahTDTdn TeT .

4.2 171



0

5

10

15

20

0 400 800 1200 1600

TIME [sec]

P
R

E
S

S
U

R
E

 [m
m

 T
D

] 

B=0
approximation
B=0.035
calculation

Fig. 1: Dynamics of thermoosmotic pressure. Fitting parameters found for curve with 
B = 0 are used to calculate the curve with B = 0.035 T.

Mass transfer through the layer is influenced not only by hydrostatic pressure but also by 
magnetic field H. If  or temperature at both sites of the layer is different, even uniform 
transversal field induces a magnetic pressure difference across the layer [4]: 

)(
2

220
hcch MMppp (6)

The chemical potential of magnetic solute also is field dependent. For colloids of 
Langevin type magnetization ((vp is particle volume, Ms – saturation magnetization of its 
material) 

)1(coth)( 22 ss MLMM    
kT

HMv sp0 (7)

the molar chemical potential 2 (for one particle) is [5]: 

]sinhln)1/([ln(2 kT (8)

The fluid magnetization M and the internal magnetic field H (since H=- M at B=const) 
depend on particle concentration and on temperature. As a result the magnetic field effects 
determined by (6) and (7) manifest themselves as an increase in thermoosmotic pressure, 
changes of solutal osmosis and, possible, as a magnetodifffusion and a magnetic Soret 
effect.
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3.2 Comparison with experiments 
Experimental curves of osmotic pressure dynamics presented in Fig. 1 agree well with the 
expression (5). Under long time the unsteady pressure difference relaxes to a zero (c = 0). 
This concedes an assuming that the mass transfer through the layer is influenced mostly 
by osmotic processes whereas the particle transport (convective, diffusion and 
thermodiffusion) is small (only first summands of m and n should be taken into account). 

The fitting constants and found from the zero-field experiment, correspond to the 
following values of transport coefficients: d = 1.1 10-8 m2/s, dT = 2.9 10-11 m2/s, a = 
9.4 10-11 m2/s. Additionally, the Onsager relation 12 = 21 allows calculating the 
coefficient A = 1.1 10-11 m2/s. The diffusion coefficient of nanoparticles D=kT/6 r = 
1.2 10-11 m2/s. Since the Soret coefficient ST 0.12 1/T [2], the thermodiffusion coefficient 
also is small DT 1.4 10-12 m2/s K. Since the filtration velocity of solvent in pores is very 
slow, the coefficient a may be calculated directly employing Darcy law according to 
which a = K g /  with K being the filter permeability [6]: 

2

32

)1(150
cdK (9)

Such calculations give slightly higher value a=1.3 10-10 m2/s.
The obtained coefficients d and dT T (experiments are performed at temperature 
difference T= 50 K) are significantly higher than the other transport coefficients. This 
means that the simplifications, mentioned in previous sections, mostly are well grounded 
and the solution (5) reflects the physical problem correctly. Nevertheless, there are some 
problematic moments: an uncertainty of initial thermal conditions (relaxation of 
temperature in chambers lasts approximately 40 - 60 s) and unsteadiness of concentration 
gradient in initial stage (relaxation of concentration inside the layer td = 2/d lasts 20 – 30 
s). Besides, partial influence of filtration and reverse osmosis might also be a reason why 
the curves in initial regime disagree with the exponential law (5) (terms with h in m and n
may not be neglected). 
The dashed curve of Fig. 1 is calculated employing the above given values of a, d and dT
and introducing in equations (3) and (4) the magnetic summands of pressure and chemical 
potential. It is assumed that the fluid magnetization obeys Langevin law (7) and the 
pyromangetic coefficient of particles is detected experimentally from measurements of 
saturation magnetization of the colloid. The presented in Fig. 1 results show relatively 
good agreement between the calculation and the experiment.  

4 Conclusions
The mass transfer of hydrocarbon based ferrocolloids in nonisothermal wide-pore 
membrane is determined mostly by osmotic and thermoosmotic forces. Magnetophoretic 
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force and surface pressure cause increase of osmotic flux and of thermoosmosis, whereas 
the opposite effects (magnetic Soret effect and magnetodiffusion of particles) are small. 

Acknowledgment 
The work is supported by Latvian Science Foundation (Project 05.0026) and European 
Regional Development Foundation, ERAF Latvia,  
(ERAF/CFLA/05/APK/2.5.1/000002/002).

References 
[1] E. Blums, G. Kronkalns, M.M. Maiorov, A. Mezulis, J. Magn. Magn. Materials, 289

(March, 2005), 275-277. 
[2] E. Blums, The European Physical Journal E - Soft Matter, 15, (November 2004) No. 3, 

271-276.
[3] N. V. Churaev. Physical Chemistry of Heat and Mass Transfer Processes in Porous 

Media (Himiya, Moscow, 1990). 
[4] E. Blums, Yu. A. Mikhailov and R. Ozols. Heat and Mass Transfer in MHD Flows

(World Scientific, Singapore, 1987). 
[5] E. Blums, A. Cebers and M. M. Maiorov. Magnetic Fluids (Walter de Gryuter & Co., 

Berlin - New-York, 1997). 
[6] A. V. Lykov, Heat and Mass Transfer Handbook, (Energia, Moscow, 1972). 

174 Convection and confinement



Quasiperiodic gravitational modulation of 
convection in magnetic fluid 
T. Boulal1, S. Aniss1, M. Belhaq1

1University Hassan II Aïn Chock, Laboratory of Mechanics, Faculty of Sciences,  
BP 5366 Maârif, Casablanca, Morocco 

E-mail: tboulal@yhoo.fr, s.aniss@fsac.ac.ma, m.belhaq@fsac.ac.ma

ABSTRACT
Thermal instability in a horizontal Newtonian magnetic liquid layer with non-magnetic 
rigid boundaries is investigated in the presence of a vertical magnetic field and a 
quasiperiodic forcing. The analysis is restricted to static and linear law of magnetization. 
Performing a Galerkin projection truncated to the first order, the governing linear system 
corresponding to the onset of convection is reduced to a damped quasiperiodic Mathieu 
equation. The threshold of convection corresponding to quasiperiodic solutions is 
determined in the case of a heating from below. We show that a modulation with two 
incommensurate frequencies has a stabilizing or a destabilizing effect depending on the 
frequencies ratio. The effect of the Prandtl number is also examined for different 
frequency ratios. 

4.3 175



1 FORMULATION 
Consider a magnetic fluid layer bounded between two non magnetic horizontal plates, 
having respectively constant temperatures, oT  at 2/dz  and 1T  at 2/dz  )( 1TTo .
Assume that the fluid layer is submitted to vertical quasiperiodic motion according to the 
law of displacement, )(cos)(cos 2211 tbtbz , in the presence of the external vertical 

magnetic field, kH o
ext H . The dimensional frequencies, 1  and 2 , are 

incommensurate. The parameters 1b  and 2b  are the amplitudes of motion, oH  is a 
constant magnetic field and k is the unit vector upward. By means of a Galerkin projection 
truncated to the first order and trial functions used in [1-2], the governing linear system 
corresponding to the onset of convection is reduced to the following damped quasiperiodic 
Mathieu equation 

0g)cos()cos(
d
dg2

d
gd

12

2
(1)

Here )(g  is the amplitude of temperature, t1 ,
1

1
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qq
c . Note that 1  and 2  are the 

dimensionless frequencies of 1  and 2 , respectively. 

The parameters q, Pr, o  and 1Fr  denote the wave number, the Prandtl number, the 
magnetic susceptibility and the Froude number, respectively. In this case, the gravitational 
and magnetic Rayleigh numbers are 

3
1o d)TT(gRg , 3

o

2
o

22
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2
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)1(
Hd)T-T(Rm (2)

where
a

o
a T

 (Ta is the average temperature), o  the magnetic permeability,  the 

kinematics viscosity,  the dynamic viscosity,  the thermal diffusivity and  the 

coefficient of thermal expansion. The quantity 2

242

121
31306245044

q
qqqRo

corresponds to the Rayleigh number of the marginal stability curve for the classical 
Rayleigh-Bénard problem.
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2 RESULTS AND DISCUSSION 

2.1 Stationary Onset of Convection of the Unmodulated case 
The stationary convective instability of a horizontal magnetic liquid layer heated from 
below in the presence of an uniform vertical magnetic field was predicted by Finlayson 
[3]. Here, we obtain, from equation (1), the stationary marginal stability curve given by 

0  and then 03 RmcRgRo .

2.2 Quasiperiodic Parametric Convective Instability 
To produce quasiperiodic parametric resonance in equation (1), we introduce the change 
of variables inspired from the work by Gresho and Sani [4] 

RaRgRmo RafRm 2
m

where Ra  is a positive number and mf  is an arbitrary positive constant. The ratio of the 
magnetic and gravitational forces is now defined by 

1f
f

Rg
R

M 2
1m

2
1mm

2 (3)

Following [5], we use the harmonic balance method to determine the marginal stability 
curves by means of expansion 

0n m
nmnm 2

mnsinB
2
mncosAtg (4)

in which we may set, without loss of generality, mnmn AA ,,  and mnmn BB ,, .
Approximate results are obtained by a truncation of the infinite sums in Equation (4) and 
then replaced by sums from 0 to N for n and from –N to N for m, respectively. Equations 
(1) and (4) allow us to obtain two homogenous algebraic systems in nmA  and nmB  which 
can be combined to obtain one homogenous system in nmA . This system will have a 
nontrivial solution only if its determinant vanishes. For each N , the dimension of this 
system is 122 2 NN . For the case 4N  considered in the current paper, the 
corresponding system dimension is 41. Nevertheless, the analysis is facilitated by putting 
the system in upper triangular form. In this analysis, the vanishing determinant can be 
given formally in the form 0,,,,,,, 110 FrPrfmqRmF  in which all parameters of 
the physical problem are taken into account. The marginal stability curves qRm  are 
determined numerically by fixing the arbitrary positive constant fm , the magnetic 
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susceptibility 0 , the dimensionless frequency 1 , the frequency ratio , the Prandtl 
number Pr  and the Froude number 1Fr . Hereafter, we focus attention on the curves 
corresponding to the critical magnetic Rayleigh number cRm and wave number cq  versus 
the dimensionless frequency 1 .

Figure 1 illustrates the evolution of the critical magnetic Rayleigh number as a function of 

1 ( 300100 1 ) for different values of the frequencies ratio, 
37
1 , 2  and 

37 . Note that the value 2542cRm  corresponds to the unmodulated case. These 
results show that the modulation with two incommensurate frequencies has a stabilizing or 
a destabilizing effect depending on the ratio of the frequencies. This finding is an 
extension of a previous study in which only a periodic modulation was considered [2]. 
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Fig. 1: Heating from below - Evolution of the critical magnetic Rayleigh number Rmc  vs 
dimensionless frequency 1 for different values of the irrational frequencies ratio .

We illustrate in Figure 2 the dependence of the critical magnetic Rayleigh number, cRm ,
on the Prandtl number, Pr, for 1201 , 4

1 106.1Fr  and for different values of the 
irrational frequencies ratio. It can be seen from figure 2 that the largest critical magnetic 
Rayleigh number, corresponding to the maximum of stabilization, increases with 
decreasing  and then the stabilizing effect decreases with the frequency ratio. However, 
for high values of Prandtl number, the critical magnetic Rayleigh number for all the 
profiles tends, as expected, to the value of the unmodulated case. 
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3 CONCLUSIONS
In this work we have studied the effect of vertical quasiperiodic oscillations on the onset 
of convection in an infinite horizontal magnetic liquid layer with rigid boundaries. The 
linear equations of convection are reduced to a damped quasiperiodic Mathieu equation 
where the quasiperiodic solutions characterize the onset of convection. Furthermore, the 
effect of the frequencies ratio on the convection threshold has been observed. This ratio 
plays an important role in controlling the onset of convection.
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Fig. 2: Heating from below - Evolution of the critical magnetic Rayleigh number cRm
vs Prandtl number Pr  for different values of the irrational frequencies ratio .
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Abstract
The presence of a temperature gradient in porous media may generate mass fluxes 
associated to Soret effect. This can modify species concentrations of the fluids flowing 
through the porous media and lead to local accumulations. In this study, we determine the 
effective Darcy-scale, coefficients for heat and mass transfer in porous media using a 
volume averaging technique. Especially, we study the influence of the Péclet number and 
the conductivity ratio on the effective thermodiffusion coefficients. The closure problems 
related to the pore-scale physics are solved over periodic unit cells representative of the 
porous structure. The results show that, for low Péclet number, the effective Soret number 
in porous media is the same as the one in the free fluid and that it does not depend on the 
conductivity ratio. On the opposite, in convective regimes, the effective Soret number 
decreases. In this case a change of conductivity ratio will change the effective 
thermodiffusion coefficient as well as the effective thermal conductivity coefficient. The 
macroscopic model obtained by this method is validated by comparison with direct 
numerical simulations at the pore-scale. A good agreement is observed between 
theoretical predictions coming from the resolution of the macro-scale problem and 
numerical simulations at the pore-scale. This demonstrates the validity of the proposed 
theoretical model. 
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1 Introduction 
Modeling and description of mass transport in porous media is still a basic challenging 
problem in many applications: reservoir engineering, chemical engineering, environmental 
hydrology, etc. Several studies have been devoted to the description of two-phase flow 
[2], reactive media [4] and multi-component mixtures [1]. In the meantime, the considered 
media can also be subjected to thermal gradients coming from natural origin (geothermal 
gradients, intrusions, …) or from anthropic anomalies (waste storages, …). This can 
dramatically modify the concentrations of the fluids flowing through the porous medium 
[3].
The aim of this study is to characterize the modifications induced by thermodiffusion on 
mass transport in porous media. The main objective is the determination of the effective 
thermodiffusion coefficient using a volume averaging technique.  

2 Upscaling and macroscopic equation 
We consider in this study a binary mixture flowing through the porous medium subjected 
to a thermal gradient. It is well known from irreversible thermodynamics that the mass and 
heat fluxes are affected by Soret and Dufour effects respectively. In this study, we neglect 
the Dufour effect, which is a correct approximation for liquids. Furthermore, we assume 
that the physical properties of the fluid and solid are constant. Stokes’s equation is used 
for describing the flow motion at the pore-scale. The pore-scale mass conservation is 
described by the following equation and boundary conditions for the fluid phase ( -
phase)

Tc.
ReSc

1c.
t

c
v ,  in the -phase (1)

BC1: 0Tc.n , at A (2)

where c  , T  are the concentration and temperature fields, and the dimensionless 
numbers , Re  and Sc  are separation factor, Reynolds and Schmidt numbers 
respectively. 

Because the direct solution of the convection-diffusion equation is in general impossible 
due to the complex geometry of the porous medium, equations describing average 
concentrations and velocities must be developed [4]. After performing the volume 
averaging on the original boundary value problem and solving the associated closure 
problem in a representative unit cell, the final form of the transport equations contains 
local averages, rather than micro-scale point values. Thus, the microscopic equations that 
hold for a point in space are developed into the appropriate macroscopic equations, which 
hold at a given point for some volume in space. 
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The equations of conservation of mass at the Darcy-scale have been obtained, in 
dimensionless form as 

T.
D
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D

.
ReSc

1c.
t
c

T

* *
TDD

v (3)

where *D  and *
TD  are effective diffusion and thermodiffusion tensors. T , c  and 

v are the macroscopic temperature [2], the intrinsic average concentration and the 
interstitial average velocity, which obeys Darcy’s law. 

3 Results and Discussion 

3.1 Effective tensors 
From the upscaling procedure, the effective coefficients in the Darcy-scale equations may 
be obtained by solving so-called pore-scale “closure problems” on periodic unit cells 
representative of the porous structure. These closure problems were solved for different 
Péclet numbers and thermal conductivity ratios. Results for the effective Soret number 
( DDS TT ) are illustrated in Fig. 1, where Pe  is the cell Péclet number. 

Fig. 1: Effective Soret number  as a  function of Péclet number ( 0k ) 

This figure shows that, for the diffusive regime, one can use the same Soret number at the 
Darcy-scale as the one in the free fluid ( 1S*

T TS ). Beyond 1Pe  the Soret effect 
decreases with increasing convection. Thermal properties of the fluid and even the solid 
matrix have also to be taken into account in the thermodiffusion process, as shown in Fig. 
2. This figure shows that increasing the solid thermal conductivity increases the value of 
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the effective thermodiffusion coefficient for convective regimes but it has not influence on 
thermodiffusion for diffusive regimes.  

Fig. 2: The influence of conductivity ratio ( kk ) on effective thermodiffusion 
coefficients  

3.2 Macroscopic simulation and validation 
In order to validate the theory developed by the up-scaling technique in the previous 
section, we have compared the results obtained by prediction from the one-dimensional 
macro-scale equations with the results obtained from direct simulations performed on a 
porous medium made of a 2D array of cylinders (Fig. 3). In the macro-scale problem the 
effective coefficients have been obtained from the solution of the closure problems. 

Fig. 3: Schematic of spatially periodic porous media ( HT : High Temperature and: 

LT Low Temperature).

Calculations have been carried out in the case of a binary mixture whose physico-chemical 
properties are general. Here we have fixed these properties to be 1Sc , 1Pr  and 

1. Microscopic scale simulations, as well as the resolution for the macroscopic 
problem, have been performed using COMSOL Multiphysics finite elements code. 
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Fig. 4 shows the spatial distribution of concentration at different times for a ratio of 
conductivity equal to 10 ( 0Pe ). The micro-scale values are cell averages obtained from 
the micro-scale fields. One observes a very good agreement between the micro-scale 
simulation and the macro-scale predictions. 
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Fig. 4: Comparison between macro and micro scale concentration ( 10kk ). 

In Fig. 5 the steady-state distribution of the concentration is plotted for different Péclet 
numbers. One can see clearly that the concentration profile changes with the Péclet 
number. For example, for 75.0Pe , because the medium has been homogenized 
thermally by advection in most of the porous domain, the concentration profile is almost 
the same as in the isothermal case (without thermodiffusion). Near the exit boundary, 
there is a temperature gradient which generates a considerable change in the concentration 
profile.
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4 Conclusions
In this study, we showed that the effective thermodiffusion coefficient may depart from 
the micro-scale value because of advection effects. For these convective regimes, it is 
shown that the effective thermodiffusion coefficient depends in a complex manner of the 
pore-scale properties (geometry, conductivity ratio, …). This may be of a great importance 
when evaluating the concentration in applications like reservoir engineering, waste 
storage, and soil contamination. 

It was found a good agreement between the macro-scale resolution and micro-scale, direct 
simulation, which validates the proposed theoretical model. 
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Abstract
The mechanisms of flow’s excitation and specific overcritical regimes of thermal 
convection in Hele-Shaw cell have been investigated experimentally and theoretically for 
binary mixes with well-known thermodiffusive properties. The influence of oscillatory 
regimes near the boundary of stability on dopant distribution has been studied. It is found 
for a binary mix with normal thermal diffusion that specific oscillatory flows take place 
near the threshold of convection in Hele-Shaw cell, similarly to connecting channels. 
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1 Introduction
In the case of normal Sore effect thermal convection of binary mix in a horizontal fluid 
layer heated from below develops as a result of instability with respect to monotonous 
disturbances. The same instability situation is observed for cavities of different forms that 
have wide horizontal boundaries. In similar cavities heated from below there is 
thermodiffusive division of mix components along vertical axis. So there is the opinion 
that the oscillatory convection in binary mix near the boundary of stability exists for only 
anomalous thermal diffusion when there is the competition of thermal gravitational 
mechanism of convection excitation and thermal diffusive one.  

Our experimental and theoretical results show that the oscillatory convection in binary 
mix is possible to be observed near the boundary of stability for normal thermodiffusion in 
specific conditions. According to the basic assumption explaining experiments the 
complex oscillatory regimes in binary mixes for positive Sore coefficient are determined 
by thermodiffusive division of mix components in horizontal plane when the fluid moves 
predominantly along vertical heat-conducting boundaries [1-3]. Thin Hele-Shaw cell and 
convective loop elongated in vertical direction (connected channels) are examples of the 
cavities in which the same flows could be observed. 

2 Experimental technique 
The laboratory model has been made to study convective flows in the Hele-Shaw cell 
experimentally (Fig. 1). The working cavity (height h = 32 mm, length l = 17 mm, and 
thickness 2d = 1.5 mm) is bounded from above and from below by heat exchangers. There 
are channels drilled in the heat exchangers to organize opposing flows of the 
thermostatting fluid. These conditions ensure uniform temperature along the upper and 
lower boundaries of the cavity. On the one side, the cavity is bounded by a plexiglass 
array 16 mm thick which made it possible to observe the flow. The large size of the arrays 
almost eliminates all external thermal effects. 

The temperature difference between heat exchangers and temperature distribution inside 
the cavity are measured by differential copper–Constantan thermocouples (the length of 
junctions inside the cavity is equal to 0.75 mm). Thermocouple data, taken by voltmeter 
V7-54/3 are processed by the personal computer. As a measure of the flow rate the non-
dimensional parameter  = / T has been used, where is the thermocouple reading and 

T is the vertical temperature difference between the heat exchangers.  

The mixtures of CCl4 in decane C11H22 and Na2SO4 in water had been used as the working 
fluids. The coefficients of concentration density of these mixtures are high. Therefore even 
small concentration gradients create fairly strong non-uniformities of density which cause 
the onset of convection. The mixtures were prepared in a glass flask and, before being 
poured into the cell, were thoroughly mixed for 10 – 15 min by intense shaking.  
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In pure fluids (water, decane and CCl4) heated from below, convection develops in 
accordance with the known theoretical and experimental results on the convective 
instability of one-component Newtonian fluids. 

2 mm

4

32 mm 

1,5 mm 

17 mm 

1

2

3 5

3
z

y

x

Fig. 1: Experimental setup; 1 – aluminum plate, 2, 4 – plexiglass plates, 3 – aluminum 
heat exchangers, 5 – working cavity. 

For small vertical temperature differences, these fluids are in stable mechanical
equilibrium. In this case the non-dimensional parameter is equal to zero. When the 
critical temperature difference is attained, a monotonous convective circulation flow 
branches softly from the equilibrium. The flow rate increases with the growth of
temperature gradient. The thermal Rayleigh number has been determined in terms of the 
temperature gradient T/H as follows:

4

tRa td Tg ,

where g is the gravity acceleration; t, ,  are thermal-expansion coefficient, kinematic
viscosity and thermal diffusivity. Sometimes, instead of the Rayleigh number it was more 
convenient to use the supercriticality parameter t = Rat/Ratc. Within the limits of
experimental error, the curve = ( t) was reproduced on both paths for increase and 
decrease of t. In the experiments, two flow directions occurred with the same probability: 
one with positive and other with negative value of thermocouple signal.

When the Hele-Shaw cell is occupied by a mixture of the working fluids, the results 
change qualitatively. The oscillatory growth of disturbances begins in the cell when the
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critical Rayleigh number is attained and, depending on the supercriticality and the initial 
conditions, ends in either a stationary circulation or in oscillating flow with alternation of 
the mixture circulation direction. Experimental points of stationary and oscillating regimes 
for mixtures with different concentrations = ( t) and theoretical amplitude curves are 
presented in Fig. 2. 

0

0.1

0.2

0.3

0 5 10 15 20 25 30

4
5

3
1 2

Ra

Fig. 2: Amplitude curves for binary-mixture flows in the Hele-Shaw cell: stationary flows 
for  = 0.36 (1),  = 0 (2) and  = – 0.2 (3); experimental data (4,5) as a functions of the 
supercriticality (t); 4 – oscillatory regimes, 5 – steady-state flow.

Theoretical graph = ( t) has a characteristic maximum with max  0.25 that agrees 
with the experiments and theory for connected channels. In the case t > 1 the process of 
transition from equilibrium ended in oscillations which were accompanied by a periodic 
change in the direction of one-vortex flow in the cell. These oscillations with constant 
amplitude were realized in the right-hand neighborhood of the critical point Ratc within a 
very narrow region ( t  1 – 1.2). 

Non-linear oscillations have been characterized by non-zero average value of 
thermocouple signal, see Fig. 3. Thus, in experiment convective instability of equilibrium 
in binary liquid mixtures is related with the oscillatory growth of the initial disturbances 
and is accompanied by hysteresis with respect to the Rayleigh number. Thus it is 
necessary to use the theory of thermoconcentration convection to explain these effects. 
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3 Theoretical investigation  

3.1 Equations system and non-dimensional parameters 
The Hele-Shaw cell has rigid, heat conducting boundaries. Coordinate system with the y-
axis oriented along the vertical has been presented in Fig. 1b. In this coordinate system a 
unit vector (0, 1, 0) is directed vertically upward. The cell is heated from below so that, 
on the vertical boundaries, a linear temperature distribution is maintained. It will be shown 
below that, for this temperature distribution, the binary liquid can be in a state of 
mechanical equilibrium.  

,T

,

Fig. 3: Thermocouple data in dependence on time when the temperature difference 
between heat exchangers decreases.

For modeling the convective flows of a binary mixture, we use the equations for an 
incompressible fluid obtained on the basis of the hydrodynamic equations in the 
Boussinesq approximation [4]: 

Ra
Pr
Hp T

t
v v v v C , div 0v (1)

1
Pr

T T T
t

v , 1
Sc

C C C
t

Tv (2)
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where v, T, p, C are the velocity, temperature, pressure, and heavy-admixture 
concentration fields. The scales used for non-dimensional variables in equations (1), (2) 
are: the cell’s half-width [d] for distance, [d2/ ] for time, [ ] for temperature, [ t/ c] for 
concentration, and [ 2/d2] for pressure. Here is the mean density of the fluid; is 
vertical temperature difference between the heat exchangers. Equations (1), (2) contain 
four non-dimensional parameters, namely: 

Pr , Sc
D

,
3

Ra t dg , c

t
.

Three parameters are the Prandtl, Schmidt, and Rayleigh numbers, respectively. 
Additional non-dimensional parameter in the problem characterizes the thermal diffusion 
in the mixture (  = kT/T, where kT is the thermodiffusion ratio). The coefficient c

describes the density dependence on concentration. In the case considered, c < 0 because 
CCl4 in decane and Na2SO4 in water are heavy admixtures. The effects associated with the 
presence of an admixture are also characterized by the diffusion D and thermodiffusion 

coefficients. In the approximation (1), (2), it is assumed that the diffusion and heat 
fluxes are related with the concentration and temperature gradients by the formulas 

, , where is the thermal conductivity.  D C TJ Tq

In the calculations, on vertical boundaries of the cell the no-slip condition v = 0 is 
imposed. The cell’s walls were assumed to be perfectly heat-conducting. Accordingly, on 
the vertical wide boundaries of the calculation domain the temperature disturbances were 
zero. Moreover, on the impermeable rigid walls the normal component of the diffusion 
flux density Jn vanishes. The boundary condition for non-dimensional diffusion flux 
density has the form: 

0T
n n (3)

3.2 Mechanical equilibrium state 
At a certain value of the temperature gradient, mechanical equilibrium state exists that is 
characterized by the absence of fluid motion (zero velocity): 

0
t

,  ,  0v 0p p , 0T T , 0C C .

Here T0, p0, and C0 are the equilibrium temperature, pressure, and admixture 
concentration. Applying the curl operator to equation (1) for momentum, we obtain the 
system of equations for a binary mixture in the state of mechanical equilibrium 

0 0 0T C , 0 0T , 0 0C , (4)
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In what follows, the specific case of constant temperature gradient has been analyzed that 
corresponds to the linear temperature distribution T0 = z/H and heating from below. In 
this case, the Laplace equation for the temperature is satisfied identically. The other 
equations of system (4) make it possible to find the equilibrium admixture distribution in 
the channels formed as a result of thermal diffusion. With account for boundary condition 
(3) on the upper and lower channel boundaries, the linear vertical heavy-admixture 
concentration distribution has been received C0 = z/H.

3.3 Method of solution 
The height and length of the Hele-Shaw cell are greater than the width one H >> d in 
experiments. This make it possible to use the plane-trajectory approximation v(vx, vy, 0) 
and to introduce stream function in the calculations ,x yv y v x .

The fields of temperature deviation and stream function for one-vortex flow are 
approximated by trigonometric functions. Also it is convenient to introduce the new 
variable F = C + T. Taking into account the structure of the equations, the expansion of 
the field F(x,y,z,t) can be represented with the help of special combinations of 
trigonometric functions. Substituting the expansions for , T and F in the original 
equations (1), (2), after application of the Galerkin procedure the system of amplitude 
equations for 11, t02, t11, f02, f11 take place which is solved numerically using a standard 
integration Mathlab-7 procedure. The calculations were performed using the time-
relaxation method. Also analytical solution of the problem has been received in stationary 
case.

4 Results and Discussion 
In accordance with the experiments, the calculations were performed for Hele-Shaw cell 
with non-dimensional height H = 42 and length L = 22. In a homogeneous liquid  = 0, as 
the critical Rayleigh number is exceeded, convection takes place “softly” (Fig. 2, curve 2).
Depending on the initial disturbance, one-vortex flows with both directions of circulation 
may develop in the cell. The situation changes radically if an admixture is present in the 
liquid. It follows from Fig. 2 that, development of intensive convection is “hard” for 
anomalous thermodiffusion, with the threshold being determined by an increase in the 
oscillatory disturbances. In the experiments for the mix Na2SO4 in water the Schmidt 
number was much greater than the Prandtl number, thus realistic values of parameters 
were taken as Pr = 7, Sc = 2100,  = 0.36 in the calculations that corresponds to this 
admixture with normal thermodiffusion. For a small supercriticality, a disturbance 
introduced into the fluid grows and then the stationary flow with small amplitude is 
established. In the calculations, non-linear oscillating regimes are observed for moderate 
values of supercriticality (Fig. 4) which are similar to experimental oscillations (Fig. 3).  
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Fig. 4: Thermocouple data in dependence on time when the temperature difference 
between heat exchangers decreases.

The calculations performed for positive and negative values of the coefficient 
satisfactorily describe the experimental results. The mechanism responsible for the 

effects observed is mainly attributable to the thermodiffusion separation of the mixture 
which is due to the horizontal temperature gradients xT, yT /d = 10 K/cm rather 
than to the weak vertical gradients zT = T/h  2 K/cm with a characteristic component 
separation time h2/D  500 hours. The horizontal gradients occur only in the circulating 
fluid. The separation time across the channel is d2/D  15 min, which coincides in order of 
magnitude with the time of circulation of the fluid in the cell, i.e. a liquid particle is able to 
change its composition during the motion in the cell. For a fairly slow circulation, there is 
a feedback effect of the concentration non-uniformities generated by thermal diffusion on 
the convective flow. It should be emphasized that the same behaviour of a binary mix had 
been observed in connected channels [1-3]. 

5 Conclusions
The mix effect on thermal convection in Hele-Shaw cell has been studied experimentally 
and theoretically over a wide range of variation of the governing parameters. Depending 
on the supercriticality both stationary and oscillatory convective regimes are possible in 
binary mixtures. The model proposed makes it possible theoretically to describe the 
nonlinear oscillations, whose presence at small supercriticalities demonstrates the fairly 
complex behavior of the hydrodynamic system. Special emphasis was placed on 
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calculating the admixture concentration distribution across the cell. It was confirmed that 
the oscillatory character of the convection near the threshold is attributable precisely to the 
thermodiffusion effect. 
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Abstract
The Soret-driven convection in a horizontal porous layer with a large aspect ratio saturated 
by a binary fluid and subjected to vertical high frequency vibrations was studied. The 
influence of vertical vibrations on the stability of the monocellular flow obtained for 
particular ranges of the physical parameters of the problem was investigated. We considered 
the case of high frequency, small amplitude vibrations so that a formulation using time 
averaged equations could be used. The monocellular flow obtained for mono  function 
of Le , where  is the separation ratio and Le the Lewis number, leads to a migration of the 
species towards the two vertical boundaries of the cell. 2D direct numerical simulations of 
the averaged governing equations were performed using both a finite element code 
(Comsol) and a spectral collocation method. The numerical results and linear stability 
analysis showed that the vertical vibrations delay the transition from monocellular flow to 
multicellular flow making it possible to separate the species for a high value of the Rayleigh 
number.
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1 Introduction 
The problem under consideration concerns the interaction between two phenomena: Soret-
driven convection and thermo-vibrational convection in a porous medium. 
Thermogravitational diffusion is the combination of two phenomena: convection and 
thermodiffusion. The coupling of these two phenomena leads to species separation. In 
1938, Clusius and Dickel [1] successfully carried out the separation of gas mixtures in a 
vertical cavity (TGC). Furry, Jones and Onsager [2], (FJO theory) developed the theory of 
thermodiffusion to interpret the experimental processes of isotope separation. 
Subsequently, many works appeared, aimed at justifying the assumptions or extending the 
results of the theory of FJO to the case of binary liquids [3]. Other works were related to 
the improvement of the experimental devices to increase separation. Lorenz and Emery [4] 
proposed the introduction of a porous medium into the cavity. Platten et al. [5] inclined the 
cavity to increase separation. Elhajjar et al. [6] used a horizontal cavity with temperature 
gradients imposed on the horizontal walls to improve the separation process with the use 
of two control parameters. Many works have been devoted to thermo-vibrational 
convection in porous media. Charrier Mojtabi et al. [7] investigated the influence of 
vibrations on Soret driven convection in a horizontal porous cell heated from below or 
from above. They showed that the vertical vibrations had a stabilizing effect while the 
horizontal vibrations had a destabilizing effect. In the present paper, we use the same 
formulation as the one used by Charrier Mojtabi et al. [7], and we verify that it is possible 
to carry out the species separation of a binary mixture in this geometrical configuration, 
and that the vibrations can be used to delay the loss of stability of the monocellular flow, 
which allows separation at a higher Rayleigh number. We consider the case of high 
frequency, small amplitude vibrations, so that a formulation using time averaged equations 
can be used. The results of the linear stability analysis of the monocellular flow in an 
infinite porous layer heated from below, in the case of a separation ratio 0 , are 
corroborated by the direct numerical simulations.  

2 Mathematical formulation 
We considered a rectangular cavity with aspect ratio H/LA , where H  is the height of 
the cavity along the vertical axis and L  is the width along the horizontal axis. The aspect 
ratio was assumed infinite in the stability analysis. The cavity was filled with a porous 
medium saturated by a binary fluid for which the Soret effect was taken into account. The 
impermeable horizontal walls were kept at different, uniform temperatures. The vertical 
walls were impermeable and adiabatic. All the boundaries were assumed rigid. The cavity 
was subjected to linear harmonic oscillations in the vertical direction (amplitude b  and 
dimensional pulsation ). For the governing equations, we adopted the Boussinesq 
approximation and Darcy equation for which the non-stationary term was taken into 
account. When we consider the referential related to the oscillating system, the 
gravitational field g  is replaced by: zeg )'tsin(b 2  where ze  is the unit vector 
along the vertical axis (vibration axis) and 't  the dimensional time. In the limiting case of 
high frequency and small amplitude vibrations, the averaging method can be applied to 
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study thermal vibrational convection [8]. According to this method, each field is 
subdivided into two parts: the first part varies slowly with time (i.e. the characteristic time 
is large with respect to the period of the vibrations) and the second one varies quickly with 
time (i.e. the characteristic time is of the order of magnitude of the vibrational period).  
Thus the averaged flow equations are:
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Here, C,T,P,V  are the averaged fields (i.e. the mean value of the field calculated over the 
period /2 ) and W  a field introduced for mathematical reasons. 

Pr])c/[()c(DaB *
f , where Pr  is the Prandtl number, f)c(  the volumetric heat 

capacity of the fluid, and *)c(  the equivalent heat capacity of the fluid and the porous 
medium. Rv  characterizes the intensity of the vibrations. 2H/KDa  is the Darcy 
number and K  the permeability of the porous medium. )/()c(THgKRa *

fT

is the thermal Rayleigh number, where T  is the coefficient of thermal expansion, T  the 
temperature difference between the horizontal walls, *  the equivalent conductivity of the 
fluid and the porous medium, and  the kinematic viscosity of the mixture. 

)C1(C)D/D()/( ii
**

TcT  the separation ratio, where c  is the coefficient of 
mass expansion, *D/aLe  the Lewis number, where a  is the coefficient of thermal 
diffusivity. *

f
* )c/()c(  the normalized porosity (where * is the porosity). 

The dimensionless boundary conditions are:  
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In the momentum equation the term t/B V  is usually neglected since B  is of order 
610 . However, in our problem, high frequency vibrations cause very large accelerations, 

making it necessary to consider this non-stationary term [9]. Sovran et al. [10] showed that 
at the onset of convection 12 /csRa Le  and kcs=0, Rv, for 

1/(40 /51 1)mono Le .
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3 Linear stability analysis of the monocellular flow 
In the case of a shallow cavity 1A , we considered the parallel flow approximation 
used by Cormack et al. [11]. We obtain the velocity, temperature and concentration fields: 

)LeRa/()120RaLe10(m

2/)mA1(24/)LeRam(z12/))z2z3(LeRam(xmC
)z2/1(mRaU,z1T

2322
0

00

(3)

Separation, mAS , is defined as the difference in mass fraction of the denser component 
in the vicinity of the left and the right vertical walls of the cell. Then the maximum 
separation is obtained for )Le/(24Ra . We studied the stability of the monocellular 
solution in order to confirm that the species separation could occur in a horizontal porous 
cell heated from below. For this study, we write the governing equations using the 
perturbations of the different fields. The second order terms are neglected; we obtain the 
linear equations where the unknown functions are the perturbations. The perturbations are 
developed in normal modes. The resulting linear problem is solved using the 4th order 
Galerkin method. The critical values of the Rayleigh number and the wave number were 
obtained for a stationary and a non-stationary bifurcation. For the values of  and Le
studied, the critical Rayleigh number leading to stationary bifurcation is always higher 
than the one leading to Hopf bifurcation. So, in this study, we focus on the values of the 
critical wave number 2ck  and the critical Rayleigh number 2cRa . The results of linear 
stability analysis for 20Le  and 1.0  are presented in tables I. It can be observed, in 
this table, that the vibrations have a stabilizing effect and lead to an increase in the critical 
value of the thermal Rayleigh number. So the vibrations can be used to maintain the 
monocellular flow and then allow the separation of the binary mixture components over a 
wide range of thermal Rayleigh number. It should be mentioned that vibrations reduce the 
critical wave number 2ck . This means that vibrations can also be used to decrease the 
number of convective cells at the transition from monocellular flow to the multicellular 
flow.

Rv 0 10 20 30 40 50 60 70 80 90 100 

2cRa 32.79 37.95 42.49 46.60 50.83 53.83 57.08 60.14 63.03 65.78 68.41

2ck 2.80 2.59 2.42 2.28 2.16 2.07 1.99 1.91 1.85 1.80 1.75

Table 1 Effect of vibrations on the critical values of Rayleigh number 2cRa  and  wave 
number 2ck  associated with transition from monocellular to multicellular flow for 

20Le , 5.0 , 1.0 , and 610B (Galerkin method of order 4). 

200 Convection and confinement



4 Numerical simulations 
In the results presented below, the values of B  and  were fixed at 610  and 5.0
respectively. The results for 20Le  are presented. For 20Le  and 1.0 , the stability 
analysis shows that, without vibrations, the monocellular flow loses its stability, via a 
Hopf bifurcation, for the critical parameters 79.32Ra 2c . For the same mixture 
( 1.0 ) under vibrations characterized by a Rayleigh number 50Rv , the 
monocellular flow loses its stability for 83.53Ra 2c . These results were confirmed by 
the direct numerical simulations, using a finite element method (Comsol industrial code) 
and a spectral collocation method.  

Fig. 1 shows the streamlines for 33Ra  corresponding to the transition from 
monocellular flow to multicellular flow without vibrations ( 0Rv ). Fig. 2 shows the 
isoconcentrations and the streamlines for the same mixture with the same parameters but 
with vibrations ( 50Rv ).

It was noted that, with vibrations, the monocellular flow could be maintained for a higher 
value of the Rayleigh number leading to the separation of the species between the left and 
the right vertical walls of the horizontal cell. This monocellular flow remains stable up to 

54Ra . Fig. 3 shows the streamlines at the transition from monocellular flow to 
multicellular flow ( 54Ra ) for 50Rv .

Fig. 1: Streamlines for 20Le , 1.0 , and 33Ra  without vibrations ( 0Rv ).

Fig. 2: Isoconcentrations and streamlines for 20Le , 1.0 , 33Ra , and 50Rv .

Fig. 3: Streamlines for 20Le , 1.0 , 54Ra , and 50Rv .

5 Conclusion 
Analytical and numerical techniques were used to study the stability of the mono-cellular 
flow obtained, for given values of 0 , when the equilibrium solution lost its stability in 
a large aspect ratio horizontal porous layer saturated by a binary fluid and subjected to 
vertical high frequency vibrations. The direct nonlinear numerical simulations performed 
using a finite element method and a spectral collocation method corroborate the results of 
the linear stability analysis and allow the study of the flow structures which appear after 
the bifurcation. It was highlighted that the monocellular flow associated with a stratified 
concentration field led to a horizontal separation of the binary mixture components. It was 
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observed that vibrations had a stabilizing effect leading to an increase in the critical value 
of the Rayleigh number corresponding to the transition between monocellular and 
multicellular flow. Thus vertical vibrations allow species separation over a wider range of 
Rayleigh numbers.
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Abstract

We report on a numerical study of the mixing of two miscible fluids in gravitationally
stable configuration. In the absence of external forces the diffusion process leads to the
mixing of species. The aim of this study is to analyze the physical mechanism by which
vibrations affect the mixing characteristic of two stratified miscible fluids. The transla-
tional periodic vibrations of a rigid cell filled with different mixtures of water-isopropanol
(Sc = 1120) are imposed. The vibrations with a constant frequency and amplitude are
directed along the interface. Our results highlight the strong interplay between gravity
and vibrational impact, the relative weight of each effect is determined by ratio vibra-
tionalRavib and classical Rayleigh numbers, Ra. When the vibrational effect is relatively
stronger, the Kelvin-Helmholtz instability develops along the vertical solid walls. Later in
time this instability undergoes transition to Rayleigh-Taylor instability. With increasing
of gravity level the following dynamic transitions are observed: the life-time of Kelvin-
Helmholtz instability is decreasing; only Rayleigh-Taylor instability is observed and, fi-
nally, the mixing is controlled by diffusion mechanism. The critical value of characteristic
parameters for the onset of these instabilities are identified.
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1 Introduction

Two miscible liquids when brought into contact inside a container will mix i.e. become
homogeneous via molecular mass diffusion. Depending on the volume of liquids, spatial
homogenization by random molecular motion occurs over a long time scale. However
added periodical translational vibration of vessel generates an inertial force which acts
like a gravity. In that case, if the density depends on the concentration and the direction of
vibrations does not coincide everywhere with the direction of the density (concentration)
gradient, a solutovibrational (concentration-vibrational) convection is observed.
Vibrations, acting on density difference may essentially influence on the fluid dynamics
and mass transport [1]. Siddavaram & Homsy [2] has analyzed the mixing of fluids when
the stationary contribution of gravity was omitted and the fluids were initially separated by
vertical ”interface”. The mixing of liquids with simultaneous lateral heating was studied
by Chang& Alexander [3]. The main objective of the current study is to investigate the
effects of high-frequency vibrations on the mixing characteristics, mass transfer, flow
organization, and hydrodynamic instabilities.

2 Formulation of the problem

The cubic cell of L = 10mm length is filled with two miscible liquids: both liquids con-
sist of the same components, water and isopropanol, in different proportions. The layer of
heavier/denser liquid (51% of water) is at the bottom and lighter (5% of water) is on the
top (gravitationally stable configuration). The system is kept at constant temperature. The
vibrations are imposed along the horizontal interface, see Fig 1. An interface is assumed
to be sharp, and the width of the region over which the initial concentration changes from
1 to 0 is assumed to be 0.03L. This system is subjected to periodical oscillations of the

Fig. 1: Geometry of the
system.

Fig. 2: Snapshot of the full
flow;

Fig. 3: Mean flow at the
very beginning, t = 1

vessel along the x-axis according to the law f = Acos(Ω t). The imposed excitations
induce the oscillatory acceleration that is directed along the x-axis, its the maximal value
is aos = AΩ2. Hereafter we will consider high frequency vibrations, i.e. period of oscil-
lations τos is smaller than viscous (τvis = L2/ν) and diffusion (τD = L2/D) times and
the amplitude A is finite.

τos =
2π

Ω
� τvis =

L2

ν
→ Ω � ν/L2 and for amplitude

AβcΔc

L
� 1 (1)
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Then all physical quantities may be presented as the superposition of a mean (slow) and
pulsational (fast) parts [1], [4].

F̂ = Fmean + Ff , (2)

where Fmean represents the slow components and Ff stands for the fast components, that
depend on (x, y, t) and (x, y, t, τ) respectively, and τ = Ωt is the fast time.
It is known that for aqueous solutions of alcohols, the viscosity and the diffusion coef-
ficient are strongly depending on composition. Therefore the viscosity and the diffusion
coefficients are considered as function of concentration. We will restrict our study by 2D
calculations and converse the problem into stream-function vorticity formulation. For the
mean fields a stream function, ψ, such that vx = ∂ψ/∂y, vy = −∂ψ/∂x and a vortic-
ity, ω = ∂vy/∂x − ∂vx/∂y are introduced. The governing equations in the Boussinesq
approximation can be written as

∂ω

∂t
+ v · ∇ω = ∇

(
ν(c)

ν0

∇ω

)
− Gr

∂c

∂x
+

Ravib

Sc

(
∂c

∂y

∂2Φ

∂x2
−
∂c

∂x

∂2Φ

∂x∂y

)
, (3)

∂c

∂t
+ v · ∇c = ∇

(
D(c)

ν0

∇c

)
,

∇
2ψ = −ω, ∇

2Φ = −∇c s.

Here ω, ψ,v, c describe dimensionless quantities of the mean flow. Hereafter the subscript
”mean” is dropped. Φ is the amplitude of fast pressure, which is periodically for τ [4].

Pf = −βcAΩ2Φ(x, y, t)cos(τ),

The scales of length, time, velocity, pressure, and concentration are L, L2/ν0, ν0/L,
ρ0ν

2

0
/L2 and Δc, respectively. The boundary conditions are the following:

x = 0, 1 : ψ = ∂xψ = 0, wx = 0, ∂xc = 0, ∂xΦ = −c;

y = 0, 1 : ψ = ∂yψ = 0, wy = 0, ∂yc = 0, ∂yΦ = 0

Initially fluids are at rest, then ψ = 0, w = 0, C = 1, for 0 ≤ y < 0.5 and C = 0 for
0.5 ≤ y < 1.0.
A finite-difference method in both directions is utilized. The Poisson equation for the
stream function ψ and for the amplitude Φ of fast pressure were solved by introducing
an artificial iterative term, analogous to the time-derivative one. ADI method is used to
solve the time-dependent problem for vorticity, the concentration, the pulsatory pressure
amplitude and the stream function. More detail about numerical procedure one may find
in [5].
All reference values, noted by subscript ”0” are taken at the equilibrium conditions, i.e.
the mean values for two mixtures at the initial state. The problem is governed by three
parameters: vibrational Raleigh number, Ravib, the Schmidt number, Sc, the Grashof
number, Gr or its analog, the Raleigh number, Ra = Gr · Sc

Ravib =
(Aω̃βc Δc L)2

2ν0D0

, Sc =
ν0

D0

, Gr =
g0βcΔcL

3

ν2
0

. (4)

Two of these parameters are fixed, Sc = 1.12 · 104, Ravib = 5.597 · 107. The third
parameter, Gr or Ra, is changing. The gravity level, expressed via the Grashof number,
is varied from g = 0 until g = 0.165 g0.
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3 Results and Discussion

Different flow regimes were observed depending on the ratio of Gr and Ravib. Vibrations
act on the non-uniformity of density and generate an oscillatory convection, which starts
at the cross-section of the interface with solid walls. The net flow, see Eqs. 2 consists of
one vortex, which occupies the entire cell and half of the period rotates to the one side and
another half of the period to the opposite side, see Fig 2. For relatively strong external
excitations (see Eqs. 1) due to inertia the fluid cannot immediately return to its initial
position and convective mean flow is created. The vibrations cause mean flow in such a
way, that heavy/denser liquid moves up along the both solid walls, x = 0 and x = 1 and
less dense moves down. Two weak vortexes with the opposite direction of the circulation
are formed in each fluid, see Fig 3. Further development of the mass transfer is strongly
depends on the ratio gravity level and vibrational stimuli.

Fig. 4: Evolution of the concentration front; Gr=0

Fig. 5: Evolution of the concentration front; Gr=1500

Fig. 6: Evolution of the concentration front; Gr=5000

Here we will discuss the fluid behavior in the upper liquid until it is not stated otherwise.
In the Figs 4-6 the leading profiles are c = 0.3 and c = 0.7 at upper and lower liquid
correspondingly for different Grashof numbers. Non-shadowed space corresponds to the
concentration close to zero (one) in upper (lower) fluid. From the very beginning the
concentration front is running along the solid walls, creating a head in the case of Gr = 0
and Gr = 1500, compare figures at (t = 1÷ 30). The leading zone (we consider isolines
c = 0.3) expands and rolls up, and denser liquid is intruded into a less dense, see (t = 50).
The flow for Gr = 0 is similar to Kelvin-Helmholtz instability which is observed in free
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shear layers and gravity currents. The observed Kelvin-Helmholtz instability appears
almost immediately with the imposing vibrations and exists during certain time interval.
The horizontal solid wall impose constrain on the approaching the concentration front and
it turns inside the cell, creating another flow organization, when the denser liquid is on
top of the less dense, Fig. 4-5 (t = 50 ÷ 200). This scenario is a kind of the Rayleigh-
Taylor instability, which is observed in ground conditions (when heavy liquid is on the
top). Further the denser liquid starts to descend, being expanding, and it splits the region
of low concentration in two zone, (t = 200). Thus, two additional vortexes appear near
the horizontal wall, and it leads to the oscillatory regime. For this set of parameters the
amplitudes of the velocity and of the concentration oscillations slowly decay with time.
The gravity reduce the speed of rolling up velocity and at Gr ≥ 1500 Kelvin-Helmholtz
instability did not observed. For Gr ≥ 5000 the gravity force is so strong that heavier
liquid slightly rolls up and then diffusive process dominates.
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Fig. 7: Mixture’s front propagation.
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Fig. 8: Vertical velocity for Gr = 0

The propagation of the leading front c = 0.3 with time is shown in Fig. 7, where for the
parameters above the horizontal line y ≈ 0.8 the Kelvin-Helmholtz instability is observed.
The distribution of vertical velocity Fig. 8 shows the strong flow near the vertical walls.

4 Conclusions

The effect of external vibrations on the flow organization in two immiscible fluids was
investigated, when Ravib = 5.597 · 107 and Sc = 1120. For Gr ≤ 1500 the Kelvin-
Helmholtz and Rayleigh-Taylor instabilities were observed. In the interval 1500 ≤ Gr ≤
5000 only Rayleigh-Taylor instabilities was observed. For Gr ≥ 5000 mixing is con-
trolled by diffusion.
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Abstract
This study is a numerical application devoted to the validation of a numerical procedure 
based on the finite differences and developed for two-dimensional natural convection 
problems in confined surrounding. One is interested in the effects of the number of 
Rayleigh and the influence of the slope of the cavity compared to the horizontal on the 
flow structure and the heat transfer. 
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1 Introduction
Charlson and Sani [1] report that by approximating an infinite layer by a finite layer of 
fluid confined inside rectangular or cylindrical walls. Since, the two-dimensional natural 
convection in confined surrounding did not cease causing the interest of the scientists, and 
this for at least two reasons. First is related to the diversity of the problems frequently 
encountered in technology and where the phenomena of natural convection are motive 
fluids or disturbing flows and heat transfers; such as: continuous casting of a metal, 
moulding of castings, engines thermonuclear, storage of energy by latent heat or the 
crystalline growth. The second reason linked with the complexity (coupling, non-linearity) 
of the systems governing such phenomena of convection and which, in fact, offer an 
experimental plot very appreciated for the development of new analytical methods of 
analysis as well as numerical [2-3]. The structure of the flow changes substantially with 
the number of Rayleigh, the ratio of aspect and the thermal boundary conditions with the 
side wall. It is thus the effect of these three parameters which we will present in this work. 

2 Formulation

2.1 Equations
The equations are those deduced from the laws of conservation of the mass and the 
momentum and the energy. The physical properties are considered constant except for the 
density supposed to vary with the temperature but only in the term of gravity forces 
according to the approximation of Boussinesq.  

Equation of continuity 

0.V (1)

Equation of conservation of momentum  

gV
0

2

0
TT1p1

Dt
D

(2)

Equation of transport of energy

T
Dt
DT 2 (3)

For the two-dimensional flows it proves to be convenient to replace the primitive 
variables, pressure and velocity, by the stream function,  and the no null component,  of 
the rotational vector of the velocity.

The equation of continuity makes it possible to define the stream function by: 
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zr
1U n  ; 

rr
1W n (4)

And the scalar equations are then:  

t r
r U

r
W

z
n

U
r r

n
r r z

n
rn

n1 2

2

2

2 2 (5)

g
T
r

T
z0 cos sin  

T
t r

r UT
r

WT
z

T
r

n
r

T
r

T
zn

n1 2

2

2

2 (6)

1 2

2

2

2r r
n
r r zn (7)

n is worth zero for the rectangular geometry and one for the cylindrical geometry.  
In the case of a horizontal cavity 0 , the equation of the transport of the vorticity 

highlights well the role of the horizontal gradient of the temperature
r

, in the activation 

of the mechanism of the natural convection. This gradient causes to initiate the flow by 
creating a mechanical imbalance in the fluid mass initially at rest. 

2.2 Boundary conditions 
The condition of no slip to the rigid walls is translated for the stream function by: 

r z
0    for    z et z H0 (8)

r z
0    for    r et r L0 (9)

The thermal boundary conditions are: 

T TC     for z 0 (10)

T TF     for z H (11)
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T
r

0  for r et r L0 (12)

3 Adimensionnalisation
The adimensionnalisation of the equations is carried out by means of the reference 
variables R, / R , T0 ( T TC F ), R2 /  for the length, the velocity, the temperature and 
time, respectively. The non dimensional equations are written: 

U
r zn

1
 ; W

r rn

1
(13)

t r
r U

r
W

z
n

U
r r

n
r r z

n
rn

n1 2

2

2

2 2Pr  (14)

Ra Pr cos sin
r z

t r
r U

r
W

z r
n
r r zn

n1 2

2

2

2 (15)

1 2

2

2

2r r
n
r r zn (16)

 being a reduced temperature defined by: 
T T

T
F

0
 and always lies between 0 and 1.

4 Numerical methods 
The space discretization of the transport equations of the vorticity and energy will be done 
using the precise differences centered with the order two (as well for the convectif terms 
as for the diffusion). The equation giving the stream function will be discretized using a 
precise Hirsh diagram to the order four and whose relations are developed in this reference 
[4].
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5 Results and interpretations 
One considers an enclosure of an aspect ratio AF equal to one and a fluid of a number of 
Prandtl of 0.71. The number of Rayleigh is 2.104. At the beginning the dynamic fields and 
the temperature are calculated in a horizontal cavity 0 . These results are then used 
as initial condition for the solution of the following case of slope, and so on until 90 . 
The fluid near of the lower hot surface is then heated and tends to reach the cold upper 
surface. In spite of the slowing down effect of viscosity near the wall, it is near this wall 
that the upswing is most intense (Fig 1). Until an angle of inclination of 10° the flow 
almost does not change a structure but loses in intensity, A 15 , the flow regains in 
intensity without changing structure. For an angle of inclination of 30°, the direction of 
rotation of the cells was reversed (Fig 2), but the transfer of heat and the dynamic 
variables continued to grow. With 45° the dynamic variables drop but the number of 
Nusselt continuous to grow until an angle of 60°. Beyond that, the flow loses in intensity 
until an angle of 90°. 

Fig 1: Isotherms, curves of stream, Iso-swirls and field of velocities for AF=1, Ra = 2. 
104, Pr = 0.71, side walls perfectly adiabatic and a null slope. 

Fig 2: Isotherms, curves of stream, Iso-swirls and field of velocities for AF=1, Ra = 2. 
104, Pr = 0.71, side walls perfectly adiabatic and a slope of 30°. 

6 Conclusion 
In conclusion, this study allowed the validation of a code based on the finite differences 
and devoted to the natural convection in confined surrounding. This validation, made on a 
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rectangular geometry, showed a good agreement with results published by other authors 
[4].

It will be noticed in particular that the number of Nusselt falls with the increase in the 
slope from 0° to 10° then this number increases with the increase in the angle of 
inclination until  = 50° where it reaches the absolute maximum. Beyond that, the number 
of Nusselt fall until reaching its minimum at  = 90°. 
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Abstract
The main objective of the present paper is a two-dimensional theoretical and numerical 
modeling of the atmospheric pollution by considering the advection-diffusion-reaction 
process in a turbulent flow (k  model) of a Newtonian fluid. 
A finite volume method is used to solve the equations and to determine the temperature, T, 
the fluid velocities, u, w, respectively in Cartesian coordinates ( zx ee , ), the pressure, P and 
the pollutant concentration profile, c. 
This study, considered as an important step in modelling atmospheric pollution, may also 
be fit to other industrial applications. 
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1 Introduction
The air pollution, resulting from the industrial development, represents a serious threat for 
the human, animal and vegetable life.  
In order to understand and better manage the transport of the gas traces and the pollutants 
existing in the air, several models of the quality of air were developed. These models are 
used to simulate the changes which can emerge in the chemical composition of the 
atmospheric air, with an aim of establishing an effective strategy to meet the requirements 
of the quality of the air. The theoretical model of transport and chemical reactions in the 
atmospheric air is described by a system of non stationary equations with partial 
derivatives. The equations which describe such phenomena, in general, are solved 
numerically by using approximate methods such as the finite differences, the finite 
volumes, the finite elements or the spectral methods [1].  
The originality of this work is a two-dimensional numerical and theoretical modeling of 
the atmospheric pollution by holding account simultaneously; in the equations of the 
transfer of energy, transport of the pollutants; the turbulent and non stationary character of 
the flow, the compressible character of the fluid and phenomena of diffusion, advection 
and chemical reactions. 

2 Theoretical model 
The theoretical modeling of the phenomenon of the air pollution is based on three 
fundamental processes coupled between them; namely the flow of the fluid, the transfer of 
energy and the transport of the pollutants.

2.1 Equations of flow of the fluid and the transfer of energy 

2.1.1  Equations of flow of the fluid
The turbulent flow of the fluid is controlled by the conservation equations of the mass and 
the momentum of a Newtonian, compressible fluid in the gravitational field [2].

0**
* udivt (1)

*
*

***
** ugraddivx

puudivt
u (2)

gwgraddivz
puwdivt

w
**

*
***

** (3)

With: zx ezxwezxuu ,, **

Where *u  is the field speed of the fluid, zx ee ,  the unit vectors associated to the 
Cartesian coordinates, g the acceleration of gravity, *  the bulk mass of the fluid, *u  and 
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*w  the velocity components of the fluid respectively in the directions xe  and ze ,  the 
viscosity of the fluid and *p  its pressure. 
In order to study the effect of the fluctuations, it is supposed that the variables *u , *w , *p
and *  can be written in the form of the sum of an average component and a disturbing 
term such as:  

u~uu * (4)

w~ww* (5)

p~pp * (6)

~* (7)

By introducing the equations (4-7) into the equations (1-3) and by admitting the assumption that 
the disturbing term of the bulk mass, ~ , is negligible in front of the average component,  [ 3 ], 
the equations (1-3) become:  

0udivt (8)

uudivt
u

z
wu

x
uugraddivx

p ~~~2

(9)

uwdivt
w gz

w
x

wuwgraddivz
p

2~~~
(10)

It is introduced into the equations (9) and (10) three new variables:
Normal stress of Reynolds: 

2~u  and
2~w , and 

the shear stress of Reynolds: wu ~~

2.1.2  Equation of the transfer of energy 
The transfer of energy in the atmosphere is described by the following equation:

STgradKdivudivpuidivt
i *

*****
**

(11)
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Where *i  is the internal energy of the fluid, K the thermal tensor of conductivity, T *  the 
temperature of the fluid,  the quantity of heat generated per unit of volume and time as 
result of viscous dissipation and S the quantity of heat generated by any source in the 
fluid.
By admitting that the fluid behaves as a perfect gas [2], we will have:  

TCi *
V

* (12)

M
TRp

a

*
** (13)

Where: R is the constant of perfect gases, CV  the specific heat at constant volume, and 
M a  the molar mass of air.  
While introducing the equation (12) into the equation (11), it comes:  

STgradKdivudivpuTCdivt
TC

V
V *

***
*

*

*
*

(14)

This equation is also written in form:  

STgradKdivudivpuTCdivt
TC

V
V (15)

z
TwC

x
TuC VV

~~~~

2.1.3  Model of turbulence
The model of turbulence is a computing process to close the system made up of the 
equations of the flow (8-10) and the equation of transfer of the energy (15). In the present 
study, we chose the model suggested by Boussinesq [4].  
There will be then the five following expressions: 

x
uu t2~2 , z

ww t2~2
, x

w
z
uwu t

~~ , x
T

KTu t
~~ ,

z
T

KTw t
~~

Where: t  is the turbulent viscosity and K t  the turbulent thermal diffusivity. These two 
terms define the turbulent number of Prandtl/Schmidt:  
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K t

t
t (16)

With: 

z
ulmt 2

Where: ml  is the scale length. 
Using these quantities the equations of flow of the fluid and transfer of energy become: 

0z
w

x
u

t (17)

2

2

2

2

z
u

x
u

x
p

z
wu

x
uu

t
u

(18)

z
u

x
w

z
ulzz

u
x
ulx mm 222 (19)

2
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2

2
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w
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z
wlzz

u
x
w

z
ulx mm 22 2 (20)

z
wpx

upz
wTC

x
uTC

t
TC VVV

z
T

Kx
T

Kzz
T

Kx
T

Kx zzzxzxxx

z
u

z
TlC

zz
u

x
TlC

xS m
t

V
m

t
V 22

2.2 Equation of the transport of aqueous solution 
In the present study, we will treat the case of N species of concentration Ci

*  in the fluid. 
The concentration Ci

*  of each species i, at every moment, obeys the following transport 
equation:
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u
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Cu

t
C (21)

T,C,...,C,CRt,z,xS N21ii

Where: Ri  is the rate of generation of species i by the chemical reactions and Si  the rate 
of addition of species i at the moment t. 
We consider in this study the chemical reactions hereafter and which are at the base of any 
modeling of the air pollution [5]:

POONhON
k

3
2

1

OOPO
k

32
3

2

ONOOON
k

223

3

k1, k2 and k3 are the coefficients, known, of the chemical reactions.  

3 Method and process of resolution

3.1 Method of resolution
In this work, we chose the use of the finite Volumes Method [6].  

3.2 Computing processes
Calculations are started with the values of velocities u and w exit of the initial profile. The 
solution of the equation (17) allows the determination of the bulk mass, .
The knowledge of this value and the solution of the equations (18-19) allow the 
determination of the velocities u and w.
The temperature is then given starting from the solution of the equation (20). Using the 
law of perfect gases, we determine the pressure. The concentrations Ci  are given using the 
solution of the equation (21).
The sizes u and w are then reappraised; their corrected values make it possible to reiterate 
and this until convergence of the solution. 

4 Results 
On figure 1, we present the variation of the pressure according to the height. We note that 
the pressure decreases with the height, this is in a perfect agreement with the results 
obtained by other authors [2].
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The temperature Variation according to height is illustrated on figure 2. We notice on this 
figure that the temperature, also, decreases with the height. This can be explained by the 
fact that the atmosphere behave as a perfect gas and since the volume remains constant 
then, according to the law of perfect gas, the temperature must also decrease with height.  

Fig 1:  Variation of the pressure 
according to the height

Fig 2: Variation in the Temperature 
according to the height
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Abstract

Three-dimensional double-diffusive convection with Soret effect in a cubic cell filled with
a binary mixture with positive Soret coefficient is considered under static and vibrational
accelerations. The liquid is heated from above and is subjected to high frequency vibra-
tions (the vibration period is much smaller than any characteristic time) perpendicular to
the imposed temperature gradient. Two extreme situations are considered: weightlessness
(0g) and Earth gravity (1g). Due to the Soret effect the lighter liquid is accumulated on
the top of the heavier one and thus creating stable density stratification in the system.
The problem is investigated numerically by solving three-dimensional Navier-Stokes, en-
ergy, and concentration equations. Component separation due to the Soret effect is ana-
lyzed. While evolution of the constituents separation is a monotonously growing function
of time regardless the static gravity, its saturation values are different. Compared to the
value of the Soret separation achieved under conditions of absence of any flow in the
liquid, vibrations alone decrease it via generating an mean thermo-vibrational convective
flow, which mixes the liquid. Imposing vibrations under 1g enhances the separation, be-
cause the convection increases the imposed temperature gradient across the cell without
mixing the liquid.
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1 Introduction

A temperature gradient ∇T maintained through a multi-component liquid causes a dif-
fusion phenomenon called the Ludwig Soret effect, resulting in separation of the con-
stituents. The separation is counteracted by molecular diffusion, which in turn leads to
mixing. Finally, a stable state will be attained in the system when a concentration profile
is established in the domain. In ideal case of absence of any fluid motions, the estab-
lished concentration profile is linear in the direction of the temperature gradient resulting
in separation

ΔC̃ = −ST C0(1 − C0)ΔT, (1)

where ST and C0 are the Soret coefficient and mass fraction of the considered component,
ΔT is the imposed temperature difference. In our study we analyze a parameter called
Soret separation

SR = (Ccold − Chot)/ΔC̃, (2)

which is the difference of the mean concentrations at the cold and hot walls, scaled by
ΔC̃. It is believed that any convective liquids motion decreases the separation (SR < 1).
Shevtsova et al. [1] numerically investigated the effect of static gravity g perpendicular to
∇T in a wide range of gravity 0 < g/g0 < 10−1, g0 = 9.81m/s2 is the earth gravity. They
obtained that increasing gravity decreases the components separation. Coupling the static
gravity with co-directed low frequency vibrations resulted in further decreasing the Soret
separation. Heating the binary mixture with negative ST from above leads to instability
because the heavier component gets accumulated above the lighter one. As a result it
triggers convection, and the components separation decreases [2]. When heated from
above, the instability never occurs in a solution with positive ST but external vibrations
can influence SR.
Vibrational convection refers to the specific flows that appear when a fluid with density
gradient is subjected to external vibrations [3]. It is called thermo-vibrational convection
in case of temperature non-homogeneity. It is shown that the flow can be represented
as a superposition of a quick part, which oscillates with the frequency of vibration, and
of a slow timeaverage part (mean flow). The mean flow shows how the liquid particles
are drifting. And this is through the resulting mean flow that vibrations influence both
temperature and concentration fields.
In this paper we will show that thermo-vibrational convection may favourize the thermod-
iffusion, and the Soret separation obtains values higher unity, i.e. SR > 1.

2 Governing equations and boundary conditions

The following dimensionless nonlinear time-dependent momentum, energy, mass and
continuity equations governing the evolution of the system are solved:

∂v

∂t
+ v∇v = −∇p + ∇

2
v −

Rastez
+ Raoscos(ωt)e

x

Pr
(Θ + ψc) , (3)

∂Θ

∂t
+ v∇Θ =

1

Pr
∇

2Θ, (4)

∂c

∂t
+ v∇c =

Le

Pr

(
∇

2c −∇
2Θ

)
(5)

∇ · v = 0. (6)
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here ψ is the separation ratio, e
z

is the unit vector directed upwards. The system is
heated from above under either weightlessness (0g) or g0. The velocity, time, pressure
and temperature scales are respectively Vch = ν/L, tch = L2/ν, Pch = ρ0V

2

ch, ΔT =
Thot − Tcold (Fig. 1). The size of the cell L = 0.01m is used as a length scale, ν is the
liquid kinematic viscosity and ρ0 stands for the liquid density at Tcold. The mass fraction
is scaled by Cch = ΔC̃ (see eq. (1)).
The stationary Rayleigh number Rast = (gβTL3ΔT )/(νa) < 0, βT is the thermal expan-
sion coefficient, a is the thermal diffusivity. Raos = Rast(Aω2)/g is oscillatory Rayleigh
number due to vibrations. Imposed vibrations are perpendicular to the density gradient
with displacement amplitude of A = 2.5cm and of frequency f either 1 or 2Hz, yielding
Raos = 23 300 and 93 300 respectively and ω = 2πftch to be either 165.37 or 330.74. Ra
gets values according to the static gravity, i.e. either 0 or 233 600. The Prandtl and Lewis
numbers are defined as Pr = ν/a and Le = D/a, D is the diffusion coefficient.

Fig. 1: Geometry of the problem

The simulations were performed in a cubic cell (Fig. 1) with Pr = 44.7 and ψ = 0.44,
which correspond to 50% water - isopropanol solution. Lewis number in eq.(5) equals
Le = 0.01. Initially the mixture is homogeneous with the mass fraction of the heavier
component (water) C0 = 0.5. Due to the Soret effect the lighter liquid is accumulated on
the top of the heavier one and thus creating stable density stratification.
Boundary conditions include: zero velocity at the rigid walls v = 0; constant tempera-
tures at the top and bottom Θ(z = 0) = 0, Θ(z = 1) = 1; thermally insulated lateral
walls: ∂yΘ(y = 0, 1) = ∂xΘ(x = 0, 1) = 0. Absence of mass flux at the impermeable
rigid walls gives: ∂n(c − Θ) = 0.

3 Results and Discussion

Response of the Soret separation SR to imposed vibrations depends on the stationary
gravity level. Figure 2 shows steady value of SR obtained after long computations as a
function of the frequency f of vibrations. Increasing f makes SR to deviate more from
unity (dotted line). In absence of gravity the separation is diminishing, while under Earth
gravity SR is increasing. However, the increase is not as strong as the decrease (only 14%
versus 47% respectively).
We discovered that these different behaviors are due to different mean thermo-vibrational
flow structures. Analysis of the mean flow and of the concentration distribution is per-
formed at the end of the calculations when the Soret separations attains steady value. The
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Fig. 2: Soret separation as function of frequency of imposed vibrations. Dotted line shows
unity, the value of SR obtained in absence of any liquid flow.

mean flow, concentration and temperature are calculated via a common procedure of av-
eraging the appropriate variable over time within one vibrational period 1/f . The mean
flow in case of f = 2Hz, as visualized by arrows, is presented on Figs. 3(a) and 4(a).

(a) (b)

Fig. 3: 0g, 2Hz: (a) - mean flow (arrows) and concentration (colors); (b) - deviations of
mean temperature from linear profile, dotted and solid lines show negative and positive
values.

In line with the theoretical findings of [3], a four vortices mean flow is observed under
0g. However, under 1g the mean flow has a one vortex structure (compare Figs. 3(a) and
4(a)). The two flows, while having close values of maximum velocity (6.1 · 10−6m/s
under 0g and 4.8 · 10−6m/s under 1g), differ by direction of displacement of the liquid
along z axis. In the central part, the four-vortices motion brings colder liquid towards the
hot wall the warmer one towards the cold wall. Near the lateral walls, a reversed liquid’s
displacement takes place. As a result, the temperature gradient across the cell is decreased
in the center (Fig. 3(b)) and is increased in the adjacent to the lateral walls regions, but
the net temperature gradient’s variation is zero. At the same time, because of the absence
of gravity the four vortices mean flow mixes the liquid and thus deacreases concentration
near the cold and hot walls. Finally, (Ccold − Chot) becomes smaller than ΔC̃ (defined in
eq. (1)), and SR ∼ (Ccold − Chot) gets smaller than unity.
The one vortex flow in turn increases the imposed temperature gradient across the cell (see
Fig. 4(b)) and thus helps the separation due to the thermodiffusion. The convective mass
transport is however zero. The flow tries to displace colder and heavier liquid upwards
along the x = 1 wall and the warmer and lighter one downwards along the opposite wall,
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(a) (b)

Fig. 4: 1g, 2Hz: (a) - mean flow (arrows) and concentration (colors); (b) - deviations of
mean temperature from linear profile, dotted and solid lines show negative and positive
values.

but this initiative meets an immediate counteraction of buoyancy. The concentration field
stays unperturbed (Fig. 4(a)).
In can be concluded that the two cases have different mechanisms influencing the sepa-
ration. Mixing due to convection (Fig. 3(a)) resulting in mass transport, which decreases
SR under 0g. Under 1g, it is the increased temperature gradient inside the liquid due to the
convection (Fig. 4(b)) that is intensifying the thermodiffusion, which increases SR. One
can suggest that if the imposed vibrations generate a flow strong enough for overpowering
the buoyancy, the Soret separation will be decreased even under non-zero gravity.

4 Conclusions

Separation of the constituents due to the Soret effect in a cubic cell filled with a binary
mixture is numerically investigated. We found that the thermo-vibrational convection
due to imposed vibrations decreases the separation of the components in weightlessness.
However, it helps the separation under 1g making it stronger than in absence of liquid
flow. Increasing the vibrational stimuli helps the constituents to separate even more.

Acknowledgment

This work is supported the PRODEX Programme managed by the European Space Agency
in collaboration with the Belgian Federal Science Policy Office.

4.10 227



References

[1] V. M. Shevtsova, D. E. Melnikov, J. C. Legros, Y. Yan, Z. Saghir, T. Lyubimova, G.
Sedelnikov, B. Roux, Physics of Fluids 19, 017111 (2007)

[2] D. E. Melnikov, A. Mialdun, V. M. Shevtsova, J. Nonequilibrium Thermodynamics,
32, 1 (2007)

[3] G. Z. Gershuni, and D. V. Lyubimov, Thermal Vibration Convection, (John Wiley &
Sons Ltd., 1998)

228 Convection and confinement



Spatio-temporal dynamics near the onset of con-
vection for binary mixtures in cylindrical con-
tainers

Isabel Mercader1, Arantxa Alonso1 and Oriol Batiste1

1 Dep. Fı́sica Aplicada, Univ. Politècnica de Catalunya, Barcelona, Spain
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Abstract

Pattern selection near the onset of convection in a cylindrical container heated from below
is investigated numerically for a water-ethanol mixture considering parameter values and
boundary conditions relevant to experiments.The onset of convection occurs via a subcrit-
ical Hopf bifurcation in which the critical mode is strongly influenced by small variations
of the aspect ratio of the cell. Simulations for subcritical and supercritical Rayleigh num-
bers reveal differences in the dynamics. Very close to the critical value, convection is
erratic and focuses along one or more diameters of the cell; growths and collapses of
the convection amplitude take place, but convection eventually dies away for subcritical
values and persists for slightly supercritical values. For larger supercritical values con-
vection grows progressively in amplitude, expanding slowly until a large-amplitude state
is reached. Depending on the reduced Rayleigh number the final state can be a non-steady
state filling the cell or a disordered confined state.
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1 Introduction

Convection in vertically heated binary-liquid mixtures is an excellent system for the study
of pattern formation, especially for negative separation ratio mixtures, S < 0. In such
mixtures, the primary bifurcation is subcritical and gives rise to a state of oscillatory con-
vection. With the aim of analyzing the dynamics in truly three-dimensional geometries,
several experiments on cylindrical cells have been done [1–3]. The results of these experi-
mental works indicate that new behavior prevails. Waves that travel in the radial direction
are present, and traveling-wave convection patterns typically consist of several competing
domains of traveling waves propagating in different directions. Transient localized pulses
of traveling-wave convection similar to the states found in annular cells were observed,
but these pulses either decayed back to pure conduction or grew to fill the cell. The
numerical work on this system is scarce [4], since these types of three-dimensional com-
putations are very costly. The high performance achieved by present computers makes it
possible nowadays to address fully three-dimensional computations. In a recent paper [5],
we have simulated the Boussinesq 3D equations for binary fluid convection for cylinders
of aspect ratio Γ = 11 and Γ = 10.5 (Γ ≡ R/d, where R is the radius of the cell and
d its height). The main results and achievements of this work are summarized in these
proceedings.

2 Results and Discussion

We present numerical 3D simulations of convection in binary fluids with a negative sep-
aration ratio confined to a vertical cylinder in the neighborhood of the initial oscillatory
instability. We consider a S=-0.09 water-ethanol mixture (Prandtl number σ = 24) in
cells of aspect ratio Γ = 11 and Γ = 10.5. The choice of parameters in this paper is
motivated by the experiments performed by Lerman et al. [1–3] on S ≈ −0.08 mixtures
in cylindrical cells of aspect ratio Γ = 10.91, 11.53.
To perform the simulations, we have developed a highly efficient time-evolution spectral
code that solves the full convection equations in primitive variables and cylindrical co-
ordinates [6, 7]. Despite this, and the increasing power of present computers, it is worth
emphasizing that 3D computations on binary mixtures in moderate/large aspect ratio cells,
such as the ones we consider, remain extremely costly.
The linear evolution is strongly influenced by the aspect ratio of the cell: while odd az-
imuthal Fourier modes dominate the dynamics in the Γ = 11 cell, even modes control
the early stages of evolution in the Γ = 10.5 case. However, modes with wave-number
higher than the critical one tend to grow at much faster rates and dominate the nonlinear
regime, as observed in the experiments [3]. During the nonlinear evolution, after the ear-
lier stages of convection, the system goes through a variety of states (see 1). Although
the primary bifurcation is known to be subcritical, for subcritical values of the Rayleigh
number, R, convection dies away after some bursting episodes (R = 1916, Γ = 11). For
slightly supercritical Rayleigh numbers, the system can exhibit small amplitude bursting
behavior (R = 1918, Γ = 11) for a long time (growths and collapses of convection ampli-
tude take place), in a way that bears a strong resemblance to the dispersive chaotic states
observed in large aspect ratio annular containers for small negative values of the sepa-
ration ratio [8, 9]. For supercritical values, the system evolves to form large amplitude
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localized states, which can combine stationary, traveling wave and quiescent regions. The
Nusselt number, a mesure of the heat transport, increases progressively while blobs of
disordered convection form around the cell center convection.On some occasions, these
blobs evolve filling slowly the whole cell with domains of large amplitude nearly sta-
tionary rolls.(R = 1934, Γ = 11). On other occasions, when the cell is almost filled,
quiescent regions grow again and the system evolve, decreasing the Nusselt number, to-
ward a confined structure (R = 1925, Γ = 10.5) .
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Fig. 1: Times series (Nusselt number versus time) showing the amplitude of convection
for different solutions during the nonlinear evolution. a) R = 1916, Γ = 11, b) R =
1918, Γ = 11, c) R = 1934, Γ = 11 and d) R = 1925, Γ = 10.5.

In contrast to pure fluid convection, cylindrical binary fluid convection exhibits a clear
tendency to form localized and highly confined structures embedded in a background of
quiescent fluid. The diversity of confined patterns is startling. On one hand, small am-
plitude states consisting of stripes of convection aligned along one or more cell diameters
or radii, are observed during the early transients for subcritical and slightly supercritical
values of the control parameter. Also in this regime, when the system exhibits bursting
behavior, convection can take the form of tiny highly localized pulses that are surrounded
by a conductive state (see Fig. 2).
On the other hand, for larger values of the Rayleigh number, transitory localized pat-
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Fig. 2: (Color on line) Contour plots of temperature at mid height, for two states in the
small amplitude bursting behaviour, showing the azimuthal focusing along one radius
and a diameter of the cell. The value of the Rayleigh number is in a) slightly supercritical
(R = 1919, Γ = 10.5), and in b) slightly subcritical, ( R = 1914, Γ = 11).

terns can consist of oscillatory regions of squares, disordered blobs of oscillatory con-
vection and competing domains of traveling waves and steady convection. However,
states of confined convection could be persistent as suggested by our simulations for
R = 1925, ε = 3.974 × 10−3 in a Γ = 10.5 cylinder, (see Fig. 3a). These states are
wall attached, extremely nonlinear and appear after the collapse of an almost cell-filling
state. Finally, for slightly greater Rayleigh numbers the system evolves slowly to a cell-
filling state of convection rolls (see Fig. 3b). Although the time scale of our simulations
is bigger than the experimental one, we have not reached a completely stationary state.

3 Conclusions

The dynamics observed within a narrow range of Rayleigh numbers around the onset of
convection is of unquestionable complexity, but general agreement between the reported
experimental observations and our numerical results is obtained, although some differ-
ences have also been found. The differences are probably due to non-Boussinesq effects,
which can be important in experiments [2], but are not taken into account in our simu-
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Fig. 3: (Color on line) Contour plots of temperature at mid height, for two states of large
amplitude in the supercritical regime. a) Persistent localized state for R = 1924, Γ =
10.5, and b) non-steady cell-filling state for R = 1934, Γ = 11.
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lations. The most interesting result is the tendency to form localized structures. Such
patterns are continuously evolving and combine domains of traveling waves and quasi-
steady convection. The highly nonlinear localized states can be persistent in time, as
suggested by our simulations for R = 1925 in a Γ = 10.5 cylinder, and R = 1924 in
Γ = 11 (not shown here), contrary to what has been observed experimentally.
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Abstract

Investigation of the Marangoni convection in binary fluids in the framework of linear sta-
bility theory was started several decades ago. One of the most promising applications of
the Marangoni flow in binary solutions is the use of these working fluids in heat pipes
under reduced gravity conditions. Recently a new class of fluids, nanofluids, has been
successfully applied in heat transfer devices. We consider a relatively thick fluid layer
under terrestrial gravity conditions subjected to a transverse temperature gradient. A con-
centration gradient is induced due to the Soret effect. Therefore, in such layers a com-
bined Rayleigh-Marangoni convection takes place, while the deformation of free surface
is irrelevant. We show that the correct model for the description of the hydrodynamics
and heat transfer in nanofluids is identical to the system of equations for binary mixture
with the Soret effect in the limit of asymptotically small Lewis numbers L. We study the
case of the long-wave instability of the system with poorly conducting boundaries in the
limit of asymptotically small Lewis numbers. The behavior of the critical Marangoni and
Rayleigh numbers depends on the relationship between the small parameters of the prob-
lem. We consider L as a basic small parameter, while the smallness of wave number k and
Biot number Bi with respect to L can be different. Our approach is novel and it poten-
tially unfolds the entire picture for small- L fluids. Consideration of the nanofluids, even
in the framework of the binary-fluid model, calls for solution of new non-trivial mathe-
matical problems. In the framework of the new approach, a typical behavior of monotonic
and oscillatory instability boundaries is investigated in various limits of parameters.
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Investigation of the Marangoni convection in binary fluids in the framework of a lin-
ear stability theory was started several decades ago [1]. Recently, a new class of fluids,
nanofluids, has been successfully applied in heat transfer devices. Nanofluids are suspen-
sions of nanoparticles (e.g. carbon, metals and metal oxides) in the size range of about
10 to 50 nm in a carrier fluid (e.g. water, ethylene glycol and lubricants). From the point
of view of dynamics and heat/mass transfer, a typical nanofluid behaves as a Newtonian
binary fluid with an extremely small Lewis number (L ≤ 10−4) and high Soret coefficient
[2-4]. While a significant progress has been made on the buoyancy convection in nanoflu-
ids [2-8], including binary nanofluids [9-12], the Marangoni convection in nanofluids is
still hardly investigated, though an essential influence of nanoparticles on surface tension
has been revealed in some experiments [13-15]. The latter phenomenon can be significant
for applications of nanofluids in boiling devices [13], including those used in microgravity
conditions.
In order to develop a realistic two-component model for transport phenomena in nanoflu-
ids it is important to understand the mechanisms by which the nanoparticles move rel-
atively to the carrier fluid. According to the estimations in the paper of [16] Brownian
diffusion and thermophoresis may become important as a slip mechanisms while gravity
settling is negligible. Thus, the diffusion mass flux for the nanoparticles can be written
as the sum of the two components: the first one is proportional to the concentration gra-
dient, referred to as ”diffusion”, while the second one is proportional to the temperature
gradient, referred here as to ”Soret effect”.

�jp = �jp,B +�jp,T = −ρpDB∇c−ρpDT

∇ϑ

ϑ
. (1)

Here DB =
kB ϑ

3 π μ dp

is Brownian diffusion coefficient that ranges from 4 × 10−10 to

4×10−12 m2/s , kB is the Boltzmann’s constant, ϑ is temperature, μ is dynamic viscosity
of the fluid (μ ∼ 1 mPa s), dp is a nanoparticle diameter dp < 100 nm, ρp is the mass
density of the nanoparticles (ρp ∼ 4 g/cm3), c is nanoparticle volumetric fraction, DT =

δ
μ

ρ
c, is ”thermal diffusion coefficient”, δ = δ(kth, k

(p)
th

) is the dimensionless parameter

depending on thermal conductivities of the fluid kth and particle material k(p)
th

. For alumina
nanoparticles, in water δ ∼ 0.006.
We consider a fluid layer in terrestrial gravity conditions subjected to a transverse tem-
perature gradient. Concentration gradient is induced due to the Soret effect. The layer is
exposed to the ambient gas phase at its nondeformable free surface.
The system of governing equations consists of continuity equation, Navier-Stocks equa-
tion, energy equation and convection-diffusion equation, respectively

∇ · �v = 0, (2)

�vt + (�v · ∇)�v = −ρ−1
0 ∇ p+ ν∇2�v (3)

ϑt + �v · ∇ϑ = κ∇2 ϑ+
ρp ηp

ρ η

{
DB∇c · ∇ϑ+DT

∇ϑ · ∇ϑ

ϑ

}
(4)

ct + �v · ∇c = ∇

{
DB ∇c+DT

∇ϑ

ϑ

}
. (5)
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Here, �v, ϑ, c are, respectively, the velocity, temperature and concentration fields in the
fluid, ν is kinematic viscosity, κ - thermal diffusivity, ρ is fluid density (ρ ∼ 1 g/cm3),
η is nanofluid specific heat, ηp is nanoparticle specific heat. The equation (4) states that
heat can be transported in nanofluids by convection (second term on the left-hand side),
conduction (first term on right-hand side) and also by nanoparticle diffusion (second, third
terms on right-hand side). It should be noted that two last terms on the right-hand side in
the nanofluid energy equation (4) account for the additional contribution associated with
the nanoparticle motion relative to the base fluid. The equation (5) states that nanoparti-
cles can move homogeneusly with the fluid (second term on left-hand side), but they also
possess a slip velocity relatively to the fluid due to Brownian diffusion and thermophore-
sis.
In the framework of our theory we consider two convection mechanisms. First, surface
tension is assumed to depend on both temperature and particle concentration, so both
thermo- and soluto -capillary effects are taking into account.

σ(ϑ, c) = σ0 − σt(ϑ− ϑ0) + σc(c− c0), (6)

where σ0 = σ(ϑ0, c0) is reference value of surface tension, σt = −∂σ/∂ϑ, σc = ∂σ/∂c.
Second, the liquid density ρ is assumed to depend on both the temperature ϑ and particle
concentration c,

ρ = ρ0[1 − β̃(ϑ− ϑ0) − γ̃(c− c0)], (7)

where ρ0, ϑ0, c0 are, respectively, reference values of density, temperature and solute con-

centration, β̃ = −

1

ρ0

(
∂ρ

∂ϑ

)
p

, γ̃ = −

1

ρ0

(
∂ρ

∂c

)
p

. Thus, the effect of buoyancy is also

included in the analysis. Therefore, a combination of Rayleigh and Marangoni convection
takes place here.
To estimate the relative importance of the various transport mechanisms in nanofluids, it
is useful to make the governing equations non-dimensional. For this purpose, we use the
following scaling.

t→
h2

0

D
t, (x, z) → h0(x, z), (u, w) →

D

h0
(u, w),

ϑ→ ϑ
∞

+ ah0T, ah0 = Δϑ, c→ αah0C, p→
μD

h2
0

p.

(8)

Equations (2-5) take form

∇ · �v = 0,

P−1L[�vt + (�v · ∇)�v] = −∇p + ∇
2�v,

Tt + �v · ∇T = L−1
∇

2T +KC∇C · ∇T +KT∇T · ∇T ,

Ct + �v · ∇C = ∇
2C + FT∇

2T.

(9)

Let us carry out order-of-magnitude estimations of the contribution of each term in the
right-hand side of non-dimensional nanofluid energy equation:

KC =
ρp ηp

ρ η
·

DT

D
· αΔϑ ∼ 10, KT =

ρp ηp

ρ η
·

DT

D
·

Δϑ

ϑ
∞

∼ 10, KC , KT � L−1
∼ 107.

(10)
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One can see that heat transfer associated with nanoparticle dispersion is negligible, as
compared with heat conduction and convection. Note, that the Soret effect can not be
neglected:

FT =
DT

D
·

1

ϑ
∞

·

1

α
∼ 1. (11)

Here we used the values of parameters shown above and temperature difference Δϑ =
10K, while the temperature of the ambient gas phase is ϑ

∞
= 300K. Therefore, the

correct model for the description of the hydrodynamics and heat and mass transfer in
nanofluids is identical to the system of equations for a binary mixture with the Soret
effect:

∇ · �v = 0,

P−1L[�vt + (�v · ∇)�v] = −∇p + ∇
2�v +Rth (T − T ) · �ez +Rc (C − C) · �ez,

L(Tt + �v · ∇T ) = ∇
2T,

Ct + �v · ∇C = ∇
2C + ∇

2T.

(12)

Here buoyancy effect is also incorporated. The boundary conditions at the bottom rigid
surface z = 0 reflect the no-slip condition for the velocities, a specified heat flux and mass
impermeability.

z = 0 : �v = 0, Tz = −1, Cz = 1, (13)

At the free non-deformable liquid-gas interface, the boundary conditions are, respectively,
the kinematic boundary condition, heat and mass flux balance, and balance of tangential
stresses.

z = 1 : �v · �ez = 0, Tz +Bi T = 0, Cz − Bi T = 0,

∂zu = McCx −MthTx.
(14)

The dimensionless parameters of the problem are given as P =
ν

κ
- Prandtl number,

L =
D

κ
- Lewis number, Bi =

qh0

kth

- Biot number, Mth =
σtah

2
0

μD
-thermal Marangoni

number, Mc =
ασcah

2
0

μD
- concentration Marangoni number, χ =

Mc

Mth

=
ασc

σt

- Soret

number, Rth =
gβ̃ah4

0

Dν
- thermal Rayleigh number, Rc =

gγ̃αah4
0

Dν
- concentration

Rayleigh number, ϕ =
Rc

Rth

=
αγ̃

β̃
- buoyancy separation number, Σ =

σh0

μκ
- inverse

capillary number.
We consider linear stability analysis of the base state given by

�v0 = 0, T0 = −z +
1 +Bi

Bi
,

C0 = z, p0 = (Rc − Rth)
z2

2
+ const · z + const.

(15)

We introduce stream function ψ, so that u = ψz, w = −ψx.
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A two-dimensional linear problem for a non-deformable interface is solved using normal
modes for perturbation functions.

(u, w, p, T, C, ψ) = (ũ(z), w̃(z), p̃(z), T̃ (z), C̃(z), ψ̃(z))eikx+ωt, (16)

where k and ω are wave number and growth rate of the disturbances, respectively.
As a result, we obtain the following linear problem for perturbation functions

ω P−1 L(ψ̃′′

− k2ψ̃) = ψ̃′′′′

− 2k2ψ̃′′ + k4ψ̃ − i k Rth T̃ − i k Rc C̃T ,

L [ωT̃ + ikψ̃] = −k2T̃ + T̃ ′′,

ωC̃ − ikψ̃ = −k2C̃ + C̃ ′′ + χ(−k2T̃ + T̃ ′′),

(17)

with boundary conditions at z = 0 :

ψ̃ = ψ̃′ = 0, T̃ ′ = C̃ ′ = 0, (18)

and at z = 1 :
ψ̃ = ψ̃′ = 0, T̃z +Bi T̃ = 0, C̃z −Bi T̃ = 0,

ψ̃′′ = ik (McC̃ −MthT̃ ),
(19)

We study the case of long-wavelength Marangoni+Rayleigh convection of the system with
poorly conducting boundaries in the limit of asymptotically small Lewis numbers. The
behavior of the critical Marangoni number is determined by the relationships between
the Biot, Lewis and wave numbers. In order to obtain the full neutral curve we consider
several distinguished limits. First we consider long-wave monotonic instability threshold
in the case when Bi ∼ L. In this limit two subcases are considered: k2

∼ L and k4
∼

L. In the leading order of approximation, we obtain the following expression for the
monotonic instability threshold for both limits

1 −

χM0

48
+
ϕR0

320
= 0, (20)

Introducing the Bond number B = Rth/Mth we obtain

M0 =
960

−3B ϕ+ 20χ
. (21)

A second order correction in the subcase k4
∼ L, i.e., k = εK, L = ε4 l, Bi = ε4 β is

given by

M2 =
−640K2 (261B2 ϕ2

− 3608Bϕχ+ 9240χ2)

231 (3B ϕ− 20χ)3
. (22)

Therefore, long-wave monotonic instability with kc = 0 sets when B ϕ/χ < 3.3945 and
when B ϕ/χ > 10.4292. In the other subcase k = εK, L = ε2 l, Bi = ε2 β, the second
order correction to the monotonic instability threshold is written as

M2 = AK2

[
1 −

F

K2 + β

]
, (23)
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where

A =
M2|K4

∼L

K2
, F =

693 l (3B ϕ− 20χ)(3B(ϕ− 1) − 20 (1 + χ))

522B2 ϕ2
− 7216Bϕχ+ 18480χ2

(24)

Our analysis shows that in this limit in the regions of parameters B ϕ/χ < 3.3945 and
B ϕ/χ > 10.4292 the monotonic neutral curve has minimum of the absolute value in

the long-wave region either at finite K(β)
c =

√√

F (β)
− 1 for F (β) > 1 or the minimum

is attained at K(β)
c = 0 for F (β)

≤ 1, here K(β)
c = K/

√

β, F (β) = F/
√

β. It should
be noted that the previous limit is particular case of the latter one for when K tends to
infinity.
The onset of long-wave oscillatory instability in the framework of linear stability theory
is further investigated and the domains of the parameters, where destabilization of the
neutral curve takes place with the growth of the wave number K are determined in terms
of Soret number, separation ratio and Rayleigh number.
A typical behavior of monotonic and oscillatory instability thresholds is investigated in
the all distinguished limits of parameters. Finally, investigation of Marangoni convection
is considered in the case of sufficiently thin films, when buoyancy is neglected. Compar-
ison of the obtained results shows drastic changes of the instability criteria in the case of
combined Marangoni+Rayleigh convection.
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Abstract

We studied anomalous diffusion under the influence of an external force on finite regular
Sierpinski carpets. In order to investigate the time development of the probability density
p(r, t) we utilize the master equation approach. Thus, we are able to determine important
quantities depending on their space direction e ∈ {x, y}, like the mean drift velocities
〈vdre〉, the mean square displacements 〈e2〉 and the random walk dimensions dwe

. Apply-
ing different force strengths in x-direction we find a maximum 〈vdrx〉 for small to medium

force strengths in x. According to 〈x2〉 ∼ t
2

dwx , we determine that dwx
< 2 along the

external force. So, diffusion seems to be superdiffusive, although diffusion is hindered by
structure and delayed be waiting times. Finally, this seems to be the result of two compet-
ing effects. First, the particles get accelerated due to the external force. However, they get
also trapped according to the complex structure which takes more time to escape caused
by the external force. Thus, the distribution spreads faster with than without an external
force and dwx

< 2.
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1 Introduction

In technology and science we can observe many anomalous diffusion processes influ-
enced by external forces. Examples are the impedance spectroscopy measurements as for
polymer electrolytes [1], hopping electron conduction in doped semiconductors in strong
electric fields [2], or diffusion of particles in gels under high gravity or centrifugal force
as in chromatographic columns [3].
The external force causes diffusing particles to move preferred in direction of the exter-
nal force direction. Besides, also the complex structure of real materials [4], like self-
similarities of certain length scales, play an important role. We apply regular Sierpinski
carpets (SC), a special kind of fractals, to model these complicate structures. SCs are
defined by a generator, which is a square divided in n × n subsquares (see Fig. 1). There
are m subsquares labeled black and the rest are white that means they are removed. In
order to construct a SC we start with a generator and in each iteration step we replace
every black subsquare by a scaled down version of the generator. If this is repeated ad
infinitum, the limit object is a SC, where we define its fractal dimension df as df = log m

log n
.

As real materials have a smallest length scale of self-similarity, we stop the iteration
process after l times and we obtain an iterator of depth l. Furthermore, we combine
copies of the iterator to one carpet. Thus, we model the effect that disordered media are
rather homogeneous at large length scales [5].
It is known that such complex structures lead to anomalous subdiffusion [6]. So the mean
square displacement 〈r2(t)〉 of diffusing particles increases not linear in time t, as for
normal diffusion, but

〈r2(t)〉 ∼ t
2

dw , (1)

where dw > 2 is the random walk dimension [7].
In the next section we will introduce our simulation model and the chosen parameters.
Afterwards, we present our results and we will discuss them. Finally a short conclusion
is given.

2 Diffusion model in disordered media

We model the diffusion on SCs with the master equation approach. With this approach we
are able to calculate the time evolution of the probability density p(r, t) of many particles
or random walks on SCs. Analyzing the resulting p(r, t) we can determine many impor-
tant quantities depending on their space direction e ∈ {x, y}, as the mean drift velocities
〈vdre〉, the mean square displacements 〈e2〉 and thus, the random walk dimensions dwe

,
and many more.
The probability density p(ri, t) describes the probability p of a walker to be at time t at a
certain position ri = (x, y). The new p(r, t + 1) can be calculated as

p(ri, t + 1) = Γiip(ri, t) +
∑

j∈〈i〉

Γijp(rj, t), (2)

where j ∈ 〈i〉 represents all neighboring black squares rj of ri, Γij is the transition
probability for a walker to move from square rj to ri and Γii is the probability to stay. We
choose our transition probabilities according to the blind ant model [8]. That means every
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(d)(c)(b)(a)

FEDC

dw = 2.487 dw = 2.489 dw = 2.599 dw = 2.498

Fig. 1: Four different generator patterns with same df = 1.59

neighboring square is chosen with a probability of 1/4. If there is a neighboring black
square, Γji is set to Γji = 1/4. The walker stays on its current position with a probability
Γii = 1 −

∑
j∈〈i〉 Γji, if there is white square.

We modified the transition probabilities according to the external force, we want to apply
[9]. Thus, we defined a vector b = (bx, by) with bx, by ∈ [0 : 1] for the external force
strength. So our new transition probabilities to neighboring black squares are

Γij =
1

2d

(
1 + ejib

)
, (3)

with d as space dimension and eji as unit vector pointing to the four neighboring squares
rj.
Implementing the master equation approach requires an efficient processing of large data
sets. In every time step we need to calculate the probabilities p(ri, t + 1) for all squares
ri using the probabilities of the previous time step and the neighboring information of
the SCs. The irregular carpet structure requires appropriate data structures and efficient
algorithms for querying, calculating and storing all necessary data. Because of the high
computational workload and the memory requirements, a parallel implementation based
on the Task Pool Teams concept [10] was used to solve the master equation on regular
and randomized SCs .

3 Results and discussion

We applied four different generator patterns, shown in Fig. 1, with same fractal dimension
df but different random walk dimension dw, in order to analyze effects of structures like
dead ends to the diffusion influenced by an external force, like temperature difference,
magnetic or electric fields. The external force is chosen to be along the positive x-axis.
We investigated two important quantities for different iteration depths l = 1, 2, 4. But,
we will present all results for l = 2, and in first order for generator E, as time scales
and structure elements are appropriate to show and to discuss all necessary phenomena,
however they appear in all iteration depths. We calculated the drift velocities 〈vdre〉 and
the second central mean square displacements 〈D2(Xe)〉 = 〈e〉2 − 〈e2〉, both in x- and
y-direction, and depending on the external force.
First, we present our results of the drift velocity 〈vdre〉 over the external force strength
bx for the generators C, D, E, and F (see Fig. 2). We know that for homogeneous media
we find a monotonic increasing 〈vdrx〉 for increasing bx. However, in Fig. 2(a), we see a
non-monotonic response of 〈vdrx〉 for increasing bx [9,11]. We observe a maximum 〈vdrx〉
for small to medium amplitudes. Perpendicular to the force, in y-direction (Fig. 2(b)), we
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Fig. 2: Here the mean drift velocities 〈vdre
〉 in x- and y-direction for different force

strengths bx are shown for all generators (see Fig. 1).

find such a non-monotonic behavior for 〈vdry〉 at smaller order of magnitudes. But, this
small drift is caused by the fractal structure of the medium, where diffusion takes place.
Then we analyze the time development of the mean square displacement 〈D2(Xe)〉, which
can be seen in Fig. 3 for generator E. The vertical lines in the graph represent the average
number of time steps t1 = 4298 and t2 = 281753 to cross the linear size of an iterator of
depth l = 1 and 2. Furthermore, we also introduce a reference graph for normal diffusion
(dw = 2).
In Fig. 3(a), we observed that along the external force and within the fractals regime
(t < t2) the slopes of 〈D2(Xx)〉 are steeper than normal diffusion, thus dwx

< 2. This
corresponds to superdiffusion. On the other hand, we find that without an external force
(bx = 0) and perpendicular to the force (see Fig. 3(b)) the slopes are flatter than normal
diffusion, so dwy

> 2 and subdiffusive behavior can be seen. In all cases we recognize
that diffusion crosses over to normal diffusion for long time scales (t > t2).
Although diffusion is hindered by structure and particles get trapped in dead ends we
observe a superdiffusive behavior along the external force. In order to analyze that phe-
nomena we determine the marginal distribution p̃(x, t) =

∑
y p((x, y), t) of p(r, t). We

plotted p̃(x, t) over x (Fig. 4) for generator E at time t = 489 for bx = 0 and bx = 0.4.
The vertical line represents the mean value 〈x〉 of p(r, t).
For bx = 0, we see that 〈x〉 is close to the maximum peak of p̃(x, t) at the position
x = 0.79. Moreover, the distribution is fast decaying to both sides similarly. However,
applying an external force 〈x〉 and the main peak of p̃(x, t) are not at the same position.
Furthermore, we do not observe only one major peak, but three and the whole distribution
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Fig. 3: It is presented the central mean square displacement D2(Xe) in x- and y-direction
over time t for an iterator of depth l = 2 of generator E (see Fig. 1(c)).
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Fig. 4: The marginal distribution p̃(x, t) over x is shown for generator E (l = 2) (see
Fig. 1(c)) for bx = 0.0 and bx = 0.4.

is flatter for bx = 0.4 than for bx = 0.
That means, particles follow two competing effects. First they move preferred and thus
faster along the external force. But they still get trapped according to the structure. If the
traps lay along the force direction, it takes more time to escape. The distribution flattens
down much faster and dwx

< 2. So, we see an overlapping of subdiffusion, trapping and
ballistic motion.

4 Conclusions

We studied anomalous diffusion on regular SC structures under the influence of an ex-
ternal force. Therefore, we investigated four different generator pattern with six different
external force strengths applied at iteration depth l = 2.
We determined the probability distribution p(r, t) and thus, the mean value 〈x〉, mean drift
velocities 〈vdre〉 and central mean square displacements 〈D2(Xe)〉 in x- and y-direction
(e ∈ {x, y}). We found a non-linear response of 〈vdrx〉 with increasing force strength in
x-direction and we obtained maximum 〈vdrx〉 for small and medium forces. Moreover,
we observed dwx

< 2 along the external force. That implies a superdiffusive process,
although diffusion is hindered by dead ends and waiting times.
An explanation gave us the analysis of the corresponding marginal distributions p̃(x, t).
We observed that particles undergo two competing effects, the acceleration due to the
external force and a stopping and waiting corresponding to the trapping in dead ends
along the external field. Thus, the distribution spreads and flattens much faster. So, dwx

is larger than the ’normal’ subdiffusional process on fractals and even larger than normal
diffusion.
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Abstract

The linear stability of convection in a vertical layer of multicomponent fluid is investi-
gated. The basic state is a plane–parallel return flow, where a linear temperature profile
in the cross–section induces linear profiles of concentrations due to the Soret effect. The
limit of long–wave perturbations is investigated analytically. It is found that long–wave
instability is caused by the interplay between the basic flow and concentration waves
with long scale in vertical direction. The instability regions in the space of control pa-
rameters (separation ratios) are constructed and critical Grashof numbers are plotted for
ternary mixtures. It is shown that the instability region becomes larger with increasing
the difference between diffusive properties of components. The analysis of characteris-
tic decrements behavior with increasing the Grashof number reveales different instability
scenarios depending on the values of control parameters: monotonic/oscillatory onset,
stabilization after the onset, and even repeated destabilization. To investigate the case of
finite wave–numbers, calculations are performed by the method of direct integration with
orthogonalization combined with the shooting procedure. They confirm that the most
dangerous monotonic mode corresponds to zero wave number in the instability regions
discovered by the long–wave analysis. However, the oscillatory onset is found to occur at
finite wave numbers.
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1 Introduction

Multicomponent mixtures can show a variety of convective phenomena due to a complex
interplay between heat and mass transfer processes, such as cross–diffusion and the Soret
and Dufour effects. Convective instabilities in binary fluids have been extensively inves-
tigated (see [1] and references therein), but for ternary and higher mixtures the number of
studies is rather limited. Among other reasons, the importance of such studies relates to
the fact that transport coefficient measurement methods employing convection are being
extended to multicomponent fluids [2].

This work deals with linear stability of convective flow in a side–heated vertical slot
with a multicomponent mixture in the presence of Soret effect. The limit of long–wave
perturbations is investigated analytically and numerically. The instability zones and crit-
ical Grashof numbers are plotted for ternary mixture and instability mechanism is dis-
cussed.

2 Governing equations and basic state

Fig. 1: Vertical layer.

Consider a mixture with n components, which is placed in a
long vertical layer of width 2L (Fig. 1). A temperature differ-
ence 2ΔT is applied between no–slip and impermeable lateral
walls. The density is assumed linear in temperature and con-
centration of components: ρ = ρ0

[
1 − βT T − β1C1 − · · · −

βn−1Cn−1

]
, where T and Ci are the deviations from the mean

values. We take the scales of length L, time L2/ν, velocity
gβT ΔTL2/ν, temperature ΔT , and concentration of ith com-
ponent βT ΔT/βi. Here ν is the viscosity and g is the gravity
acceleration. The dimensionless equations of multicomponent
convection in Boussinesq approximation have the form [4]

∂t u+ Gr (u · ∇)u = −∇p + ∇
2
u+ (Θ + I · c) e,

∂t Θ + Gr (u · ∇) Θ = Pr−1
∇

2Θ, (1)

∂t c + Gr (u · ∇) c = SC (∇2
c−ψ∇

2Θ),

∇ · u = 0,

where c = (c1, . . . , cn−1) is the vector of concentrations. The system includes the
Prandtl number Pr = ν/χ, the Grashof number Gr = gβT ΔTL3/ν2, the square ma-
trix SC = ν−1BDB−1 (D is the diffusion matrix and B = diag{βi}). The separation
ratios ψ = (ψ1, . . . , ψn−1) = −βT BD−1

DT characterize the Soret effect (DT is the
vector of thermal diffusion coefficients). In addition, e = (0, 0, 1) and I = (1, . . . , 1) is
(n − 1) dimensional vector.

The basic state is a plane–parallel return flow u = (0, w(x)), Θ(x), c(x), which
satisfies the conditions

x = ±1 : w = 0, Θ = ±1,
∂c

∂x
−ψ

∂Θ

∂x
= 0;

∫
1

−1

w dx = 0,

∫
1

−1

c dx = 0.
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and has the form

w0 =
Ψ + 1

6
(x − x3), Θ0 = x, c = ψx. (2)

Here Ψ = ψ1 + · · · + ψn−1 is the net separation ratio. In the basic state, the applied
temperature difference induces separation of components due to the Soret effect. The
sign of ψi determines the direction of component segregation (to the hot or cold wall).
The horizontal density variation results in convective flow driven by buoyancy force. The
flow (2) can be observed in thermogravitational column at the transient state [5].

3 Stability problem

We analyze linear stability of basic state (2) with respect to two–dimensional perturba-
tions of the form

(
ϕ(x), θ(x), ξ(x)

)
exp(−λt + ikz) for stream function, temperature,

and composition, respectively. The stability problem is written as (Δ = ∂xx − k2 and the
prime stands for ∂x):

Δ2ϕ + ik Gr (w′′

s ϕ − ws Δϕ) + θ′ + I · ξ′ = −λΔϕ,

Pr−1Δθ + ik Gr (Θ′

s ϕ − ws θ) = −λ θ, (3)

SC (Δξ −ψΔθ) + ik Gr (c′s ϕ − ws ξ) = −λ ξ,

x = ±1 : ϕ = ϕ′ = 0, θ = 0, ξ
′

−ψ θ′ = 0.

In this work, we study the limit of long–wave perturbations. The solution is expanded
in series with respect to the wave number k, which is assumed to be small:

(ϕ, θ, ξ, λ) =
∞∑

m=0

(ϕm, θm, ξm, λm) km. (4)

Substituting the expansions into (3) and equating the terms with the same order of k,
we obtain the equations for coefficients. Solving zero and first order system gives the
approximations λ0 = λ1 = 0 to the decrement λ. From the second order system, we
derive the equation for λ2:

det

[
2Gr2(Ψ + 1)

2835

(
Υ + (Ψ + 1)E

)
SC

−1 + SC − λ2E

]
= 0, (5)

where E is the unity matrix and Υ is a matrix, every column of which coincides with
the vector ψ. Equation (5) is a polynomial of degree n − 1 with respect to λ2. So, there
exist n−1 modes for n–component mixture in the limit of long–wave approximation with
λ ≈ λ2k

2. Note that when Ψ = −1, the basic state of mechanical equilibrium (see (2))
is stable with respect to the long–wave perturbations (since the eigenvalues of diffusion
matrix are always real and positive).

The analysis of perturbation structure (eigenfunctions of (3) in the form (4)) allows
one to understand the long–wave instability mechanism. We found that in an isothermal
fluid layer, only damping density disturbances caused by long–scale concentration waves
in vertical direction exist. When heating is applied, the basic flow (see Fig. 1) shifts
these waves upwards and downwards producing density variations, which result in the
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velocity disturbance in the form of convection cells. The growth/decay of perturbations
is connected with the horizontal stratification in temperature and composition in the basic
state (2). Indeed, a horizontal shift of a small fluid element leads to the density difference
between this element and the surrounding fluid. The resulting buoyancy force induces
motion in vertical direction, which may lead to the development of instability. With time,
the homogenization of temperature and composition between the fluid element and its
surroundings occurs. During this process, the density difference, and, consequently, the
buoyancy force acting on the element may increase or decrease since the relaxation times
for diffusion of heat and different components of the mixture can significantly differ. So,
a complex instability behavior can be expected in multicomponent mixtures.

4 Instability in ternary mixture

Let us consider the case of ternary fluid. The diffusion matrix is assumed diagonal, i.e.
SC = diag { Sc−1

11 , Sc−1

22 }, where Scii = ν/Dii are the Schmidt numbers. All results can
be extended to non–diagonal case by the technique described in [6]. Let us introduce the
ratio s = Sc11/Sc22, which satisfies the inequality 0 < s � 1 (otherwise, we change
the order of components). Eliminating the parameters related to the second component
by using ψ2 = Ψ − ψ1 and Sc22 = Sc11/s, from (5) we obtain a quadratic equation with
the roots λ±

2 for the decrement λ2. To find the threshold of monotonic instability, we put
λ2 = 0 and find two roots

(
Gr±m

)2
=

2835

4Sc2

11(Ψ + 1)2 (2Ψ + 1)

[
−

(
ψ1(s

2
− 1) + Ψ(s2 + 2) + s2 + 1

)
± (6)

±

√(
ψ1(s2

− 1) + Ψ(s2 + 2) + s2 + 1
)2

− 4s2(Ψ + 1)(2Ψ + 1)

]
.

For Ψ = −1, there is no solution and for Ψ = −1/2 we have multiple root
(

Gr∗m
)2

=
5670 s2/Sc2

11/(2ψ1(1 − s2) − s2). The threshold of oscillatory instability is obtained by
setting λ2 = iω. The critical Grashof number is given by

(
Gro

)2
= −

2835 s(s + 1)

2Sc2

11(Ψ + 1)
(
ψ1(s − 1) + Ψ(s + 2) + s + 1

) (7)

and the critical frequency is

ω2 =
s(s + 1)2(Ψ + 1)(2Ψ + 1)

Sc2

11

(
ψ1(s − 1) + Ψ(s + 2) + s + 1

)2
−

ψ1(s
3
− 1) + Ψ(s3 + 2) + s3 + 1

Sc2

11

(
ψ1(s − 1) + Ψ(s + 2) + s + 1

) .

(8)

To find the instability regions in the parameter space (Ψ, ψ1, s), we require that the right–
hand sides of formulae (6)–(8) and the expression under the square root in (6) must be pos-
itive. The analysis shows that instability exists for −1 < Ψ < −1/2 with the monotonic
onset at Gr−m. It is the only unstable region for s = 1 (here components have the same dif-
fusive properties
and the mixture behaves like a binary one [3]). When 0 < s < 1, additional instabil-
ity regions
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appear. In Fig. 2, they are shown by the shaded area for s = 0.5. Sectors 2 and 3 with the
monotonic onset at Gr−m and Gr+m, respectively, are limited by the curves

ψ±

m =
Ψ(s2 + 2) + s2 + 1

1 − s2
±

2s
√

(Ψ + 1)(2Ψ + 1)

1 − s2
.

It can be shown that when s is changing from 1 to 0, the boundaries of sectors 2 and
3 monotonically approach the line ψ1 = 2Ψ + 1 (the direction is shown by arrows).
In addition, sector 4 with the oscillatory onset at Gro appears. We conclude that the
difference in diffusive properties leads to the enlargement of instability region. This fact
is consistent with the reasoning in Section 3.

It was found that when diffusive properties of components are close (s → 1), the
critical Grashof number is mainly determined by the net separation ratio and weakly de-
pends on ψ1. With decreasing s, the latter dependence becomes very pronounced. It is
illustrated by Fig. 3, where the dependence of Gr−m on ψ1 is shown for Ψ = −0.75 and
Sc11 = 500. At the point ψ1 = Ψ, there is no Soret separation of component 2 (ψ2 = 0),
which explains the crossing of the curves.

We also analyzed the behavior of decrements λ±

2 with increasing the Grashof number
and found different instability scenarios depending on Ψ, ψ1, s: monotonic/oscillatory on-
set, stabilization after the onset, and even repeated destabilization. The case of finite wave
numbers was investigated numerically by the method of integration with orthogonaliza-
tion. It confirmed that the most dangerous monotonic mode corresponds to k = 0, but
showed that the oscillatory instability sets in at finite k. An example of complex instabil-
ity scenario is shown in Fig. 4: a long–wave monotonic onset is followed by stabilization
and then oscillatory onset at finite k.

5 Conclusions

Long–wave instability in a vertical multicomponent fluid layer with Soret effect have been
investigated analytically and numerically. The instability zones in the parameters space
and critical Grashof numbers are plotted for ternary mixture. It was shown that insta-
bility region becomes larger with increasing the difference between diffusive properties

Fig. 2: Long–wave instability zones for
ternary mixture on the plane (Ψ, ψ1).

Fig. 3: Critical Grashof numbers, Ψ =
−0.75.
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Fig. 4: Monotonic and oscillatory neutral curves, Ψ = −1.25, ψ1 = −3.5, s = 0.5,
Sc11 = 500.

of components. A variety of instability scenarios with increasing the Grashof number is
found.
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Abstract

The force on a charged colloid due to a temperature gradient is calculated, from which
the Soret coefficient is obtained. The thermophoretic force consists of two types of con-
tributions : (i) a force due to the temperature dependence of the internal energy of the
double layer and (ii) forces related to the temperature-induced deformation of the dou-
ble layer. To leading order in temperature gradients, the force (i) can be obtained from
irreversible thermodynamics considerations where temperature-gradient induced defor-
mation of the double layer can not be accounted for, while the forces (ii) must be obtained
from a detailed analysis of the temperature-gradient induced deformation of the double
layer. The present calculation is based on an Debye-Hückel theory for the double-layer
structure in a small temperature gradient, including solvent friction forces that arise from
electro-osmotic flow that is induced within the deformed double layer [1].
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The thermal diffusion coefficient of colloidal particles consists, to a good approximation,
of additive contributions from single-particle properties and contributions stemming from
interactions between colloids. Single-particle contributions relate to the response of the
solvation layer, the structure of the solid core material and the electric double-layer to
a temperature gradient. As far as the electric double layer is concerned, there are three
forces acting on a colloidal sphere. The origin of these forces is schematically depicted
in Fig.1.
First of all, the temperature dependence of the internal electrostatic energy W of the
double layer and surface charges gives rise to a force FW , which is referred to here as
the internal force and is equal to −∇W = −∇T dW/dT (with T the temperature). The
internal energy can be calculated as the work necessary to reversibly charge the colloidal
sphere. To leading order in temperature gradients this leads to,

FW = −
∇T (z)

T

Q2

16 π ε R

κR

( 1 + κR )2

{
1 −

d ln ε

d lnT

(
1 +

2

κR

)}
, (1)

where Q is the total free surface charge, ε is the dielectric constant of the solvent, R

is the radius of the sphere and κ is the inverse Debye length. Note that, to leading in
temperature-gradients, the internal force can be calculated without having to consider the
temperature-gradient induced deformation of the double layer. The result (1) can therefore
also be obtained from irreversible-thermodynamics considerations [2].

T T

(b) (c)

el
F

sol
F

T

(a)

W
F

T T

(b) (c)

el
F

sol
F

T

(a)

W
F

Fig. 1: The three forces acting on a charged colloidal sphere, fixed at the origin, in
a temperature gradient. (a) The internal force FW due to the change of the double-
layer structure on displacement of the sphere. The dashed lines indicate the extent of the
unperturbed double-layer at the ambient temperature. (b) The electric force Fel that is
due to the non-spherically symmetric double-layer structure. The dashed line indicates
the asymmetry of the double layer. (c) The solvent-friction force Fsol is due to the solvent
flow that is induced by electric body forces arising from the asymmetry of the double-layer
structure. Here, the lines indicate solvent flow lines. Figure is taken from ref. [1].

There are two additional forces which are the result of temperature-gradient induced de-
formation of the double layer.
The temperature gradient will induce an asymmetry in the double-layer charge distribu-
tion. This is, roughly speaking, due to the temperature dependence of the double-layer
thickness. On the colder side of a colloidal sphere in water, the Debye screening length
is larger as compared to the warmer side. As a result, the center-of-charge of the double
layer does no longer coincide with the center-of-charge of the surface-charge distribution
of the colloidal sphere. This results in an electric force Fel of the double layer on the
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surface charges of the sphere (see Fig.1b),

Fel =
1

2

∮
∂V

dS σt(r)
[
E

+(r) + E
−(r)

]
, (2)

where E
+ and E

− are the electric field strengths on approach of the surface of the spheri-
cal colloid from the outside and inside of the core, respectively, and σt is the total surface
charge density, including both free surface charges and charges due to dielectric polariza-
tion.
Due to the asymmetry of the charge distribution, electric body forces will set the solvent
in motion. This solvent flow acts with a solvent-friction force Fsol on the surface of the
sphere (see Fig.1c),

Fsol = −

∮
∂V

dS f(r) , (3)

where f is the force per unit area that a surface element of the core of the colloids exerts
on the solvent.
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Fig. 2: The functions (a) G�
2
(x) ≡ xG1(x)/(1 + x)2 and (b) G�

2
(x) ≡ xG2(x)/(1 + x)2

that determine the contributions to the Soret coefficient in eq.(4) due to the temperature-
induced deformation of the double layer. Most right figure : experimental Soret coeffi-
cients as a function of the Debye length λDH = κ−1 for colloidal polystyrene spheres of
various radii [3]. The solid lines correspond to the force in eq.(1).

The total thermophoretic force FT = FW +Fel+Fsol will set the sphere in motion, leading
to thermodiffusion. What is neglected here is the flow-induced deformation of the charge
distribution, which is known from electrophoresis to contribute to the velocity of the order
of a few percent. In order to explicitly evaluate the forces (2,3), the temperature-gradient
induced asymmetry of the double layer needs to be quantified. We therefore extended
the Debye-Hückel theory to include a small temperature gradient, which then enables the
calculation of the electric force and the solvent friction force [1]. The resulting expression
for the Soret coefficient reads,

T ST = T SW
T +

ε0

ε

β Q 2

16 π ε R

κ R

(1 + κ R )2

[
χ G1(κ R) −

d ln ε

d ln T
G2(κ R)

]
, (4)
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where ε and ε0 are the dielectric constants of the solvent and vacuum, respectively. The
functions G1 and G2 in eq.(4) describe the contribution to the Soret coefficient due to the
temperature-induced deformation of the double layer. These functions take the relatively
simple form,

G1(x) = −E(x) + 1 ,

G2(x) = E(x) −
2

3
x − 2 +

1

2
x−1 , (5)

where E is defined as,

E(x) = 2 x exp{2x}

∫
∞

x

dz
exp{−2 z}

z
. (6)

The functions G�
j ≡ xGj/(1 + x)2 are plotted in Fig.2. Furthermore, SW

T is the contri-
bution to the Soret coefficient corresponding to the internal force (1), that is, due to the
temperature dependence of the internal energy W of the double layer,

T SW
T =

β Q 2

16 π ε R

κ R

(1 + κ R )2

[
1 −

d ln ε

d lnT

(
1 +

2

κ R

) ]
. (7)

This contribution to the Soret coefficient can also be found from irreversible thermody-
namics considerations [2], where temperature-gradient induced deformation of the double
layer is not accounted for.
Two things are to be noticed. First of all, the forces due to temperature-gradient induced
deformation of the double layer are dielectrically screened, so that these forces are typi-
cally a factor ε0/ε smaller than the internal force. Experimental results, like those in the
most right figure in Fig.2, can therefore be explained on the basis of irreversible thermo-
dynamics only. The effects of the temperature-gradient induced asymmetry of the double
layer are relevant in less polar solvents. Experiments on such systems have not yet been
performed. It would also be interesting to probe the solvent flow around a charged col-
loidal sphere in a temperature gradient. Secondly, the contribution of these two forces to
the Soret coefficient do not vanish for very thin double layers. This is due to the temper-
ature dependence of the dielectric constant of the solvent, giving rise to an asymmetric
screening of surface charges.
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Abstract
Particle transport in a temperature gradient is known as the Ludwig-Soret effect in a 
binary fluid mixture and as the Seebeck effect in an electric conductor. In this paper, both 
effects are described within the same framework. Energetic interpretations of the effects 
ensue. It is shown how the modeling of the Seebeck effect can shed light on the Soret 
effect, especially the existence of two signs of the Soret coefficient. 
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1 Steady-state thermodynamics of the Lorentz model 
The Lorentz model considers mobile particles in a passive medium unperturbed by the 
flow of the particles. At constant pressure, if two subsystems 1 and 2 of the medium 
exchange particles and energy, the entropy change is [1] 

dS = (1
T1

1
T2

)dU1 (
~

T1

~

T2
)dN1 (1)

where T is the absolute temperature and ~ is the chemical potential of the particles. In Eq. 
(1), account has been taken of the conservativity of energy U and particle number N. In a 
continuous medium where T and ~ are functions of position, Eq. (1) becomes 

.
 = (1

T).jU + (
~
T).jN , (2)

where
.
 (in J.K 1.m 3.s 1) is the rate of entropy production, and jU (resp. jN) is the energy 

(resp. particle) current density, in J.m 2.s 1 (resp. m 2.s 1). For small enough disequilibria 
(1/T) et ( ~/T), the steady-state response to the disequilibria is taken to be linear, 

namely 

jN = LNN (
~
T) + LNU (1

T), (3)

jU = LUN (
~
T) + LUU (1

T) (4)

The second law of thermodynamics demands the positivity of (Lij)i,j = U,N , namely 
LNN > 0, LUU > 0 and LUULNN LUNLNU > 0. 

Let us write jU as jF + UjN so that, in the absence of a particle flow, we have an ordinary 
(Fourier) heat flow jF , and jN adds a contribution to jU . This is achieved by letting 

jF = 
LUULNN LUNLNU

LNN
(1
T)  and U = 

LUN
LNN

(5)

Identifying the prefactor of (1/T) to T2 yields the thermal conductivity  of Fourier's 
law: it is checked that  > 0. The quantity U has the meaning of an energy transported by 
each particle in the absence of T, as is apparent in the so-called energy-transport models 
[2,3].

Introducing the heat current jQ = jU
~ jN , defined by removing the local binding energy 

~ of particles, it is possible to rewrite Eqs. (3) and (4) as 
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jN = 
LNN

T [ ~ (
LNU
LNN

~) T
T ], (6)

jQ = jF + (
LUN
LNN

~) jN . (7)

2 Application to the thermoelectric effects in solids 
In an electrically conducting solid, the charge current density J is given by the following 
phenomenological law [4-6] 

J = (E' S T), (8)

where the electromotive field E' = (~e/q) involves the electrochemical potential ~e = ~c
+ qV of carriers henceforth assumed to be of a single type, of charge q, and V is the 
electrical potential. The law (8) uses an electrical conductivity  and a Seebeck coefficient 
S (in V/K, not to be confused with entropy). Equivalently, the carrier current density is 

jN = q2( ~
e qS T) (9)

Take T = 0. When ~e reduces to qV, Ohm's law is recovered; when ~e reduces to ~c , we 

have Fick's law, with diffusivity D = ( /q2)( ~
c/ n)T . Since the chemical potential should 

include qV, the law (9) can be cast on the pattern (6), with 

LNN = T/q2  and LNU/LNN = ~e + qST (10)

The second phenomenological law of thermoelectricity is [4-6] 

jQ = T + J, (11)

where  is the Peltier coefficient. Writing jQ = T + q jN yields U = ~
e + q .

Experiment shows that  = TS, which is tantamount to LNU = LUN . The latter symmetry 
relation is a manifestation of microscopic reversibility [1,4]. Since 

qS = (U ~
e)/T (12)

the Seebeck coefficient is seen to be proportional to the difference between the energy of 
transport U and the binding energy ~

e , also called Fermi level in solid-state physics. 
Relation (12) provides an energetic interpretation for S.
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3 Steady-state thermodynamics of a binary mixture 
In a binary fluid mixture A-B, the disequilibria are (1/T), ( ~

A/T) and ( ~
B/T), and 

the rate of production of entropy is [7] 

.
 = (1

T).jU + (
~

A
T ).jA + (

~
B

T ).jB
(13)

discarding the contribution from viscosity effects. Consider now the convection (nu), 
interdiffusion of B into A (j), and interdiffusion-related energy (jE ) current densities: 

jB = ncu + j  and jA = n(1 c)u j (14)

jU = nhu + jE (15)

In these definitions, n is the total particle density (of A and B), c is the mole fraction of B, 
u = (1 c)uA + cuB is the average velocity of the mixture, and h = (1 c)hA + chB is the 
enthalpy per particle (hA and hB are the partial molecular enthalpies of A and B). 

Using the new currents and the Gibbs-Duhem and Gibbs-Helmholtz relations yields [7] 

.
 = (1

T).jE + (
~

BA
T ).j

(16)

where ~
BA = ~

B
~

A is an exchange chemical potential. One can see that the over-all 

quantities nu and nhu do not contribute to 
.
. Convection is reversible, interdiffusion is 

not.
 It is possible to apply the formalism of §1 with jN j, jU jE , and ~ ~

BA .
However, the phenomenological law of the Ludwig-Soret effect, defining the Soret 
coefficient ST ,

j = ncD( c
c ST T) (17)

uses c/c instead of ~
BA . Reexpressing Eq. (3), we get 

j = 
LNN

T (
~

BA
c )

p,T
c

1
T2(LNU hBA LNN) T

(18)

where hBA = hB hA stems from the Gibbs-Helmholtz relation. Identification yields 
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nD = 
LNN

T (
~

BA
c )

p,T
(19)

TST = 
1

c(
~

BA
c )

p,T

(
LNU
LNN

hBA) (20)

Microscopic reversibility entails LNU = LUN , so that the thermal-diffusion factor is given 
by

TST = 
U hBA

c(
~

BA
c )

p,T

(21)

That expression allows for an energetic interpretation of thermal diffusion: it is due to the 
difference between the transported energy U (at fixed p and T) and the difference hBA
between the partial molecular enthalpies of the components. 

The transported energy U is defined through jE according to Eq. (7), namely 

jE = T + (U ~
BA) j (22)

The contribution to jE other than the Fourier current gives rise to the so-called Dufour 
effect. The prefactor of j can equivalently be written as 

c(
~

BA
c )

p,T
TST + hBA

~
BA = c(

~
BA
c )

p,T
TST T(

~
BA
T )

p,c
(23)

The next section examines how models of the Peltier effect can give insight into U.

4 Specific models of the Seebeck effect 
We have previously shown that the Seebeck and Soret effets are expressible in terms of an 
isothermal transported energy U. In the former effect, U is referenced to the chemical 
potential ~

e of the mobile particles, whereas in the latter it is referenced to the exchange 
molecular enthalpy hBA . From Eq. (21) one understands why ST is usually positive. 
Exchanging B with A has an energetic cost usually exceeding the mere interchange of B 
and A, depending on the energy barrier to be overcome in between. If ST < 0 is measured, 
then the process is energetically assisted by some mechanism [8,9] or coupled to the 
diffusion of other species [10]. To better understand the Soret effect, it is insightful to turn 
to the Seebeck effect, many models of which have been devised. Actually, the Peltier 
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effect is easier to model as it is isothermal. In what follows, we restrict ourselves to purely 
electronic mechanisms of isothermal heat transport not involving lattice vibrations, to 
which electrons are coupled. 

Generally speaking, within the Lorentz framework it is found that [6,11-13] 

U = E  + ED (24)

where ED = D(E) / (E)  involves the diffusivity D(E) and mechanical mobility (E) as 
functions of the carrier energy E, and  denotes an equilibrium statistical average. In 
semiconductors, where carrier statistics is non-degenerate, ED = kT. In metals, where 

carrier statistics is degenerate, ED is of the order of the Fermi energy EF = ~e Ec at T = 
0K , where Ec is the bottom of the conduction band. As for E , it is a transport average 
of E, distinct from the equilibrium average E  whose derivative d E /dT is the heat 
capacity of the carrier gas. If the momentum-relaxation rate varies as (E Ec) r, one 
obtains, in the case of nearly-free conduction electrons (characterized by an effective 
mass) [6,11,13], 

E  = Ec + (3
2 + r)kT (25)

In the Drude model where the rate is independent of E (i.e. r = 0), U = E  + kT in a semi-
conductor looks like a function of the thermodynamic state. In general, however, U
depends on the kinetics of the carrier gas through the energy dependence r of the 
momentum-relaxation rate. That is why, contrary to W. Thomson's assumption, q  = U
~

e is not an equilibrium property of the carrier gas. 

Whether conduction electrons or holes are considered, it is found that q  > 0. Thus, 
nearly-free charge carriers transport a positive heat U ~

e . In metals, conduction 
electrons cannot be considered as nearly-free particles as the band structure is not 
parabolic far from Ec . Using Sommerfeld's expansion, one finds (with q = e < 0) 
[11,13,14]

q  = 
( kT)2

3
(Ec + EF)

D(Ec + EF)
(26)

Now between energy-dependent mobility and diffusivity, there exists a general relation 
independent of statistics, namely [15] 

N(E) (E) = 
d
dE[N(E) D(E)] (27)
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where N(E) is the energy density of conduction states. Depending on the band structure of 
the metal, N(E) is an increasing or decreasing function of E. The same is true of D(E),
which is a microcanonical average involving two functions of momentum, namely the 
group velocity and the vector mean free path or momentum-relaxation rate [12,15]. Again, 
we find that q  is not an equilibrium property of the carrier gas. From Eq. (27), within a 
purely electronic model of the Peltier effect we expect q  to be either positive or negative. 
This is indeed confirmed by experimental measurements q  > 0 in Na and q  < 0 in Cu 
in the 10-400 K range [16]. In the latter material, Eq. (27) implies (Ec + EF) < 0. It means 
that conduction electrons at the Fermi level lose energy under the influence of an electric 
force, wherefore isothermal energy transport occurs contrariwise to particle transport. This 
is akin to the unusual (negative) sign of the Soret coefficient, although relation (23) 
between U ~

BA and ST is less straightforward than relation (12) between U ~
e and S.

5 Conclusions 
Using steady-state thermodynamics to describe both the Soret and Seebeck effects is not 
new [17] but does not appear so far to have been used to compare and connect their 
microscopic modelings. The analogue of the chemical potential of a mobile charge in a 
conductor is the exchange chemical potential in a binary mixture.  

However, the Soret and Seebeck coefficients are not defined by means of analogous 
variables. In both effects, the particle-transport coefficient is related to an isothermal 
transport energy which is conceptually easier to handle. In metals, the Peltier energy is 
found to exhibit both signs in purely electronic models, depending on the dispersion 
relation and relaxation kinetics of the conduction electrons. This finding should foster the 
development of new models of the Soret and Dufour effect. 
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Abstract

The Soret effect for a single charged colloidal particle, has been studied by different ex-
perimental groups in recent years [1, 2] and still seems a challenging topic. We know
two distinct theoretical approaches to this phenomenon. The First, motivated with Ruck-
enstein in 1981 [3], is based on solving hydrodynamics equations for the charged fluid
around colloid. This approach was restricted to colloids with thin double-layer around
them [3–5], and was verified with Piazza and Guarino in 2002 [1]. The second approach
however uses Gibbs enthalpy [2, 6] to predict the density profile of a colloid in a temper-
ature field. It is seemed that this approach has been tested successfully for Polystyrene
beads by Duhr and Braun [2]. Recently, Astumian [7] suggested that, we can interpret the
Ruckenstein’s approach as the deterministic motion of a charged colloid in a temperature
field, while attribute the second approach to its stochastic Langevin motion in the temper-
ature field [7]. Accepting his suggestion, two mentioned approaches, may come together
in a unified theory which addresses both kinds of motion simultaneously.
Here, we extend the Ruckenstein’s hydrodynamics approach to a colloid with arbitrary
double-layer around it. We consider the dielectrophoretic force in our formalism, and
since the Boltzmann weight is hardly reliable in the presence of a temperature gradient,
we solve the diffusion equation to find ions densities. We consider both the convective
and ions Soret motion in ions current densities [8].
For a weakly charged colloid, our equations are explicitly solved. The result has the Ruck-
enstein’s formula, as its proper limiting case. For a colloid with high surface potential
also, we solve the equations numerically. We confront the results with existing experi-
mental data [1, 2] and possible agreements and/or disagreements are discussed [8, 9].
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1 Introduction

Consider a charged spherical colloid, in a solution of water with added salt. The solution
is subjected to a spatially varying temperature profile and our aim is to find its Soret co-
efficient. It is usually assumed that the Soret coefficient closely relates to particle drift
velocity, due to the temperature gradient, (i.e. �Vdrift = −DST

�∇T ) [3, 5]. This assump-
tion however, is not completely justified, since the random motion of a colloid in the
presence of a temperature gradient may also cause its non homogenous concentration [7].
However, this does not violates the existence of a propulsion mechanism, which cause
particle deterministic motion (here called as Soret motion) toward hotter or colder side.
Here trying to probe such a deterministic motion, we begin with equations, which govern
the dynamics of fluid motion, ions densities, and electric potential, in the presence of a
temperature gradient. We look for a steady answer of these coupled equations [8, 9].
For a weakly charged colloid, we use the Debye-Hückel approximation, and find an ana-
lytic answer for its Soret motion. Then, to find the Soret motion of a particle with arbitrary
surface potential, we manipulate numerical calculations. Our results, however, seems in-
sufficient to completely describe existing experimental observations [1, 2]. We hope that
considering the fluctuation induced motions, will improve our results to find acceptable
consistency with the experimental data.

2 Dynamical Equations

Dipolar water molecules and salt ions, around colloidal particle, are interacting with
each other and with the colloid trough electric potential/field. To find the electric po-
tential/field, we solve the Poisson equation −�∇ · ε�∇φ = 4π

∑
i qiCi. Here qi and Ci are

the charge and concentration of the ith type of ions in solution, and ε is the electric per-
mittivity of medium. Due to its dependence on local temperature, ε is spatially varying.
The fluid velocity field (i.e. �V (�r, t)) is governed with the Navier-Stocks equation. But as
we are dealing with an incompressible fluid (i.e. �∇ · �V = 0 ), and in the low Reynolds
number limit, the Navier-Stocks equation simplifies to

∂

∂t
�V = η∇2�V − �∇P + �F (1)

where t is the time, η fluid viscosity, P fluid pressure, and �F the body force fluid feels.
The fluid is a solution of charged ions and water dipolar molecules. It feels a net force
of �fion = −�∇φ

∑
i qiCi, due to electric force on ions. Each of water molecules also,

has a dipolar moment of �p. The spatial variation of electric field causes a net force of
(�p.�∇) �E(�r) on each molecule. This leads to a body dielectrophoretic force of [10]:

�fwater = �∇

(
ε − 1

8π
| �E|

2

)
−

(
1

8π
| �E|

2

)
�∇ε (2)

on fluid. Therefore, �F will be �fion + �fwater.
Considering the Soret motion, we are expecting a permanent and steady motion which
eventually creates a time independent concentration profile. Therefore, we look for a
steady time independent phenomenon, in the colloid framework. So we simplify Eq.(1)
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to the steady Stocks equation:

−η∇2�V = −�∇

(
P −

ε − 1

8π
| �E|

2

)
− �∇φ

∑

i

qiCi −

(
1

8π
| �E|

2

)
�∇ε (3)

Here, P − ε−1
8π

| �E|2 behaves like pressure and eliminates if we focus on the fluid velocity
field [9].
At last, to find ions densities, Ci, we define a mean current density:

�Ji = −Di
�∇Ci − μiCiqi

�∇φ + �V Ci − DiCiS
ion
T

�∇T (4)

Here Di and μi are the diffusion coefficient and mobility of ith species respectively (they
are relating together with Einstein formula: Di(�r) = μiKBT (�r)). S ion

T also, is ions Soret
coefficient. The conventional term, −DiCiS

ion
T

�∇T , is added to generalize Fick’s equation
to non-isothermal condition. We restrict ourself to 1 : 1 salts, so expect equal Soret
coefficient for both types of co-ions and counter-ions [12]. Then, to find ions densities in
colloid framework, we solve the steady conservation equation: �∇ · �Ji = 0.

3 Analytic solution

For a weakly charged colloid, we use the Debye-Hückel approximation to solve our equa-
tions. The colloid drift velocity will be found as:

�VD =
−εφ2

S

48π

�∇T

ηT0

[
(1 − α + T0S

ion
T )F (κa) + 2α − G(κa)

]
(5)

Here φS = Zq/εa(1 + κa) is the (zeta) potential of the surface of the colloid, a is colloid
radius, and κ =

√
8πq2C0/εkBT0 is the inverse Debye length. In addition F (x) = 2x −

4x2e2xE1(2x) and G(x) = x
6
[x(1+x)(12−x2)exE1(x)+8−11x+x3−24xe2xE1(2x)],

with E1(x) =
∫

∞

x
e−sds/s. As shown in Fig.1, they have asymptotic limits of F (x) = 1

and G(x) = 0 for x → ∞ and F (x) � 2x and G(x) � 4x/3 for x � 1.

0 10 20

0.5

1

0 0.005

0.01

κa

κa

Fig. 1: F (κa) (solid green line) and G(κa) (dashed red line) versus κa. Inset: showing
the small κa behavior.
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It is interesting to look at Eq.(5) in two limits of an infinitely thin and infinitely thick
double-layer. For a thin double-layer (i.e. κa � 1) Eq.(5) simplifies to:

�VD =
−εφ2

S

48π

�∇T

ηT0

[
1 + α + T0S

ion
T

]
(6)

This confirms older Ruckenstein result (−εφ2
S/48π)(�∇T/ηT0) [3], if we note note that he

neglected both the dielectrophoretic force (i.e. α = 0) and ions Soret motion (i.e.S ion
T =

0).
The other limit of an infinitely thick double-layer (i.e. κa � 1) corresponds to zero salt
density in solution (i.e. C0 = 0). The colloid drift velocity will be found as 2α(−εφ2

S/48π)(�∇T/ηT0).
It means that in the absence of ions, the phenomenon is totally governed by dielec-
trophoretic force, or the force which dipolar water molecules feels.
Finally, we compare our analytic results with Duhr et.al. data for Polystyrene beads [2].
The beads are weakly charged and inside the Debye-Hückel regime. Sadly, our results
are considerably (e.g. 60 times) smaller than Duhr et.al. observations. To compare our
results with other experimental data, we manipulate numerical calculations.

4 Numerical Solution

Piazza and Guarino have measured the Soret coefficient of Sodium Dodecyl Sulfate (SDS)
micelles [1]. A SDS micelle however, is a highly charged colloid [13], and we should
manipulate numerical calculations to find its Soret drift velocity. Here, we use the model,
suggested by Srinivasan et.al [9,13], to estimate its radius, aggregate number and charge.
We consider a spherical colloid of radius a = 2.5nm, mean aggregate number of N �

120, and charge of Z = 50 − 60e (the charge depends on ionic strength of solution).
We lift our data by a constant value, which refers to possible non-electrostatic effects

1 2 3 4 5 6

10

20

30

Complete data:
TS+ = 5.923,

Dev (rms)=1.35,
Rion=1.64ANo

ions Soret
TS+ = 6.8

Dev(rms)=1.8

+ 5.92

+ 10.98

+ 5.35

TST

κa

Fig. 2: Comparison of our theory and Piazza et.al. data: The solid (black) curve is
result of our full calculation. For the dashed-dotted (blue) curve, we have turned off
the dielectrophoretic force in our formalism, and for the dashed (orange) curve, we have
neglected the effect of convective motion on ions densities. The number beside each curve,
shows the constant we added to obtain the best fit.
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in Soret motion, and use the dimensionless variable of TST to compare our results with
experimental data. The results come in Fig.(2). The Solid (black curve) shows our full
result. There is an acceptable harmony for κa > 3, but it is lost as we go to smaller κas,
and further amendments of this theory have not given us better agrement yet [9].
To find a deeper understanding, we track the contributions of convective motion and di-
electrophoretic force in our result. The dashed-dotted (blue) curve in Fig.(2) shows our
results with dielectrophoretic force turned off. Even the trend of the curve is changed. It
shows that, like analytic regime, the dielectrophoretic force is non negligible. The dashed
(orange) curve in Fig.(2) also, shows our results when the correction due to the convec-
tive motion on ions densities is turned off. TST seems to be intensified and yields a better
agrement. Maybe it means that fluid motion is washing ions away from their positions,
and weakening the colloid Soret motion.

5 Conclusions

In conclusion, this hydrodynamics theory seems insufficient to explain existing exper-
imental observations. Considering the Piazza et.al. experiment, it has non negligible
predictions. Therefore, we can not forget about the hydrodynamics based theories in
Soret effect. But to obtain better agreements further extensions are required. Maybe an
important extension will be the consideration of the fluctuation induced motions.
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Université de Paris Sud 11
91405 Orsay Cedex - France
2Laboratoire des Fluides Complexes, UMR 5150
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Abstract

We present a new model for thermal diffusion and we compare its results to both simple
and realistic systems. This model is derived from a kinetic approach with explicit mass
and chemical contributions. It involves self-diffusion activation free energies, following
Prigogine’s original approach. We performed furthermore both equilibrium and non equi-
librium molecular dynamics in order to compute respectively the self diffusion activation
free enthalpies and the Soret coefficient when no experimental data were available. Our
model is in very good agreement with simulation data on Lennard-Jones mixtures, and a
good behavior is noted for the water ethanol mixture where the composition dependence
at which the Soret coefficient changes its sign is predicted very accurately. We lastly pro-
pose a new water ethanol experiment at higher temperature in order to check the validity
of our model.
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1 Introduction

Thermal diffusion, or Soret effect, occurs when a mixture is subjected to a thermal gradi-
ent. Molar fraction gradients appear as a response [1]. The transport coefficient associated
is the Soret coefficient. Its sign indicates if the related species goes preferentially to the
hot or the cold, its value gives the amplitude of the separation. Usually small for simple
fluids, its value can be three or four orders of magnitude higher in complex fluids than in
alkanes mixtures for instance [1]. Experiments became really accurate a few decades ago
(see for instance [2]). Köhler showed that the Soret coefficient can be split into three ad-
ditive terms, a mass, a moment of inertia and a “chemical” contribution [3]. At that point,
several theoretical attempts based on variational approaches were proposed but they seem
inaccurate (see for instance a review of these models in [4]) even on the simplest mix-
tures [5].
Firoozabadi [6] and later Saghir [7] proposed an Onsager’s like approach to the Soret ef-
fect. Using a thermodynamic approximation to estimate thermal energy transported [8],
their approach reproduces accurately the chemical part of the Soret coefficient [5]. An-
other “theoretical” problem is that these last approaches depend on adjustable parameters.
As it has been shown several times, these approaches are very similar to activated pro-
cesses (see for instance [9]), like Prigogine used in his model [10], and all these theories
are self consistent. The remaining problem is that the mass effect of thermal diffusion is
not taken into account in all these descriptions [11].
In this work, we show, using basics in Transition State Theory, how to modify Prigogine’s
equations to input this mass effect inside the derivation [11]. We propose a way to estimate
the activation energies, following Drickamer’s idea, and show that it clearly is compatible
with Firoozabady and Saghir’s estimations. The new formula derived with this method
reproduces results on simple Lennard-Jones systems with high accuracy.

2 A new derivation following Prigogine’s model of ther-
mal diffusion

2.1 Classical Prigogine model

Prigogine proposed a model for thermal diffusion that is a simple “swap” between two
particles 1 and 2. His approach follows an activated model for diffusion [10]. We consider
that the thermal gradient is along the z direction. Particle 1 is on the “left” (cold) side, and
particle 2 on the “right” (hot) side. What has to be noted is that the coordinate reaction is
the local temperature. So forth, particles 1 and 2 are not exactly at the same temperature.
Prigogine showed that the swap flux can be written as :

J+
∝ x1(z − dz/2)x2(z + dz/2) exp

(
−

ΔG
#
1

R(T − dT/2)

)
exp

(
−

ΔG
#
2

R(T + dT/2)

)

where xi is the local molar fraction of species i, ΔG
#
i are the diffusion activation free

enthalpies, simply defined as:

Di = D0
i e

−βΔG
#
i
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Using equilibrium molecular dynamics, we determined these diffusion activation free en-
thalpies as the slope of the logarithm of the diffusion coefficients versus the temperature
for Lennard-Jones systems. We used two energetic parameters, a cross interaction pa-
rameter k12 and a direct interaction parameter ψε (see [5]). For each molar fraction, we
computed at the equilibrium the self diffusion coefficients of each species using the mean
square displacement correlation for 5 temperatures, the mean temperature T0 and then for
four others at T0 ± 3 K, T0 ± 6 K. Given the flux expression, we can easily write the
equivalent flux in the other direction. At the stationnary state, the total flux cancels. This
gives the simple expression for the Soret coefficient :

SP
T,1 =

ΔG
#
2 − ΔG

#
1

RT 2

2.2 Mass effect

As was shown many times, the Soret coefficient is mass dependent (see for instance [3]).
In our systems, we firstly considered same mass particles. We then decided to change the
mass of one of the two species with a ratio: ψM = M2/M1 = 2.0
We decided to apply Prigogine’s model for this system. Figure 1 presents the results we
had using Prigogine’s model. As can be noted, Prigogine’s model is mass independent.
This can be understood as follows: in Transition State Theory, mass interferes on the
reaction coordinate. Physically, it means that the position of the transition state depends
on the masses (see for instance the revue from Truhlar [12], or [13]). For Prigogine’s
thermal diffusion model, this coordinate is the local temperature. It is then needed to
“rescale” this reaction coordinate with the masses of the particles. This gives a new
expression for the mass flux that is :

J+
∝ x1(z − dz/2)x2(z + dz/2) exp

(
−

ΔG
#
1

R(T − ξ1dT )

)
exp

(
−

ΔG
#
2

R(T + ξ2dT )

)

where ξi defines barycentricly the transition state as:

ξ1 =
M2

M1 + M2
ξ2 =

M1

M1 + M2

The derivation is then exactly the same than Prigogine’s one and one will find (defining
the mass ratio as ψM = M2/M1):

ST,1 = 2
ΔG

#
2 − ψMΔG

#
1

(1 + ψM)RT 2

This equation can be expressed in the form of different contributions, as introduced by
Köhler:

ST,1 =
ΔG

#
2 − ΔG

#
1

RT 2
+

1 − ψM

1 + ψM

ΔG
#
2 + ΔG

#
1

RT 2

Figure 1 shows the results of our new “revisited Prigogine’s model” for thermal diffusion.
As we can see, it is accurate for our Lennard-Jones systems.
Some remarks about our model has to be precised:
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• In our new formula, the moment of inertia term does not appear. We are not able at
this stage to propose a formula. Some work about this problem has already be done
and suggests a not so simple picture of independence of the mass and the moment
of inertia terms [15].

• For low density, we are no longer in an activated regime, so forth the usual Chapman
Enskog [14] term has to be added to our formula.

• For isotopic effects, our formula seems composition independent, instead of what
has already been seen for high isotopic effect on Lennard-Jones mixtures. This
feature is not taken into account yet [16].
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Fig. 1: Soret coefficients computed from NEMD simulations compared to our new kinetic
model including the mass effect. Parameters are: k12 = 1.75 and ψε = 1.4

3 Conclusion

We introduce a new model of thermal diffusion following the historical model written by
Prigogine. As we show, this new model is accurate for Lennard-Jones systems, even for
different masses. We reproduce Köhler’s picture of different additive contributions. In
our presentation, we will present results on the water ethanol mixture and the results of
our model on this more “realistic” model.
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Abstract
Using NonEquilibirum Molecular Dynamics on model systems, new insights on the 
influence of the molecular description on thermodiffusion in non polar mixtures is 
provided. First, is studied the influence of the interaction potential shape (between 
Lennard-Jones and two definitions of an “equivalent” Exponential-6 potential). Quite 
surprisingly, it appears that, even in very dense systems, the amplitude of thermodiffusion 
in binary equimolar “isotopic” mixture is nearly independent of the choice of the potential 
when temperature and density are used as inputs. Then, it is shown, on diatomic Lennard-
Jones mixtures of varying bond lengths that the usual mass and momentum inertia 
contribution decomposition seems suitable but is not perfectly respected. In addition, the 
momentum inertia contribution to thermodiffusion is found to be of the same sign than the 
pure mass effect one. Finally, using ternary and “equivalent” binary mixtures defined 
through a one-fluid approximation, it is shown that the usual mixing rule on mass induces 
non negligible deviations on thermodiffusion. An alternative mixing rule is proposed 
which allows a correct estimation of what occurs in ternary mixtures by using 
“equivalent” binary ones. 
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1 Introduction 
Thermodiffusion is believed to be the transport property which is the most sensitive to the 
molecular description [1]. Hence, when accurate experimental results exist, this property 
may be a severe test for molecular models and/or theories that rely on molecular concepts. 
Evolved kinetic theories have shown that the nature of the interaction potential and 
molecular description [1] may affect strongly thermodiffusion in low density mixtures. 
More recently, using molecular dynamics (MD) simulations on Lennard-Jones dense 
mixtures, the influence of molecular parameters on thermodiffusion has been analyzed [2-
3] and clearly shows that, in binary mixtures, the heaviest, smallest, most “energetic” 
species tends to migrate toward the cold area relatively to the other species. In addition, 
using lattice and MD simulations, it has been shown that the cross interaction parameters 
may affect the amplitude and the sign of thermodiffusion in model mixtures [4-6]. 
Elsewhere, experiments on mixtures with an isotopic substitution have shown that, it is 
possible to decompose the Soret coefficient in one part due to the mass of the species 
(proportional to m/ m), one to the inertia momentum (proportional to I/ I) and one to 
everything else (the so called “chemical” part) [7]. It should be noted that such an 
assumption implies that no couplings occurs between the dynamic and the static 
(thermodynamic) contributions to the thermodiffusion, which is questionable [8]. 

In this work, using NonEquilibirum Molecular Dynamics on model systems, is provided 
further information on the influence on thermodiffusion of the molecular description in 
non polar mixtures. In particular, are studied the influence of the interaction potential 
shape (between Lennard-Jones and Exponential-6 potentials), the possibility to separate 
additively mass and moment inertia contributions and the limitations of a one-fluid 
approximation to reduce a ternary mixture to an “equivalent” binary one. 

2 Theory and Modelling 

2.1 Interaction potentials 
In this work, two different kinds of effective truncated potentials have been used to 
describe interactions between particles, the Lennard-Jones 12-6 (LJ) and the Exponential-
6 (Exp-6) potentials, that can be written respectively as: 
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where  is the potential strength, rm the distance at which the potential is minimum,  the 
stiffness of the repulsive slope and r the intermolecular separation. In order to define 
reduced variables, has been used, , the “atomic diameter”, which is the distance at which 
the potential is null. To define the Exp-6 “equivalent” to the LJ, two alternatives derived 
analytically [9] have been used that lead to n=13.772 (Exp1) and n =14.338 (Exp2). 

When Lennard-Jones chains are involved, a harmonic spring with a stiffness constant 
equal to 30000 / 2 has been used to define intramolecular interactions. 

2.2 Simulations details 
Simulations have been performed on systems composed of 1500 particles in cubic boxes 
with full periodic conditions. Berendsen Thermostat and Barostat have been used. The 
Non-Equilibrium scheme proposed by Hafskjold et al. has been used to generate a 
biperiodical thermal gradient [10]. After discarding the transient state, thermal diffusion 
factors, T, have been estimated using data collected for 5 to 10.106 timesteps in order to 
ensure a sufficient statistic. The cutoff radius, rc, has been taken equal to 2.5  except for 
the study of the influence of the potential shape (where rc=3.5 ).

3 Results and Discussion 

3.1 Influence of the potential shape 
To quantify the thermodiffusion sensibility to the potential shape in various dense states, 
MD simulations have been performed on equimolar “isotopic” mixtures (rm and  are 
equal for both compounds and m2=10m1) for the LJ, Exp1 and Exp2. 

T LJ T Exp1 T Exp2 
0.3 1.5 0.801±121 0.797±150 0.778±145 
0.3 2.5 0.909±101 0.909±89 0.927±104 
0.7 2.5 2.067±128 2.038±185 2.014±127 
0.8 1 2.362±144 2.485±157 2.402±290 
0.8 2.5 2.322±178 2.287±198 2.33±147 
0.9 1 2.339±287 2.261±298 2.346±306 
0.9 2.5 2.479±151 2.437±138 2.359±128 

Table 1: Thermal diffusion factors, T, of LJ, Exp1 and Exp2 in “isotopic” equimolar 
mixtures (m2/m1=10) for various thermodynamic states.  

6.2 285



Quite surprisingly, see Table 1, taking into account intrinsic uncertainties on the values 
( 10 %), it appears that both Exp1 and Exp2 potentials were able to provide T values 
very close to those obtained using the LJ potential, (Average Absolute Deviation is equal 
to 2.3 % when using Exp1 and 1.9 % when using Exp2). In addition, the deviations do not 
exhibit any trend with the thermodynamic state and do not particularly increases for the 
densest states.

Thus, the behavior noted on T is interesting as it unambiguously shows that, for a given 
set of T* and *, thermal diffusion in “isotopic” mixtures is not largely affected by the 
choice of the potential shape (at least between Exp-6 and LJ) in moderate to high densities 
systems. Therefore, with the precision accessible by MD simulations at that time, contrary 
to what occurs in more complex mixtures, thermal diffusion cannot always serve to 
discriminate between potential shapes as commonly believed. 

3.2 Momentum Inertia contribution 
Mixtures of LJ diatomic chains described by the same molecular parameters (volume, 
energy, bond length) except the mass (m2/m1=10) have been studied (mixtures are so 
“ideal” in the thermodynamic sense and hence the thermal diffusion factor should be only 
dependent to the mass and the inertia momentum of both species). Keeping T* and P*
constant, we have changed the bond length, L* (=L/ ), and performed the simulation in 
dense equimolar binary mixture (T*=2, P*=5.3). In such systems, if the decomposition 
proposed in [7] is correct, thermodiffusion should be constant whatever the bond length 
(because for that precise case I/ I reduces to m/ m)..
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Fig. 1: Thermal diffusion factor in binary equimolar mixtures of Lennard-Jones chains 
with two segments and m2/m1=10 for different bond length at T*=2 and P*=5.3. 
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From the results provided on Fig. 1, it appears that the thermal diffusion factor is slightly 
dependent to the bond length, which means that the decomposition proposed in [7] makes 
sense for this situation but is not perfectly respected. In addition, in all cases the thermal 
diffusion factor is larger than the one due to the mass effect only, equal to 2.35±0.15. This 
indicates that the momentum inertia contribution is always positive (but smaller than that 
of mass effect alone), which is consistent with experiment findings [7]. 

3.3 One-fluid approximation 
Most of the fluids of interest (especially in the petroleum industry) are multicomponent by 
nature. Usually a lumping scheme is used to reduce the number of compounds involved. 
At the microscopic scale this consists in defining pseudo-compounds “equivalent” to a 
mixture of real ones through a one-fluid approximation. As a first test of such one-fluid 
approximation on mass for thermodiffusion, two ternary mixtures for four different 
thermodynamic states have been simulated. The two ternary mixtures are the following: 

-First mixture: i= j, i= j, x1=0.5, x2=x3=0.25 and m1=1, m2=5 and m3=15.

-Second mixture: i= j, i= j, x1=0.5, x2=x3=0.25, m1=1, m2=20/11 and m3=200/11.

The two binary “equivalent” mixtures (through a one-fluid approximation) have been 
defined so that components 2 and 3 are gathered to form a unqiue “equivalent” 
pseudocompound. The way this pseudocompound is defined depends on the choice of the 
mixing rule on mass. The first rule used is the usual linear law (weighted by the molar 
fractions) and the second one writes as: 

i j ji

ji
jix mm

mm
xxm

2/1

2/1 2
(3)

T*=1.5, *=0.3 T*=2.5, *=0.3 T*=1, *=0.7 T*=2.5, *=0.7
Mix. 1, linear law 12.9 10.7 1.8 1.0 
Mix. 2, linear law 25.4 24.0 17.5 28.2 

Mix. 1, eq. (3) 5.7 2.4 -1.8 -1.0 
Mix. 2, eq. (3)  3.2 -1.3 2.1 8.0 

Table 2: Deviations (in percentage) between thermal diffusion ratios, kT, of the first 
compound in the ternary mixtures and the binary “equivalent” ones using the linear law 
on mass and the law defined by eq. (3).
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Table 2 clearly shows that the usual linear law on mass, despites a reasonable estimation, 
induces non negligible deviations that are larger in low density systems and for the 
mixtures for which component 2 and 3 have a large mass ratio. In fact, using the linear 
mixing rules, eq. (18), the “equivalent” mass of component 2 and 3 is overestimated. In 
addition, results provided in Table 2 clearly confirm that the mixing rule on mass defined 
by eq. (3) seems to be more efficient that the usual linear one, deviations being lower than 
10 % for the systems studied. 
It should be mentioned that the extension of such a scheme to multicomponent mixtures is 
straightforward. Nevertheless, the choice of the reference compound is important as long 
as the scheme does not ensure that the sum of all kT is equal to zero. 

4 Conclusions
In this work, using non-equilibrium Molecular Dynamics simulations, have been analysed 
various aspects of the influence of the molecular description on thermodiffusion in simple 
non polar fluid mixtures for various thermodynamic states. 

In a first part is studied the influence of the shape of the potential (between LJ and Exp-6 
ones) on the amplitude of thermodiffusion in binary equimolar “isotopic” mixtures. From 
the simulation results, quite surprisingly, it appears that, for such mixtures, 
thermodiffusion is nearly independent of the potential shape even in very dense states. 

In a second section, by varying the bond length in diatomic equimolar mixtures, is 
analysed the momentum inertia contribution to thermodiffusion. It appears that, in all 
cases the momentum inertia contribution is positive (of the same sign than the pure mass 
effect) but is not perfectly independent of the bond length. This implies that a simple 
addition between momentum inertia and mass effects makes senses but does not hold 
perfectly in such systems with high mass ratios. 

In a last part, is quantified the effect of a one-fluid approximation when trying to reduce a 
ternary mixture to a simple binary one in “isotopic” mixtures. It is shown that the usual 
mixing rule on mass is inadequate. Nevertheless, if an appropriate law is used (eq. 3), it 
appears that such lumping scheme may be a seducing approach. 
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Abstract
In this work, for the first time ever to the best of our knowledge, a molecular dynamics 
scheme is proposed to study gravitational segregation of isothermal and non-isothermal 
fluid mixtures in convection free configuration. The simulations (in a dense supercritical 
state) have been performed on equimolar binary Lennard-Jones “isotopic” mixtures 
(M2/M1=10) for various amplitudes of gravity and thermal field that are both oriented 
vertically. First, in an isothermal situation, as expected, the lightest component is shown to 
enrich at the top and these simulations have confirmed the fact that the segregation 
characteristic time is related to the mass-diffusion one even if the precise dynamics should 
be further studied. Then, it is demonstrated that, in all cases, the molecular dynamics 
equilibrium concentration profiles are consistent with what can be estimated from the 
macroscopic theory of such process taking into account correctly the thermodiffusion 
contribution. In addition, it is shown that, under huge thermal gradients, when heated from 
below, the thermodiffusion may even reverse the concentration profile so that the heaviest 
species becomes enriched at the top of the cell. 
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1 Introduction 
A precise knowledge of the initial state of a petroleum reservoir is crucial in order to 
optimize its development plan. Such knowledge relies on the ability of describing 
correctly the distribution of the hydrocarbons in the reservoir which is mainly modeled by 
the gravity field through the gravitational segregation [1]. In fact, just by adding the 
gravity contribution to the chemical potential (described by an ad hoc thermodynamic 
model) it is possible to estimate the composition of the fluid column from the one at a 
reference depth. Nevertheless, in many fields, the compositional profile computed so 
differs from the actual one. So, one had to introduce other external forces such as the 
thermal field (through the thermodiffusion), external fluxes, chemical reactions … But a 
complete picture is hard to achieve, especially in formulating the dynamic of the evolution 
of the compositional profile, even if some recent improvement has been performed [1-2]. 

One system of interest to improve the species distribution estimation in a reservoir is the 
one where only gravitational and geothermal (through thermodiffusion) forces modify the 
composition profile in a convection free configuration. In such situation, generally, these 
two forces induce opposite effects on the distribution of the species along the reservoir. 
This is the case for instance when linear alkanes are involved. Gravity tends to increase 
the longest chains concentration in the bottom of the reservoir whereas the effect of 
thermodiffusion is opposite (because temperature increases with depth). 

In this work, for the first time ever to the best of our knowledge, it is proposed to use 
molecular dynamics (MD) simulations on Lennard-Jones spheres in order to study 
gravitational segregation in non-isothermal “isotopic” fluids (thermogravitation) i.e. 
analyse the coupling between the gravity field and thermodiffusion influences on the 
composition profiles in simple mixtures.  
Such a molecular dynamics approach is interesting at three levels: 

first, it does not assume the underlying formalism to describe this process and so 
allows a true “test” of the phenomelogical macroscopic theory usually applied.  

second, it permits the description of not only the stationary state but also the 
transient toward this state (which is not possible using equilibrium thermodynamic 
models).

third, because of the vertical size involved (typically ten nanometers), even when 
heating strongly from below, the Rayleigh number is always largely smaller than 
its critical value i.e. the fluid column remains always in a purely diffusive regime 
(no convection occur). 
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2 Theory and Modelling 

2.1 Non-isothermal gravitational segregation 
When an isothermal fluid mixture is subject to the gravity field, directed along the z-axis,
after a transient state (with, a priori, a characteristic time associated to the mass diffusion 
coefficient), at equilibrium the distribution of the species i can be obtained using [3]: 

gM
dz

d
i

i (1)

where i is the chemical potential, Mi the molecular weight and g the gravitational 
acceleration. 
In a binary “ideal” mixture ( constxRT 11 ln , where T is the temperature and x1 the 
molar fraction of component 1), assuming that the pressure gradient, dp/dz, is equal to the 
hydrostatic one g, we have simply: 
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Combining eqs (1) and (2) leads to: 
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which allows to determine the equilibrium isothermal concentration profiles. 

When the system is subject to a thermal gradient along the z axis (but non convective), one 
should take into account an extra term due to thermodiffusion in eq. (3) which leads, at 
equilibrium, the following relation: 

0
1 11

1
12 dT

Txx
dxdzMM

RT
g T (4)

where T is the thermal diffusion factor (=TD12/DT, where D12 and DT are respectively the 
mutual diffusion and the thermal diffusion coefficients). Assuming that T does not 
depend on x1 and T  which is acceptable in “isotopic” mixtures [4], and that g is constant, 
after integration of eq. (4), one arrives to an explicit formulation of the non isothermal 
equilibrium molar fraction in function of the depth relatively to a reference (noted with a 
superscript 0): 
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2.2 Molecular dynamics 
To describe interaction between fluid particles (spheres), the classical truncated Lennard-
Jones 12-6 potential has been used, 6124 rrU LJ , where  is the distance at 
which the potential is equal to zero (the “atomic diameter”),  the potential depth and r the
intermolecular distance. A cutoff radius equals to 2.5  has been used. For sake of 
simplicity, in the following, all variables have been expressed in reduced units, noted with 
a star as superscript, using  as the energy scale,  as the length one and M as the mass 
one.

The simulation box is noncubic (Lx
*=Ly

*=10 and Lz
*=30) and contains 1800 particles. Two 

smoothly repulsive walls (using a WCA potential) are located at both ends along the z
direction (z-axis is oriented downward) and periodic boundary conditions are applied 
along x and y directions. A timestep of 0.004 with the velocity Verlet algorithm have been 
used. To maintain the overall temperature a Berendsen thermostat has been applied. 
To induce the gravitational segregation, first the system is equilibrated without external 
field, then, during 104 timestep the gravity acceleration is progressively increased from 
zero to its final value. Finally, discarding the transient state (roughly 107 timesteps), under 
a constant gravity field (and temperature gradient when applied) data have been collected 
during very long runs of 1.5-5 107 timesteps. The temperature gradient is imposed by 
applying a Gaussian thermostat at the desired temperatures at both end of the simulation 
box (along z-axis). The analysis of the various profile is done by divided the simulation 
box into 20 slabs perpendicularly to the z-axis, discarding the four slabs located near the 
walls (number 1,2 and 19,20) where the system is perturbed both by the walls presence 
and the thermostatisation. 

All simulations have been performed at, on average, T*=2.0 and *=0.64 (in the bulk), 
which corresponds to a dense supercritical fluid consistent with thermodynamic conditions 
encountered in petroleum reservoirs. 

3 Results and Discussion 
3.1 Gravitational segregation 
The first step of this work is to verify that the proposed MD procedure yields the correct 
final equilibrium distribution, compared to eq.(5), in a binary isothermal equimolar 
“isotopic” mixture ( 1= 2, 1= 2, M2/M1=10) subject to a gravitational field. To do so, MD 
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simulations have been performed for various values of the external field, g*=0.01, 0.02, 
0.04, 0.08, 0.16, 0.32. Results are shown on figure 1. 
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Fig. 1: Right, comparisons between MD and theoretical, eq.(5), molar fraction profiles 
when segregated along the vertical extension for various external gravity field amplitude. 
Left, concentration evolution in a binary equimolar “isotopic” mixture during 
segregation.

As expected, because of segregation, in all cases the lightest species, component 1, is 
enriched at the top of the column (smallest values of z*), see figure 1. In addition, as it 
appears clearly from figure 1 (left), the MD procedure proposed here is able to yield the 
correct equilibrium vertical distribution of the species compared to the theory (eq. (5) with 

T=0). This is the case even for huge gravity fields where a non linear molar fraction 
distribution appears. 
Concerning the gravitational characteristic time, the evolution of the difference between 
the molar fraction at Lz

*/4 and at 3Lz
*/4, for g*=0.08, is shown on figure 1 (right). From 

this figure it can be estimated that the characteristic time is of the order of 300. This value 
is consistent with the mass diffusion characteristic time [5] estimated from *

12
22* DLz ,

which yields 258.5. Thus, this result confirms that the characteristic time of gravitational 
segregation is related to the mass diffusion one, even if the precise dynamic should be 
studied further. 

3.2 Thermogravitation 
For the same equimolar configuration than above, with g*=0.02, the influence of a thermal 
gradient (through the thermodiffusion) has been analyzed. To compare the concentration 
profiles obtained by MD with those predicted by eq. (5), the thermal diffusion factor has 
been estimated using the correlation provided in ref. [4] which yields T=2.085. So, for 
different T* between the two walls ( T* is positive when the system is heated from 
below), the concentration profiles have been computed by MD simulations and are shown 
on figure 2. 
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It should be mentioned that for the largest T*, the Rayleigh number 
( ***3*** TLg z , where * is the thermal expansion coefficient,  the kinematic 
viscosity and  the thermal diffusivity) is of the order of 25. This value is roughly two 
orders of magnitude below its critical value, and therefore all systems studied here are in a 
diffusive regime (stable without convection). 
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Fig. 2: Comparisons between MD and theoretical, eq.(5), molar fraction profiles when 
segregated along the vertical extension for various external thermal field. 

It is worth to note that, from the results shown on Fig. 2, MD results are consistent with 
those yielded by eq. (5) whatever the external thermal field. In addition, for this mixture, 
because of the opposite effects of the two external fields (gravitational and thermal), it is 
possible to obtain a nearly homogeneous systems when T* = 0.501, and even a system 
where the top of the column is enriched in the heaviest species due to thermodiffusion!

Nevertheless, it should be mentioned that a usual geothermal gradient of 0.03K/m, would 
correspond to T*=0.068 in this study (two times less than the lowest value tested). Thus, 
it seems that the thermodiffusion effect only due to the mass effect between species may 
only slightly affect the vertical distribution of the component in a petroleum reservoir. 
However, the situation may be different in systems close to critical conditions (where 
thermodiffusion diverge) and in more complex mixtures. 

4 Conclusions
In this work, a simple scheme is proposed to study gravitational segregation (isothermal or 
not) thanks to MD simulations on LJ spheres. For an isothermal binary equimolar 
“isotopic” mixture (M2/M1=10), it is shown that the scheme proposed is able to yield the 
correct equilibrium distribution (enrichment of the lighter species at the top) when 
compared to the macroscopic theory, even under extreme gravity field. In addition, it is 
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shown that the gravitational segregation characteristic time seems to be related to the mass 
diffusion one.
In non isothermal “isotopic” systems, where thermodiffusion occurs, it is shown that the 
MD simulations results of the concentration profile at equilibrium can be well described 
by the theory and that, because of thermodiffusion, under extreme thermal gradient the 
heaviest species can be enriched at the top of the column. 
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Abstract
A new scheme is proposed to compute single particle (infinite dilution) thermodiffusion in 
model systems using Non-Equilibrium Molecular Dynamics simulations through the 
estimation of the thermophoretic force that applies on a solute particle. This approach 
enables, assuming a Stokesian behavior of the system, the direct knowledge of the single 
particle thermal diffusion factor which is not accessible using standard Molecular 
Dynamics schemes. For one liquid and one supercritical state, this scheme is shown to 
provide consistent results for simple “isotopic” Lennard-Jones fluids (m1/m2=10), even if, 
for such systems, the underlying assumptions are questionable. In addition, this new 
Molecular Dynamics scheme is applied to nanofluids (spherical non-metallic nanoparticles 
+ Lennard-Jones fluid) and is shown to provide results in agreement with extrapolation 
from finite concentrations results. In addition, for such model nanofluids, it is shown that 
nanoparticles tend to migrate towards the cold areas, whatever the concentration, and that 
the thermodiffusion amplitude decreases with nanoparticles concentration for both 
nanoparticles sizes tested. 
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1 Introduction 
Among the possible alternatives to improve the modeling and the knowledge of the 
microscopic mechanisms underlying the thermodiffusion process is the use of molecular 
dynamics (MD) simulations on model systems. Such an approach has already proved its 
efficiency, at least concerning the microscopic mechanism responsible of thermodiffusion 
on rather simple systems [1-4]. Nevertheless, thermodiffusion in dilute systems (infinite 
dilution), which is of high relevance for the modeling because it reduces considerably the 
complexity of the problem, is not directly accessible by molecular dynamics simulations. 
This is mainly due because of the too poor statistics in such systems when using usual 
equilibrium or non-equilibrium MD algorithms. In addition, when the solute particle is 
large compared to those of the solvent, as it is the case in macromolecular systems 
(polymer solution, colloids …), the mass diffusion process becomes particularly slow. So, 
in addition to the intrinsic limitations of the system sizes accessible by MD (104-105 atoms 
at most), the simulation duration needed to perform the computation of thermodiffusion 
using MD becomes too large (>107 timesteps) and so inaccessible  
Therefore, in this work, the main aim is to provide a new MD procedure to allow the 
computation of infinite dilution (single particle) thermodiffusion in a reasonable amount 
of CPU time. The new non equilibrium molecular dynamics (NEMD) scheme, called 
Single Particle Thermodiffusion Algorithm (SPTA), relies on the estimation of the 
thermophoretic force on a solute particle induced by a fluid subject to a thermal gradient. 
This enables, assuming a Stokesian behavior of the system, the direct knowledge of the 
single particle thermal diffusion factor. This scheme is first applied on simples Lennard-
Jones (LJ) mixtures and second on model nanofluids and compared to what can be 
extrapolated from finite molar fraction results using a classical NEMD approach [5]. 

2 Theory and Modelling 

2.1 Fluid/nanoparticles description 
To model the fluid-fluid interaction, the usual truncated Lennard-Jones 12-6 (LJ) potential 
is used on spheres: 
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4
ijij

LJ
ij rr

U (1)

where  is the distance at which the potential is equal to zero (the “atomic diameter”), 
the potential depth and rij the distance between atoms i and j.

The nanoparticles, when present, are modelled by quasi-spheres composed of atoms, 
having the same molecular parameters than those of the solvent, distributed on a FCC 
crystal. Nanoparticle atoms are linked to their nearest neighbours through a Finite 
Extensible Nonlinear Elastic (FENE) bonding potential: 
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where R0 is a finite extensibility and  a spring constant. In this work the FENE 
parameters were set to R0=1.5  and =30 / 2.

2.2 Single Particle Thermodiffusion 
Let us consider a single particle (solute) in a fluid (solvent) subjected to an established 
thermal gradient. If we assume that this particle experiences a thermophoretic forces, FT,
linearly related to the temperature gradient, and that the velocity drift, vT, induced by this 
force is small enough (and related to a Stokes drag), it is possible to deduce that [6]: 

T
T

Fv (3)

where  is the friction coefficient. 

Moreover, if we assume that a Stokes-Einstein law relates the single particle mass 
diffusion, , and the friction, we can deduce that the single particle thermal diffusion 
factor, , in such systems can be expressed as: 

SPD12
SP
T

TkB

TSP
T

F
(4)

Such an expression implies that the measurement of the thermophoretic force acting on the 
particle for a given thermal gradient provides a straightforward estimation of the thermal 
diffusion amplitude in such dilute systems.  

In order to measure the thermophoretic force, FT, acting on the particle using molecular 
dynamics simulations, a simple scheme, described on Fig. 1, is proposed. 

First, an initial system composed of two particles and the fluid is constructed. The two 
particles are centred at Lx/4 and 3Lx /4, Lx being the size along x of the simulation box. 
These two particles are attached to the reference frame of the simulation box thanks to a 
harmonic potential. Then, the Non Equilibrium MD scheme proposed in Ref. [2] is used to 
generate a bi-periodical thermal gradient in the simulation box in the direction x.

After a transient state, the location of the centres of mass of the two particles will be 
displaced relatively to their point of fixation because of the thermophoretic force induced 
by the thermal gradient in the fluid. The measure of this displacement for both particles, 

x, provides a direct estimation of the amplitude of the thermophoretic force. 
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Fig. 1: Scheme of the proposed setup to measure the thermophoretic force that applies 
on nanoparticles in a nonisothermal fluid. 

3 Results and Discussion 

3.1 Lennard-Jones mixture 
The first mixture tested is composed of species having the same molecular parameters 
except that m1/m2=10 (isotope like mixtures) i.e. ideal ones in the thermodynamic sense. 
Two thermodynamic conditions have been studied, one corresponding to a dense liquid at 
T*=1 and *=0.8 and the second one to a dense supercritical gas at T*=1.686 and 

*=0.477.

Results shown on figure 1 clearly reveal that, the proposed approach to compute the single 
particle values of T is consistent with what could be extrapolated from the values 
obtained by classical NEMD simulations for both molar fraction limits ( x1 0 and x1 1)
and for both states (with perhaps a slight underestimation). This is rather surprising as 
long as the underlying assumptions leading to eq. (4) are valid, a priori, only for a solute 
particle large compare to that of the solvent, which is not the case here (they have the 
same size), and only for the liquid state. 

302 Simulations



Molar fraction of component 1
0.0 0.2 0.4 0.6 0.8 1.0

Th
er

m
al

 d
iff

us
io

n 
fa

ct
or

0

1

2

3

4

Fig. 2: T in “isotopic” LJ mixtures  for two states (  :T*=1, *=0.8,  : T*=1.686,
*=0.477). Open symbols have been obtained using a usual NEMD approach [4] and full 

symbols through the SPTA.  

3.2 Nanofluids
To test the validity of the SPTA when applied on nanofluids, have been simulated various 
nanoparticles volume fraction for dNP/ =2.4 and 4.03, where dNP is the nanoparticle 
diameter, at T*=1 and P*=1 (dense liquid).

The first interesting result is that, see Fig. 3, for such model nanofluids, in all cases the 
thermal diffusion factor, T, is positive which means that nanoparticles tend to migrate 
toward the cold areas relatively to the solvent. Furthermore, it appears that the amplitude 
of thermodiffusion tends to decrease with the concentration of the nanoparticles without 
any sign change for the concentrations accessible. 

In addition, results provided on Fig. 3 confirm that the proposed SPTA is able to provide 
an estimation of  which is consistent with what could be extrapolated from classical 
NEMD results and therefore enables the estimation of single particle thermodiffusion for 
larger nanoparticles. This is true even if it seems, as in the LJ mixture, see Figs. 2-3, that 
the SPTA values slightly underestimate extrapolated values. This possible underestimation 
may come from the fact that for very low concentration 

SP
T

T becomes independent of 
concentration as particles do not see each other (reaching a plateau) or because of a 
weakness in the underlying theory [7]. 
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Fig. 3: T versus nanoparticles volume fraction for two nanoparticle sizes ( : dNP/ =
2.4, : dNP/ = 4.03). Open symbols have been obtained using the usual NEMD approach 
and full symbols through the SPTA.

4 Conclusions
In this work, we provide a new simple scheme to compute, using Non Equilibrium 
Molecular Dynamics simulations, the single particle (infinite dilution) thermal diffusion 
factor in fluids which is not accessible in a reasonable amount of time using standard MD 
schemes.  
By a comparison with extrapolations from finite concentration results using standard 
NEMD simulations, this scheme is shown to be efficient for “isotopic” Lennard-Jones 
binary mixtures for one liquid and one supercritical state (for which the underlying theory 
does not apply a priori) as well as in model nanofluids. These last being described by a LJ 
fluid + quasi-spherical nanoparticles composed of atoms distributed on a FCC crystal and 
interacting through LJ potential plus FENE bonding with the nearest neighbours. 

In addition, for such nanofluids, it appears that, first, whatever the concentration, 
nanoparticles tend to migrate towards the cold areas, and that the thermodiffusion 
amplitude decreases with nanoparticles concentration for both nanoparticles sizes tested. 
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