J. Phys. G: Nucl. Part. Phys. 18 (1992) 1455-1466. Printed in the UK

Pushing the Nambu-Jona-Lasinio soliton and the zero-point
energy

P V Pobylitsat}, E Ruiz Arriolat§, Th Meissnerf, F Grimmert,

K Goeket and W Broniowski||

t Institut fir Theoretische Physik 11, Ruhr-Universitit Bochum, D-4630 Bochum 1,
Federal Republic of Germany

1 Nuclear Physics Institute, Gatchina, St. Petersburg, 188350, Russia

§ Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada, Spain
|| Institute of Nuclear Physics, Radzikowskiego 152, 31-342 Cracow, Poland

Received 25 March 1992, in final form 26 May 1992

Abstract. We consider the collective quantization of translational degrees of freedom
of the hedgehog soliton in the Nambu-Jona-Lasinio Model. We show explicitly that
for an O(4)-invariant regularization scheme in Euclidean space-time the translational
mass obtained in the perturbative pushing model coincides with the static mass. Zero-
point energies for translation and rotation are evaluated numerically. The nucleon mass
appears to be around 900 MeV.

1. Introduction

Spontaneously broken chiral symmetry scems to be the dominant mechanism for
describing hadronic phenomena at low or intermediate energies. One hopes that
QCD can be simulated by an effective quark, quark-meson or even purely mesonic
theory which incorporates this feature. Among all these effective chiral models, the
theory of Nambu and Jona-Lasinio (NJL) [1] has received recently. It realizes the
spontaneous breakdown of chiral symmetry in the formally simplest and most natural
way and it has been applied quite successfully to various phenomena resulting from
chiral symmetry breaking in the vacuum and the mesonic sector [2].

In addition it turned out that baryons can also be described within the model [3-
6]. They appear in a natural way as a solitonic bound state of N = 3 valence quarks
in a chiral (time-independent) SU(n)-flavour meson field U (z). In the mean-field
approximation U{z) arises as the stationary point of the effective fermionic action
S.g(U{=x)), which is the fermion determinant obtained after formally integrating out
the quark degrees of freedom. In contrast to non-relativistic many-body systems, it
is essential that S 4(U(=)) is ultraviolet divergent and has therefore to be provided
with a finite UV cutoff within a proper regularization scheme.

It is clear that these solitonic mean-field solutions break the rotational, isotopic
and translational symmetries of the original NIL action explicitly. In order to restore
them, a semi-classical collective quantization has to be performed [7]. If one assumes
a hedgehog shape for the chiral field U(a), which can be shown to be a self-consistent
symmetry of the system [8], isotopic and rotational motion are coupled trivially, so it
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is enough to quantize one of them. This is done in the well known cranking approach
[7-11], which for the NJL model has been described in detail in [12, 13]. In fact this

quantization of the rotational degrees of freedom is necessary to identify the quantum
A numhers of the nucleon and to evaluate oheervahles and form factnre
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Of course the quantization of the translational degrees of freedom also has to be
performed. Pushing methods corresponding to the cranking approach of the (iso-)
rotational degrees of freedom, as well as the Peierls—Yoccoz momentum projection,
have been developed in non-relativistic nuclear many-body physics [7} and have also
been used in the context of two-dimensional kink soliton solutions [14]. In the last few
years it has turned out that with some modification these methods can also be applied
in the framework of relativistic effective soliton models, especially in various versions
of the bag model, the soliton bag model of Friedberg and Lee, the Skyrme model, the
chiral sigma model of Gell-Mann and Levi and the colour dielectric model [15-24].
A series of investigations concerning the translational degrees of freedom in these
models have been carried out using projection, boosting and also pushing techniques
and it has turned out that the centre-of-mass corrections to nucleon observables (e.g.
masses and radii} are significant [18-20, 23, 24].

None of these relativistic effective models, in which the translational degrees
of freedom have been studied, have up to now taken the polarized Dirac sea into
account. Actually, this is done in the NJL model, which incorporates the polarization
of the Dirac sea from the beginning in the form of the uv-divergent regularized
fermion determinant. Tt is the objective of the present paper to review the status of
the semi-classical quantization of the translational degrees of freedom and to evaluate
the corresponding inertial parameter for the NJL model using the regularized form
of the theory explicitly from the beginning. Furthermore, we will consider zero-point
energies associated with rotation and translation in order to evaluate an improved
nucleon mass.

The paper is constructed as follows: section 2 reviews the conceptual background
of rotational and translational cranking; section 3 evaluates the translational mass,
section 4 studies zero-point energies of translational and rotational collective motion;
and section 5 summarizes the paper and provides some conclusions.

2, Concepis of rotational and iransiational cranking
For the quantization of rotational and iso-rotational degrees of freedom, one performs
an adiabatic SU(2) rotation of the chiral field U{a) with the angular frequency w:

. 1
Uz) = U (z,t) =e igwtr T(z)e iz T (2.1)
and expands the effective action S g(U(«,1)) in powers of w®:
Set(Uree(2, 1)) = Sq(U(2)) + Tw(T%) + §T* 040" 4 O(w?) (2.2)

where 7 denotes an (Euclidean) time interval. The expectation value of the isospin
vanishes for hedgehog mnﬁuurannm !T“‘; = 0. The correqnnndmo inertial parameter

of Thouless and Valatm is cailed the moment of inertia

5 S(Ue)

1
ab __ gcabd —_
0% =34 e'-'1" Swe bt

(2.3)
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It can be calculated from the single-particle spectrum of the self-consistent U field
by the well known Inglis formula [7), which of course appears modified due to the
regularization of S, [12, 13]. Moreover, care has to be taken in performing the
Wick rotation of the angular velocity w from Minkowski to Euclidean space in order
to guarantee a vanishing moment of inertia for the vacuum configuration U = 1.
Alfter collective quantization of the (iso-)rotational degrees of freedom, one obtains
finally for the energy of a system with isospin T':

T(T + 1)

= 2.
Ep=M+—g 24)
where M denotes the self-consistent mean-field energy:
1
= —mi . 2.
M T Sea(U(2)) (2-3)

In the present paper we want to consider the translational degrees of freedom by
pushing the space coordinates of the soliton with the velocity v:

U(z) = U (2,t) = U(x —vt) (2.6)
and expanding S.(U,,) in powers of v:
Sea(Usz, 1))] = Sq(U(=z)) + Tv(P) + %T'U,'M*,'j v; + O(Ua)- (2.7)

As in non-relativistic quantum mechanics the expectation value of the linear momen-
tum (P} vanishes for static mean-field configurations, which is just a consequence of
Ehrenfest’s theorem:

(NP = (NP, 2] = 5 (AL, 2Ji)A = 0 @8)

where h denotes the stationary single-particle Hamiltonian for a quark with con-
stituent mass m.:

h=ap+ AmU(=) 2.9)
with the spectrum
h1X) = €, |A). (210)

In second-order v, one obtains the Thouless—Valatin parameter of the translational
motion, which is called the translational mass:

1828(U,,)
T évidvi
It is instructive to have a glance at the non-relativistic analogue first. For an N-

particle system interacting by a purely local time- and velocity-independent one-body
force, we have the static and the pushed Hamiltonians:

My =6;M = (2.11)

= Py k) i P’ *)
H=) ——+ V(") H, ()= ——— 4 V(z\* - vt)
i1 2ma o1 2M
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respectively. The corresponding solutions of the time-dependent Schrodinger equa-
tions

18,10 (1)) = HI¥(2)) 18,1 () = H|V ()
are simply connected by the unitary generators of the Galilean transformation [25):
!\I’,u(t)) — ei%Mv’te—inteiMRul‘p(t)) (2.12)

with

N N 1 N
P=3 ps M=} my R=123 meq,
k=1 k=1 k=1
and the total energies
E=U(H)Y()E, = (V,(OH, NV, (1)
in the static and the pushed system are exactly related by
E,=E+iMv. (2.13)

For relativistic theorics, Lorentz invariance guarantees generally that under a
Lorentz boost transformation in the ¢ direction:

U(x) = Upgout(®, 1) = U(coshw g + o, —sinhw ) (2.14)
with

z) = (zod)d ®, =% - w = arctanhwv. (2.15)
The energy of the system transforms like the zeroth component of a four-vector:

E(Upoost(®,1)) = E, . (U(x)) coshw = M coshw. (2.16)

In the limit of small velocities v the boost (2.14) and the pushing (2.6) transformations
are equivalent. Therefore, one expects that the expansion of (2.16) up to second order
in v gives:

E(U,(=,t)) = M + 1 Mv* + 0(v*) (2.17)

or, in other words, that translational mass AM* and the static mean-field energy M
coincide. It should be emphasized that the transformation (2.16), and therefore also
(2.17), only hold if M = E,  (U(x)) is the energy of the self-consistent meson
profile

in contrast to the non-relativistic analogue, where the one-body potential can be
chosen completely arbitrarily as long as it is not velocity dependent. This reflects the
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well known fact that for a relativistic ficld theory the energy E = fd3z T°0 and the
momentum P’ = fd%z T% form a Lorentz four-vector due to the vanishing four-
divergence of the energy momentum tensor T#¥, which only holds if the classical
Fuler-Lagrange equations are satisfied.

An explicit proof of the transformation property (2.16) has been given in the
Friedberg-Lee soliton model [15]. The second-order result (2.17) was also established
for sine-Gordon kink solitons [14] as well as the Skyrme model [17] In doing so, the
Lorentz group generators, instead of those of the Galilean group, (2.12) have to be

used. One ends up with the desired exnression for the Lorentz boosted or pushed
3 N Rl T AE W W RANELY r FRALLE LEEW WEWAFil Wwed \fﬂtllvuﬂlull Ay tilw L AJSI WilLi, VUULJILWAE Puﬂllw

energy, coshw M or { Mv? respectively, plus additional terms which either vanish
exactly for static configurations like the expectation value of the linear momentum
{2.8) or can bc annihilated by using a relativistic virial theorem [26], if the meson
fields are self-consistent. In our model, we are faced now with the additional difficulty
that one has to start from a properly regularized effective fermionic determinant.
Moreover, most of these regu]arlmnnn schemes l?'ﬂ are wnrkmo in Euclidean space—
time, which makes the algebra more involved.

In the next section we will give proof of the equality M* = M using the pushing
ansatz for the NIL soliton. We will find that Af* = M also holds in this case, as
long as the regularization scheme respects Lorentz invariance in Minkowski or O(4)-
invariance in Euclidean space-time, respectively. In the next step we will consider
the spurious zero-point energies of the translational and (iso-)rotational motions. To
get an estimate of their magnitude we will use the corresponding formula¢e from non-
relativistic many-particle physics as well as from projection theories. It turns out that
those energies are quite high (= 100 MeV for the (iso-)rotational and ~ 300 MeV
for the translational degrees of freedom), which, with a mean-field energy of ~ 1300
MeV [4, 6], give a nucleon mass quite close to its experimental value.

3, Pushing the Nambu—-Jona-Lasinjo soliton; translational mass

The Nambu-Jona-Lasinio Lagrangian [1] in the SU(2)-flavour sector, with scalar
and pseudo-scalar couplings, reads

. G, _.
iL=igv"8,q + % [(a0)” + (@ivs7)’] (3.1
where ¢ represents a Dirac quark field with N_ colours and two flavours. This

Lagrangian can be transformed, after Wick rotation, bosonization and integration of
the quarks, into the following effective action [28]

S.p = -N_.Splog D + [cr + ¢ 3.2)
where only meson fields ¢ and « appear. Here the Dirac operator

D =iv8, + mU(a) (3:3)
with

U(z)= (o +im-7) m=gf_
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has been introduced.

S.q 18 UV divergent and therefore has to be provided with an UV cutoff, A,
within a given regularization scheme. We concentrate on the scalar and pseudo-
scalar sector of ST7(2) where only the real part of the guark effective action ic
essential, so, instead of Trlog D we proceed with (det DTD)'/ 2. We demand that
the regularization scheme preserves the Lorentz invariance or the O(4)-invariance,
respectively, of the effective action (3.2). This means, in fact, that for any unitary
operator ¢ (w) of the Lorentz or O(4)-group in an appropriate representation, the

wilian

Splogl,.( DI D) = Splog |, [~ (w)( D! D)u(w)] (3.4)

reg
which formally holds for unregularized traces (Sp log = log det), is also maintained
in the regularized case. For convenience, we will carry cut our explicit calculations

in tha Panli_Villare remilarizatinn
AR HiEW & BRI ¥ ENA R lvsululmﬂtlull

S = —NC/2Zc,- Splog(DtD+A?) (3.5)
i

where ¢, = 1 and A, = 0 [27, 29, 30]. For the sake of simplicity, we will, in
the following, implicitly assume the summation over the Pauli-Villars regulators. To
construct a system with baryon number B = 1, one has to add explicitly N_ = 3
valence particles [31]

: 1
EB—]- = ?Seﬂ' + Nval €val (3'6)

with

1 ife, =20
Mval =

3.7
0 ife, < 0. 37

The stationary points of EB=1 yith respect to o and « determine the self-consistent
mean-field configurations:

6, EP=! = §_EP=1 = 0. (3.8)

It turns out to be essential to put the non-lincar constraint of the chiral circle,
o? + w2 = f2 to the meson fields, i.e. parametrizing the hedgehog o and « by

o(z) =cosd(r) w{x) = sin 8(r)e (3.9)
and varying E®=! with respect to the chiral angle 8(r), otherwise no solitonic solu-
tion exists [32].

Because of (3.4), the Dirac operator for the pushed-soliton ansatz (2.6) is unitary,
equivalent to the static Dirac operator with an additional term

d
D—-D- ‘1‘74de—$’:. (310)



Pushing the Nambu-Jona-Lasinio soliton 1461

We first concentrate on the sea part, i.e. the regularized fermion determinant. Putting
this into (3.5), we get

NI fdw : d . d ,
Seqg = —N. fz_n_ Sp]og{(h+lw+vkdmk) (h—xw v"_d:ck)+A)}
(3.11)

with the one-particle Hamiltonian k. The v, is assumed to be real in Euclidean

ecnace  in accordance with the ratational analnena af 171 Eynanding tha affective
A’Puw, ARE CAVWUEWRLIVAY  FYALIL BLLW IWAERLINRRALL “II“IUE“U v llﬂ‘l' MP“II“IDIE ML WREWWLET W

action (3.11) in powers of the soliton velocity up to second order, we get

Sa=M,_,T+ g]dt M 02+ ... (3.12)

with the sca parts of the static mass
=N, /—wQSp K'Y (w) (3.13)

and the translational mass

E@H*JVj-—SP{KFUMJLJ%+%KXWMBAwHG%wMMwW

dz dx
(3.14)
respectively, where we have used the notation
Ky(w) = h? 4 w2 + A7 (3.15)
Bi(w) = —21w—-—‘-1—— + [dik h} . (3.16)
The next step is to represent the operator B (w) in the form
By(w) = [84(w), K (w)] (3.17)
where
Ap(w) = —iwzy — 37475 (3.18)
The commutator representation (3.17) allows us to write down
3 (W) B(w) KN (w) = —[Ag(w), K (W) (3.19)
With this relation, our expression for the translational mass M* can be re-written as

<
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The commutator that has appeared here is

— 2 :
[Ar(w), Bi(w)] = 2w%8yy + g7, 80 +im - 775). (3.21)
'l'\un o tha rc"auaﬂal S;’m:’:‘.eu; of the huusvhus au}n.\.ul, Ul.u_y ithe h = ¢ dri Of

this commutator gives a contribution to (3.20). Comparing (3.13) and (3.20), we get

" dw . d? 1 .
("= M= N3 [ 5280 {0 [ 57 + gamdnto+ime )]},
(3.22)
The right-hand side of (3.22) is nothing but the sea part of the expectation value

1 d? 1 .
§<]d3w [m + §g~yk6k(a+ im- 1'75)] >

in the static self-consistent mean-field configuration. It is easy to convince oneself that
(3.22) holds as well, if one considers the total values (sea and valence contributions)
on both sides, i.e.

A _ 1 s [d2 1 :
(M -M)—7'3</d x [dmi + zg‘ykak(a+m-r‘ys)] >t t, (3.23)

In order to prove that the right-hand side of (3.23) vanishes, we make use of a
relativistic virial theorem [26]. 1t is based on the fact that the meson fields are
the stationary points of the action (3.8). In the Pauli-Villars regularization, this is
expressed by the equation

-[d—wTr{K L{w)sh?} = 0. (3.24)
In particular, we can take here the dilatation variation of the soliton fields
b0 = 2, 00/0z;, o6 ==z, 0r/0x,. (3.25)

One should notice that this variation respects the non-linear constraint of the chiral
circle because

§(0? + 7°) = 2(0ba + wéw) = 2,8, (0% +7%) = 0. (3.26)
The corresponding variation of the squared Dirac Hamiltonian is

§h? = 24[8, h%] ~ 97,040 + i+ 7). (3:27)
Using the formula

(8, h?} = [, 8y, h7] — 28 (3:28)
together with the fact that

(Mz 8, RPN =0 (3.29)

it follows that the stationary condition (3.24) with respect to the dilatation variation
(3.25) annihilates the right-hand side of (3.23) and we get

M=M". (3.30)
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4, Zero-point energies of the translational and rotational motion

For both the translational as well as the (iso-)rotational motion, one expects spurious
zero-point energies, which have to be subtracted from the total energy when a semi-
classical quantization is performed. This is due to the fact that, even at mean-field
level, there are already finite expectation values for the two-particle operators P2
and T2, Up to now it has not been clear how to treat these spurious zero-point
energies in such a model consistently, but we expect that their order of magnitude can
be estimated well by using the corresponding expressions obtained in non-relativistic
many-particle physics [7] and which also appear in chiral soliton models in the context
of projection techniques for linear and angular momenta [24-33]. Actually, this means
that, after semi-classical quantization of the rotational degrees of freedom [9] and with
M* = M, the mass of a system with isospin T at rest (P* = 0), My p_,, reads

T(T+1) (T% (P
20 20 2M°

MJ,P:D = M + (4'1)
Using the proper time-regularization scheme [31], the hedgehog mass M and the
rotational moment of inertia © can be taken from [6, 13] as a function of the
constituent mass m. Actually, the operator 72 = N_3(1 + 1) B is proportional to
the baryon number operator and we therefore handle it in the same way, i.e. we
do not regularize it because it is finite [6]. For an NIL soliton in the hedgehog
approximation, the sea part vanishes identically and we have [10, 11]

(T?) = (T%, = N3 = 2. @2
Hence we obtain for the rest masses of the nucleon (J = T = 1) and the A
(J = T = 2), respectively:

My=M+ —« - — — —F (4.3a)

My=M+4 = ———0e = L (4.3b)
The (P?) is evaluated in the present paper for the first time:
(P?) = (val| P?|val) + Z (R(ex, AYAIP?|A) = R(€xy000 A)(Avakl PP Avak))
A
(4.4)

where |A) and ¢, denote the eigenvector and the eigenvalue of the single-particle
Hamiltonian A, respectively (for details see [6, 8]}, and the regularization function
R(ey,A) is given by

R(ey,A) = (—)—\/f;_;jfdr remrieaa? (%) 45)
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It should be noted that the valence part has to be suppressed if €, < 0 [31]. The

expectation values (A|P?A) can easily be evaluated by expanding |)) into the free
spherical wave basis of [36]:

Pilk,,G, M) =k, |k,,G, M). (4.6)

Furthermore, it turns out that for the unpolarized plane-wave vacuum, equation
(4.4) vanishes. If ¢, > 0, (P?) is clearly dominated by the valence quark. For
example, at a constituent mass of m = 400 MeV, we find {P?) = 8652 (MeV)? =
8672 (MeV)? + (—)66% (MeV)? for valence and seaquarks, respectively. Figure 1
shows the zero-point energies (P?)/2M and (7?)/20 = 9/80. The masses of the
hedgehog M, the nucleon mass My and the A mass M, are presented in figure 2.
One notices that the zero-point energy of the translational motion is of the order of
magnitude one encounters in, for example, the projected mean-ficld approaches to
the Gell-Mann-Levi chiral o-model and similar approaches mentioned above [18-24],
and which also appear in non-relativistic quark models ([37] and references therein).
Furthermore, it can be seen that for small constituent masses near the critical value,
m =~ 350 MeV, the nucleon rest mass My is around 900 MeV — close to its
experimental value. Apparently, the nucleon is clearly bound, ie. My < N.m. Itis
very gratifying that the above corrections due to spurious rotational and translational
motion of the soliton bring the nucleon energy down to its experimental value and at
the same time guarantee its stability against decay into three free quarks. However,
it is a bit disturbing that the zcro-point energies amount altogether to something
like 30% of the total rest mass, which is by no means a small correction. One has
to consider how to go beyond the present perturbation expansions in the collective
velocities.

Zero Pont Energes Mean—-Field, Nucleon and Delta Energy
&00 140
1200
500
> > 1000
L 4ol %J
2 = 800
300
5 & oo
] L o}
E 200 ﬁ 400 b
100 | 200 |
Q * . - . L - [¢] L 4 L L L L
300 350 400 450 SO0 550 [cles] £330 . 300 350 400 450 500 550 500 650
constituent mass m [MeV] constituent mass m [Mev]
Figure 1. The spurious zero-point energies (corre-  Figure 2. The mass of the hedgehog (mean-field
lation energies) for the translational and the (iso-)  energy) M as well as the total mass of the nucleon
rotational motion (P2)/2M and (T?)/20 = My and the A M, as a function of the constituent
9/(80), respectively, as a function of the con-  mass m.

stituent mass .

5. Conclusion

We can summarize our points as follows:
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(i) We have shown explicitly that the static and the translational masses of the reg-
ularized NJL soliton are identical for Lorentz or O(4)-invariant regularization schemes,
respectively.

(ii) Zero-point energies for the rotational and translational motion are around
100 MeV and 300 MeV, respectively, yielding a nucleon rest mass of about 900 MeV.
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