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The nucleon and A Roper resonances are described by means of the generator coordinate method
in the framework of the nontopological chiral-soliton model. Solitons with various sizes are con-
structed with a constrained variational technique. The masses of all known Roper resonances come
out to within 150 MeV of their experimental values. A nucleon compression modulus of about 4
GeV is extracted. The limits of the approach due to the polarization of the Dirac vacuum are

displayed.

I. INTRODUCTION

The description of the ground-state nucleon and A iso-
bar by means of relativistic chiral topological and nonto-
pological soliton models has enjoyed increasing populari-
ty among nuclear and particle theorists. In particular the
Skyrme model! ~¢ and the linear chiral-soliton model” '3
have been shown to reproduce static properties of the nu-
cleon within 30% accuracy. It is interesting now to in-
vestigate whether properties of baryonic excited states
can also be obtained from these models. In the frame-
work of the Skyrme model this question has already been
addressed by several groups either in the framework of a
scaling approach!*~!'® or within a semiclassical approxi-
mation for the vibrational modes around the mean
field.'’— 1

In the present paper we will show how the collective
vibrational degrees of freedom can also be treated by
means of the generator coordinate method?*?! (GCM) in
the nontopological chiral-soliton model. The GCM is a
well-established approach in nuclear structure studies for
small- and large-amplitude collective motion.?! Its appli-
cation here consists of superimposing solitons of different
sizes obtained by a constraint technique. Because of this
our description of the Roper resonance is fully quantum
mechanical and does not introduce any additional collec-
tive parameters over and above those in the. original
chiral-soliton Lagrangian. The simplest way to apply the
GCM technique would consist of calculating the solitons
in the mean-field approximation and to associate
coherent states with the boson fields. Since, however,
rotation-vibration couplings seem to be important we em-
ploy the coherent-pair approximation’? (CPA) to con-
struct states of good angular momentum and isospin.

The outline of the paper is as follows. Section II re-
views the coherent-pair approximation and the tech-
niques needed to apply it to the nucleon and A. Section
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III describes the constraint technique, presents some re-
sults, and reviews the generator coordinate method. The
kernels for the GCM are derived in Sec. IV. The final en-
ergies and observables of the nucleon and of the various
monopole vibrations on top of the nucleon and of the A
are presented in Sec. V and compared to experimental
data and other approaches. A summary and some con-
clusions are given in Sec. V1.

II. THE LINEAR CHIRAL-SOLITON MODEL
AND THE COHERENT-PAIR APPROXIMATION

This section reviews the linear chiral-soliton model,
originating from Gell-Mann and Levy,” and the
coherent-pair approximation!>2! (CPA) to the static nu-
cleon and A ground state as far as it is necessary for the
application of the generator coordinate method to the
breathing mode. Details can be found in Refs. 12, 22,
and 23. Actually some recent investigations?> show that
the CPA has a weakness concerning the Goldberger-
Treiman relation. Although this is not in favor of the
method as such, it is believed that this problem is not
relevant for the energies of the Roper resonance. In Ref.
24 various nontopological calculations with similar prob-
lems are compared and it turns out that, except for gy,
most of the other observables are rather unaffected by the
degree of violation of the Goldberger-Treiman relation.
We believe the CPA provides a useful and not unphysical
approach to demonstrate the ingredients and results of
the GCM applied to the chiral-soliton model.

The Lagrangian density may be written as

L=glid—glo+iysr-m)lq

+19,08%0 + 13, m8*m— Ulo,m) , 2.1)
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with

2

Ulo,m)= ); (o2 + 7=V —m2if o+ U, . (2.2)
Here the g, 0 and = are the quark, sigma (scalar, isoscal-
ar), and pion (pseudoscalar, isovector) fields, respectively.
Remote from a hadron, the quark and pion fields are as-
sumed to vanish and the o field reverts to the pion decay

constant /=93 MeV which essentially sets the energy
J

m(r)= ‘%] fdk k20,(k)"12 3 jike) YE(Q)[b), (k) +(—1)Fmb,_ (k)]
Im

with @, (k)=(k2+m2)!/2. The basis operators b,t,,,(k)
create a free massive pion with spherical isospin com-
ponent ¢ and orbital angular momentum (/,m ). For the
Fock state of the pion field we will use p-wave pions
whose creation operators are

D}, = [ dk k?(k)b},, (k) , (2.4)
with a trial function c(k). The DT, are used to construct
multipion coherent-pair states?> |[PJ3 ) and |P!l), having
zero and one unpaired pion, respectively. The |P11 ) state
therefore has the p-wave isovector character of a single
pion with creation operator D,,. The |P’T) are con-
structed by requiring them to satisfy the recurrence rela-
tion

(—1)m*p_, _|PRY=alPll),

(2.5)
> D,,|PlL)=9%|P%) ,
mt
from which follows the coherence property
D:D|P)=x|P) . (2.6)

Here |P) can be |P®) or |P!!') and x =9ab serves as a
free coherence parameter. The symbol D :D indicates the
coupling to a scalar and isoscalar. Explicitly one obtains,
for example,
Sn

P®)=3 —="—(p"pM0), 2.7

IPP)=3 (DD I0) @)
with f, ., =x(2n+1)f,/(9+2n) and f, given by the
normalization of |P®) (see Refs. 21 and 22 for details).
The a and b can be expressed in terms of x from the nor-

malization (P}l|P!l)=1. We use for the physical nu-
cleon a Fock state of the form

INI,T3)=[al|n ) X|P®)); . +B(n)X|P")), 7,

+y(|5)><lP”))JzT3]l2) . (2.8)

Here |2 ) is a spherical coherent state of the o field, |n )
and |8) refer to the conventional SU(2)XSU(2) three-

quark structures with nucleon and the A quantum num-
bers, respectively, having the common 1s orbit
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and length scales. The nonzero value of the pion mass
m,_=139.6 MeV explicitly breaks the chiral symmetry.
The parameter k is related to the mass of the o ﬁeld by

m?2=2Af2+m? and the v is given by v*=f2 —m?2 /A2,
Both the m and the coupling constant g are free param-

eters. The U, is given by U,=f2m2(2m2—3m2)/
2(m2 —m?2).

In the CPA we consider the expansion of the pion field
as

(2.3)

(u(r),iv(r)o-r) with o here referring to the conventional
Pauli spin matrices. In principle a more accurate Fock
state could be considered by including in the sum in Eq.
(2.8) states having more unpaired pions.”> We consider
here the smaller (and easier) truncation in order to con-
centrate on the later generator coordinate technique to
get an idea of the crucial effects.

In a first step, the total energy of the system is evalu-
ated with the pion degrees of freedom represented
equivalently by

<1>(r)——fdkk c(k)o, (k)™ (kr) 2.9
instead of c(k). In a second step, for a given coherence
parameter x and given mixing parameters a, B, and v,
the total energy is made stationary by variation with
respect to the amplitudes of the quarks u(r), v(r), the
pion-field amplitude ®(r), and the o-field amplitude
o(r)={(2|o(r)|Z) subject to normalization conditions
for the quark and pion amplitudes. This leads to four

coupled nonlinear differential equations with two
Lagrange multipliers € and &:
du __ )
;——(ga%—e)v—;gaﬁ(a +b)Pu , (2.10a)
%=—-—2—'v—(go—e)u——§—ga8(a +b)Pv , (2.10b)
2

49 _ 249 326225 +20%x +N,)®%
dr? r dr

+3g(u?—v? 2f,, , (2.10c)
d’e 2do x

=-= —q>+ — |mio

dr? r or 2 N,, ’m,,

+ L 1+ 2 02— e+ 2 (2x + N, P

2 N, N, 3 m
—‘”8(—;+ﬂguu—g¢p , (2.10d)

m

with 8=5(8+4yV'2/5)/V3 and N, being the average
pion number N,=9a’a*+9(B*+y?*)c?. The ®, results
from ® by a double folding
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®,(r)= [ o,(r,rY®(r)r 4dr, 2.11)
with
Yy — 2 2 . . ’
w(r,r )~—7;fdkk w (k)j,(kr)j,(kr') . (2.12)

The kernel w,(r,r’) is in principle ill defined; however, if
it is applied to a well-behaved pion field ®(r), the corre-
sponding field ®,(r) does exist. The Lagrange parameter
£ in Eq. (2.10d) is fixed by the normalization condition

87 [ @(r)®,(rridr=1, (2.13)

which guarantees that the D,I,, are proper bosons. The
Lagrange multiplier € is equivalent to the quark energy
eigenvalue, cf. Egs. (2.10a) and (2.10b), and originates
from the normalization condition 4 f (u*+vHridr=1.
The above set of nonlinear differential equations is solved
for given x, a, B, and y by the program package COLSYS
in a way described in Refs. 26 and 27. In principle we
deal with integro-differential equations, since ®,(r) is an
integral transformation of ®(r); however, in practice the
system may be solved by using an iterative procedure
keeping ®@,(r) fixed for each iteration. After adjusting €
and £ by the normalization conditions the «, 3, and y are
determined by diagonalization. Their new values are fed
again into the system of differential equations yielding
new fields, and so on, until convergence is achieved. The
x is found by minimizing the nucleon mass yielding al-
ways x ~1.1.

The electromagnetic observables considered are calcu-
lated as suitable matrix elements of the corresponding
currents.?»?3 Reasonable values for the ground-state en-
ergies of the nucleon and A and of the nucleon observ-
ables are obtained for a g around 5.6 and an m, 20.3
GeV. Typical results are presented in Refs. 12 and 22.

III. CONSTRAINT TECHNIQUE AND THE
GENERATOR COORDINATE METHOD

In the present paper the Roper resonance is considered
as a collective monopole vibration of the nucleon. In or-
der to formulate this quantum mechanically without
semiclassical appropriations, we construct first solitons of
different radii around the ground-state radius. These
Fock states, which all have proper spin and isospin quan-
tum numbers through the use of CPA, are then superim-
posed by the generator coordinate method (GCM). This
means one considers them as a (nonorthogonal) basis of a
collective Hilbert space in which the total Hamiltonian is
diagonalized.

In our approach the Fock states with various radii are
constructed by introducing into the CPA variational
principle for the total energy a Lagrange multiplier ¥ and
a function #2F(r) such that the mean quadratic radius R
of the quarks is constrained:

8 [ d*r{NT,J,|:7(r)—eq (r)g(r)—ED(r)®,(r)
—xr2F(r)g(r)q(r):INT3J,)=0, @3.1)

with
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R2=4x [ dr ri(u?+v?) . (3.2)
Here :#(r): is the normal product of the Hamiltonian
operator. Since r? is an unbounded operator, we
artificially force it to be bounded by multiplying it with
the Fermi function F(r) with appropriately chosen pa-
rameters (ro=1 fm, a =0.25 fm). The Euler-Lagrange
equations of the new constrained variational principle are
easily obtained by making the substitution in Eq. (2.10):

e—e+yriF(r) . (3.3)

For various values of Y we solved the now modified Eq.
(2.10) in the way described in Sec. II yielding solutions
|NJ,T, ) with varying value of the quark radius R. The
equilibrium solution was found at R;=0.722 fm for
x=0. The resulting nucleon energy as a function of the
quark radius R is displayed in the upper part of Fig. 1
and shows some very interesting features which are relat-
ed to the fact that we deal with a relativistic system rath-
er than with a nonrelativistic one. First, for values of R
smaller than R ~0.6 fm there was no localized solution
to be found. Second, the energy does exhibit a local
minimum at the equilibrium solution; however, it also ex-
hibits a maximum at R =0.84 fm beyond which it is con-
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FIG. 1. The total energy of the soliton in the hedge-

hog-mean-field approach (MFA) and of the nucleon in the
coherent-pair approximation (nucleon) vs the root-square radius
of the quark distribution. Qualitatively both approaches show
need for the effects of polarization of the sea quarks for
R 20.85 fm. The calculations are done with m,=0.7 GeV and
g=5.37.
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FIG. 2. The scaled quark eigenvalue € =€/gf, vs the root-
squared quark radius. The calculations are performed in the
hedgehog-mean-field approach with g=5.32 and m,=0.7
GeV.

tinuously decreasing, showing even negative values for
large R. In order to explain these features and to discuss
the effects in detail we performed for this purpose simpler
mean-field calculations using the hedgehog ansatz rather
than solving the full coherent-pair model. The qualita-
tive results and the trends of both approaches with vary-
ing R are identical, as the lower part of Fig. 1 shows.

As shown in Refs. 12 and 22, the boundary condition
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FIG. 3. The behavior of valence- and sea-quark eigenvalues
with respect to the size of the soliton given in the scaled unit X.
The figure is taken from Kahana, Ripka, and Soni (Ref. 8).
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FIG. 4. The radial distribution of the upper quark com-
ponent for three different root-squared quark radii R. The pa-
rameters are given in Fig. 2.

of u(r) and v(r) for having localized solutions is that at
large distances 7 from the center of the soliton

r\/gf,,-6+—1———u —Vgf,+erv=0. (3.4
Vef.—e

The Lagrange multiplier ¥ does not enter in Eq. (3.4) be-
cause of the form factor F(r). The scaled quark energy
€ =e/gf,is bounded, —1 <€’ =< +1. This € is plotted in
Fig. 2 and is shown to reach the limit €'=+1 around
R =0.6 fm. Thus the bound solution is pushed into the
continuum, where it is no longer localized and hence no
longer supports a solitonic solution.

Another effect occurs at large R. Here the € is close to
the negative-energy continuum where the occupied
(negative-energy) orbitals are noticeably polarized. As
one can see from Fig. 3, taken from Kahana, Ripka, and
Soni,®»?® with increasing soliton size an increasing num-
ber of sea quark orbitals emerge from the filled Dirac sea
(€'<—1) and enter the domain €' > —1. The lifting of
these levels costs energy which has not entirely been tak-
en into account in the present calculation. This is the

3 R T T T T
' (1) R=0.599 fm)

24 () (2) R=0.722 fm|
~~ N
= @) (3) R=0.820 fm|
> .

H (3).\ I

MFA
oy e S
0.0 05 1.0 15 20 25
r(fm)

FIG. 5. As in Fig. 4 for the lower quark components.
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FIG. 6. Asin Fig. 4 for the o-field o(r) distributions.

reason we believe our calculated energy behaves in the
way that it does at R >0.85 fm. Since the approximation
of having only valence quarks obviously breaks down at
R >0.85 fm we limit the subsequent GCM to the region
0.58 <R <0.85 fm. Actually the positive-energy orbits
are polarized as well for large R, however they are not
occupied and hence do not contribute to the total energy.
In the region 0.58 =R =0.85 fm the system behaves as
expected. Some curves of u(r), v(r), o(r), and ®(r) for
three different R values are displayed in Figs. 4-7.

In the generator coordinate method**?! one constructs
new Fock states of the total system by the superposition

W) 7.0 = [dR fL(R)INI,T;) g , 3.5)
with the normalization condition
J AR dR'fE(R)fo(R") g NJ,T3INJ,T3) g =1. (3.6)
By the Ritz variational principle
Sy, 1, [:H ¥y ) —EYy 1,195, £,))=0 (3.7

one determines the weight function f(R ) from the result-
ing Hill-Wheeler equation?

JdR'x ANJ,T3|:H:—E|NJ,T;) g f ol R)=0 . (3.8)

If we discretize the continuous parameter R we obtain a
Hermitian, nonorthogonal matrix eigenvalue problem:
S (HY—E'“NY)fi¥=0, 3.9
J
where
]

172
Pi(r)=i H ] [ dk ko (k)3 jikr) Y, (k)b (k)= (= D™ b, (k)] ,
Im

with
[bime ), bl (K] =58k~ K By S8y 42

The coherent-pair states are constructed from the D,,, of
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FIG. 7. Asin Fig. 4 for the pion-field ¢(r) distributions.

HI= {dr r*H(r), (3.10)

N¥=,(NJ,T;|NJ,T3); , (3.11)
and

Hi(r)= [dQ ,(NJ,T;|:#(r):|NJ,T;); . (3.12)

Equation (3.9) is solved in a standard way. Stable results
are obtained for five (or more) equally distributed R
points around the equilibrium point. The lowest solution
(a=0) corresponds to the new ground state I\PS“,’JT(T)p be-
ing correlated compared to |[NJ,T;) Ry’ The first excited
state (@=1) corresponds to the first Roper resonance
(seen at 1470 MeV for the nucleon), that with =2 to the
second, etc. The emerging E'® are obtained as eigenval-
ues of Eq. (3.9). If one solves the constrained CPA Eq.
(2.10) for the A, yielding |AJ,T;);, one obtains, after the
GCM calculation, the new A ground-state and its vibra-
tional monopole modes.

IV. THE OVERLAP KERNELS

In this section we provide all the tools to derive the
overlap kernels NV and HY and the corresponding quan-
tities for the observables. The final expression for NV is
presented in Eq. (4.17). The others are rather lengthy
and can be found in Ref. 23.

A. The pion overlap

We start from Eq. (2.3) for the pion field and the corre-
sponding expression for its conjugate momentum:

4.1)

[

Eq. (2.4). If we label them by i and j, to indicate that
they belong to solitons with different radii R; and R j» We
have

[D;.n!’DrJr.lT't’ ]=7Tij8mm’8tt‘ ’ (4.3)
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with

wi= [ dk k2i(k)ci(k) . 4.4)
Normalization requires the ¢’s to satisfy 7/=1. These re-
lations can be transformed into coordinate space by Egs.
(2.9) and (2.11).
The off-diagonal overlaps can then be expressed as
mi=mli=8 [ dr r’¢(r)pi(r) . 4.5)
By these means the off-diagonal overlaps between the
states | P{, ) can (after some algebra) be evaluated to yield

PY=(Pl|Ph) =32 UL —2)M3,) 'coshx ,  (4.6)
P?:(P";’t|P'./;l,t, )
Py 2 -~
=8 B f 3T 2—=25(L —2)N(3, JcoshX , @7
La y

with ¥=x7" and y=x2 Here L=9=3X3 and

k=(L+1)/2=5 corresponds to a p-wave (2L +1=3)
isovector (2T +1=3). Expressions for f,=f,(x) and
a(x) both depending on the coherence parameter x can
be found in Ref. 22. :

B. The o overlap

For the o field we start from expressions analogous to
Egs. (2.3) and (4.1) (but for isoscalar field) in terms of o
creation and annihilation operators a;{n(k ), respectively.
We assume the Fock state

|37) = Niexp [fdk k2yi(k)aly(k) @.8)
and
ol(r)=(Zo(r)|=") .
For off-diagonal overlaps we also need a of,(r) with
o (r)= [ drr'2wyr,roir’) 4.9)
and
ry— 2 2 . : ’
wo(r,r') == [ dk k2wo(k)jolkr)jo(kr") (4.10)
and
wolk)=(k?+m?2)17?,
. . n
. . £ J .s
(S o]z = |22 | 4i 4.11a)
. . i i|"
(S Va(n)]n|3)) = WI o, (4.11b)
with o¥=(3/3/) and
 exp 2w [dr rzai(r)af;(r)]
ol=glt= (4.12)

exp [wfdr ri(o'o} +olol) ] .

Sometimes one prefers to express the asymptotic value of
the o field as o(r)=0c(r)+f, with &(r— ©)=0. The
above formulas hold equally well for & as for o.
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C. The quark and baryon overlap

The quark states are characterized by the 1s-orbital
spinor

ul(r)

wli(rio-r (4.13)

qj(r):

and a three-quark spin-flavor function, for example, in
the case of the A isobar,

(r}S,jz=%,t3=%)j=[qj(r)]3|TTT)quu) . 4149
Thus the overlap can be written as
A Siutslfies )j=‘1"5ff’8t3z’35j,f; , (4.15)

where f indicates whether we have a bare nucleon or A.
Here the g¥ are

qif=41rfdr rHu'ui+viv)) (4.16)

and g“=1. Using the orthogonality relations of the
Clebsch-Gordan coefficients in Eq. (2.8) one obtains, with
Ni=/(NJ,T;|NJ,T;);,

N!J:le=(alpga]_{_ﬁlplrlﬁj_'_ylpl{,yj)(q1])301] . 4.17)

V. RESULTS AND DISCUSSION

The results of the coherent-pair approximation are
known to be rather insensitive to the value of the o mass
if this is chosen to be larger than =~0.6 GeV. We assume
the same feature for the GCM calculation and hence use
a value of m,=0.7 GeV. The quark-meson coupling
constant g is chosen such that the nucleon energy is ap-
proximately reproduced in the GCM calculations. We
use g =35.37 corresponding to an asymptotic quark mass
of m,=500 MeV. For all values of R the coherence pa-
rameter x is taken to be x =1.1, the value resulting from
the minimization of the nucleon mass in the coherent-
pair approach.

The GCM results for the nucleon ground state are
presented in Table I and compared with the uncorrelated
coherent-pair approximation. The nucleon mass de-
creased by 57 MeV as a result of the monopole correla-
tions. The other observables are similarly only little
affected by the vibrations such that basically the GCM
results are similar to the ones from the coherent-pair ap-
proximation. One gets a qualitative overall agreement
with experiment. Actually the A-nucleon splitting is too
small, leaving some room for an explicit color-magnetic
interaction. There remain the problems relating to the
pion-nucleon coupling constant and the Goldberger-
Treiman relation.?? Nevertheless, we believe the numbers
are good enough to justify the application of the formal-
ism to the excited vibrational states.

The alternative to this approach would have been to
project states of good spin and isospin from a mean-field
(generalized hedgehog) state. Although the Goldberger-
Treiman relation would have been satisfied, the addition-
al complexity of both a projection and the GCM require-



39 ROPER RESONANCES AND GENERATOR COORDINATE METHOD . ..

TABLE 1. Comparison of the coherent-pair approximation,
the generator coordinate method, and the experimental values.
Listed are the nucleon mass, the A-nucleon splitting, the qua-
dratic charge radius of the proton, the proton magnetic mo-
ment, its ratio to the neutron magnetic moment, and the axial-
vector-coupling constant.

Coherent pair GCM Expt.
Ey (MeV) 1027 970 938
E,-Ey (MeV) 201 190 294
(r?), (fm?) 0.53 0.53 0.68
sy, () 1.97 1.93 2.79
Hp /ey —1.48 —1.48 —1.46
g4/8v 1.44 1.41 1.23

ment did not seem to be justified in these initial investiga-
tions.

The ground-state energies and the excitation energies
of the first three vibrational modes for both the nucleon
and A as given in Table II. Considering the model has
but one significant parameter (g ), which was determined
from ground-state considerations alone, and has only
pion and o fields, the fair agreement with observed data
should be considered nontrivial. The results show that
collective vibrations cannot be ignored when considering
the structure of Roper resonances and that such effects
change but little the properties of the ground state.

The present value of the Roper excitation energy is 390
MeV compared to the experimental value of 500 MeV.
Although there is only fair agreement we have neverthe-
less extracted the compression modulus for the nucleon

d’E
dR?

Ky=R3

’
RO

where E(R ) is the energy surface of the coherent-pair ap-
proximation and R the equilibrium quark radius. Using
the upper curve of Fig. 1 one obtains, qualitatively,

Ky=4 GeV .

This figure can be compared with those given by Bhaduri,
Dey, and Preston?’ (about 1.3 GeV) from a nonrelativistic
model with a linear and modified color-hyperfine interac-
tions. These authors have also shown that in the MIT
bag model the compression modulus is equivalent to the

TABLE II. The absolute energies (masses) of the nucleon, the
A, and their various Roper resonances are given for the present
generator coordinate method (GCM) and comparison with ex-
perimental data. The GCM calculations are performed using
the constrained coherent-pair approximation with parameters
g=5.37 and m,=0.7 GeV. The widths of the experimental Py,
and P;; pion-nucleon resonances are indicated.

Nucleon A
(MeV) GCM Expt. (I') GCM Expt. (T")
E, 970 938 1160 12324+120
E, 1360 1470+200 1560 1690+160
E, 1800 1710+120 2100
E, 2300 2400

1909

mass of the nucleon. The compression modulus from the
chiral-soliton model which includes pions indicates a far
greater incompressibility than these earlier estimates by a
factor of 3—4. It is perhaps worthwhile noting that in nu-
cleon matter, the nucleon compression modulus is in the
range of 200—-250 MeV. If one considers that the Roper
resonance is the lowest mode of an effective harmonic os-
cillator, the required collective mass®*! M_, would be
given by

d’E

M (Ry)= |—
n(Ro dR?2

/(ERoper_Enucl )2 .
RO

If we denote by My the nucleon mass one gets, with the
compression modulus of the CSM,

Mou(Ro)=2My .

This value should be contrasted with the value used by
Brown, Durso, and Johnson.’® They considered nonrela-
tivistic collective vibrations of a bag model including the
perturbative value of the pion contribution to the energy
and “‘arbitrarily set M, =0.48 M as would follow from
homologous motion with the ground-state quark wave
functions.” The present calculations do not support this
assumption. Indeed the quark wave functions of Figs. 4
and 5 do not exhibit homologous motion.

This conclusion was also reached in a paper by Durso
and Meissner®! who investigated the role of relativity in
the approach of Brown, Durso, and Johnson.*® In both
approaches the potential-energy function is that from the
MIT bag model with a term related to the finite size of
the pion. Because of this term the functional form of this
potential is vastly different from that of the diagonal ele-
ments of the GCM energy kernel exhibited in Fig. 1. It
therefore appears to be impossible to compare the inter-
nal details of these approaches with our calculation.
Their resulting estimates of the lowest monopole vibra-
tions are shown in Table III.

Fiebig*>3? has shown how to quantize the bag without
introduction of ad hoc parameters by using periodic
boundary condition in the collective Lagrangian. He
deduces a mass parameter of about 500 MeV. In his ap-
proach the ground-state and the Roper (and higher) reso-
nances for both the nucleon and A result from different
modes of solutions to the equations of motion, with the
results given in Table III. Actually the two modes have
not been recognized in our GCM calculations.

Two types of calculations have been performed within
the framework of the topological Skyrme model. In the
first'* 716 quantum modes are determined from a scaling
of the static Skyrme solution. In the second>!”~!° solu-
tions are sought from the Lagrangian expanded to lead-
ing order in the semiclassical approximation for the vi-
brational modes around the mean-field solution. The
former approaches'* 16 lead to predicted excitation
states with definite energies (as in the present approach)
whereas in the latter>!”~!° no bound-state solutions were
found and the Roper resonances were interpreted in
terms of the behavior of the calculated phase shifts: all
the latter authors agree that phase shifts barely pass
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TABLE III. The excitation energy of the nucleon Roper resonance and of the A Roper resonance
are listed with respect to the nucleon mass and A mass, respectively. Here e “>=8¢” and f, are the pa-
rameters of the standard parametrization of the Skyrme model (see Ref. 1). The type of model is as fol-
lows: bag model with nonrelativistic vibrational kinetics (NRB), bag model with relativistic vibrational
kinematic (RB), chiral bag with relativistic kinematics (RCB), Skyrme model with scaling (SS), Skyrme
model in the semiclassical approximation for phase shifts (SPS), Skyrme model with rotation-
vibrational coupling (SSRV), modified Skyrme Lagrangian with sixth-order terms (MSS), dielectric soli-
ton model (DES), and projected nontopological chiral-soliton model (NTCS-P).

Nucleon Roper A Roper
Authors Type (MeV) (MeV)

Brown, Durso, and Johnson (Ref. 30) NRB 398 518
Durso and Meissner (Ref. 31) RB 444 292
Fiebig (Ref. 33) RCR 328 351
Hajduk and Schwesinger (Ref. 15)

e?=0.00421, f,=64.5 MeV SS 231 167

e2=0.00552, f,=9.30 MeV 285 226
Hayashi and Holzworth (Ref. 14)

e=35.45, f,=64.5 MeV SS 210
Breit and Nappi (Ref. 17)

e=5.45, f,=64.5 MeV SPS 330 330
Zahed, Meissner, and Kaulfuss (Ref. 18)

e=4.75, f.=93 MeV SPS 270 270
Biedenharn, Dothan, and Tarlini (Ref. 16)

e=9.42, f.=93 MeV SS-RV 388 292
Meissner and Zahed (Ref. 5)

€2=0.00552, f,=93 MeV SS-RV 390 290
Kaulfuss and Meissner (Ref. 38)

€’=—0.00454, f,=93 MeV MSS 476
Broniowski, Cohen, and Banerjee (Ref. 40) DES

M, =1800 MeV 340 340

My =1085 MeV 200 200
Present approach NTCS-P 390 400
Experiment 502 468

through 90°, using the physical mass of the pion, but re-
late the energy for which §=90° with the observed Roper
resonances. Results of the two approaches are given in
Table III. Rotation-vibrational coupling has been noted’®
to be very important in the phase-shift calculations and
the effects on resonance energies can be gauged by com-
paring the results of Refs. 17 and 18 with those of Refs.
16 and 5 in Table III. We note that the full effect of
rotation-vibrational coupling is automatically taken into
account in the present GCM calculation. Together it ap-
pears that for the same parameter set in the Skyrme La-
grangian the deduced resonance energies from the phase-
shift approach are about 50% greater than those from
the scaling approximation and are closer in agreement
with our own estimates from the GCM approach.

In a more complete review of phase shifts in the
Skyrme model by the SLAC group®*3® as reviewed by
Karliner’® and the Siegen group,”’ the Roper is not
recognized as a resonance (nor the A1232 for that
matter). The SLAC group surmises that the physical res-
onance arises perhaps from perturbation of poles and
zeros of the S matrix away from the origin which, in the
right scenario, could lead to the observed lowest-lying p-
wave resonances including the Roper. There also seem to
be some contributions from K =1 channels. Both the
scaling approximation approach and the phase-shift ap-

proach have been applied by Kaulfuss and Meissner3® to
a modified Skyrme-Lagrangian by the addition of a qua-
dratic factor of the baryon current. The two approaches
are shown to yield equivalent energies if, in the semiclas-
sical approximation, one considers the poles of the S ma-
trix rather than the energy for which the phase shift is
equal to the 77 /2 as suggested by the work of Walliser and
Eckart.® The resulting energy for the Roper resonance
is also shown in Table III and is the best of all ap-
proaches. We note, however, that the parameter e? of
the conventional stabilizing term has the opposite sign to
all other approaches.

There is actually a nontopological calculation of the
Roper resonance by Broniowski, Cohen, and Banerjee*
using a color-dielectric model which shows some soliton-
ic solutions with confinement character. With only a sca-
lar confining field their soliton corresponds to a mixture
of nucleon and A. The authors evaluate the small-
amplitude normal modes around the equilibrium solution
and obtain an excitation energy of 340 MeV for the Rop-
er. However, with their parameters set their soliton ener-
gy is 1785 MeV and no other properties of the nucleon or
A were given. If they readjust their parameters in order
to obtain an energy of 1085 MeV, the excitation energy of
the Roper resonance changes to 200 keV.

If one summarizes the calculations reviewed in Table
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III then one can conclude that all relativistic approaches
estimate the Roper resonance at too low an excitation en-
ergy with a continuum of results ranging from 200 MeV
until the experimental value of about 500 MeV. A simi-
lar statement holds for the Roper resonance of the A iso-
bar. The present calculation gives excitation energy
about 100 MeV smaller than the experimental one. We
believe the final explanation of the structure of the Roper
remains to be determined.

VI. SUMMARY AND CONCLUSIONS

In the present paper we applied the generator coordi-
nate method (GCM) to the description of the Roper reso-
nances of the nucleon and the A assuming them to be col-
lective monopole vibration (breathing modes) of the
ground states. To this end we constrained the quark
wave function in the coherent-pair approximation (CPA)
to yield solitons of different radii. These were then super-
imposed by GCM. The rotation-vibration coupling is ful-
ly taken into account in a quantum-mechanical manner
since the CPA provides Fock states of the nucleon and A
which are quantized and carry the proper angular
momentum and isospin quantum numbers.

The results are encouraging since the masses of all
known Roper resonances were reproduced within 150
MeV while qualitative agreement was simultaneously ob-
tained for the nuclear observables, all with a single free
parameter, the coupling constant g. (There is insensitivi-
ty to the mass of the 0.) Comparable results are found
with calculations of the lowest vibrational energies using
the Skyrme model, in particular with those that intro-
duce some degree of rotation-vibration coupling.

The potential-energy surface evaluated in CPA allowed
us to extract a nucleon compression modulus of Ky ~4
GeV. Assuming harmonic-collective motion we also
were able to evaluate the collective mass of about twice
the nucleon mass associated with the nucleon monopole
vibration.

The present approach has some problems with the po-
larization of the Dirac sea. For sufficiently large exten-
sions of the soliton the quark eigenvalue approaches
€= —gf . and the negative-energy continuum of the vac-
uum is strongly modified. Since the present model con-
sidered only valence quarks, Fock states having a strong-
ly modified vacuum had to be excluded from the GCM
superposition. Future considerations must take into ac-
count how the vacuum polarizations are to be treated
within the framework of the chiral-soliton model so that
more complete calculations can be done. As with all oth-
er approaches the present one also ignores the center-of-
mass effects which may also be important for the proper-
ties of the Roper resonance. Widths of the Roper states
should be calculated in order to check the method used,
but in our view such a calculation should be left until de-
tails of the effects of the Dirac sea and center-of-mass
have been formulated.
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