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Abstract

Ozone is one of the most important trace species in the atmosphere. Therefore, the history of research on
ozone has also received a good deal of attention. Here a short overview of ozone research (with a focus
on the stratosphere) is given, starting from the first atmospheric measurements and ending with current
developments. It is valuable to study the history of ozone research, because much can be learned for current
research from an understanding of how previous discoveries were made. Moreover, since the 1970s, the
history of ozone research has also encompassed also the history of the human impact on the ozone layer and
thus the history of policy measures taken to protect the ozone layer, notably the Montreal Protocol and its
amendments and adjustments. The history of this development is particularly important because it may serve
as a prototype for the development of policy measures for the protection of the Earth’s climate.

Zusammenfassung

Ozon ist einer der wichtigsten Spurenstoffe in der Atmosphére. Daher wurde auch der Geschichte der Ozon-
forschung viel Aufmerksamkeit gewidmet. Hier wird ein kurzer Uberblick iiber die Ozonforschung gegeben
(mit dem Fokus auf der Stratosphire); beginnend mit den ersten atmosphérischen Ozonmessungen und en-
dend mit aktuellen Entwicklungen. Das Studium der Geschichte der Ozonforschung ist hilfreich, da man fiir
die aktuelle Forschung viel lernen kann, wenn man versteht, wie friihere Entdeckungen gemacht wurden. Seit
den siebziger Jahren des vergangenen Jahrhunderts umfasst die Geschichte der Ozonforschung dariiberhinaus
die Geschichte des Einflusses des Menschen auf die Ozonschicht und damit auch die Geschichte der politi-
schen Mallnahmen, die getroffen wurden, um die Ozonschicht zu schiitzen; vor allem das Montreal Protokoll
sowie seine Anpassungen und Ergiinzungen. Die Geschichte dieser Entwicklungen ist insbesonders von Be-
deutung, da sie als Modell fiir die Entwicklung von politischen Malnahmen zum Schutz des Klimas der Erde

dienen kann.

1 Introduction

In 1839, in a lecture to the “Naturforschende Gesellschaft
Basel”, Christian Friedrich Schonbein announced the
discovery of a new substance that he would later call
“ozone” (SCHONBEIN, 1839). In the years after its
discovery, the new substance aroused the interest of
the scientific community; e.g., Justus von Liebig said
“...betrachte ich die Entdeckung des ozonisirten Sauer-
stoffs fiir eine der merkwiirdigsten, die je gemacht wur-
den”! (KAHLBAUM and THON, 1900, p. 18). Interest-
ingly, however, it took many years before the name
“ozone”, which we use quite naturally today, was gen-
erally accepted for the new substance (see HERRMANN
(1982) and RUBIN (2001) for a more extensive report on
Schonbein’s work).

Ozone is one of the most important trace species in
the atmosphere. The presence of an ozone layer in the
lower stratosphere is a key factor determining the verti-
cal temperature profile of the Earth’s atmosphere. Fur-
ther, UV-B radiation from the sun is absorbed in the
ozone layer; if this radiation was not absorbed, it would
reach the Earth’s surface to an extent that would be
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harmful to a variety of life forms (including humans).
Excess ozone at the Earth’s surface (“photochemical
smog”) occurs because of air pollution and can be harm-
ful to plants, animals, and humans. On the other hand, a
certain ozone level in the lower atmosphere is beneficial,
because without ozone the chemical cycles that remove
pollutants from the atmosphere cannot work.

Owing to the importance of ozone for the Earth’s at-
mosphere, the history of atmospheric ozone research has
received much attention. Over the years, many papers
and books have appeared describing various aspects of
ozone research and in various levels of detail (DOB-
SON, 1968; KHRGIAN, 1975; TUCK, 1978; DOTTO and
SCHIFF, 1978; HERRMANN, 1982; CRUTZEN, 1988;
FARMAN, 1989; CRUTZEN, 1996; SOLOMON, 1999;
RUBIN, 2001; STOLARSKI, 2001; SOLOMON, 2004;
FARRELL, 2005). The history of ozone research in the
last several decades is furthermore a good example of
the knowledge cycle in geosciences today, where field
measurements and laboratory studies are combined to
advance the understanding of processes leading to an
improvement of numerical models, and the results and
forecasts of the numerical models are then confronted
again with measurements (BRASSEUR, 2008).

A feature of research on atmospheric issues that be-
comes obvious when studying the history of ozone re-
search is that the scarcity of observational data has al-
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ways been a fundamental problem hindering progress.
And in spite of all the technological advances achieved
so far, it still is. It is difficult and expensive to obtain
measurements several kilometres above the ground and
the gases to be measured are only present in the atmo-
sphere in trace amounts (for example the mixing ratios
of some chlorofluorocarbons (CFCs) in the stratosphere
are orders of magnitude below one particle in 10'2).
Measurements in the atmosphere are never repeatable so
that long-term, consistent time series are very important.
A prominent example is the time series of total column
ozone measurements in Halley Bay, Antarctica, that was
started in 1956 and which formed the basis for the dis-
covery of the “ozone hole” by FARMAN et al. (1985).
Moreover, the interpretation of atmospheric measure-
ments is always complicated, because advection, mix-
ing, chemistry, and radiation are all important for the
composition of the atmosphere.

Arguably, the most eminent example of the impact
of human activities on nature today is the ozone hole
in the Antarctic (see Section 5.1 below). The discovery
of the ozone hole by FARMAN et al. (1985) was a key
factor leading to the “Montreal Protocol on Substances
that Deplete the Ozone Layer”, which was signed in
1987. Consequently, the history of research on strato-
spheric ozone depletion has recently also aroused in-
terest as an example of how the dynamics of scientific
learning and scientific assessment processes can be stud-
ied (BRASSEUR, 2008; CRUTZEN and OPPENHEIMER,
2008), which is an important issue in the current debate
about climate change.

The outline of the paper is as follows. The early ob-
servations of atmospheric ozone are introduced in Sec-
tion 2, the discussion starts with the discovery of ozone
and the first tropospheric measurements, covers the dis-
covery of the role of ozone as an absorber of solar ra-
diation, the first measurements of total column ozone,
and the findings from the early 1930s that the height of
the ozone layer is ~ 25 km rather than 40-50km as had
been hitherto thought.

Section 3 presents the development of the understand-
ing of the chemistry of stratospheric ozone, from the
early work by CHAPMAN (1930) to the discovery of the
importance of catalytic cycles in destroying ozone. The
development of concerns about anthropogenic effects on
the ozone layer is described in Section 4. The effects dis-
cussed are nuclear weapons tests in the stratosphere, the
emissions of nitrogen oxides from supersonic aircraft,
the use of artificial fertilisers in agriculture, followed
by a review of the warning by MOLINA and ROWLAND
(1974) that the accumulation of anthropogenic CFCs in
the atmosphere might ultimately lead to a depletion of
the ozone layer.

The discovery of the ozone hole (FARMAN et al.,
1985; STOLARSKI et al., 1986; WMO, 2007) is de-
scribed in Section 5, the related issue of polar ozone
loss in the Arctic in late winter and spring is introduced,
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Figure 1: Erich Regener in 1954. He is shown holding an automatic
air sampler for balloon-borne operation. (Photo courtesy of the Max
Planck Society).

and developments towards an increasing understanding
of the phenomenon are described. Finally, in the conclu-
sions (Section 6), the timeline of discoveries in ozone
research is compared to milestones in the history of
physics.

2 Early observations of atmospheric
ozone

Schonbein himself believed that ozone played an im-
portant role in the Earth system and suggested in 1853
that long-term ozone measurements in the atmosphere
should be performed on an international scale: “Geneigt
zu glauben, das atm. Ozon spiele im Haushalte der Erde
eine wichtige Rolle, halte ich es fiir wiinschenswerth,
dass moglichst zahlreiche, sowohl grosse Zeitrdume
als bedeutende Linderstrecken umfassende, untereinan-
der vergleichbare Beobachtungen iiber die Verinderung-
en des Ozongehaltes der Atmosphire angestellt wer-
den...”? (in a letter to Justus von Liebig, KAHLBAUM

%Inclined to believe that atmospheric ozone plays an important role in the
balance of the Earth, I consider it desirable that as many observations as pos-
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and THON, 1900, p. 10). Indeed numerous measure-
ments were made during the second half of the 19" cen-
tury using a method that Schonbein had developed (for
a detailed discussion of the early measurements of at-
mospheric ozone see e.g., CRUTZEN, 1988; LONDON
and LIU, 1992; SONNEMANN, 1992). Unfortunately,
measurements using Schonbein’s method are only semi-
quantitative because of poor standardisation and the in-
fluence of humidity and wind speed on the values ob-
tained (LINVILL et al., 1980; VoLz and KLEY, 1988).
The only historic measurements of tropospheric ozone
that proved reliable enough to allow a reanalysis and
a meaningful comparison with modern measurements
were taken at the Observatoire de Montsouris, located
on the outskirts of Paris (VOLZ and KLEY, 1988). At
Montsouris a quantitative wet-chemical method was es-
tablished in 1876 and used continuously for 34 years.

This early interest in ozone was motivated to a large
extent by the fact that ozone, at that time, was consid-
ered to be an indicator of clean, healthy air and that
ozone-poor air would lead to illness. Measurement se-
ries of ozone were performed in spa towns with the in-
tention of demonstrating how beneficial to human health
a stay would be (LENDER, 1872). This view persisted
for many decades and was held by leading scientists in
the field; as late as 1946 Erich Regener, one of the early
pioneers in ozone research (Figure 1), stated “Anwesen-
heit von Ozon ist ein Indikator fiir gute Luft”® (RE-
GENER, 1946). Today, of course, it is known that high
concentrations of tropospheric ozone are detrimental to
human health and, similarly, harmful to other living sys-
tems.

Since the early 1950s, it has been understood that high
ozone concentrations in the troposphere (referred to as
“photochemical smog”) are caused by pollution; ozone
is chemically formed as a result of photochemical re-
actions involving NOy and non-methane hydrocarbons
from automobile exhausts and similar combustion pro-
cesses (HAAGEN-SMIT, 1952).

Still in the 19" century, another important aspect
of ozone was discovered, namely its importance as an
absorber of light. In 1879 the French physicist Alfred
Cornu recognised that solar radiation with wavelengths
below 300 nm does not penetrate to the Earth’s surface
(CORNU, 1879a) *. Only three years later, HARTLEY
(1881b) suggested that ozone is responsible for this ob-
servation; the ozone absorption bands in this UV region
are therefore today referred to as Hartley bands. Already
HARTLEY (1881a) believed that “ozone is a normal
constituent of the higher atmosphere” (see KHRGIAN

sible should be made of the changes in the ozone content of the atmosphere
which are comparable amongst themselves and cover both long time spans
and important regions.

3The presence of ozone is an indication of good air.

4Interestingly, CORNU, published his findings in the same year in two further
papers; in the Proceedings of the Royal Society, London, which accepted
papers in French at that time, (CORNU, 1879b), and in the Comptes Rendus
(cited in STOLARSKI, 2001).
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(1975) for more details on Hartley’s work). The dis-
covery of the spectroscopic properties of ozone opened
up the possibility of making measurements of the to-
tal thickness of the atmospheric ozone (i.e., the total at-
mospheric column of ozone) including the ozone in the
stratosphere. The first detailed measurements of the to-
tal atmospheric column of ozone were made by FABRY
and BUISSON (1921), who firmly established that ozone
was responsible for the observed strong cut-off in so-
lar UV spectra at about 300 nm towards shorter wave-
lengths. FABRY and BUISSON (1921) speculated (cor-
rectly as we know today) that ozone was formed by solar
UV radiation. They also suggested that the ozone layer
was situated at an altitude of about 50 km. And first mea-
surements of the height of the ozone layer indeed con-
firmed an altitude of the ozone layer of 48—53 km (CA-
BANNES and DUFAY, 1925; LAMBERT et al., 1926).

In 1924, G. M. B. Dobson designed a spectrograph
to measure the total ozone column that was more suited
for routine out-of-door use and that was cheaper to build
than the FABRY and BUISSON spectrograph. The aim
was to develop an instrument that allowed regular mea-
surements to be made over extended time periods. This
development was very successful; today, the standard
unit for the total atmospheric column of ozone bears
Dobson’s name: the Dobson unit (DU). One DU is de-
fined as 2.687 x 10'® ozone molecules per square cen-
timetre. The Dobson unit describes the thickness of a
layer of pure ozone, if the total amount of ozone in
the atmosphere were brought to standard conditions (15
degrees Celsius and 1013 hPa). For example, an atmo-
spheric ozone column of 300 DU (a typical atmospheric
value) brought down to the surface of the Earth would
occupy a 3 mm thick layer of pure ozone.

The first observations at Oxford 1924-1925 showed a
marked annual variation of ozone. Likewise, the data ex-
hibited a strong day-to-day variability that was closely
connected to meteorological conditions (DOBSON and
HARRISON, 1926; DOBSON, 1968). Between July 1926
and November 1927 seven instruments were built at Ox-
ford and distributed throughout Europe covering the lat-
itude range 68°N to 47°N and one instrument was oper-
ated at 22°S in Chile (DOBSON et al., 1929; DOBSON,
1930). After the 1926-1927 observation period, the in-
struments were sent to Spitzbergen (via an Italian airship
expedition), California, Egypt, India, and New Zealand
(see DOBSON, 1968; FARMAN, 1989; BRONNIMANN
et al., 2003, for further details on the history of early to-
tal ozone measurements). In the former USSR, the first
measurements of total ozone were taken in 1933; later,
in 1959, the M-83 ozonometer was developed, which be-
came the backbone of the USSR ozone station network
(GUSHCHIN, 1995).

Even today, ground-based total ozone measurements
are essential as a reference measurement for satellite
data and thus for monitoring the ozone content of the
atmosphere. Further, the longest records of continu-
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ous reliable measurements are available from stations
equipped with Dobson spectrophotometers (e.g., JONES
and SHANKLIN, 1995; STAEHELIN et al., 1998), whose
design has remained essentially unchanged since 1930
(DOBSON, 1968). Such long data records are invaluable
for time series analysis and for trend detection (e.g.,
FIOLETOV et al., 2002; JANOSI and MULLER, 2005;
WMO, 2007).

In the late twenties, the ozone layer was still assumed
to be located in the upper stratosphere. GOTZ and DOB-
SON (1928), based on their measurements, reported that
the “...average height [of the ozone layer] seems to
be between 30—40km above sea-level”. BJERKNES be-
lieved in 1929 that “...le fait qui parait aussi étre bien
établi, que la couche d’ozone se trouve a une altitude de
40-50 kilometres™ (BJERKNES, 1929).

When GOTZ and DOBSON (1928) and BJERKNES
(1929) refer to the height of the ozone layer they mean
the altitude of the maximum ozone concentration in
number density (measured in particles per unit volume
or in DU per km). A different, greater altitude results
from considering the maximum of the molar mixing ra-
tio (measured in micromole ozone per mole of air, com-
monly referred to as ppm).

In ground-based measurements in Spitzbergen in
1929, GOTZ (1931) discovered the so called “Umkehref-
fekt”, which allows a low-resolution vertical ozone pro-
file to be deduced (e.g., PAETZOLD and REGENER,
1957; DUTSCH and STAEHELIN, 1992). He reported an
average height of the ozone layer for the period 10 July
to 28 August 1929 in Spitzbergen of 27.6 = 8km. At
the time, GOTZ put forward these new ideas rather care-
fully “...es fragt sich nun ob die geophysikalisch inter-
essante tiefere Lage der Ozonschicht in der hohen Breite
Spitzbergens, vor allem aber auch ihre Schwankung bis
herunter zur minimalen Hohe des 26. August [11 km] als
geniigend gesichert angesehen werden diirfen”®. How-
ever, two years later the Spitzbergen measurements were
confirmed by mid-latitude measurements and GOTZ
et al. (1933) stated with much more confidence that “the
average height [of the ozone in the atmosphere] at Arosa
now appears to be about 20 km, which is much below the
former estimates”.

The first attempt to directly measure the vertical pro-
file of the atmospheric ozone concentration (and other
atmospheric parameters) was made by James Glaisher
and Henry Tracey Coxwell on a manned balloon. On
5 September 1862 they made a balloon ascent from
Wolverhampton, England, and measured ozone using
Schonbein’s method. Although the balloon reached an
altitude of 11 km, the last ozone measurement was only

5...the fact seems also to be well established that the ozone layer is located
at an altitude of 40-50 kilometres.

6...the question is now whether the geophysically interesting lower altitude
of the ozone layer in the high latitude of Spitzbergen, in particular also its
variation down to the minimum height on 26 August [11 km], can be regarded
as being sufficiently well established.
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Table 1: The first balloon-borne ozone profile. The table lists the
original measurements reported by REGENER and REGENER (1934)
(digitised from their Fig. 4). The ozone column (in cm; 1 cm corre-
sponds to 1000 DU) above the balloon-borne instrument is reported
as a function of height.

Height (km) O3 column (cm)
4.1 0.266
5.1  0.254
8.1 0.250

10.1  0.240
122 0.230
14.7 0.218
16.8  0.205
189 0.189
20.8 0.172
22,5 0.152
24.5 0.126
26.6  0.107
284  0.087
31.0 0.071
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Figure 2: The first balloon-borne measurement of the vertical distri-
bution of ozone in the atmosphere from Stuttgart (48.8°N) on 31 July
1934 (REGENER and REGENER, 1934). Here, the original measure-
ments of REGENER and REGENER are shown reported as column
ozone above the balloon. Note that the absolute values reported by
REGENER and REGENER (1934) were deduced from relative mea-
surements assuming a value of 240 DU at 10 km. The altitude was
deduced as a log-pressure height from the pressure recorded on the
balloon payload.

performed at an altitude of 4.8 km because the balloon-
ists lost consciousness at greater altitudes. This balloon
flight was described by LENDER (1873) and later in the
New York Times, 27 June (1909); see also HOINKA
(1997) for a report on the flight. Between 1862 and 1866
Glaisher made numerous further balloon ascents in order
to measure the temperature and humidity of the atmo-
sphere at greater heights. He was also a founder mem-
ber of the Meteorological Society in 1850, which later
(in 1883) became the Royal Meteorological Society.
The first successful balloon-borne measurements of
the vertical distribution of ozone were conducted soon
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Figure 3: The balloon-borne measurement of the ozone profile from
Figure 2 converted to molar mixing ratio (black line). For com-
parison, as a grey scale, a modern ozone climatology is shown for
July at 47.5°N equivalent latitude (+ one standard deviation of a
climatology based on HALOE measurements, GROOSS and RUS-
SELL, 2005). The column ozone above 10 km from the climatology
is 293DU and the REGENER and REGENER measurements were
scaled accordingly for a proper comparison.

after the first Umkehr measurements. In a balloon flight
on 31 July 1934 from Stuttgart, REGENER and RE-
GENER (1934) recorded the solar UV spectrum in the
stratosphere and deduced an ozone profile from these
measurements. These data independently confirmed the
first Umkehr observations. The payload for this bal-
loon experiment weighted only 2.7 kg and was launched
to an altitude of about 31 km using two standard me-
teorological balloons. Table 1 lists the original values
(ozone column above the balloon) reported by RE-
GENER and REGENER (1934) and Figure 2 shows these
data as they were presented in the original paper. In
Figure 3, the vertical profile of the ozone mixing ra-
tio deduced from these early measurements is compared
with a corresponding ozone climatology deduced from
measurements of the Halogen Occultation Experiment
(HALOE) on the Upper Atmosphere Research Satellite
(UARS) in the years 1991-2002 (RUSSELL et al., 1993;
GROOSS and RUSSELL, 2005) demonstrating a rather
good agreement of the early measurements with a cur-
rent climatology.

In the early fifties, PAETZOLD (1950) developed a
method for determining the vertical profile of ozone dur-
ing lunar eclipses up to altitudes that cannot be reached
by balloons (up to about 45km). In this method, the
ozone profile is determined from the ozone absorption
in the Chappius band measured at the edge of the Earth’s
shadow on the moon. The effectiveness of this method
stems from the large effective ozone column (up to
15000 DU) due to the tangential optical path through
the Earth’s atmosphere. This effect is visible during lu-
nar eclipses as a small area at the edge of the umbra
showing a greenish colour rather than the reddish colour
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Figure 4: The first vertical ozone profile measured from a rocket
experiment on 10 October 1946 above White Sands Proving Ground,
New Mexico (32.33°N,106.44°W). Data are taken from Table 1 in
JOHNSON et al. (1951). The quantity measured is the ozone column
overhead of a rocket-borne spectrograph so that the deduced ozone
concentrations have a rather large uncertainty.

in the core of the umbra. This greenish colour is caused
by the extinction of the solar light reaching the moon in
the yellow-red spectral region by the Chappius band of
ozone (PAETZOLD, 1951).

Erich Regener was forced to retire from his chair at
the University of Stuttgart in 1937 by the Nazi regime.
Nonetheless, he continued his scientific work; he first
founded a private research institute on 1 January 1938,
his “Forschungsstelle fiir Physik der Stratosphire’”,
which was integrated later that year into the “Kaiser Wil-
helm Society for the Advancement of Science” (which
was refounded in 1948 as the “Max Planck Society”).
He developed the first scientific payload for a rocket
that allowed it to reach high altitudes (about 150 km);
the rocket was known as the A4. He designed an air-
and water-tight container containing an assembly of in-
struments, in particular temperature and pressure gauges
and a spectrometer to register solar UV radiation (OR-
DWAY III et al., 2007). This payload, referred to as
the “Regener-Tonne” (Regener barrel) was never flown,
but the first scientific payload (a Geiger counter, which
however failed to work) was launched on an A4 rocket
from New Mexico as early as 16 April 1946 (GREEN,
1954). Many more flights followed, including flights of
A4 rockets carrying UV spectrometers for ozone mea-
surements (JOHNSON et al., 1951; ORDWAY III et al.,
2007). The first in situ measurement of an ozone profile
above balloon altitudes (Figure 4) was made on 10 Oc-
tober 1946 by a UV spectrograph mounted in a tail fin
of an A4 rocket (JOHNSON et al., 1951).

Simpler and less expensive rockets were soon devel-
oped for upper atmosphere research (VAN ALLEN et al.,
1948). For many years, rocket measurements were the

"Research Laboratory for the Physics of the Stratosphere
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key experimental tool for exploring ozone chemistry in
the upper stratosphere and in the mesosphere. In the
early sixties, the first satellite measurements of the ver-
tical distribution of ozone in the stratosphere and meso-
sphere were made using the same technique as for the
lunar eclipses but replacing the moon as a reflector by
an artifical satellite (VENKATESWARAN et al., 1961).
Nonetheless, rocket measurements remained an impor-
tant scientific tool for decades to come (e.g., MILLER
and RYDER, 1973; VAUGHAN, 1982, 1984; GERNANDT
et al., 1989). An important feature of the vertical ozone
profile, the secondary ozone maximum at about 90 km,
was discovered both in ozone measurements from rocket
payloads and in ozone concentrations in the upper atmo-
sphere deduced from stellar occultation measurements
made from a satellite (MILLER and RYDER, 1973;
HAYS and ROBLE, 1973).

3 The chemistry of stratospheric ozone

When DOBSON and HARRISON first published their
measurements of total ozone in 1926, the formation
mechanism of stratospheric ozone was still unclear.
They discussed “whether the ozone is formed in the ex-
treme upper atmosphere by ultra-violet radiation from
the sun, or by electrical discharges in aurorz...”.

Four years later, CHAPMAN (1930) proposed the first
photochemical theory of the formation of ozone; four
reactions that involved only allotropes of oxygen and
that are today known as the Chapman reactions. He sug-
gested that stratospheric ozone is produced by the pho-
tolysis of molecular oxygen (O;) at ultraviolet wave-
lengths below 242 nm,

RI: O, +hv 20(°P),

—

where hv denotes an ultraviolet photon.

The atomic oxygen (O(*P), hereafter denoted by O)
produced in reaction R1 reacts rapidly with molecular
oxygen to form ozone (O3)

R2: 0+0,+M — 0O3+M,

where M denotes a collision partner (N, or O;) that is
not affected by the reaction. Ozone is photolysed rapidly

R3: O3+hv — O+0,.
Through the reaction
R4: O0+03 — 20,

an O atom and an O3z molecule are lost. Because O
and Oj are in rapid photochemical equilibrium, the loss
of one oxygen atom effectively implies the loss of an
ozone molecule, so that R4 destroys two molecules of
odd oxygen.
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The Chapman reactions R1-R4 were accepted for
decades as sufficient to describe the observed vertical
distribution of ozone. However, new measurements of
the rate constants for the Chapman reactions (BENSON
and AXWORTHY, 1957; JONES and DAVIDSON, 1962)
demonstrated that a quantitative understanding of ozone
chemistry was lacking. It became clear that the destruc-
tion of ozone by reaction R4 alone cannot explain the
observed ozone abundances in the stratosphere (e.g.,
HUNT, 1966b; SCHIFF, 1969); as HUNT (1966a) put it
“...the photochemical reaction scheme normally con-
sidered is no longer adequate, and there must be reac-
tions occurring in the atmosphere which destroy ozone
but which have been neglected in the past”.

BATES and NICOLET (1950) had originally suggested
that reactions involving OH and HO; radicals would
lead to a significant catalytic ozone loss. Based on
this work, HO,-catalysed reactions were suggested as
an ozone destruction mechanism by HAMPSON (1964,
1966) and, using laboratory measurements by NORRISH
and WAYNE (1965), implemented in a model calcula-
tion by HUNT (1966b). CRUTZEN (1969) found that the
mechanism involving OH and HO; could not explain
ozone observations in the middle stratosphere between
30-35km and, a year later, proposed that NO- and NO,-
catalysed reactions control the ozone concentrations in
the middle stratosphere (CRUTZEN, 1970). At that time,
the very first measurements of nitrogen compounds in
the stratosphere had just become available (MURCRAY
et al., 1968; RHINE et al., 1969). The possibility that ni-
trous oxide (N,O) is decomposed in the stratosphere via
the reaction

R5: N,O+0('D) — 2NO.

and thus constitutes a possible source for stratospheric
NO and NO; had already been suggested by HAMP-
SON (1964)8. At that time he concluded that “it is un-
likely that the nitrogen oxide reactions can affect total

8The author learned about the CARDE (Canadian Armament Research and
Development Establishment) Report No. 1627 (HAMPSON, 1964) and ob-
tained a copy of the report from Adrian Tuck who recalls the following
story: “At the second joint Anglo-French meeting at Jesus College, Oxford
in September 1974, on the effects of Concorde on the ozone layer, Hampson
was there and referred to CARDE Report No. 1627 in his talk. I asked the
Met Office library to get me a copy of Report 1627 from CARDE in 1975.
The CARDE library replied, saying they had kept a copy until a month ago,
when they had a request for it from another scientist, and because it was an
old report they had let him keep this last copy. Fast forward to 1997, when I
was sitting in Carl Howard’s office at the Aeronomy Lab and we were remi-
niscing about the history of the subject. I told him about the above account,
he grinned and picked that last copy from CARDE off his shelf. I made a
copy, which I still have.”

In summer 2008 the author wrote to CARDE asking again whether copies
of the report were still available. Months later, together with the reviews for
this paper, a letter from CARDE arrived. The CARDE library, this time, pro-
vided a photocopy of the report. However, even in 2008, release of the docu-
ment to a scientist had to be authorized first; the document had to be down-
graded from “defense departments only” although it was always unclassified.
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ozone but it is possible that observation of them, know-
ing the rates of the reactions involved, can assist our un-
derstanding of the distribution and behaviour of ozone”
(HAMPSON, 1964, p. 267).

Again a few years later, the possibility of chlorine
catalysed ozone loss was put forward by STOLARSKI
and CICERONE (1974). Their original motivation for in-
vestigating the impact of chlorine on ozone was study-
ing the possible effects on the stratosphere of HCI orig-
inating from space shuttle exhaust, but soon the focus
shifted to chlorine injected into the stratosphere by vol-
canoes (STOLARSKI, 2001). At that time, laboratory
studies of chlorine reactions had been begun employing
the latest technique. STOLARSKI (2001) recalls that as
early as 1972 he heard laboratory chemist Don Stedman
say in a conversation: “Chlorine destroys ozone. Every-
body knows that!”.

The different catalytic ozone loss cycles can be sum-
marised in the form

R6: X0+0 — X+4+0,
R7: X+0; — XO0+0,
Cl: Net: O+03 — 20,

where the net reaction is identical to reaction R4. For the
cycle catalysed by hydrogen radicals, X = H, OH, for
the nitrogen radical cycle, X = NO, and for the chlorine
radical cycle, X = Cl.

Today the relative importance of the various ozone
loss cycles is well understood. Because of the large in-
crease of atomic oxygen (O) with altitude, the rates of
all cycles increase strongly between 25 and 40 km and
the same is true of the rate of ozone production through
reaction R1 (e.g., CRUTZEN et al., 1995; GROOSS et al.,
1999). Further, the relative importance of the cycles for
ozone loss varies considerably with altitude. Between
25-40 km the NOy cycle is the dominant ozone loss pro-
cess, whereas above 45km HO, catalysed ozone loss
dominates (see Figure 5). The HO, cycle is also the
strongest loss cycle below about 25 km. The loss through
the ClO, cycle (which also depends on the stratospheric
chlorine loading) peaks at 40 km.

Furthermore, interestingly, the importance of hetero-
geneous reactions (albeit no heterogeneous reactions in-
volving chlorine species) in the stratosphere was al-
ready suggested in the mid-seventies (CADLE et al.,
1975). Based on laboratory experiments, heterogeneous
reactions were, however, for a long time thought to be
unimportant. This situation changed only in 1986 when
SOLOMON et al. suggested that heterogeneous chem-
istry could greatly enhance the ability of chlorine to de-
stroy ozone in polar regions (see Section 5 below). The
paper by SOLOMON et al. prompted numerous labora-
tory studies and today, a large number of heterogeneous
reactions are known that are important for stratospheric
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Figure 5: The vertical distribution of the relative importance of the
individual contributions to ozone loss by the HO,, CIO,, and NOx
cycles as well as the Chapman loss cycle (R4). The calculations
are based on HALOE (V19) satellite measurements and are for
overhead sun (23°S, January) and for total inorganic chlorine (Cly)
in the stratosphere corresponding to 1994 conditions. Reaction rate
constants are based on DEMORE et al. (1997). Courtesy of Jens-Uwe
Groof} based on GROOSS et al. (1999) and IPCC/TEAP (2005).

chemistry (Table 2, see also PETER, 1997; SOLOMON,
1999).

4 Anthropogenic influence on the
ozone layer

4.1 The effect of nitrogen compounds on
stratospheric ozone

The first concern about the human influence on strato-
spheric ozone was formulated in January 1958, when,
in a discussion® in Washington, DC, the question was
raised as to whether or not the ultraviolet emissions from
planned nuclear tests in the stratosphere (the so-called
Teak and Orange events) would “burn a hole” in the nat-
ural ozone layer (HOERLIN, 1976). It was argued that,
on the one hand, UV radiation originating from a nuclear
test would be absorbed by ozone thus leading to disso-
ciation, but that, on the other hand, shorter wavelength
UV radiation would lead to dissociation of O, and thus
to ozone production — therefore these pre-event discus-
sions were inconclusive (HOERLIN, 1976).

Nonetheless, there was a period of large-scale test-
ing of nuclear weapons in the stratosphere (1952-
1962). Much later, in 1973, it was recognised that
large amounts of NOyx were produced in air heated
by the stratospheric nuclear explosions. However, no
substantial impact of these NOy emissions on strato-
spheric ozone amounts was detected (FOLEY and RU-
DERMAN, 1973; JOHNSTON et al., 1973; GOLDSMITH
etal., 1973).

9The participants in this discussion were J. Chamberlain (Yerkes Observa-
tory), F. Gilmore (Rand Cooperation), H. Steward (NRL), and H. Hoerlin
(LASL).
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Another anthropogenic source of stratospheric NOy
was suggested by CRUTZEN (1976), CRUTZEN and
EHHALT (1977), and by MCELROY et al. (1977). In
these studies it was argued that enhanced atmospheric
levels of nitrous oxide (N,O) caused by increasing use
of artificial fertilisers in agriculture could lead to en-
hanced NOx in the stratosphere and, in turn, to enhanced
NOx-catalysed ozone destruction.

In the early seventies, attention was focused on an-
other possible effect of human activities on stratospheric
ozone: supersonic aircraft, since at that time it was
thought they would cruise in the stratosphere by the turn
of the century'?. First it was suggested in 1970 that wa-
ter vapour emitted by the planned large fleets of super-
sonic aircraft could result in HO,-catalysed ozone loss.
It was soon clarified by JOHNSTON (1971) that the emis-
sion of nitrogen oxides from the jet engines of these air-
craft would pose a much greater threat to the ozone layer
than the increase in water vapour. The possible rele-
vance of this problem was also pointed out by CRUTZEN
(1971).

For economic reasons, the planned fleets of super-
sonic transport aircraft were never built; nonetheless,
knowledge about the chemistry of stratospheric ozone
was greatly improved through research programmes di-
rected at assessing the impact of supersonic transport
on the stratosphere. This improved knowledge paved the
way for further research on the impact of anthropogenic
stratospheric chlorine on the ozone layer (see below).

4.2 The effect of chlorofluorocarbons on
stratospheric ozone

At a meeting of the American Chemical Society in 1930,
the engineer Thomas Midgley reported the invention of
a new chemical compound, called Freon, that he pro-
posed as a replacement for a variety of compounds in
common use as refrigerants at the time. This was the
starting point for the successful application of a whole
family of related compounds, the chlorofluorocarbons
(CFCs). Many years later CFCs were used in essen-
tially all refrigeration and air conditioning systems, and
halons, compounds that also contained bromine atoms,
were frequently used as fire extinguishing agents. More
than forty years after the invention of Freon, LOVE-
LOCK et al. (1973) discovered that, because of their ex-
tremely long atmospheric lifetime, CFCs accumulate in
the atmosphere and are globally distributed; the first in-
dication of a potential environmental impact (although
LOVELOCK et al. concluded at the time that “the pres-
ence of these componds constitutes no conceivable haz-
ard...”).

Atmospheric concentrations of CFCs and halons con-
tinued to increase until the past ten years when the

10The predictions in the mid-seventies were that in the year 2000 the super-
sonic fleet would comprise 615-1400 aircraft (DOTTO and SCHIFF, 1978, pp.
78-79).
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rise first slowed down and was then reversed (WMO,
2007). Today, although production of practically all such
substances has ceased because of the provisions of the
Montreal Protocol and its amendments and adjustments,
halogen source gases are still present in existing equip-
ment, chemical stockpiles, foams etc., so that emissions
continue.

Methyl chloride is the most important chlorine source
gas, whose emmissions are dominated by natural pro-
duction. Methyl chloride has a global mean mixing ra-
tio in the troposphere of about 550 ppt and its trend
is presumed to be zero (e.g., KOPPMANN et al., 1993;
WMO, 2007). At the end of the 21" century, when the
abundance of anthropogenic chlorine source gases (e.g.
CFCs) will be greatly reduced as a consequence of the
Montreal Protocol, methyl chloride is expected to ac-
count for a large fraction of the remaining stratospheric
chlorine.

MOLINA and ROWLAND (1974) related the possibil-
ity of chlorine-catalysed ozone loss to the accumulation
of anthropogenic CFCs in the atmosphere. Early model
studies (CRUTZEN, 1974; ROWLAND and MOLINA,
1975) predicted that enhanced levels of chlorine in the
stratosphere would lead to a depletion of upper strato-
spheric ozone via cycle C1 with X = CI. This notion was
subsequently confirmed by a variety of model studies
(WMO, 1986). Based on these early warnings (ozone
reductions by 15 or 20% were predicted for continu-
ing CFC emissions, ROWLAND and MOLINA, 1975),
the first policy measures were taken. The United States
phased out the use of CFCs as a propellant in aerosol
sprays as of 1 January 1979. This action was soon fol-
lowed by similar bans in Canada, Sweden, and Norway.
However, it took many years, until 1987, for the first in-
ternational agreement to be signed, the Montreal Proto-
col, regulating the use of CFCs and halons.

The predictions of the early studies on the future of
upper stratospheric ozone were remarkably farsighted.
It was understood that CFCs accumulate in the lower
atmosphere, with photolysis in the middle and upper
stratosphere being the major sink. It was understood al-
ready in 1974 that this constitutes a long-term problem,
on a timescale of many decades. Most importantly, it
was predicted that enhanced levels of stratospheric chlo-
rine would lead to a decline of ozone in the upper strato-
sphere by a catalytic ozone loss cycle (cycle C1, with X
= CI, MOLINA and ROWLAND, 1974; ROWLAND and
MOLINA, 1975) with peak impact at about 40 km alti-
tude.

Today, more than thirty years after the first scien-
tific studies were published linking the danger of future
stratospheric ozone loss to the accumulation of anthro-
pogenic CFCs in the atmosphere (MOLINA and ROW-
LAND, 1974; CRUTZEN, 1974), ozone decline has been
unequivocally detected in the altitude region between 30
and 50 km by a variety of ground-based and space-borne
instruments (WMO, 1995; HARRIS et al., 1998; WMO,
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Figure 6: Upper stratospheric ozone trend and ozone loss rates
caused by chlorine-catalysed reaction cycles for mid-latitudes of the
northern hemisphere. Panel (a) shows the percentage reduction in
ozone concentrations predicted to occur by CRUTZEN (1974) due
to the build-up of CFCs. The calculation assumed a growth of Cl,
to a level of 5.3 ppb in the uppermost stratosphere. Panel (b) shows
the observed reduction of upper stratospheric ozone for the latitude
range 30° to 50°N, between 1980 and 1996, derived from SAGE,
SBUV and Umkehr measurements (HARRIS et al., 1998; WMO,
1999). The shaded areas indicate the range of uncertainty. (Figure
adapted from WMO, 1999).

2007). A significant reduction in the concentration of
ozone was observed during the 1980s and 1990s, with
the largest losses reaching 7.4 £+ 1 %/decade at 40 km
altitude (HARRIS et al., 1998, Figure 6, panel b). The
observed altitude variation of loss of upper stratospheric
ozone — peak percentage losses around 40 km — was cor-
rectly predicted by the first model studies (CRUTZEN,
1974, see also Figure 6, panel a). These calculations
were, however, based on a projected increase of Cl, to
a level of 5.3 ppb, a value that was fortunately never
reached in the contemporary stratosphere. During the
past decade, the decline of upper stratospheric ozone,
observed for 1980-1996, has substantially slowed and
there is evidence that this decline can be attributed to
the decline of halogen source gases in the atmosphere
(NEWCHURCH et al., 2003; STEINBRECHT et al., 2006;
WMO, 2007).

S Polar stratospheric ozone loss

5.1 The Antarctic ozone hole

In 1985, Farman, Gardiner, and Shanklin reported that in
the Antarctic spring strongly reduced total ozone values
occured at the British Antarctic Survey research station
at Halley (FARMAN et al., 1985; JONES and SHANKLIN,
1995). The data from the original publication are shown
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Figure 7: October mean total column ozone from Dobson
spectrophotometer measurements at Halley, Antarctica (75.35°S,
26.34°W). Updated from JONES and SHANKLIN (1995); the data
originally published by FARMAN et al. (1985) are shown in black.
(Data courtesy of J. Shanklin, British Antarctic Survey).

in Figure 7 (black symbols) together with measurements
up to 2008 (grey symbols). This phenomenon that was
soon referred to as the Antarctic ozone hole is one of the
most striking examples of the direct impact of human
activities on the atmosphere. The discovery by FARMAN
et al., which was based on a series of measurements by
classical Dobson instruments, started by Dobson him-
self in 1956 (DOBSON, 1968) was soon confirmed by
satellite measurements!! showing that the ozone deple-
tion extended over roughly the entire Antarctic conti-
nent (STOLARSKI et al., 1986). Independent methods
for measuring total column ozone provided further sup-
port for the depletion of springtime ozone in Antarctica
(e.g., SOLOMON, 1999).

The term ozone hole for the phenomenon of low to-
tal ozone values in the Antarctic spring was first used
by STOLARSKI et al. (1986): “The deep minimum, or
hole...”. But, of course, the Antarctic ozone hole is not a
real hole. Some column ozone always remains; e.g., the
October mean at Halley never dropped below 100 DU
(Figure 7). Interestingly, however, CHAPMAN (1934) al-
ready asked the question “Can a hole be made in the
ozone layer?”. The answer he suggested was the arti-
ficial removal of most of the ozone in a column of air
to allow astronomers better observations in the ultravi-
olet (see also TUCK, 1978; WELLS, 1997). Likewise,
REGENER (1946) used the term “ein Loch in der Ozon-
schicht” (“a hole in the ozone layer”) and pointed out
that such a hole would be welcomed by astronomers.
Moreover, the question whether nuclear explosions in

TOf course the question arises as to why the ozone hole was not discovered
in the satellite measurements that were available since 1979. There is some
debate on this question (see e.g., PEARCE, 2008) but it is clear that the low
ozone values were “flagged” by the processing software as unreliable because
they were so low.
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Figure 8: Vertical profiles of ozone partial pressure measured on
18 July and 15 October 1985 from Georg Forster Station (70.77°S,
11.85°E). The total ozone column on 15 October 1985 was 214 DU.
(Data courtesy of Hartwig Gernandt, Alfred Wegener Institute).

the stratosphere would “burn a hole” into the ozone layer
was raised in discussions in early 1958 about the possi-
ble effects of nuclear weapons testing in the stratosphere
(HOERLIN, 1976).

The discovery of the ozone hole came as a complete
surprise. Ozone was considered to be almost chemically
inert in the polar winter and early spring when the sun
was low. In the results of model calculations there was
no indication that such a phenomenon could occur. FAR-
MAN et al. stated that “Recent attempts to consolidate
assessments of the effect of human activities on strato-
spheric ozone (O3) using one-dimensional models for
30°N have suggested that perturbations of total Oz will
remain small for at least the next decade. Results from
such models are often accepted by default as global es-
timates. The inadequacy of this approach is here made
evident by observations that the spring values of total
O3 in Antarctica have now fallen considerably”. Indeed
it turned out in the following years that the fundamen-
tal chemical mechanisms responsible for the formation
of the ozone hole were unknown in 1985 (see also Sec-
tion 5.3 below).

The first measurement of a vertical ozone profile un-
der ozone hole conditions was presented by CHUBACHI
(1984). Measurements describing the development of
the vertical structure of ozone in the Antarctic spring
rapidly followed. A time series of 66 sondes flown be-
tween May and December 1985 from the Georg Forster
Station (71°S) of the then German Democratic Repub-
lic was reported by GERNANDT et al. (1987) and GER-
NANDT (1987). IWASAKA and KONDOH (1987) showed
the 1981-1984 ozone sonde measurements from Syowa
Station (69°S) in detail, and HOFMANN et al. (1987) de-
scribed measurements during the period from 25 August
to 6 November 1986 from McMurdo Station (78°S).
GERNANDT et al. (1989) compared ozone sonde mea-
surements for the years 1985, 1986, and 1987 from the
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Figure 9: Time series of minimum of daily average column ozone
poleward of 63° equivalent latitude for March in the Arctic (top
panel) and October in the Antarctic (bottom panel). Winters in which
the vortex broke up before March (1987, 1999, 2001, and 2006) are
not shown for the Arctic time series. (Figure adapted from MULLER
et al., 2008).

Georg Forster, Syowa, Halley, and South Pole Stations.
When ozone measurements in mid-winter and spring
are compared (Figure 8), the signature of the ozone
hole becomes obvious through substantially lower ozone
partial pressures in October in the altitude range (~
200-30hPa) where the ozone maximum occurs during
mid-winter. In recent years, satellite measurements (e.g.,
HopPPEL et al., 2003; TILMES et al., 2006b) provided ad-
ditional, detailed information on the vertical ozone dis-
tribution and on chemical ozone loss in the ozone hole.
Nonetheless, ozonesonde observations remain important
as they provide unique information. Measurements of
extremely low ozone mixing ratios (below 0.01 ppm)
are not possible with satellite instruments; such observa-
tions could potentially provide insights into future ozone
layer recovery (SOLOMON et al., 2005, 2007).

5.2 Arctic ozone loss

The Arctic wintertime stratosphere resembles its Antarc-
tic counterpart in many respects; it exhibits a cold po-
lar vortex separating the air enclosed in it from mid-
latitude air. Strong diabatic descent throughout the win-
ter transports air from the upper stratosphere and partly
from the mesosphere to the lower stratosphere (e.g.,
TUCK, 1989). Indeed, signs of a perturbed chlorine
chemistry showing that the Arctic was primed for chem-
ical ozone depletion were reported in the late eighties
(e.g., SOLOMON et al., 1988; SCHILLER et al., 1990;
BRUNE et al., 1990).

However, the Arctic polar vortex is warmer and much
more variable than the Antarctic vortex leading to a
stronger interannual variability in both chemical loss of
ozone and in dynamical supply of ozone-rich air to high
latitudes. Therefore, compared to the Antarctic, Arctic
ozone abundances in the winter and spring are much
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Figure 10: Vertical profiles of ozone mixing ratios (red symbols)
measured by HALOE inside the polar vortex in March 1996. Poten-
tial temperature is used as the altitude scale; approximate geometric
height is shown on the right axis. All HALOE observations clearly
inside the vortex in March 1996 are shown. Also shown is the proxy
ozone mixing ratio O3 expected if chemical processing had not oc-
curred (green symbols) derived from the simultaneous methane mea-
surement by HALOE. For comparison, the range of ozone mixing
ratios measured in Antarctica in 1985 at the Georg Forster Station
(70.77°S, 11.85°E) by ozone sondes (GERNANDT, 1987) is shown
for September (i.e. for the corresponding season). (Adapted from
MULLER et al., 1997).

more variable (Figure 9). Nonetheless, in particularly
cold winters and in winters with an enhanced burden
of volcanic aerosol, substantial chemical loss of ozone
has been observed in the Arctic (e.g., TILMES et al.,
2004; GOUTAIL et al., 2005; REX et al., 2006; TILMES
et al., 2008b; WMO, 2007) and has led to Arctic column
ozone losses of up to 30 %. In dynamically active and
therefore warm winters, however, the estimated chemi-
cal ozone loss is very small.

An example of a very cold Arctic winter is win-
ter 1995/1996, where the local ozone loss in the lower
stratosphere exceeded 50% and the column loss was
more than 80DU (TILMES et al., 2004). Figure 10
shows the vertical profile of ozone mixing ratios (red
symbols) measured by the HALOE satellite experiment
in the Arctic vortex in this winter (MULLER et al., 1997).
These ozone mixing ratios are compared with a proxy
for the ozone mixing ratio that would be expected for
Arctic spring in the absence of chemical change (green
symbols). The difference between the measured ozone
profile and the proxy ozone profile is a measure of the
accumulated chemical loss over winter and early spring.
Moreover, in Fig. 10, the ozone profiles measured in aus-
tral spring 1985 at the Georg Forster Station (71°S) are
shown (GERNANDT et al., 1987, see also Fig. 8). The
Antarctic profiles measured in 1985 are rather similar to
the ozone profiles measured about ten years later in the
Arctic.

Nonetheless, a comparison between Arctic and Antarc-
tic ozone loss shows that the two polar regions display a
fundamentally different character. Chemical ozone loss
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of the extent shown in Fig. 10 is large for Arctic stan-
dards. Extreme anomalies associated with the spring-
time Antarctic ozone hole as observed in many records
(frequent removal of more than 90 % of the ozone at
70 hPa (~18 km) and sometimes more than 99 %) and
ozone mixing ratios of less than 0.1 ppm are not ob-
served in any of the available long-term Arctic records
(SOLOMON et al., 2007). Therefore, the extreme deple-
tion of ozone that characterises the Antarctic ozone hole
is a unique feature on Earth.

5.3 Chemical mechanisms of polar ozone
destruction

5.3.1 Observations of a perturbed polar chlorine
chemistry

FARMAN et al. (1985) already tried to link their obser-
vations of Antarctic ozone loss to the increase of anthro-
pogenic CFCs in the atmosphere. Alternative explana-
tions were put forward (TUNG et al., 1986; MAHLMAN
et al., 1986; CALLIS and NATARAJAN, 1986), but these
were eventually discarded in favour of a linkage with
CFCs, albeit via completely different chemistry than that
proposed by FARMAN et al. (SOLOMON, 1999).

First signs of a strong perturbation of the Antarc-
tic chlorine chemistry were already seen during the
National Ozone Expedition (NOZE) in 1986 through
ground-based observations of strongly reduced column
values of HCl (FARMER et al., 1987), strongly enhanced
column values of OCIO (SOLOMON et al., 1987), and
high concentrations of CIO below 20km (DE ZAFRA
et al.,, 1987). In 1987, within the framework of the
Airborne Antarctic Ozone Experiment (AAOE, TUCK
et al., 1989), aircraft measurements in the stratosphere
provided even clearer evidence that the Antarctic ozone
hole is indeed caused by a strongly perturbed chlorine
chemistry. These first measurements were subsequently
confirmed by a great number of further measurements
in the Antarctic from a variety of field campaigns and
remote sensing instruments. Likewise, a perturbed chlo-
rine chemistry was demonstrated by data obtained in the
Arctic stratosphere in a number of measurement cam-
paigns. In both polar regions, in winter, strongly en-
hanced ClO mixing ratios were detected from balloon,
aircraft, and remote sensing experiments (e.g., ANDER-
SON et al., 1991; WATERS et al., 1993; WOYKE et al.,
1999; VOGEL et al., 2003; vON HOBE et al., 2006), en-
hanced OCIO, (e.g., SCHILLER et al., 1990; BRANDT-
JEN et al., 1994; KREHER et al., 1996; WAGNER et al.,
2001), and strongly depleted HCl and CIONO,, (e.g.,
WEBSTER et al., 1993; OELHAF et al., 1994; MULLER
et al., 1996; TILMES et al., 2004; SANTEE et al., 2008).

5.3.2 Heterogeneous reactions and polar
stratospheric clouds

SOLOMON et al. (1986) first proposed that the reaction
of HCI and CIONO; on the surfaces of polar strato-
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Figure 11: The measurements of nitric acid hydrates by KUSTER
and KREMANN (1904). Top panel shows the reported freezing tem-
peratures of HyO/HNO3 mixtures, bottom panel the apparatus used
by KUSTER and KREMANN. Note that in the top panel KUSTER and
KREMANN’s measurements are shown as plus signs together with
earlier measurements (shown as asterisks and referred to as “von
Erdmann angegebene Schmelzpunkte”) that they refute as unreliable
in their paper. (Copyright Wiley-VCH Verlag GmbH & Co. KGaA,
reproduced with permission).

spheric clouds (PSCs) plays an important role in bring-
ing about the perturbed polar chlorine chemistry. In
the same year, TOON et al. (1986) and CRUTZEN and
ARNOLD (1986) suggested that PSCs could consist of
crystalline particles consisting of nitric acid trihydrate
(NAT) rather than only of ice as was previously thought.
In both studies, the analysis had to be based on extrap-
olation over more than 50 K down to stratospheric tem-
peratures due to the lack of experimental data. Based on
this information, TOON et al. (1986) and CRUTZEN and
ARNOLD (1986) suggested that NAT-containing PSC
should be formed well above the condensation tem-
perature of pure water vapour. Two years later, HAN-
SON and MAUERSBERGER (1988) reported the results
of the first modern laboratory measurements of nitric
acid hydrates. Interestingly, the last laboratory study on
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Table 2: Key Heterogeneous Reactions

HCl1+CIONO, — HNO;3 +Cl,
N,Os+H,O — 2 x HNO3
CIONO, +H,O0 —  HNOj3+HOCI
HC1+ HOCI — H,O0+Cl,
BrONO, +H,0 — HNOj3+HOBr
HCI+BrONO, — HNO3 + BrCl
HCI1+ HOBr — H;0 + BrCl

NAT at low temperatures prior to their work dates from
1904 and is described in a paper in German (KUSTER
and KREMANN, 1904). The freezing temperatures of
H,O/HNOj3 mixtures measured by KUSTER and KRE-
MANN (1904) and the experimental set-up they used is
shown in Fig. 11. It was as late as 2000 before NAT
particles were detected in situ by a balloon-borne mass
spectrometer in the Arctic (VOIGT et al., 2000).

The characteristic radii of type I PSCs were origi-
nally assumed to be 0.5-3.0 um (e.g., HOFMANN et al.,
1989; WMO, 1990). However, from January to March
2000 large NAT particles with radii of 20—40 um (also
referred to as “NAT rocks”) were detected by in situ
measurements on a high-altitude research aircraft (FA-
HEY et al., 2001). This observation demonstrated that
NAT particles can reach sedimentation velocities large
enough to allow HNOj3 to be removed from the po-
lar stratosphere thereby causing “denitrification” of the
polar stratosphere. There are also liquid PSC particles,
super-cooled ternary solutions (STS) consisting of liquid
H,;O/HNO3/H;SOy4 aerosol particles, and, when temper-
atures drop several degrees Kelvin below the frost point,
ice crystals may form (e.g., CARSLAW et al., 1997; PE-
TER, 1997; SOLOMON, 1999).

The heteorogeneous reaction of HCI and CIONO,
(SOLOMON et al., 1986)

R8: HCI+CIONO, — Cl; +HNOsg,

converts the relatively stable chlorine reservoir species
HCI and CIONO; into photolabile Cl,, thereby greatly
perturbing gas phase chlorine partitioning. It is re-
markable that only one year before the suggestion by
SOLOMON et al. (1996), it was stated in the Journal of
Physical Chemistry that “...it is not likely for such a
heterogeneous process [reaction R8] to contribute sig-
nificantly to the release of Cl from HCI” (MOLINA
et al., 1985). This view was, however, corrected soon
(MOLINA et al., 1987). Later PRATHER (1992) and
CRUTZEN et al. (1992) argued that the heterogeneous
reaction

R9: HCI+HOClI — H,O0+Cl,

is an important reaction channel for the activation of HCIl
and thus for a complete activation of the stratospheric
chlorine reservoir.

Today, a variety of heterogeneous reactions of im-
portance to stratospheric chemistry are known (e.g.,
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SANDER et al., 2006), the most important are listed in
Table 2. Originally, it was thought that stratospheric het-
erogeneous reactions in the polar regions occur only on
solid surfaces (e.g., PETER, 1997). Heterogeneous reac-
tions on the ubiquitous stratospheric sulphate aerosol,
which is noncrystalline, were known to be impor-
tant for mid-latitude chemistry (e.g., HOFMANN and
SOLOMON, 1989; BRASSEUR et al., 1990), but were not
thought to be of great relevance for polar chlorine acti-
vation. WOLFF and MULVANEY (1991) and COX et al.
(1994) first pointed out the potential importance of het-
erogeneous reactions on noncrystalline aerosol particles.
Today, there is information from laboratory studies on
the reaction probabilities of stratospheric species of a va-
riety of solid and liquid aerosol particles. These reaction
probabilities are frequently strongly temperature depen-
dent (being relevant only at low temperatures), with the
important exception of the reaction of N,Os with H,O
(Table 2), which is important at all temperatures occur-
ring in the stratosphere.

As recently as 2001, a completely new PSC mecha-
nism was proposed (LU and SANCHE, 2001); it was sug-
gested that the heterogeneous decomposition of CFCs
on the surface of PSC particles by dissociative elec-
tron attachment (DEA) would constitute “a new path-
way contributing to the formation of the ozone hole”.
This issue is still debated in the literature today. For
example WANG et al. (2008) assert that DEA-induced
heterogeneous decomposition of CFCs “has been pro-
posed to be the key mechanism for the formation of the
Earth’s ozone hole”. However, there is now a number
of studies that provide strong arguments, based both on
model simulations and on observations, that heteroge-
neous reactions of CFC on PSC cannot be of substan-
tial importance to polar ozone chemistry (HARRIS et al.,
2002; PATRA and SANTHANAM, 2002; MULLER, 2003,
2008).

Recently, in presentations at the AGU fall meeting in
San Francisco in 2005 and at the EGU general assem-
bly in Vienna in 2006, Katja Drdla put forward the con-
cept that PSC are not necessary for polar chlorine activa-
tion, but that instead liquid binary H,SO4/H,O sulphate
aerosol particles dominate activation. This is an issue of
current scientific research (see also TILMES et al., 2007,
2008a; FECK et al., 2008).

5.3.3 Catalytic ozone loss cycles for polar winter
conditions

A problem with the chemical theories put forward as an
explanation of the Antarctic ozone hole soon after its
discovery was that in the polar regions the conventional
ozone loss cycles (C1) are not effective in winter and
early spring because of the low sun in winter high lati-
tudes and the resulting lack of atomic oxygen (O). For
example, HAYMAN et al. (1986) stated: “This restricts
photochemical reactions to those molecules which ab-
sorb in the near U.V. and in the visible regions of the so-
lar spectrum giving rather low concentrations of O(*P),
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a key species in most of the important catalytic cy-
cles presently included in the chemical models.” There-
fore, although the activation of chlorine through hetero-
geneous reactions could explain observations of a per-
turbed stratospheric chlorine chemistry, new ozone loss
cycles were required for a complete understanding of
chemical ozone loss.

Today it is known that in the polar stratosphere two
different catalytic cycles are responsible for the major
fraction of chemical ozone loss; the efficiency of both
cycles depends on the concentration of ClO. The most
important cycle was originally proposed by MOLINA
and MOLINA (1987):

R10: ClIO+CIO+M — CILhO,+M
R11: Cl,0,+hvy — Cl14+CIOO
(A <400nm)
R12: ClOO+M — Cl14+0,+M
R13: 2x(C1+03 — ClO+0,)
C2: Net: 203 — 30,

where hv denotes a photon and M a collision partner (N,
or O;). The second cycle depends, in addition, on BrO
concentrations and thus on the stratospheric bromine
loading (TUNG et al., 1986; MCELROY et al., 1986):

R14: ClO+BrO — CI+Br+0;
R13: Cl+03; — CIO+0,
R15: Br+0; — BrO+0,

C3: Net: 203 — 30,

A further contribution to polar ozone destruction comes
from a cycle involving HOCI; this cycle was first pro-
posed by SOLOMON et al. (1986):

R16: HO, +ClIO — HOCI+ 0,

R17: HOCl+hv — OH+Cl

R13: Cl+0; — CIO+0,

R18: OH+03 — HO;+0,
C4. Net: 203 — 30,

The net result of cycles 2, 3, and 4 is the destruction of
two ozone molecules. Like cycle C1, cycles C2, C3, and
C4 are catalytic, and chlorine (Cl) and bromine (Br) are
not lost in the reaction cycle. In the stratosphere, chlo-
rine is much more abundant than bromine (~160 times).
Nonetheless, cycle C3 is important as bromine atoms are
about 60 times more efficient than chlorine atoms in de-
stroying ozone chemically (CHIPPERFIELD and PYLE,
1998; WMO, 2007). Clearly, sunlight is necessary to
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maintain a large CIO abundance through the photolysis
of Cl,0;. (And also to photolyse the Cl, formed in the
heterogeneous reactions R8 and R9 to form CI). How-
ever, in contrast to the shortwave radiation (wavelengths
less than 242 nm) required to produce atomic oxygen
(the species that is essential for cycle C1), the photolysis
of Cl,O; proceeds at rather long wavelengths. Radiation
at long wavelengths prevails under conditions of low sun
at the poles in spring so that the Cl,O; is photolysed.

The kinetic parameters of the reactions constitut-
ing cycle C2 still remain a matter of scientific debate
(e.g., POPE et al., 2007; vON HOBE et al., 2007; VON
HOBE, 2007), so that it cannot be claimed that a full
quantitative understanding of polar ozone loss has been
reached. Nonetheless, there is consensus that cycles C2
and C3 account for the majority of the ozone loss ob-
served in late winter-spring in the polar stratosphere
(e.g., IPCC/TEAP, 2005; WMO, 2007). Under cold
polar vortex conditions, with high CIO abundances, the
rate of ozone destruction is reported to reach substan-
tial values of up to 2-3% per day (e.g., MCKENNA
et al., 1990; SALAWITCH et al., 1990; REX et al., 1997,
BECKER et al., 1998, 2000). Outside of the polar re-
gions, both cycles are of only minor importance; C2 is
negligible because it is only effective at the low tem-
peratures in polar winter and spring (because Cl,O5 is
thermally unstable at typical stratospheric temperatures)
and C3 because of the much lower ClO concentrations
in extrapolar regions.

Furthermore, an important aspect of all early theories
of ozone hole chemistry was that they required low con-
centrations of NO and NO, (CRUTZEN and ARNOLD,
1986; MCELROY et al., 1986; HAYMAN et al., 1986;
SOLOMON et al., 1986). Today it is known that the het-
erogeneous reactions R8, R9, and related reactions (Ta-
ble 2) suppress the concentration of NO, by forming
HNOs;. If NO; concentrations were not suppressed, the
released ClO would readily reform the CIONO, reser-
voir (e.g., MULLER et al.,, 1994; DOUGLASS et al.,
1995).

5.4 The future of the stratospheric ozone layer

As the halogen source gases that cause ozone depletion
decrease in the coming decades under the provisions of
the Montreal Protocol and its adjustments and amend-
ments, a recovery of the stratospheric ozone layer is
expected. However, the atmosphere will not return to
the same conditions that prevailed before the onset of
significant anthropogenic ozone loss; global change, in
principle, can either accelerate or delay ozone recovery
(IPCC/TEAP, 2005; WMO, 2007).

Increases in carbon dioxide (CO,) in the atmosphere
are expected to cool the stratosphere. Because with
lower temperature, the rates of the gas-phase ozone de-
struction cycles decrease, a cooling of the stratosphere
leads to an increase of ozone concentrations above about
25km (IPCC/TEAP, 2005). The fact that increasing
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Figure 12: Prediction of global ozone recovery. Observed values
of midlatitude total ozone have decreased from the early 1980s. As
halogen source gas concentrations will decrease in the 215 century,
ozone values are expected to recover by increasing towards pre-
1980 values. Results from numerical models accounting for changes
in halogen source gases and other atmospheric parameters show
that recovery to pre-1980 values is expected in midlatitudes before
2050. The range of model projections stems from the use of several
different models of the future atmosphere. (Figure adapted from
WMO, 2007).

CO; in the stratosphere leads to an ozone enhance-
ment in the upper stratosphere was first pointed out by
GROVES et al. (1978) and GROVES and TucCK (1979).
In the polar regions, a cooling of the stratosphere, if it
were to occur because of increasing CO,, would en-
hance the formation of polar stratospheric clouds and
thus would lead to stronger polar ozone depletion. This
effect is expected to be most pronounced in the Arc-
tic (e.g., AUSTIN et al., 1992; SHINDELL et al., 1998;
IPCC/TEAP, 2005).

Numerical models are used to assess past changes
in the global ozone distribution and to project future
changes (e.g., EYRING et al., 2007). Figure 12 shows to-
tal ozone averaged between latitude 60°N and 60°S be-
tween 1980 and 2050 based on model projections and,
for the period up to 2005, on observations. The model
results indicate that for 60°N—-60°S total ozone the first
two stages of ozone recovery (a slowing of the decline
and a turnaround, WMO, 2007) will be reached before
2020. Full recovery, with ozone reaching or exceeding
pre-1980 values, is expected to occur by the middle of
the 21% century.

Over the Antarctic, models predict that column ozone
will increase in spring between 2000 and 2020 by about
5 to 10% (WMO, 2007). In the Antarctic, ozone loss
is saturated, which means all the ozone in the lower
stratosphere is chemically destroyed (e.g., WMO, 2007,
TILMES et al., 2006a). For such conditions, ozone loss
is expected to remain constant for some time even when
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stratospheric halogen levels decline. Moreover, the de-
cline in halogen levels will occur later over the Antarc-
tic than at lower latitudes because air in the Antarctic
stratosphere is older than air found at lower latitudes. As
a result, reductions in halogen loading to pre-1980 val-
ues will occur 10-15 years later in the Antarctic strato-
sphere than in the midlatitude stratosphere (NEWMAN
et al., 2007).

For the Arctic, most models currently predict that
springtime column ozone in 2020 will be 0-10% above
2000 levels and that ozone turnaround in the Arctic will
occur before 2020 (WMO, 2007). For Arctic conditions,
there is a large interannual variability in the model pro-
jections that does not allow a year to be identified when
the ozone turnaround due to a decreasing halogen bur-
den will occur. Model predictions show Arctic ozone
increasing to pre-1980 values before 2050. Further, in
these predictions, Arctic ozone increases to 1980 val-
ues before Antarctic ozone does. However, the strong
natural year-to-year variability in the Arctic makes it
difficult to obtain accurate model simulations for this
region, in particular accurate simulations of polar tem-
peratures and of transport barriers (SANKEY and SHEP-
HERD, 2003; TILMES et al., 2007). A further delay in the
recovery of polar ozone would occur if the polar lower
stratosphere in winter and spring was to cool as a conse-
quence of climate change.

6 Discussion

Ozone is one of the most important atmospheric trace
substances and changes in atmospheric ozone have im-
portant consequences for plants, animals, and humans.
Nonetheless, the scientific understanding of atmospheric
ozone was historically often rather limited and did not
allow reliable assessments of its impact on nature and
mankind to be made. For example, it was only under-
stood as late as the early 1950s that high ozone concen-
trations in the troposphere (today referred to as “photo-
chemical smog”) are caused by pollution and are detri-
mental to human health, while, for instance, in 1946 the
opinion was still put forward in scientific papers (RE-
GENER, 1946) that the presence of ozone was an indica-
tion of good air.

Further, the fact that the discovery of the Antarc-
tic ozone hole in 1985 came as a complete surprise to
the scientific community speaks volumes. TUCK (1986)
stated: “These experimental findings are a major sur-
prise, and are taxing the theoretical ingenuity of strato-
spheric researchers”. Today, it is well established that
the ozone hole is caused by anthropogenic emissions of
chlorofluorocarbons; it is one of the most eminent exam-
ples of the effect of humans on the global environment.
The growing effect of humans on the environment has
led CRUTZEN (2002) to suggest assigning the term “An-
thropocene” to the present geological epoch; a sugges-
tion that is becoming increasingly accepted in the geo-
logical literature (e.g., ZALASIEWICZ et al., 2008).
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Figure 13: A timeline of important milestones in ozone research in
comparison to discoveries in physics.

It is interesting to compare the time of important mile-
stones in stratospheric science with that of fundamental
discoveries in physics (Figure 13). It becomes obvious
that before the role of ozone as an UV absorber was
understood, the Maxwell equations and Boltzmann’s
concept of entropy were established in physics. The
first column measurements of ozone in the atmosphere
were made at a time when the electron and the pro-
ton had been discovered and Rutherford’s model of the
atom had been developed. At a time, in 1929, when the
height of the ozone layer was grossly overestimated, the
wave-particle duality of quantum mechanics had already
been established. The prediction of the meson preceeded
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the understanding of the importance of HOx-catalysed
ozone loss in the stratosphere and the formulation of the
“standard model”, unifying the strong, weak, and elec-
tromagnetic force, preceeded the discovery that NOy-
and ClOy-catalysed ozone loss cycles would play an im-
portant role in stratospheric chemical ozone loss cycles.

Further, in the mid-eighties, when the first chemical
theories emerged that proved successful in explaining
the observation of an Antarctic ozone hole, the theory
of black hole radiation had been formulated and the W
and Z bosons had already been detected. Giant magne-
toresistance was discovered in the year when the first
modern laboratory investigations of nitric acid trihydrate
(NAT) were conducted, more than eighty years after the
last scientific study on NAT at low temperatures has
been published (KUSTER and KREMANN, 1904).

In general, in the history of ozone research there are
many examples where progress was hindered by the lack
of sufficient and sufficiently accurate data. This is true
of the ozone hole (Section 5.1), the understanding of
the chemistry of stratospheric ozone (Section 3), and
the vertical ozone profile (Section 2). In the case of the
ozone hole, even fundamental processes were unknown
at the time of its discovery, namely the microphysics
of polar stratospheric clouds and the heterogeneous and
gas-phase chemistry at low temperature. Moreover, false
views persisted in ozone research for years before they
were eventually discarded because of new observations;
examples are the altitude of the ozone layer, the notion
that the presence of ozone was an indication of good,
healthy air, and the firm belief that heterogeneous reac-
tions were unimportant in the stratosphere.

Throughout the history of ozone research, progress
was made by combining new experimental results, both
from laboratory and from atmospheric measurements, to
build new theories and new numerical models of the pro-
cesses occurring in the atmosphere. In recent decades,
the complexity of these models has greatly increased
with time. Both the development of these models and
scientific work based on model results means that the
results of the numerical calculations have to be continu-
ously compared with atmospheric observations.

Finally, part of the history of ozone research since the
1970s is the history of research into the human impact on
the ozone layer. The dynamics of the development from
scientific insight, via the scientific assessment process,
to the impact on public policy that is evident from recent
decades of ozone research (WMO, 2007; CRUTZEN and
OPPENHEIMER, 2008) is a good prototype for the even
more complex process of developing a public policy to
protect the Earth’s climate.

Future scientific work on the stratospheric ozone layer
will address questions including the way in which global
change will affect ozone depletion, when a substan-
tial improvement of Antarctic ozone depletion can be
expected, whether there could be strong Arctic ozone
losses and how possible changes in the stratospheric
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concentrations of methane, water vapour, and nitrous
oxide might affect stratospheric ozone (SOLOMON,
2004). And, undoubtedly, further questions will arise
which we do not foresee today. Clearly, there is a rich
field of research in order to answer these questions.
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