Home > IEK > IEK-6 > Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor > print |
001 | 136055 | ||
005 | 20240712084604.0 | ||
024 | 7 | _ | |2 Handle |a 2128/3220 |
024 | 7 | _ | |2 doi |a 10.1155/2008/597491 |
024 | 7 | _ | |a altmetric:21820934 |2 altmetric |
037 | _ | _ | |a PreJuSER-136055 |
041 | _ | _ | |a English |
082 | _ | _ | |a 600 |
100 | 1 | _ | |0 P:(DE-Juel1)VDB5379 |a Moormann, R. |b 0 |e Corresponding author |
245 | _ | _ | |a Fission Product Transport and Source Terms in HTRs: Experience from AVR Pebble Bed Reactor |
260 | _ | _ | |b Hindawi Publishing Corporation |
295 | 1 | 0 | |a Science and Technology of Nuclear Installations |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |m journal |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |2 DRIVER |a article |
500 | _ | _ | |a Record converted from JUWEL: 18.07.2013 |
500 | _ | _ | |a Open Access Journal, Sherpa/Romeo: Publisher's version/PDF may be used |
520 | _ | _ | |a Fission products deposited in the coolant circuit outside of the active core play
a dominant role in source term estimations for advanced small pebble bed HTRs, particularly in design basis accidents (DBA). The deposited fission products may be released in depressurization accidents because present pebble bed HTR concepts abstain from a gas tight containment. Contamination of the circuit also hinders maintenance work. Experiments, performed from 1972 to 88 on the AVR, an experimental
pebble bed HTR, allow for a deeper insight into fission product transport behavior. The activity deposition per coolant pass was lower than expected and was influenced by fission product chemistry and by presence of
carbonaceous dust. The latter lead also to inconsistencies between Cs plate out experiments in laboratory and in AVR. The deposition behavior of Ag was in line with present models. Dust as activity carrier is of safety relevance because of its mobility and of its sorption capability for fission products. All metal surfaces in pebble
bed reactors were covered by a carbonaceous dust layer. Dust in AVR was produced by abrasion in amounts of about 5 kg/y. Additional dust sources in AVR were ours oil ingress and peeling of fuel element
surfaces due to an air ingress. Dust has a size of about 1 μm, consists mainly of graphite, is partly remobilized
by flow perturbations, and deposits with time constants of 1 to 2 h ours. In future reactors, an efficient filtering via a gas tight containment is required because accidents with fast depressurizations induce
dust mobilization. Enhanced core temperatures in normal operation as in AVR and broken fuel pebbles have to be considered, as inflammable dust concentrations in the gas phase. |
773 | _ | _ | |0 PERI:(DE-600)2397941-0 |a 10.1155/2008/597491 |p 597491 |t Science and technology of nuclear installations |y 2008 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/136055/files/Moormann_2008.597491.pdf |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/136055/files/Moormann_2008.597491.jpg?subformat=icon-1440 |x icon-1440 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/136055/files/Moormann_2008.597491.jpg?subformat=icon-180 |x icon-180 |y OpenAccess |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/136055/files/Moormann_2008.597491.jpg?subformat=icon-640 |x icon-640 |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:136055 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
920 | 1 | _ | |0 I:(DE-Juel1)VDB814 |k IEF-6 |l Sicherheitsforschung und Reaktortechnik |x 0 |
970 | _ | _ | |a 2128/3220 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a I:(DE-Juel1)IEK-6-20101013 |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a JUWEL |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a VDB |
980 | _ | _ | |a journal |
980 | _ | _ | |a FullTexts |
981 | _ | _ | |a I:(DE-Juel1)IFN-2-20101013 |
981 | _ | _ | |a I:(DE-Juel1)IEK-6-20101013 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|