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Abstract .  A bosonized version of the SU(2) Nambu-Jon-Larinio model is solved 
self-consistently for hedgehog fields on the c h i d  circle in the solitonic sector with 
baryon number B = 2. Cye consider explicitly the care in which the haryon number 
is raised by occupying E-bound valence quark states for different winding numbers 
w of the rhiral angle. It is found that only the cases B 2 Y allow the existence of 
self-consistent solutions. Fractional windings are a l s o  excluded in practice by the sell- 
consistency condition. For the description of nucleon properties the constituent mass 
h w  to be chosen around 400 MeV. There no solitom with higher winding numbers 
are found in contrast to the results of the Skyrme model. On the other hand, in 
this region the binding energy of the deuteron and the a-particle can be roughly 
reproduced with winding number one. 

1. I n t r o d u c t i o n  

In modelling low-energy QCD, chiral effective Lagrangians have been proved, during 
the past few years, to  describe many aspects of hadronic physics successfully. This is 

metry which is, presumably, the relevant mechanism of QCD at low energies. Among 
these theories the simplest one exclusively containing quark degrees of freedom is rep- 
resented by the Nambu-Jona-Lasinio (NJL) model [l]. I n  fact, there have been some 
attempts claiming that a model of this kind can be motivated directly from QCD in 
some long wavelength approximation [Z]. The model is non-renormalizable and thus 
a UV cut-off procedure has to  be introduced [3, 41. 

The partially hosonized version of this model supports self-consistent solitonic 
solutions [5], and hence has recently demanded much attention. In contrast to other 
soliton models the NJL model does not make a priori any assumption about the 
validity of the valence quark picture, i.e. whether the haryon charge has a topological 
or a non-topological origin. Actually, numerical calculations within the NJL model [6] 
show that,, a far as t,he nnc!eon is concernedj the valence quarks dominate the sea 
quarks leading t o  a well defined valence quark picture. This feature is known to be 
fairly independent of the particular regularization scheme applied [7]. However these 
investigations have been limited up to  now to the baryon number B = 1 sector. The 
purpose of the present article is to investigate numerically and systematically the N J L  
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model for higher winding and occupation numbers and to look for their relationship 
in a self-consistent manner. 

The question of higher baryon numbers has already been addressed by different 
authors i8j. Historicaiiy it w a s  Skyrme who was the tirst to try to describe these states 
by increasing the winding number within a restricted variational ansatz [9], assuming 
that the baryon and winding numbers coincide. This connection was somehow clarified 
by the work of Goldstone and Wilczek [lo], however it was in the adiabatic approxima- 
tion. Various authors have recently questioned the validity of this approximation [ll, 
121. Within the Skyrme model higher winding numbers have been considered both 
in the hedgehog case [13] and in a non-symmetric ansatz [14]. The result of these 
investigations are that, while there is no stable particlelike state with w = 2 which is 
based on hedgehog symmetry, the non-symmetric ansatz shows a binding state with 
an approximately toroidal shape. In [15] the Gell-Mann-Levy sigma model has also 
been treated for different Occupation numbers in the hedgehog case. As in the Skyrme 
model no stable state has been found. 

As we have already mentioned the NJL model becomes well defined only after 
the introduction of a regularization function. In general it is known that,  although 
the vacuum properties depend strongly on the particular regularization scheme, the 
soliton properties do not. In the present work the Schwinger proper time regularization 
method [16] will be used. 

2. Description of the mode l  

The S U ( 2 )  NJL model written in terms of (up and down) quark spinor fields Y con- 
taining scalar and psendoscalar couplings reads 

where the summation over N, = 3 colour degrees of freedom is assumed implicitly. 
G stands for the strength of the coupling and m, denotes the average up and down 
current quark mass. Except for the last term in (1)  this Lagrangian is invariant under 
the U(1), 8 SU(2) ,  8 SU(2), group. This leads to a set of Noether currents 

B, = @yo* ( 2 4  

v, = Gy,rJZ* ( 2 b )  

A, = @y,y5r/2Y (ZC)  

which are, up to the last one, exactly conserved. In fact the baryon current ( Z a )  and, 
more specifically, the corresponding charge will be the main subject of our work. For 
a more detailed exposition of both the model and its parameters we refer the reader 
to [3-51. 

Within the path integral approach the NJL action in Euclidean space can be equi- 
valently transformed after bosonizaton and integrating out the quarks [4] into the 
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following effective action 

s:; = -m:f- I d42: a 
'' " J 

where the quark-meson coupling constant g is related to  the constituent mass M by 
A4 = gf,. Following [4] we will consider classical meson fields only, where the meson 
fields are regarded as fulfilling the chiral circle condition 

2 I -2 - *2 " 7,. - I n  

with f, = 93 MeV being the pion decay constant. Moreover, we regularize the UV 
divergencies in the real part in Euclidean space of the fermionic action by means of 
the Schwinger proper-time method. The imaginary part  is known to vanish. This 
leads to 

In the static case the corresponding regulariscd onc-quark loop cncrgy reads 

EQL = EF + Ebr 

where the eigenvalues of the following single-particle Dirac Hamiltonian 

have been introduced, 6;  corresponding to the vacuum case. The regularization func- 
tion can he written in terms of the incomplete gamma function as follows 

rK(?,,r,A) = M2(K-1)r (1 - K ,  ( M / A ) ~ )  . (7) 

1: 021 qpro& v&,!ence quark states 2ppe.r by introducing 1 chemicz! potentis! I I  x c  r -  
was done in [4]. This yields the following valence quark energy 
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corresponding to the following valence baryon number 

This prescription corresponds to the occupation of the lowest positive energy eigen- 
states. In practical calculations the hedgehog ansatz on the chiral circle 

U(.) = U(.) + i r  . n ( z )  = freiT.ie(r) (10) 

will be used. The winding number is then defined as 

As was shown in [2, 4, 121 the corresponding Dirac single-particle Hamiltonian com- 
mutes both with the grand spin K = J + T and the parity operator It. Hence grand 
spin I<, its projection IC3 and the parity T are good quantum numbers. We will denote 
the Dirac eigenstates by Kr, each state having a degeneracy 2 K  + 1. Following the 
method of Ripka and Kahana [12], the eigenvalues and their eigenfunctions are 
computed by diagonalizing the Dirac equation in a sufficiently large box. 

3. Properties of the B = 2 sys t em in a fixed profile 

In this section we investigate the behaviour of the NJL model for higher winding and 
occupation numbers. I t  is instructive to proceed first with given external profiles 
as input, leaving the self-consistent treatment for the subsequent section. We will 
consider for illustration the following linear profile 

wrr(1 - r/R) 0 < r < R 
R < T < . .  

B(r) = 

where R denotes the soliton size and w stands for the winding number. The general 
behaviour does not depend much on the particular profile function [17, 181. 

9.1. Dimc spectrum 

The diagonalization of the Dirac equation for the linear profile allows the determina- 
tion of the corresponding spectrum as a function of the soliton size R. In figure 1 
we depict the scaled energy eigenvalues E: = e A / M  plotted against the scaled soliton 
size R' = RA4 for different winding numbers. We have considered four different cases: 
w = l ,  1 . 8 , 2  and 3. In figure l ( a )  the usual w = 1 case has  been presented. As we see 
only the O+ state becomes negative for sufficiently large soliton size and afterwards 
approaches the lower continuum. Figure l ( b )  shows an example for non-integer wind- 
ing w = 1.8. In this case there exists an additional bound state with opposite parity 
which crosses zero and which eventually might cross hack again for infinitely large 
soliton sizes. We have not found any hint supporting this expectation, probably due 
to the numerical limitations related to those very large solitons. In figure l ( c )  the 
case w = 2 has been considered. In contrast to the former case both Ot and 0- cross 
zero and approach the lower continuum. Finally in figure l (d)  the bound spectrum for 
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w 3 has been plotted. Three levels with grand spin zero and alternating parity cross 
and later on get closer to the lower continuum. In fact the observed trends seem to be 
in agreement with analytical calculations for very large solitons and integer minding 
number in the I< = 0 sector [Z]. These considerations lead to the following formula for 
the spectral flow from the upper to the lower continuum for the sector I<" = O + ;  0- 
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which aiiows the winding number to be identified with the baryon number, however 
only in  the case of infinitely large solitons and integer winding numbers. As we will 
see below this will not always be the case for calculations with constituent masses 
M 400 MeV, which are relevant for the description of the nucleon structure. It is 
noteworthy that the formula (13) also exhibits the alternating parity feature obtained 
in our numerical calculation. 

3.2. Baryon density 

As we have already mentioned in the introduction the adiabatic approximation has 
been widely used in order to justify the identification of baryon number and topological 
charge. In this context the adiabatic approximation consists in using the first non- 
vanishing order of the gradient or beat kernel expansion of the baryon number density. 
A way of checking the validity of this approximation is by comparing the resulting 
baryon density to the exact one computed from the Dirac eigenfunctions. Indeed, the 
sea contribution to the exact baryon density can be computed to give 
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which corresponds to the spectral flow density [SI. The valence contribution to the 
baryon density arises from the bound orbits with positive quark eigenvalues cA and 
can be computed via a chemical potential leading to 

-9  i n e  adiabaiic expansion of the sea coniribution in the ieading non-vanishing order 
can be written in terms of the chiral angle e(?) in a simple way: 

In the case w = 1 this comparison has been done in [12] showing a good agreement 
between the exact and approximate calculations. In figure 2, we present a similar 
comparison for w = 2 for two values of the constituent mass and for the particular 
scaled soliton size R' = 4. Figure 2 ( a )  corresponds to a situation in which for the 
exact calculation both valence levels are above zero and hence are occupied explicitly. 
F ig~re  2(6] OE the contrary reflects the clce where these two !evo!s are we!! be!ow 
zero. In these two cases we confirm the results found by Ripka e t  al, namely that the 
adiabatic approximation seems t o  work well for the baryon density in a wide range of 
constituent masses. We have checked that this conclusion does not depend strongly 
on the particular value of the scaled soliton size. 

soliton radius Ifml 

Figure 2. Exact (broken curve) and adiabatic (full curve) results for the baryon 
density with B = w = 2 for M = 560 MeV and M = 1860 MeV calculated in the 
linear profile with scaled soliton size R' = 4. 
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9.3. Energy profiles 

Using a fixed profile, the total energy may be evaluated in terms of the soliton size R 
and the winding number w for a fixed value of the constituent mass and of the baryon 
number. This is done in the first part of this paragraph for the profile of (12). Next, a 
derivative expansion is applied with the quark-loop energy and compared to the exact 
calculation. 

3.4. Ezaci caicuiaiion 

Once the Dirac eigenstates have been determined one can use (5) and (8) in order to 
evaluate the total energy for the linear profile. It is instructive to do this by varying 
not only the soliton size but also the winding number w for non-integer values. It is 
important to realize that in principle in the present non-topological model there is no 
particular reason to choose integer numbers only. However, as we will see later only 
this choice leads to local minima of the energy. In figure 3 we present the total energy 
(valence plus sea) surface for different values of the constituent mass and the baryon 
number as a function of the soliton size and the winding number. Apparently the 
present model shows finite energies even in the case of non-iuteger winding numbers. 
However, local minima in the energy appear only for integer winding numbers. For 
sufficiently large constituent masses the number of minima coincides with the baryon 
number for which the calculation is performed. For instance, i n  figure 3(a)  the usual 
case B = 1 has been considered. For a sufficiently large constituent mass a unique 
minimum at w = 1 takes place. A transverse cut along the R-direction at w = 1 
corresponds to the results given in [4]. In the B = 2 sector and for M > 560 MeV 
one obtains two minima: one for w = 1 and a second one at w = 2 .  For increasing 
constituent mass the steepness of the second minimum grows. This can be seen in the 
sequence depicted in figures 3 ( b ) ,  3(c) and 3 ( d ) .  Of special interest is the transition 
from figure 3(c) to figure 3(d). There the minimal energy at double winding becomes 
lower than the energy with single winding, for those constituent masses higher than 
M 2 900 MeV the first valence orbital of the Dirac spectrum has already crossed the 
zero line. As we will see later, this behaviour will also be reflected in the self-consistent 
case. 

3.5. Comparison with the derivative ezpansion 

In the case of slowly varying meson fields or big soliton sizes the total energy can be 
represented for integer winding numbers by a power series expansion [18] as follows 

For proper time regularization, this is done in [ZO]. The first two coefficients appearing 
in  equation (17) can be determined uniquely in terms of the cbiral angle 0 and of the 
proper tim.e C&Off -& yip!cl_ing for L" 

m 

aR = 2nM2 dr  [F~O'' + 2 sin' 01 J 0 
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Figure 3. 
different values of the baryon number and the constituent mass. 

(Sea plus valence) energy surface calculated in the linear profile for 

For b, one obtains the following two contributions denoted by b’, b”: 

b,  = b‘ + b“ 

_ - _  b ’ -  M 4 7  [ ( y:) 0‘’ 
R a  8 

d r  r 2 , -  -[8I2r2 + 12sin28] - r  1,- ( ?z2) 
0 

x [: - ( 8 ’ 4 + 8 ” 2 ) + 8 ’ 2 ( 1 + s i n 2 8 ) + ~ ” ( ~ ’ r -  isin(20)) I >  (19) 
m 

” = “ / r ( [ r ( 2 , ~ ) - r ( i , ~ ) ]  R T  q + r ( i , $ )  
0 

x [e’si;(26’) sin2(28) - T I } .  
We have checked that in the case of an integer winding number the exact energy can 
indeed be approximated by these expressions. We will also consider the possibility of 
non-integer winding numbers. A direct calculation shows, however, that  the coefficient 
b” diverges in this case. This resembles the situation of the topologkal Skyrme model. 
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As is well known the requirement of finite soliton energy configurations enforces the 
winding number to be integer in that approximation. 

The fact, that for non-integer winding numbers the coefficient b" diverges, whereas 
the exactly evaluated energy is finite, is not a contradiction. Apparently, the gradient 
expansion is not a convergent expansion for non-integer winding numbers. One can 
see this explicitly in the following way: The coefficients b, of (17) are related to the 
gradients of the mesonic fields by 

.bn - 1 d3z(#U)"+' (20) 

where the expression U ( z )  in the hedgehog ansatz is given by (10). A term of nth 
order contains therefore 

which diverges for n > 1 if r ( r )  does not vanish at r = 0. Therefore a gradient 
expansion on!y makes sense for integer winding nurnb~rs.  

4. Self-consistent solutions 

The minimization of the NJL action for static hedgehog configurations leads to the 
following equation for the chiral angle, if the non-linear model is considered 15, 61 

Following [5 ,  61 this equation can be solved iteratively until self-consistency is reached 
for il given harynn mllnh~r,  -As inpnt we consicier for the first iteration the linear 
profile considered in (12) which besides the soliton size contains the winding number 
as parameters. We have tried different input integer and non-integer winding numbers 
for fixed baryon numbers. No self-consistent solutions with fractional winding have 
been found. This confirms the results obtained in section 3 for fixed soliton profiles. 
Whatever input w is used the self-consistency condition (22) always drives the solution 
to a final integer w .  For integer winding number we have considered the cases ( B  = 
1,w = l ) ,  ( B  = 2 ,w  = l), ( B  = 1,w = 2) and ( B  = 2,w = 2).  Solitonic solutions have 
only been obtained in the first, second and fourth cases. In fact the first case has been 
largely investigated in 15, 61 and we regard it here only for the sake of comparison. 
The third case did not exhibit any self-consistency minimum. This can be understood 
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Table 1. Energy (MeV) and RMS baryon radius (fm) (in brackets) for different 
baryon and winding numbers. (Here occupied state are denoted by [ 1.) 

4 372 1260 (0.77) IO+] 2390 (1.48) [O+,O-] - 
5 465 1242 (0.63) IO+] 2655 (1.17) [Ot,0-] - 
6 558 1190 (0.57) LO+] 2903 (1.73) [0+,lt] 3780 (0.88) [O+,O-] 
7 651 1186 (0.53) [O+] 3135 (1.39) [Oc,lt] 3776 (0.84)[0+.0-] 
8 744 1155 (0.50) [O+] 3360 (1.17) [O+,lt] 3748 (0.82)[0+,0-] 
9 837 1124 (0.47) [0+] 3580 (1.02) [Ot,lt] 3708 (0.81)[0+.0-] 
10 930 1094 (0.45) [O+] 3800 (0.92) [Ot,It] 3658 (0.79)[0+.0-] 

easily in the light of figure 3: for B = 1 only one minimum appears, namely at  w = 1. 
We must note that no solitons have been found in the case w > B.  

In table I ,  we present our results for the self-consistent energies and their corre- 
sponding RMS baryon radii as a function of the constituent quark mass. Our results 
for B = 1 coincide with those of [6]. As in that  work both the energy and the RMS 
radius decrease monotonically with the constituent mass. The case B = 2 ,w = I ,  
on the contrary, shows an increasing soliton energy and a decreasing radius. In fact 
this case corresponds qualitatively to the situation sketched in figure l ( a )  for a fixed 
profile: one valence orbital O+ becomes negative whereas the second one stays close 
to the mass threshold. As a result the total energy is shifted by approximately N,M 
with respect to the B = 1, w = 1 energy. I t  should he mentioned that in all cases only 
the lowest energy orbitals were occupied, as it is drawn from the use of the chemical 
potential. One should notice that the lowest encrgy eigenvalue does not always have 
the same quantum number. This can be seen in table 2, where the total energy of 
the system is presented for self-consistent solutions, if two fixed states are occupied. 
For instance, for A4 < 560 MeV the lowest B = 2 , w  = 1 configuration is obtained by 
occupying the O+ and 0- orbitals. From M = 560 MeV onwards the lowest energy 
state is given by the occupation of the 0+ and 1+ orbitals. We have also considered 
the case in which the O+ and 1- orbitals are occupied. We have found that this 
Configuration never has the lowest energy. Finally the B = 2,w = 2 solution shows 
a similar behaviour to that of B = l , w  = 1, namely a decreasing soliton size and 
energy. For illustration in figure 4 we have plotted both the resulting self-consistent 
meson fields and the related baryon density in the last case for the particular value 
of the constituent mass M = 560 MeV, showing the extended structure of such a 
system. In figure 4(a) one can see the typical two knots characterizing the double 
winding number. Figure 4(b) shows the baryon density together with the different 
contributions to i t ,  namely the sea and the two valence quark contributions. 

In figure 5 we present the dependence of the general behaviour of the different 
configurations with B = 2 on the constituent mass M = gf,. For comparison we also 
plot the energy of six free quarks and twice the energy for the B = 1 solution. From 
an energy point of view it becomes clear that for M < 4 2 0  MeV all configurations 
may decay into six free quarks. For higher constituent masses the system with single 
winding and B = 2 can decay into two separated systems with B = I .  From M = 
560 MeV onwards B = 2 solutions with double winding exist and may also decay 
for M < 630 MeV in any of the previously mentioned systems. However, for large 
Constituent mass M cz 880 MeV this system only remains unstable against decay into 
two separated B = 1 solitons. 
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w = 1). 

45 

Table 2. Energy (MeV) for different occupied upper orbit& in the case ( B  = 2, 

g M(MeV) [O+,O-] [Ot,l-] [Ot,l+] 

4 372 2390 2403 2400 
5 465 2655 2669 2659 
6 558 2912 2926 2903 
7 651 3165 3177 3135 
8 744 3417 3423 3360 
9 837 3670 3663 3580 
10 930 3924 3892 3800 
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Figure 4. Self-consistent mesonic fields (a) and the corresponding baryon density 
( b )  for the B = 2 system with double winding. The latter is decomposed in its valence 
and sea contributions. 

5. Potential energies 

If we consider, as in  the Skyrme model [21], the B = 2 system as two baryon hedgehogs 
at  zero separation d ,  we obtain the potential energy of two baryons at  d = 0 

V ( d  = 0) = EB=n - nE,,, (23) 

if n = 2. This can be evaluated both for the single and double winding cases. For the 
single winding case, the potential energy of a system with four baryons has also been 
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Figure 5. Total energy of dilferent self-consistent solutions compared to the energy 
of six free quark (dotted line). 

calculated. We present in table 3 the dependence obtained for the potential energy 
as a function of the constituent mass. As we see the single winding case depends 
rather strongly on the particular value of M ,  whereas the double winding case remains 
nearly constant. In fact, for small constituent masses the single winding case leads to 
a negative potential energy for B = 2; the same happens for the B = 4 system. If 
one tries t o  reproduce the experimental deuteron binding energy of 2 MeV, a linear 
extrapolation leads t o  a constituent mass of M ,  = 411 MeV. The B = 4 system, taken 
as an approximation for the a-particle, leads to a constituent mass of M4 = 400 MeV 
in order to get a binding energy of 28 MeV. The fact that in B = 1 calculations the 
isoscalar nucleon radius also hits the experimental value of 0.62 fm' at constituent 
masses around MI = 400 MeV (see table 1 and [5, G I ) ,  leads to the conclusion, that 
for those constituent masses the NJL model in the hedgehog approximation is not a 
had starting assumption for the evaluation of small nuclear systems. In  any case, 
one might conclude from here that the NJL model for bigger constituent masses than 
M = 420 MeV leads to a finite repulsion between two solitons at  separation d = 0. 
These results are in qualitative agreement with findings in the Skyrme model and in 
the Gell-Mann-Levy model, as far as the hedgehog symmetry is assumed. It is not 
clear how strongly our results depend on the choice of the hedgehog symmetry. In fact, 
recent investigations in the Skyrme model going beyond the hedgehog ansatz even give 
a negative sign for the potential energy in the case of higher winding numbers, i.e. the 
system with double winding is more bound than the system with single winding. It 
would be interesting, though extremely difficult in practice, to reconsider the system 
with B = 2 in the NJL model for non-hedgehog-like configurations. 

6 .  Summary and conclusions 

We have investigated the baryon number equal two sector of the SL'(2) Nambu- 
Jona-Lasinio model in a self-consistent way. We have raised the baryon number by 
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Table 3. The potential energy V ( d  = 0) (MeV) for different baryon and winding 
numbers 

370 136 -274 - 
390 72 - 90 
410 7 93 
450 122 461 
560 523 1472 1400 
650 763 2300 1404 
740 1050 3130 1438 
840 1332 4046 1460 
930 1612 4877 1470 

- 
- 
- 

occupying .. - explicit ~ positive energy quark states for different winding numbers. We 
have not found any solitonic solutions for fractional winding numbers. This seems 
t o  be in agreement with the quantization condition for the topological charge. In 
addition, we have found that self-consistent solitonic solutions do exist provided that  
the baryon number is larger than the winding number. Hence, in the present model 
the former shouid noi always be ideniified with the latter. Soiitonic soiutions with 
w = 2 exist only, if the Constituent mass chosen is larger than some critical mass 
M = 580 MeV. Thus for masses around 400 MeV required for the description of 
the structure of the nucleon, solitonic solutions with w = 2 do not exist. Tentative 
numerical calculations show that  each winding number has its own critical mass, which 
increases with increasing winding numbers. From this, we may conclude that even for 
higher winding and baryon numbers no solitonic solution occurs, if the constituent 
mass is chosen to  reproduce the nucleon structure. This behaviour is  quite in contrast 
t o  the topological Skyrme model, where the baryon number is identified with the 
winding number and solutions with higher winding numbers always exist. 

In fact for moderate values of the constituent mass the system with B > w turns 
out to  be lower in energy than the system with B = w .  In this context, the experi- 
mental deuteron binding energy and the binding energy for the a-particle are roughly 
obtained at constituent masses around M = 400 MeV. Since even the isoscalar radius 
of the nucieon can be obtained in this range of constituent mass, the N j i  modei does 
not seem to be a bad starting approximation in order to  describe nuclear properties, 
if M Y 400 MeV were chosen. Moreover all B = 2 systems with constituent masses 
M > 420 MeV were energetical higher than twice the B = 1 system, may he due 
t o  the use of the hedgehog ansatz for a system, which does not need to be spherical 
symmetric. 

It would be interesting to  release the hedgehog assumption and also to  consider 
the quantization of the rotational and isorotational degrees of freedom as a first step 
in trying to  deduce an N-N potential within the NJL model. 

References 

[l] 
[Z] 
[3] 
[4] 

Namhu Y and Jonn Lasinio G 1961 Phys. Re%. 122 345; Phya. Re*. 124 246 
Dyakonov D, Petrov V and Pohilitsa P 1988 Nud. Phys. 9 306 809 
Meissner Th, Ruiz-Arriola E and Goeke K 1990 Z. Phyd. A 336 91 
Meissner Th, Ruiz-Arriola E, Griimmer F, Goeke K and Mawomatis H 1988 Phya. Lett. 214B 

312 



48 D Berg e t  a/ 

Meissner Th, Griimmer F and Goeke E 1989 Phyi. Ldf. 227B 296 
Reinhardt H and Wiinsch R 1988 Phys. Leff. 215B 577 
Meissner Th, Griiwner F, Goeke K 1990 Ann. Phys. 202,2 297 
Meissner Th: Goeke K 111111 N v r l  Pa:.:. 4. 524 719 
Goeke K,  Gorski A, Griimmer F, Meissner Th, Reinhardt H and Wiinrch R 1991 Phya. L e f t  

Meissner Th and Goeke K Z .  Phys. A at press 
Blotz A, D6ring F, Meissner Th and Goeke K 1990 P h y d e f t .  251B 235 
Niemi A, SemenoKG 1986 Phyr. R e p .  135 99 
Skyme T H R 1961 Proe. R. Soc. A 260 127; Nucl. Phyr. 31 556 
Goldstone J and Wilczek F 1981 Phys. Re*. Leff.  47 986 
Baa& J and Schenk A 1988 Z. Phys. C 37 389; Z. Phys. C 41 259 
Kahana S and Ripka G 1984 Nucf. Phys. A 429 462 
Holzwarth G and Schwesinger B 1986 Rcp. Pmgr. Phyr. 49 825 
Braaten E and Carson L 1988 Phys. Rcu. D 38 3525 
Bliittel E, Kunz J, Mosel U and Reite T 1987 N d .  Phya. A 466 560 

Dyakonov D, Petrov V and Praszalowicz M 1989 Nucl. Phys. B 323 53 
Ripka G and Kahana S 1985 Phya. Left. 155B 327 
Aitchison I and Fraser C 1985 Phya. Rev. D 31 2605 
Aitchison I, Fraser C, Tudor E and Zuk J 1985 Phys. Leff. 165B 162 
Ebert D and Reinhard H 1986 Nucl. Phya. B 271 188 
Jackson A, Jackson A D and Psquier  V 1984 Nu l .  Phys. A 432 567 
Walhout T and Wambach J 1991 Preprinf KFA Jiilich 

[5] 
[6! 

256B 321 

[7] 
[E] 
(91 
[lo] 
[ll] 
[12] 
[13] 
[14] 
[15] 
,LO, "U1""1&Y II l i . L I I  1 my'. I I L Y .  0- ""I 

[17] 
[18] 
[19] 

[20] 
[Zl] 

,.-1 a.L...:-.- , I n c l  0,. .. 0__ .  a.,ccc" 


