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In the present paper a number conserving random phase approximation is derived as a special
case of the recently developed random phase approximation in general symmetry projected quasi-
particle mean fields. All the occurring integrals induced by the number projection are performed
analytically after writing the various overlap and energy matrices in the random phase approxima-
tion equation as polynomials in the gauge angle. In the limit of a large number of particles the
well-known pairing vibration matrix elements are recovered. We also present a new analytically
number projected variational equation for the number conserving pairing problem.

I. INTRODUCTION

In a recent paper' a method to derive the random
phase approximation (RPA) in general symmetry-
projected quasiparticle mean fields was developed. In
that paper the symmetries were restored by the VAMP
procedure? (variation after mean field projection in realis-
tic model spaces. This has been called the VAMPIR pro-
cedure in other publications.) In this rather sophisticated
method one considers general Hartree-Fock-Bogoliubov
(HFB) transformations breaking parity, charge number,
mass number, and angular momentum conservation. In-
stead of considering this general case, we shall restrict
ourselves in the present paper to the very simple case of a
seniority zero system. Then the basic building blocks
consist out of pairs of particles coupled to angular
momentum zero, and consequently our system has fixed
total angular momentum and parity I”=0". Since we
also consider only one type of particles (neutrons or pro-
tons), our system has a definite charge, too. Thus the
only broken symmetry remaining is the nonconservation
of the number of particles. The main purpose of the
present paper is to use this simple seniority zero model as
a testing ground for the general VAMP-RPA formalism.

Recently, by transforming both the energy as well as
the overlap kernels into polynomial forms,’> the well-
known integral of number-projected Bardeen-Cooper-
Schieffer (BCS) theory* could be performed analytically.
In the present paper we extend this procedure to the
overlap and energy matrix elements that appear in the
RPA formalism. This kind of extension is neither obvi-
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ous nor trivial, since in these matrix elements there occur
additional pairs of quasiparticles.

In the VAMP-RPA formalism a general symmetry
projection is performed before the variation. Here we
consider as broken symmetry only the particle number.
Thus the general VAMP procedure can be replaced by
the well-known FBCS (Ref. 5) prescription (BCS with
fixed number of particles). In the present paper we shall
take the opportunity to rederive the corresponding varia-
tional equation using the generalized form of Thouless’
theorem® and perform the occurring integrals analytical-
ly. This new FBCS equation gets a very simple form, and
can be used later on to simplify part of the number-
projected matrix elements of the RPA scheme. Here we
can see one of the advantages of the analytical integration
revealing some nontrivial connections between the pro-
jected RPA and FBCS. This fact suggests some possible
simplifications in the treatment of the general VAMP-
RPA, too.

Via the transformation of overlaps and energy matrix
elements into polynomials, we obtain a binomial type of
distribution. Taking the Gaussian limit of this distribu-
tion. i.e., the limit for a large number of particles, we can
test the consistency of our procedure. Indeed, in this lim-
it not only the usual BCS-variational equation is re-
gained, but also some well-known expressions from the
standard RPA (Ref. 7) in the seniority model are
recovered. Thus the VAMP-RPA formalism is soundly
based, and it seems worthwhile to study some less restric-
tive versions of it than the present one in the future.

From a more restricted point of view, we present here
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one more of several alternative ways to deal with the
pairing collective model,® which still® attracts some atten-
tion, mainly as a testing ground for nuclear many-body
theories. In this context it should be stressed that the
present approach is symmetry conserving and thus does
not encounter the typical breakdown of the usual quasi-
particle RPA. The number-conserving RPA scheme
presented here allows the extension of the BCS and RPA
theories, in which the physical interpretation is very
transparent, across the so-called phase transition region.

The present paper is organized as follows: in the next
section we derive the analytical number-conserving BCS
variational equation (FBCS equation). In Sec. III then
the number-conserving Tamm-Dancoff approximation
(TDA) and RPA approaches are presented. Performing
the number projection analytically, all the occurring ma-
trix elements are represented in closed form in Sec. IV.
The Gaussian limit of these expressions is then obtained
in Sec. V, and, finally, some conclusions are drawn in Sec.
VI

II. ANALYTICAL FBCS EQUATION

Let us start by defining the creation and annihilation
operators in the spherical shell model basis as c;m and
Cjm» respectively. We then introduce BCS-type quasipar-
ticle creation and annihilation operators via

al,(A) ¢l (A)

— T,
a(8) | TF B e (a)

2.1

with am being the usual time-reversed operators defined
as

aI_E(—)j_'”ajgm
and
u;(A)  v;(A)
F(A)= —v;(A) u;(A) (2.2)

This is the well-known Bogoliubov-Valatin'® transfor-
mation. The parameter A is here explicitly indicated in
order to distinguish between different BCS transforma-
tions. The vacuum |F(A)) of the annihilation operators
in (2.1) has the form

F(A)= [Ha]m(A)]IO). (2.3)

Let us now assume that a particular vacuum |F(A,))
of the above form is known. Using the generalized Thou-

less’ theorem® one can then write any other BCS vacuum
|F(A)), which is not orthogonal to |F(A,)), as

|F(A)) =c(A)exp 21/9 Q,d AT |IF(A), 4
with A | being defined in Appendix A (A17) and
=(F(Ap)|F(A)), while @;=j+1 . (2.5)

The parameters d; in the formula (2.4) connect the BCS
transformation coefficients related to the different vacua

A and A, These parameters, and further properties of
this representation were discussed in Ref. 2 for the gen-
eral case of angular momentum and number projection,
and it is redundant to repeat this discussion here.

Obviously the BCS-type vacuum (2.3) or (2.4) violates
the conservation of the particle number. In order to re-
store it we have to use the projection operator*

L |0 N—

v=o-J Texp | —is(N N) |d6

_L 27 _lv— A

=57, exp 129 Sdo, (2.6)

where N is the total number of particles of the system and
=3c Jm ¢;m the particle number operator.

The expectation value of the usual pure pairing force
Hamiltonian (this Hamiltonian and its quasiparticle rep-
resentation are presented in Appendix A) within the
number projected vacuum (2.4) is then given by

I
N__E
ED T , 2.7)
where
Io=ﬁf —iN/28( F|§ exp 2\/9 d.ﬂT’IFO)dB
(2.8)
and
_ 1 r2m _ynpje e q. t
Ip=_- [ e "N/2%(F|AS exp %‘/dej"qj |Fo)d6
(2.9)

The variation of the functional (2.7) with respect to the
d; yields then

aEé’v—o— (A) (2.10
ad, =~ &7 10
with
(A)—; TiN/20/Q (F|(A—EY)SAIF)do .

(2.11)

The evaluation of general matrix elements with rotated
and nonrotated quasiparticles using a sort of generalized
Wick’s theorem was discussed in Ref. 11 for the case of
general HFB quasiparticle transformations. For the sim-
ple case of pairs of quasiparticles coupled to total angular
momentum zero [see expression (A17)] considered here
one can also use the prescriptions presented in Ref. 12.
We simply show the final result for the overlap between a
rotated two quasiparticle and the zero quasiparticle state.
The derivation is given in the reference mentioned above.
We obtain
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(FISANF)Y=n(0)V/Q,k,(6) (2.12) V'Qup (e~
J k;(6)= RN (2.14)
- (uj+vje')
wit
The prescription for the derivation of the energy ma-
n(0)=[(u; 2 +v2 10)9 , (2.13) trix ele.ments in (2.11) is very similar. .Some detsils can be
» found in Appendix B. For nucleons in a spherical mean
field, €;, subject to a residual pure pairing force G, the en-
and ergy matrix elements in (2.11) are
|
(F|I?S.;4T|F)" n(@) |26,Q;uve’ 9_ Qj(ujz—vjz) Q,8(pju,v,
~ 2 2,i0 24 ,2,i6 ENT ,e
V', +v'e ui+vle® 4 Stuvle
) 26,0,Q,0%" Q,0Q.8(pg)d(qjt)u,v,u,v,e'®
+ 19, (0 S B(pi) = G3, —Py g PE | 2.15)
Q; P Uptype 2 (uy +vye")uj+vje
I
where in Ref. 3, and hence will not be repeated here. However
G we mention that the standard binomial distribution of the
6]-56]——2‘ , (2.16) type
Q
5 8,; P —1 !
S(pj)=1—-2 2.17) B,= |, |w)™ W, (2.19)
Q, P
= 8 appears clearly isolated from the other terms and the po-
dlgj)=1 —26‘ . (2.18) lynomial resembles the expression (2.12) and (2.15). This
P

One should mention that the shifting term G /2 in
(2.16) appears as a counterpart to the term (2.17) in the
formula (2.15), and can be interpreted as an overall shift
in the single-particle levels. However, in the case of a
more realistic force, to which our scheme can easily be
generalized, the diagonal matrix elements yield state-
dependent shifts of the corresponding single-particle lev-
els. The last of the preceding three formulas (2.18) ap-
pears as a connection between h, and hj},, which are
given in Appendix B by Egs. (B5) and (B6), respectively.

Now the overlaps (2.12) and the energy matrix ele-
ments (2.15) can be expanded into polynomials in the
variable e® after successively using Newton’s binomial
formula in (2.13). Here the expressions (2.17) and (2.18)
play an essentlal role, since both factors, () 5(pj) and
Q,Q 8(pq)5 gj?), cancel the terms, which cannot be ex-
pressed by a polynomial form. The prescription how to
transform overlaps into polynomial forms was formulated

J

Ig= 3

(U=N/2)

[IIBp

p

3 26,l,~G3
q

where the sums run over all lp p=1,...,M with M be-
ing the number of spherical basis orbits) with the con-
straints that /=3 [,=N/2 and 05/,=Q,. The
aforementioned ‘‘hat” symbols I g and Io 1nd1cate that
the corresponding expressions (2.22) and (2. 21) have to be
multiplied with the additional factor (/;— ) before
the sums are performed. Obviously the factor Q v; 2 does

u,v,
Q=) |1,
o Uglr

separation is not so obvious because of the existence of
terms like (up2+v:ei6)", with n an integer, in the denomi-
nator, however, using some identities for binomial
coefficients and a convenient renumeration of the Ip, it is
possible to obtain the polynomial form, which we are
looking for.

After having the overlaps and the energy matrix ele-
ments in the polynomial form, we can easily perform the
integration over the gauge angle 6, and we obtain the fol-
lowing very simple number-projected variational equa-
tion (FBCS equation):

[IOfE—IEfO ](Ij—njv})=o (2.20)

with

In= %

(I=N/2)

[HB ] (2.21)

and

(2.22)

f

not contribute in (2.20), and hence we could drop it.
However, we shall keep it here for additional discussions
and approximations in Sec. V. The expressions (2.21) and
(2.22) are, respectively, the analytically projected BCS en-
ergy and overlap kernels and were obtained from Egs.
(2.8) and (2.9) in Ref. 3. The energy kernel (2.22) I is
presented here in an even simpler form than in this refer-
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ence.

As one can easily see, the structure of the integrated
FBCS equation (2.20) is different from the usual BCS
equation, where one part proportional to (u f—u jz) and
another to u;v; is obtained. However, if we approximate
the binomial distribution (2.19) by a Gaussian form and
the sums over the I’s by integrals, as will be shown in Sec.
V, the usual BCS equation is recovered. Thus the FBCS
equation (2.20) is related to the well-known gap equation
in spite of the fact that the gap parameter (A) from the
BCS theory does not appear here as transparently as in
the broken-symmetry variational equation.

In practical calculations, the solution of the FBCS
equation (2.20) is as easy as that of the normal gap equa-
tion. One needs as input only the parameters (¢,, G, 1,
and N) provided by the problem and can then determine
the u, and v, with the condition u}+v;=1 after per-
forming adequately the summation over the
11,15, ...,1y. As already mentioned, the factor ijjz
does not contribute to Eq. (2.20) and can hence be ig-
nored in such a calculation. Finally, we would like to
mention already at this place that Eq. (2.20) can be used
later on to simplify part of the matrix elements occurring
in the FBCS-TDA and FBCS-RPA approaches discussed
later. This is another advantage of the analytically in-
tegrated equation presented here.

Last but not least, it is worthwhile to note that Eq.
(2.20) can be rederived from the standard variational
scheme, i.e., obtaining first the projected functional in
analytical form and then performing the variation such
that

9 _% 9
dv; u; Ou,

Using (2.7), (2.21), (2.22), and the binomial distribution
(2.19) we can easily get the variational equation (2.20), be-
cause of the identity

E{=V(v;,u;)Eq =0 (2.23)

u
> l]’[Bp] b B TR AIA
a=ns/2) | p j*p | %jVp
% o -1y ||=0
2 p  ‘plt Yo
ujvju,
(2.24)

which is easy to verify, if one writes the product ([],B,)
as ([I4p=;B,)B,B;. The term in inner square brackets
in (2.24) is the result of the differentiation
Viv,,u,) 3 12
Vi, U;
D s

pg P4

(Q,—1,)I (2.25)

q

while factor (Ij—ijjz) in (2.20) is obtained by the
differentiation

2(1,—ij})3

V(v;,u;)B;= I (2.26)

2
ujv;
Because of the vanishing right-hand side of Eq. (2.23) the

term 2/u jzvj can be dropped, and the number-projected

variational equation is obtained as

Iov(vj,llj)IE_‘IEV(Uj,uI‘)Io‘_‘O ) (227)

with the V(v;,u;) given by (2.23) and the differentiation
in I to be performed over the binomial distribution B;.
The additional differentiation gives zero, as can be seen
from the expression (2.24).

In the present section we have derived in two alterna-
tive ways a number-projected variational equation in or-
der to obtain the Bogoliubov transformation coefficients,
u, and Up) which will be essential in what follows.

III. FBCS-TDA AND FBCS-RPA

Solving the number-projected variational equation (2.2)
one obtains the minimum of the functional (2.7). The
next step is to consider vibrations around this minimum,
i.e., to obtain a corresponding TDA or RPA. For the
seniority zero system, the TDA formulation in the
number-conserving scheme was proposed long ago,"
however, even for this very simple case the RPA is yet to
be done, and therefore this is one of the main purposes of
the present paper.

Recently' we proposed a method to incorporate vibra-
tional excitations in a general symmetry-projected varia-
tional method (VAMP approach). In that paper a
symmetry-conserving RPA equation (VAMP-RPA) was
derived. Now, if we consider that all the particle pairs
are coupled to total angular momentum zero (seniority
zero), the formalism of the VAMP-RPA is reduced to the
case of FBCS-RPA, or in other words, we present an ap-
plication of the formalism previously developed to the
case of projection of only the particle number. We furth-
ermore simplify the problem by choosing a pure pairing
force. This choice is not essential for the derivation, but
since no additional qualitative information is obtained in
considering a general force, we prefer to restrict ourselves
to the most simple one available.

Since the FBCS-TDA and FBCS-RPA are contained in
the VAMP-TDA and VAMP-RPA, we present here only
those features of the latter approximations that are essen-
tial for the full understanding of the present paper. Fur-
ther details and additional discussions can be found in
Ref. 1.

A. FBCS-TDA

Let us start with a configuration space consisting out
of the number-projected zero and two quasiparticle
states:

Env= |PylFy)=[0y); ﬁN‘ﬂﬂFN)EUN) 3.1
Here |Fy ) means that the coefficients of the Bogoliubov
transformation (2.2) have been determined through the
FBCS equation (2.20) for a specific nucleus with N parti-
cles. This procedure determines the projected zero quasi-
particle state |0, ) (the FBCS solution).

Because of the number projection operator, the
aforementioned states (3.1) are not anymore orthogonal.
They can, however, be orthogonalized by the Gram-
Schmidt procedure via

nd=1ljn) — 10§ N s (3.2)
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where
‘NO;J':<ON|jN>=<FN'ﬁN->4}|FN> ) (3.3)

is the overlap between the number-projected zero and
two quasiparticle states. Obviously, (3.2) is by construc-
tion orthogonal to |0y ). Furthermore, because of Egs.
(2.10) and (2.11) we obtain

<0Nlﬁ|(j)1v>=<01v|ﬁ|j1v)

The overlap matrix between the number-projected or-
thogonalized states (3.2) then has the form

CY=yl(Dn) =N, — NN, 3.5
with
Ny =(FylAPyATIFy) (3.6)

The corresponding energy matrix elements can be written
as

(ylAG)y)=AY+EJCY, 3.7
where E} is the FBCS energy given by (2.7), while
N— _EN
Aij—Hi;j EO‘Ni;j ) (3.8)
and, finally,
H, ;= {Fy|AAPyA]|Fy) . 3.9

The next step is then to diagonalize the overlap matrix
(3.5). Since CVis symmetric and positive definite, there
exists an orthogonal transformation matrix X such that

xIcNxy=1,Ay,
and thus
AV 2xXTCNX Ay =1, . (3.10)

Keeping only the m <rn linear independent solutions
(with A, #0)

lyN>=2(A;‘/2XN Vil ) p=1,..m ,
J

(3.11)

we obtain an m-dimensional, orthonormal basis for the
subsequent diagonalization of the Hamiltonian. Defining

(H¥DA )MVE<.U’NIﬁ’VN ) —E(I)V<,uN|vN)
=(Ay X5 AVX N AN,

—_ N
=4, (3.12)

the diagonalization

Y’IIYI;AH’IIYDA Yipa =1,fi0™*, (3.13)
yields then a set of m eigenstates
m
lw-I{/DA)z 2 [I-‘N>Y'11YDA » (3.14)
p=1

with eigenvalues

fiw PA=EN—EY . (3.15)

The present subsection establishes once more the
FBCS-TDA scheme as well as the main quantities, which
are needed to be derived through a sort of generalized
Wick’s theorem, subsequently transformed into a polyno-
mial, and finally to be integrated.

B. FBCS-RPA

The extension of the earlier approach to an RPA-like
model is now straightforward. We start be defining the
creation operators

bl =S (hy XD (AT=Noy,) (3.16)
J

in terms of which of the orthonormalized number-

projected 2gp configurations (3.11) may be written as
luy ) =Pybl|Fy) . (3.17)

Similarly, we can
configurations via

I/"NVN>=ﬁNbLbI)FN) )

introduce number-projected 4qp

(3.18)

however, these states are neither orthogonal to the FBCS
state ION ) nor the configuration (3.17). Thus, we proceed
by defining

(uv)y)? =§ZﬁNb;b1[FN)
with

§ZEI_'ON><ON|_2 |,UN)<,UN| ’
u

(3.19)

(3.20)

being a mathematical projector ensuring the required
orthogonality. Now, we can construct a generating func-
tion

|¢N(Z')>=ION)+E|HN >Z,'f
m

+13 (pviydz*z* +0(z"* ),

u (3.21)
nv

and then, following Jancovici and Schiff'* and
Holzwarth,!’ make a GCM (Ref. 16) ansatz

(Wy(z))= [ on(z')) Fylz')dz" (3.22)
for the total wave function. Minimizing the normalized
energy expectation value E in this wave function, with
respect to variations of the weight function F(z’), one
gets the well-known Griffin-Hill-Wheeler (GHW) integral
equation.'® Using the generating function (3.21) the over-
lap kernel of the GHW equation now approximately
takes a Gaussian shape. Expanding the quotient of ener-
gy and overlap kernel of the GHW equation only up to
second order, and with the help of the transformed func-
tion G, defined as

Gy(2)= [exp [2 2,z ]57N(z’)dz' , (3.23)
©

it is possible to transform the GHW integral equation
into a system of coupled partial differential equations for
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Gy(z) of the form

AN ——a—+‘B +1BY G
mzua wPuZy #3z,0z,

)

nv

—(E—EY) ]GN<z)= (3.24)
Here 4, N is given by (3.12). Because of the nonorthonor-
mality between the pro_]ected zero 2 and 4qp states, the
matrix elements of B , are more complicated than in the
standard case. They can be obtained through the expres-
sions (3.16) and (3.19) as

N =0y A (uv)y

=3 (Ay"2X0),BY XAy, (3.25)
ij
where
BY=H,,;,—E{N,; (3.26)
with
NO'ij 1
= pooatat
H,. —<FN £ (PvAlA] FN>. (3.27)
U

The differential equations (3.24) are the well-known
representation of the Schrodinger equation with a quad-
ratic Hamiltonian for bosons
A, E{,V+z ANblb,+ '23

l+b,b,), (328

being one of the few many-body Hamiltonians that can be
solved exactly. It can be diagonalized with the help of a
Bogoliubov transformation for bosons, yielding the stan-
dard RPA equation, which subsequently can be rewritten
after suitable manipulations of the matrix C¥ (3.5) and
the matrix transformation X,. This leads to a number-
projected RPA equation of the form

AN BN | |¥YN cy 0
BN 4N||Z¥W 0o —-c¥

v N

— ﬁ(;)RPA Z N

(3.29)

This form of the RPA equation is well known in theoreti-
cal chemistry.!” The matrix elements 4" and B" can be
calculated through (3.8) and (3.26), after the determina-
tion of the coefficients u, and v, through the variational
equation (2.20). The column matrix (; ~) is related to the

original RPA column matrix ( ;x) via
XN k; 1/2 0
0 XyAy 1/2

YvN
AL

YN
ZN

(3.30)

In the next section we are evaluating the matrix elements
out of (3.29) by an analytical integration over the gauge
angle.

IV. ANALYTICALLY INTEGRATED QUASIPARTICLE
OVERLAPS AND ENERGY MATRIX ELEMENTS

In the present section we shall perform the number-
projection integrals analytically, in a similar way as we
did to derive the FBCS equation in Sec. II. We obtain

the various overlaps and energy matrix elements derived
in the last section and summarized in the eigenvalue
equation (3.29) in terms of the Bogoliubov transformation
coefficients (2.2) and the fixed parameters of our problem
(€,, G, Q,, and N).

A. Analytically integrated overlaps

The first overlap expression (3.3) that appears in Sec.
III was already defined by (2.12). The corresponding
analytically integrated expression is

Ny, = ol —Q0}), (4.1)

5] \/0’
where I, is given in (2.21) [see discussion following (2.21)
for the explanation of T,] and

o; _Q/ujzvj2 . 4.2)

The second overlap to be calculated is the expression
(3.6) with two rotated quasiparticles on one side, and
another two quasiparticle state on the other side. This
overlap was derived for the rotations in the Euler and
gauge angles in Ref. 11. For our restricted case we ob-

tain
(FylASALFy)=n(0)n;(0), 4.3)
with
8,
n,«j(B)zm-Fk,-(O)kj(O) , (4.4)
where k;(6) is given by (2.14) and
X,(0)=u jz (:/2)0_,,”2 /28 4.5)

In order to perform the analytical integration over the
expression (4.3) we need to rewrite it as a polynomial.
For this purpose we use the simple identities

ig i u.2
1 e (e—1) |*
- - =1+—" .
ut+vle'® [ 1 = ut+vke' vf |’ “.0
to rewrite the expression (4.4) as
(0)=8,— Ui k(O (0) 4.7)
n;(0)=8;, ———— ij)k; : . .
Y u,2+v,~e'9 i J

As in (2.15) the factor 8(ij) cancels here all the terms,
which cannot be represented in polynomial form. After
obtaining the polynomial form we can perform the in-
tegration for both the i#j and i =j cases. The final re-
sults are

1 A
N, =———=T,L" (4.8)
] \/Uin o*~ij
with
L= —QuiN—Qu}) . 4.9)

Inserting (4.8) and (4.1) in (3.5) we get
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1 ifOL;j”—[fO(li__iniz)]

O'iO'j

X[To(, =)}, (4.10)

which can be diagonalized according to (3.10), yielding
the transformation matrix X, needed to orthonormalize
the wave functions (3.11).

Finally, following the same techniques used up to here,
we can obtain the last integrated overlap with four rotat-
ed quasiparticles on one side and zero quasiparticles on
the other side (3.27). Here one derives

1

Ny =——=1o,L,;; , 4.11)
0,] ‘/0’01 o ]
with
L;=L{"+L}, (4.12)

where L was given by (4.9), and L’ is the diagonal
matrix element

LP=8,[v}(1,— Q) —Lu}] .

y (4.13)

B. Analytical energy matrices

We now proceed by deriving the energy matrix ele-
ments. Following the systematic order of Sec. III, the
first to be evaluated ought to be (3.9) and the second one
is (3.27). We begin with (3.27) being

—_1 ror St at

This matrix element is discussed in some detail in Appen-
dix B. We obtain, dropping the angle 8 from the notation

|

DA -~ kl .
(FyASAJAIFy)=8(ij) kikjho+—5hiy

J

ki, 2n(8)
+—Zhi, + HY |,
x} % xx? “

1

(4.15)

where 8(ij) was defined by (2.17) and h, and h{, (or h},)
can be rewritten from (B5) and (B6) as

hy=no) |5 220"
:n —_—_———
0 % ul+vle'?
Q,Q 8pgu,v,u,v, e’
—gy > P e (4.16)
P (up+vpe' )(uq+vqe‘ )
and
hiy=n(0) [26,»0,14,-1),-
Q 8(piu, v
—Glut—ve)y T | g
» up+vpe’

respectively. The HY, are given by (A13). Finally, the
definition of X; and k, can be found in (4.5) and (2.14), re-
spectively. The term 8(ij) can be interpreted as a func-
tional manifestation of the Pauli principle, since if i =
and Q,=1 we get 5(ij)=0, i.e., no more than one pair of
quasiparticles is allowed for this particular case.

Using the identities (4.6) and additionally

2 2,i6 2ui2vi2(e19__~1)

ui—vie”
(ui—vi) 1, 2,0
uitvje

—_—= : s (4.18)
u,—2+v,«2e’9 !

we can transform the energy matrix elements (4.15) into

GV'Q,Q,(upv}+viul)e'®

(Fy|ASATA|IFy) =n(0)8(i))

(u,«2+v,»2€i0)(uj-2+vj-zei9)

26,V jujvje“’ G\/?l—je”’ (ul=vliu,v, 0 5(0ai 18
- , - . : pqi),;
i 24 .2,i8 2. 2,6 2, .2,i6 “°p 4j
uj+vje' uj+vje’ P2 up+vpe'
4k 26,V Qu,ve'® _ GV Qe (uqz—qu)upvp Q 5(pa i)
j BENSSENT ultv2e™ < u;+v;eio pO\PqJ] )0y
28 v2e'? [Q,9,8(pg)8(gi%j2)+28,,8, Ju,v,u,v,eC
_— p pi Ogj 1UpUpUqUyq
Tkik; | 2i pz 70PN —GZ : (1240200 (u2+v2e®) : ’
p UpTUpe g u, tvye)ug tuge

where
5 8,
S(pgi)=1—-2 — 2 (4.20)
Q Q
8, 8,
B(qitjt)y=1—2-+—2- 2 | 4.21)
‘Q‘q Q'l

The last two formulas (4.20) and (4.21) are obvious exten-

(4.19)

f
sions of (2.17) and (2.18), respectively. Together with

[8(pg)8(qij*)+28,8,], (4.22)

they always appear in energy matrix elements such as
(4.19) or (2.15) and cancel just those terms, which cannot
be represented by a polynomial. This feature obviously
should have some interpretation. The main reason seems
to be the functional manifestation of the Pauli principle
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as discussed in the expression (4.15). This can be seen,
for example, by calculating the term
(FN|ﬁ4o.;4I.)4;|FN>. However, the ultimate reason for
the existence of factors such as (4.22) is not always clear.
They appear also as a result of algebraic manipulations
with the help of the identities (4.6) and (4.8). The most
trivial example for this case is (4.7), which was derived
from (4.4), and the factor 8(ij) appears quite naturally
without any clear physical meaning.

After obtaining a polynomial the integration is
straightforward though lengthy. We finally obtain

1 ~
H,,=——=1IyL;
0;ij \/U,-O'j E~ij »

where L;; and Ig are given by (4.12) and (2.22), respec-
tively. There the explanation for the symbol (Iz) can
also be found. As in (2.26) one notes that the factor

(I,-—Q,»v,-z)(lj-—ﬂjvj?)

(4.23)

in (4.23) originates from the differentiation of B, first
with respect to V(u;,v;) and afterwards to V(u;,v;).
However, the origin of the term

’Sij[viz(li _Q’iviz)_uizli]

is not so easy to be interpreted. Here the factor 8(ij)
plays an important role.

Inserting the expressions (4.23), (4.11), and (2.7) in
(3.26) we obtain

N_ Iolp—Igly

i i - (4.24)
/ \/a,»ojlo /

This is actually a very simple expression for the RPA ma-
trix (3.26). However, from the new FBCS equation (2.20),
we immediately see that

8;(IpTg —IcTo) v, —Qu})—Luf1=0, (4.25)
and thus our B,ﬂy will have the even simpler form
IoTp—IgT,
N_ “O'E E“O 2
= ;= Qy; W\ —Q}) . (4.26)

\/0,-01-10

Again the terms Q,v? and Q;v} do not contribute here
and could hence be dropped. However, as in Sec. II, we
shall keep them here for further discussions in Sec. V. It
is worth to emphasize that the FBCS equation (4.25)
could be used here to obtain the simple expression (4.26).
This fact shows the power of the present scheme using
closed forms obtained by analytical integration, suggest-
ing clearly that it is worthwhile to try to treat less re-
stricted models than the present one in a similar way.
This nontrivial interconnection between the RPA matrix
elements and the number-projected variational equation
is one of the most interesting consequences of the present
work.

In order to get the A,/}' we need to calculate the most
complicated energy matrix elements. These matrix ele-
ments (3.9) involve two quasiparticles on each side of the
Hamiltonian

H,y = [ 7CEy A, BSA|Fy)do 4.27)
and are also obtained in some detail in Appendix B. In-
serting (4.7), (A12), (A13), and (A14) in (B18) we get, after
some straightforward manipulations

P e ki o ki 2m(0) . vitule’? .
<FN|')41' S.ﬂj|FN)—8(l]) kikjh0+}'];‘h02+“)?h62+X’;XJ;HJO + 2kikjhll_mkjh02+kjh22
o |V L2 g g ST | g | nOGV 2R (4.28)
] [ = n(@)—————— | =8 . — |, (@
Ul y24p2ei®° X} . (u2+v?e'®)? / (u}tvle’®)ul+vie'®)

with 4, and h’, being defined in Appendix B by the formulas (B19) and (B20), respectively. They can be represented as

‘ S(pi)u,v,(e¥+1)
By =n(0) | (uF —0)+Gof+ Guyo, 3, —2r (@.29)
- u, +uvye’
and
A — ) s 6 2 Q,u,v,
hy,=n(0V'Q; |(,—Gv}2uv;—G(ule®—v})Y — 5 (4.30)
! Ve ultvlet?

Let us call the first term in (4.28) ( Fy|A ,-ﬁﬁ%l}lF v 71- This is the same expression as (4.14). The integrated expres-
sion of this term (H/. ), was already obtained in (4.23). The second term of (4.18) (H} ;) is zero. This one can easily

verify, since
vi+ule'®

hi,=—2khi, +———hi, .
22 i 11 ui2+vi2e,g 02

(4.31)

Now we need to obtain the integrated form of the third term (H, ,3 ;). Let us rewrite this term in the form
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26,Q;e'

26,0,8(piwie®e®+1)

(FN|04iﬁ§-)4;|FN)3=8ij

—hy+n(6) [ it ol

TR TP i i
Q,9,8(pq)8(gi*)u,v,u,v,e%e®+1)

24 2,0y, 24 ,2,i0
(uf+vie"Nu, tv,e'”)

P P94

+GY
P

The last and fourth term will be left as in (4.28). Now
transforming the third term (4.32) and the fourth term in
polynomials and performing the analytical intergration
we get

u,v;
P, —1)1

y__ 1l o #
e L D s @33
1 P 1
and
L U,
HY,=——2— 1,20, — 1), (4.34)
\/U,aj Uujv;

respectively. Adding all the H,;;’s, i.e., (4.23), (4.33), and
(4.34), we note that the first term of H,»3;j is equal to the
last of H, ,-’; ; but with opposite sign. Thus, we get

;iEL

0,0;

H. .=

]

(1) R
i TAj (4.35)

N u, v;
—=To3 ~E1,(5;=8,) (2~ 1) .

P i

(4.36)

Inserting now the aformentioned H,,;,
(2.7) in (3.8) we get simply

AY=BY+a}.

(4.35), (4.8), and

(4.37)

These are the last energy matrix elements that are need-
ed, and together with B} and C}} can be used to obtain
the solutions of the number-projected RPA equation
(3.29) yielding the numerical eigenvalues of the quadratic
Hamiltonian (3.28). These can thus be compared with
some exact solutions.'® However, in the present paper we
shall only check the consistency of our derivation by tak-
ing the limit for large N and reproducing the well-known
results for pairing vibrations. Numerical results from the
FBCS-RPA will be published in a forthcoming paper.

V. GAUSSIAN LIMIT

In the last section we derived the number-projected
matrix elements 4,) and B, which appear in the
number-projected RPA equation. In the present section,
using the standard Gaussian limit for the binomial ex-
pression (2.19), we shall transform the obtained summa-
tions into integrals, which in contrast to the gauge in-
tegrals are trivial to be performed, as we shall see. In this

way we shall obtain the 4 ,-7 and B,-‘}' in the well-known
form.” This illustrates the consistency of our FBCS-RPA
equations, since the limit of FBCS-RPA for a large num-
ber of particles should be the usual broken-symmetry
quasiparticle RPA.

Since this kind of procedure has not been discussed in

(ui2+v,~2e"9)(u:+v2eie)(u;+v‘lzei9)

(4.32)

P

[
the usual number-projected theories, we shall take here
the opportunity to rederive the BCS ground-state energy
from the analytical number-projected expression. We
shall also present the Gaussian limit of the FBCS equa-
tion (2.20).

A. BCS approximation

Transforming the binomial distribution (2.19) into
Gaussian form is not new in the context of the nuclear
pairing model.'”” However, it was not widely used, since
the aforementioned procedure was applied to more re-
stricted cases, and, as we shall see, our conclusions are a
little bit different from those of Ref. 19. Thus, it is
worthwhile to present a few lines about this subject.

Using the Stirling formula for the factorials

n!Z(ZTT)l/Z(n)n+l/2€_n

in the binomial distribution (2.19) we get the so-called
Moivre-Laplace limit?° for the binomial

12 2 3! ) Y0, !
B = 2, ' Qpup |7 | Qpuy, |77
p 27l,(Q,—1,) Q, Q,—1,
(5.1)
Introducing a new variable
L=Q,u}+x, , (5.2)

in the expression (5.1), passing to the logarithmic form,
and subsequently performing a Taylor expansion in
X,/Q,v} and ¥, /Q,u}, we obtain after convenient rear-
rangements the simple Gaussian form

) (5.3)

where o, was given by (4.2).
With the introduction of the new variable (5.2) we get

after performing the number projection integral

N

21p=29p"5+)€p=‘2‘ : (5.4)
) p

Considering the number equation from the BCS theory
SQ,v}=N/2, (5.5)

we immediately get

>x,=0. (5.6)
4

Therefore, if the sum of all the terms of the new variable
is zero, and considering that our system has a large num-
ber of particles, then — o <y, <, and all the summa-
tions, for example, in (2.21) can be replaced by a product
of standard type Gaussian integrals
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2 and

Io= H dy, | = (5.7

— ©

* ex
\/277'0 f P 2 2

1 0 o0
( )= B,B,dx,d
Now we introduce some well-known results involving XpXs 2mo,0 f-w f' HXpXaZpPa XX
Gaussian functions, which will be useful later.

<x,,>:<xp)cqx,->=_‘/—1 ‘f_w XpBydx, =0,  (58a) =5 - (5.8¢)
<Xp)_“‘_f X;deXp .. (2n—1)(0,2, ", With these results in mind we can insert (5.2) into
(2.22). Using the Gaussian limit in the projected nuclear
(5.8b) pairing model we obtain
J
I;=3(26,—G)(Q,v7+{x,)) Gz Yo% (Q,Q,ulv2+0,02x, ) —Q2x,) —(X,Xx,)) (5.9
P Uplq

where the integrals of the type (5.7) have already been performed.
Using (5.8) in (5.9) we get trivially
Ipcs=3 (26,—A—Gv})Q,v;—G3 Q,Q,u,u,v,v, , (5.10)
P g

which is the standard BCS expression for the ground-state energy of a seniority zero system. Transforming the binomi-
al distribution into Gaussian form we thus get back the BCS ground-state energy and recover the broken-symmetry re-
sult. Here we need to introduce the Lagrange multiplier A in order to conserve at least the average number of particles,
which is assured by the number equation (5.5). This conclusion is different from that of Ref. 19, where an additional
correction term in the two level case was obtained, but it is also not new. In fact the Gaussian limit for a binomial dis-
tribution means that we have the limit of number of particles N — o, i.e., ; — o. In this limit Bayman* recovered the
BCS approximation long ago by transforming the overlap integrals (2.8) and (2.9) in a Darwin-Fowler type of integral.

B. Gaussian limit for the FBCS equation

The simple prescription described in the previous section can also be applied to the FBCS equation (2.20). Inserting
(5.2) in (2.20) and using T, {x; > =0 and I, =1 we derive

S (26, —A=G)( Qv {x; ) +{x,x:)) GZ 0,0, 210, Q,ulv2{x) +Q,uXx X ) — Qo x,x:) — XXX
p
(5.11)
With the help of (5.8) this yields immediately
(26, =A—Guw; — G(u}—v}) 3 Q,u,v,=0 . (5.12)
P

This is the BCS equation if G —>2va2. This small difference is due to the fact that the Gaussian approximation to the

integral of the second term in (2.15) is not zero, providing a small difference between the preceding result and the BCS
equation.

C. Broken-symmetry RPA

We shall now apply the Gaussian limit to the RPA equation. Using

1
No;jo/?(Xj):O, (5.13)
j
N, =—= )=, , (5.14)
5 \/G,U, XX j
and
‘NO:ijz L {<Xin>_8ij[(ui2_Ui2)<X1>+Q uzvz]}: , (5.15)
Voo,

we obtain for (3.5) C;,;=3,;;. Therefore the matrix Xy in (3.10) is the unit matrix with the eigenvalues Ay =1. Conse-
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quently (3.11) has the form
|,U—N)=2 SJ”I(])N> .
J

(5.16)

These approximations mean that ﬁ =1, and we are again left with the broken-symmetry case. Equation (3.29) now be-

comes a standard RPA equation thh BN and A,y ,
mation and inserting (5.2) into (4.26) we get

B=—— 3 (26, == 6),0}(xix;) ~ G)_‘,
\/0101 pvq

Let us first consider the case i#,. Here the outcome is
obvious, since {¥; X; ) is zero according to Eq. (5.8c) and
the only term to be calculated is {x,X, X:X;). After
some trivial manipulations one obtains finally
Bij = —

g\/ﬂiﬂj(uiz—v,-z)(u —2)+ 2 1/99

(5.18)

which is identical to the result obtained long ago in Ref.
7, except for the term (G/2)\/.Q,—Qj, responsible for the
spurious pairing vibration modes. For the case i =j, the
BCS-like term appears twice, canceling each other. The
term different from zero comes partially from the term
(x?}), partially from {x?)( X,z) yielding the same expres-
sion as above now with i =

The last expression to be approximated is A% ;j out of
Eq. (4.37). We have already partially studied this case
and need only to analyze A,f (4.36). In this case the
nonzero terms are

UL
ivj P
If we take the FBCS equation
(uiz'-U;) A~ ~
(IoTg—IgIo);—Qv})=0 (5.20)

u;v;

in the Gaussian limit and add the expression (5.19), we
finally get

AI]=26,~jH§l -

(5.21)

Here H', is given by (A 10) if we replace again G by 2va2.
This is again a well-known result: if the Gaussian ap-
proximation is applied to the number-projected RPA ma-
trix elements one obtains the usual pairing vibration ma-
trix elements.

VI. CONCLUSIONS

In the present work, using the Thouless’ theorem, we
obtain the FBCS equation with the overlaps and the ener-
gy matrix elements to be integrated. Then, transforming
them into polynomials in the gauge angles, we could per-
form the occurring integrals analytically. The resulting
FBCS equation (2.20) is equally simple as the usual BCS
equation in spite of the fact the gap parameter (A) from

Qpﬂqugv,f(Xin)_(XquXin>

G. ==, n G =
?\/Q,Q](u, —v,‘z)(ujz—'vj )—'_2—\/9101 .

given by (4.26) and (4.37), respectively. Using the Gaussian approxi-

)_IBCS<Xin) (5.17)

[

the BCS theory does not appear here in an equally trans-
parent way. The analytical FBCS equation was later
rederived using the standard variational procedure over
the analytically integrated energy functional.

Considering small-amplitude vibrations around the
minimum from the above-mentioned analytically in-
tegrated energy functional we have derived, as a particu-
lar case of the recently! developed VAMP-RPA, using
the well-known technique developed by Jancovici and
Schiff'* and later generalized by Holzwarth,'* a number-
projected RPA equation (3.29). This RPA equation is
known in theoretical chemistry!” and resembles the stan-
dard RPA eigenvalue equation. Here the matrices AN
BY, as well as the matrix C”, which appears additionally
in the present scheme, are obtained from number-
projected wave functions.

It should be noted that the VAMP-RPA, though using
a similar formalism, is conceptually somewhat different
from the broken pair model recently reviewed by Allaart
et al.*' While in the latter the shell model configuration
space is truncated according to a generalized seniority
scheme, in the VAMP approach and its recent extensions
(see, e.g., Ref. 22, and references therein) the selection of
the relevant configurations is entirely left to the dynamics
of the considered system and achieved by various chains
of variational calculations. Nevertheless, it would be in-
teresting to see whether the broken pair model could be
extended to general symmetry-breaking mean fields of the
VAMP type and to compare the resulting truncation to
the small-amplitude approximation made here and in
Ref. 1. For this purpose, however, the techniques dis-
cussed in Ref. 21 are not yet sufficient.

Transforming the overlaps as well as the energy matrix
elements occurring in the above-mentioned number-
projected RPA equation into polynomlals, we could ob-
tain the matrix elements Au’ Bu’ and C,], Egs. (4.37),
(4.26), and (4.10), respectively, in a closed form after per-
forming the integrals analytically. The final expressions
for the earlier matrices are so simple and practical as the
FBCS equation. One of the interesting aspects of the
present procedure is that the analytical FBCS equation
(2.20) could be used to simplify part of the diagonal ele-
ments of the matrices 4~ and BY.

In order to test the validity of the present approach we
considered the limit of a large number of particles. As
expected, in this limit we obtain the well-known pairing
vibration matrix elements as well as the BCS expression
for the ground state and the BCS gap equation. There-
fore we could establish once again, this time in a more
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practical way, the general method to obtain a RPA on
the basis of general symmetry-projected quasiparticle
mean fields. Thus it may be worthwhile to pursue less re-
stricted versions of this approach than the one studied in
the present paper in spite of all the limitations of the
RPA itself, which were discussed in detail in Ref. 1.
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APPENDIX A

Using the quasiparticle transformation (2.2) one can
represent the usual pairing Hamiltonian

—% S chel e ¢ (A1)

7y — t
H—E €pCom Cpm pm®pm - qh - qn
pm pgmn

in terms of the quasiparticle creation a[fm and annihila-
tion operators a,,, in many different ways. We write this

Hamiltonian in the quasiparticle representation as

A=H,+H,+A,+Hy,+H,+H,+H , (A2)

with

Hy=3(26,—Gv))Q,0}—G3Q,Qu,u,vv, , (A3)
p pq

H,=3 H\N,, (A4)
p

Ay=3 Hiy (A, +A,) , (A5)
p

Ap=3HBALA, , (A6)
pPq

Hy=3 HB(AJAL+A,A,) , (A7)
P9

Ay =3 HY (AN, +N,A,) , (A8)
Pq

H5%=3 HY(WN,N,~5,,N,), (A9)
pPq

where
HR =(e,—Gug)u, —v))+ [Gz Quugv, |2u,0, ,
q9
(A10)

H§o=(6p—va2)\/-(Tp2upvp

-va, [Gz Q,u,v, l(u;—ugu (A11)
q9

H¥=—GV'Q,Q, (ulul+v}v]), (A12)

HY=1GV'Q,Q, (upv]+vjul), (A13)

HY=GV'Q,(u}—v}w,u, , (A14)

H%=—Gu,v,u,v, , (A15)
+ .
and the operators ./\/p, le, and A, are given by

Np=za;mapm , (A16)

1 tot
Al=—= 3 ala’_, (A17)

i \/Qp m>0 é pm
A, =AD", (A18)

p p

respectively. These operators obey the commutation re-
lations

./

Q,

(A, A, 1=5,, , (A19)

LR
[N, AL 1=28,.A, . (A20)

APPENDIX B

With the help of a generalized Wick’s theorem and the
commutation relations given in Appendix A we can
derive the energy matrix elements occurring in the main
text.

For the rotated two quasiparticle energy matrix we ob-
tain

(Fy|HoSA|Fy)=Hok;(0)n(6) , (B1)

(FylB,SATIFy)=n(6) %Hgﬁkazfgokp

’

j p
(B2)
(FylB,SATIFy)=n(6) %EH%kpS(pj)
jp
+k, 3 HESk k,5(pg)
pq
(B3)

where n(0), kj(O), and Xj(9) are gi:'en by Egs. (2.13),
(2.14), and (4.5), respectively, and 6(pg) is defined in
(2.17). The other energy matrix terms of the Hamiltonian
(A2) are obviously zero.

Defining
H%5=3 Hik,8(pq) , (B4)
q
ho=n(0) [H0+2(H§0+Hgo)k,, , (BS)
p
hi, =n(0)Hby+2H4y) , (B6)
we get
A~
(Fy|ASAT|Fy)= ‘kjho+Fh{,2 (B7)
J

Now we can calculate the four quasiparticle energy
matrix elements. We obtain
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(Fy|HoSAATIFy ) =n(0)Hokk,5(ij)

(Fy | B, SA AT Fy Y =n(0)8(i) | |2 b, +

FN|H2OS [CadAEwY =n(6)5(ij) x2 0 _
1 J

A - H) 2k,

(Fy|HyoSAALFy) =n(6)8(i)) o

X2X X2

k,
Xz

+kik; 3 Hbk,
p

Zk -
5 +——H] +-‘)‘(—H ot kik; EHﬁokp

(B8)

(B9)

(B10)

1]

Obviously all the other terms are again zero. Adding all the preceding terms we get the expression (4.15) of the main

text. The last term to be calculated is

(Fy|lAH,SA|Fy)=n(0)n;(0)H, , (B11)
(FN|.>4,Af\I“§.>4;lFN)=2n(9)nij(9) . (B12)
k,- _ _ -
(FylAHySA; "|Fy)=n(8) X2 —8(ij)H%y+n,;;(0)F H5:k,8(pi) | , (B13)
J I4
Aoa s o2k ko . k~.
J ! p
R k, _ ) o
(Fy|A A3 SALFy)=2n(0) [FS(ij)Hg’l +n,(0)3 HEk,8(pi) | (B15)
j 14
(FylA;ApSATIFy ) =n(6) l—/-\;z-j-z-—i—k S HEk, (B16)
J
(FylA A 5SATFyY=n(0)n;(0)H (B17)
where n,;;(6) is defined by Eq. (4.4).
Assembling all the preceding terms we finally obtain
PR k, )
(Fy|A,BSA|Fy)Y=n(8) |n,(0) ho— o hbx +2h,
ks ki nO) i 4k b BIS
+}‘2“5(lj) b, +2n(6)HY, —2n(6) B—“H‘{O 2 $Hht+kihy ) ( )
J ! J
hi, =n(6) [H1,+ﬁ;2+2Hg';kpS(pi)] , (B19)
p
(B20)

5 =n(6) [H§0+2H‘2’§kp } )
P
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