000136105 001__ 136105
000136105 005__ 20240712101015.0
000136105 0247_ $$2sirsi$$a(Sirsi) a292937
000136105 0247_ $$2ISSN$$a0944-2952
000136105 0247_ $$2Handle$$a2128/3562
000136105 037__ $$aPreJuSER-136105
000136105 041__ $$aGerman
000136105 084_0 $$2ZB$$aUMB - Atmospheric chemistry
000136105 0881_ $$aJuel-2998
000136105 088__ $$2JUEL$$aJuel-2998
000136105 1001_ $$0P:(DE-Juel1)16201$$aGeiß, Heiner$$b0
000136105 245__ $$aMessungen von Wasserstoffperoxid und organischen Hydroperoxiden am Schauinsland im Schwarzwald: ein Beitrag zur Charakterisierung der limitierenden Faktoren bei der Ozonproduktion$$h[E-Book]
000136105 260__ $$aJülich$$bForschungszentrum Jülich$$c1994
000136105 300__ $$a166 S.
000136105 3367_ $$0PUB:(DE-HGF)29$$2PUB:(DE-HGF)$$aReport$$mreport
000136105 3367_ $$2DataCite$$aOutput Types/Report
000136105 3367_ $$2BibTeX$$aTECHREPORT
000136105 3367_ $$2ORCID$$aREPORT
000136105 3367_ $$010$$2EndNote$$aReport
000136105 3367_ $$2DRIVER$$areport
000136105 4900_ $$0PERI:(DE-600)2414853-2$$aBerichte des Forschungszentrums Jülich$$v2998
000136105 500__ $$aRecord converted from JUWEL: 18.07.2013
000136105 520__ $$aContinuous measurements ofH202and organic hydroperoxides were performed at the field station Schauinsland between January 1989 and June 1991 using an ezyme catalysed fluorescence instrument. The mixing ratios were in the range of the detection limit (20 ppt) up to 4.4 ppb for ~Oz and 1.7 ppb for ROOR. Both Hz02 and ROOH show a strong seasonal variation with maximum concentrations in summer. The observed seasonal trend is in line with the photochemical formation mechanism on the one hand and the main atmospheric loss processes on the other hand. The mixing ratios ofHz02 and ROOH are strongly influenced by wet deposition. For interpretation ofthe behavior ofthese substances in gas phase, this influence has to be eliminated. This was achieved by selecting sunny periods from the whole data set. In addition, periods were selected, where production exeeds chemical losses, because then, the measured concentrations of photochemically produced species, in first approximation, should reflect their production rates. This is the case when air masses arrive at Schauinsland from the nearby city of Freiburg and Rhine valley during summer and daytime. Comparison of results of smog chamber experiments performed by Hess et al. (1992 a.b,c) with chemical box model calculations using the EURORADM mechanism (Stockwell and Kley, 1994) showed, that a positive slope in the H20/Ox ratio with increasing photochemical age is an indicator for NOx limitation of photochemical ozone production. The box model was initialized using typical NOx start concentrations and VOCINOx ratios for the Schauinsland site. Analysis ofthe measured concentration ratios ofH202 and Ox versus the photochemical age of the air masses gave the result, that a large fraction of these measurements already fall into thecategory where theozone production isNOx limited. For this analysis only data were used, where the station was influenced by fresh anthropogenic emissions from Freiburg and the Rhine Valley, i.e. the analysed air masses were exposed to anthropogenic emissions later than four hours before arrival at the site. Since the advected air mass from other wind sectors are photochemically further processed, because anthropogenic sources are more distant, it C3Jl be coneluded that at Schauinsland the photochemical ozone production is in most cases limited by the availibility ofNOx' Since Schauinsland is relative dose to a large anthropogenic pollution source, this conclusion shoud be also valid for most rural areas in Europe.
000136105 540__ $$aNeither this book nor any part of it may be reproduced or transmitted in any form or by any  means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval  system, without permission in writing from the publisher.
000136105 653__ $$aorganic hydroperoxides
000136105 650_4 $$aatmospheric chemistry
000136105 650_4 $$aatmospheric deposition
000136105 650_4 $$aatmospheric distribution
000136105 650_4 $$aatmospheric exchange process
000136105 650_4 $$aatmospheric gas
000136105 650_4 $$aatmospheric monitoring
000136105 650_4 $$aatmospheric transport
000136105 650_4 $$aozonation
000136105 650_4 $$aozone
000136105 650_4 $$aozone layer
000136105 7001_ $$0P:(DE-Juel1)6742$$aVolz-Thomas, Andreas$$b1
000136105 7001_ $$0P:(DE-Juel1)16204$$aKley, Dieter$$b2
000136105 7001_ $$0P:(DE-Juel1)VDB58680$$aGilge, Stefan$$b3
000136105 7102_ $$aInstitut für Chemie der Belasteten Atmosphäre (Jülich, 2)
000136105 7102_ $$aTechnische Hochschule (Aachen)
000136105 8564_ $$uhttps://juser.fz-juelich.de/record/136105/files/Juel_2998_Gilge.pdf$$yOpenAccess
000136105 909CO $$ooai:juser.fz-juelich.de:136105$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000136105 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000136105 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16201$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000136105 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)6742$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000136105 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16204$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000136105 9201_ $$0I:(DE-Juel1)VDB791$$kICG-2$$lTroposphäre$$x0
000136105 970__ $$a2128/3562
000136105 9801_ $$aFullTexts
000136105 980__ $$aI:(DE-Juel1)IEK-8-20101013
000136105 980__ $$aUNRESTRICTED
000136105 980__ $$aJUWEL
000136105 980__ $$aConvertedRecord
000136105 980__ $$aVDB
000136105 980__ $$areport
000136105 980__ $$aFullTexts
000136105 981__ $$aI:(DE-Juel1)ICE-3-20101013
000136105 981__ $$aI:(DE-Juel1)IEK-8-20101013