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Abstract: 

Large spallation sources are intended to be constructed in Europe (EURISOL: nuclear 

physics research facility and ESS: European Spallation Source). These facilities would 

accumulate more than 20 metric tons of irradiated mercury in the target, which has to be 

treated as highly radioactive and chemo-toxic waste. Liquid waste cannot be tolerated in 

European repositories. As part of this work on safety/decommissioning of high-power 

spallation sources, our investigations were focused mainly to study experimentally and 

theoretically the solidification of liquid mercury waste (selection of an adequate solid mercury 

form and of an immobilization matrix, chemical engineering process studies on 

solidification/stabilization and on encapsulating in a matrix). Based on experimental results 

and supported by literature Hg-chalcogens (HgS, HgSe) will be more stable in repositories 

than amalgams. Our irradiation experimental studies on mercury waste revealed that 

mercury sulfide is a reasonable solid for disposal and shows larger stability in possible 

accidents with water ingress in a repository. Additionally immobilization of mercury in a 

cement matrix and polysiloxane matrix were tested. HgS formation from liquid target mercury 

by a wet process is identified as a suitable formation procedure. These investigations reveal 

that an almost 99.9% elementary Hg conversion can be achieved and that wet process can 

be reasonably handled under hot cell conditions. 

Zusammenfassung:

Hochleistungs-Spallationsquellen sollen mittelfristig in Europa errichtet werden (EURISOL für 

die kernphysikalische Forschung und ESS für die Materialforschung). Nach aktuellem 

Planungsstand werden die Targets dieser Spallationsquellen etwa 20 t bestrahltes 

Quecksilber enthalten, welches als hochradioaktiver und chemisch toxischer Abfall verfestigt 

und endgelagert werden muss: Flüssiger Abfall ist in Europäischen Endlagern nicht zulässig. 

Als Teil eines Arbeitspakets zu Sicherheit/Genehmigung von Hochleistungs-

Spallationsquellen befasst sich diese Arbeit schwerpunktmässig experimentell und 

theoretisch mit der Verfestigung von flüssigem radioaktivem Quecksilber-Abfall. Dazu 

gehören die Auswahl einer geeigneten festen Quecksilberverbindung, eines geeigneten 

Matrixmaterials und chemisch-technische Untersuchungen zur Verfestigung und Einbindung 

in die Matrix. Aufgrund eigener Untersuchungen und gestützt auf Literaturresultate wurde 

gefunden, dass Chalcogenide unter Endlagerbedingungen die höchste Stabilität aufweisen. 
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Das gilt besonders für störfall Bedingungen entsprechend einem Wassereinbruch unter 

Berücksichtigung von Radiolyse. Daher wird HgS für die Endlagerung bevorzugt. Von 

diversen möglichen Alternativen zur HgS-Darstellung aus Hg wurde die Auflösung in HNO3

und Fällung von HgS mit Ammoniumsulfid ausgewählt. Dieser Prozess führt zu einer 

praktisch vollständigen Umwandlung und lässt sich relativ gut unter ein Arbeits Bedingungen 

in einer heissen Zelle ausführen. Als Matrixmaterialien für das Abfallgebinde wurden Zement 

und Polysiloxan getestet
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Abbreviations 

ADA. Inc   ADA Technologies, Inc. 

ANDRA  The French National Radioactive Waste Management Agency is 

responsible for the long-term management of all radioactive waste in 

France

BfS Das Bundesamt für Strahlenschutz (The Federal Office for Radiation 

Protection in Germany) 

BFS Blast Furnace Slag 

CBPC   Chemical Bonded phosphate Ceramic 

CSF    Ceramic Silicon Foam 

DBE Die Deutsche Gesellschaft zum Bau und Betrieb von Endlagern für 

Abfallstoffe mbH 

DOE    Department of energy (USA) 

EPA    Environmental Protection Agency (USA) 

ESS    European Spallation Source, Lund, Sweden 

EURISOL   EURopean Isotope Separation On-Line (Radioactive Ion Beam) 

FRJ- II   Forschungsreaktor Jülich II 

FRM-II   Forschungsreaktor München II 
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HAW    Higher Active waste 

Hg°    Elemental mercury  

HLW    High Level Waste 
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IAEA    International Atomic Energy Agency 

ILL    Institute Laue-Langevin, Grenoble, France 

INEEL   Idaho National Engineering and Environmental Laboratory 

IPNS Intense Pulsed Neutron Source (IPNS), Argonne National laboratory 

ISIS  Pulsed neutron and muon source at the Rutherford Appleton 

Laboratory in Oxfordshire 

JSNS Japanese Spallation Neutron Source 

LBE    Lead Bismuth Eutectic 

LILW    Low and Intermediate Level waste 

MEGAPIE   Megawatt Pilot Experimental facility at PSI, Villigen, Switzerland 

MTR    Materials Testing Reactor 

MWb    Megawatt beam power 

MWFA   Mixed Waste Focus Area 

NAGRA  Nationale Genossenschaft für die Lagerung Radioaktiver Abfälle 

(Swiss National Cooperative for the Disposal of Radioactive Waste)  

NDA  Nuclear Decommissioning Authority (UK) 

NFS    National Fuel Service Inc. 

NIREX  Nuclear Industry Radioactive Waste Executive (United Kingdom body 
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intermediate-level and low-level radioactive waste)

NUMO   Nuclear Waste Management Organization of Japan (Responsible for 

final disposal and the recycling of nuclear fuel and high level 
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SKB Svensk Kärnbränslehantering AB (SKB, Swedish Nuclear Fuel and 
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1. Introduction and objectives 

In the present world, there exist two kinds of neutron sources: fission reactors and 

accelerator driven spallation sources (ADS) where neutrons are produced by the interaction 

of protons in the energy range of GeV with a heavy material target. Considering the history, 

the relative merits of using pulsed accelerator spallation sources and nuclear reactors have 

been debated. Recently, the research for energy generation and waste transmutation by 

using high energy proton accelerator driven subcritical nuclear system (ADS) has gained 

considerable attention. The spallation neutron targets have very important link for 

transmutation and other applications too [1]. A consensus from the neutron scattering 

experiments community has finally emerged endorsing pulsed spallation sources as the 

preferred option for the future [2, 3]. 

These high power targets are the heart of many applications of spallation to science and 

technology, especially as neutron sources and neutrino factories [4]. With many projects 

aiming to utilize proton beams in the multi megawatt power range, solid targets, in particular 

stationary ones become increasingly difficult to cool. Liquid metal targets are thus often the 

concept of choice. An advantage of liquid target lies in the fact that the heat removal is 

easier, because no direct cooling is required. Liquid mercury is favored by most concepts, 

but (liquid) lead bismuth-eutectic (LBE) and lead based liquid targets are in discussion too. 

LBE (PbBi) is the preferred target material in systems where neutron absorption must be 

minimized in order to obtain a high time average neutron flux or where, as in a power 

generating systems, a high operating temperature is desirable. Since both is not the case in 

the upcoming class of pulsed spallation neutron sources [5], these facilities prefer mercury as 

a target material, mainly because it does not require auxiliary heating, has a higher density 

than PbBi and does not produce alpha-active isotopes. 

So elemental mercury (Hg°) will be used as high pow er spallation target material, e.g. within 

of the nuclear physics research programme EURISOL a 4MWb (Megawatts beam powers) 

project or in advanced spallation neutron sources for materials research like ESS-5MWb,

SNS-2MWb, JSNS-1MWb, where a high energetic proton beam (GeV range) generates 

neutrons by spallation interactions with mercury. A final decision about the European projects 

(EURISOL and ESS) is still in discussions. Coming to explain the basic terms associated 

with these projects, spallation sources consist mainly of an accelerator (1-10MWb beam 

power, 1-2 GeV proton energy), in SNS [6] and JSNS a storage ring for short pulse proton 
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beam generation, and one or more target stations where neutrons are generated by 

spallation. For the planned EURISOL facility (4-5MWb), mercury as main power proton target 

to generate neurons will be used. It will not be exchanged during the facility operation time of 

(5000 hr/y), e.g. about 40 years. After closure the facility, there remains at maximum 2 m3,

i.e. about that 30 tons, mercury contaminated with radioactive nuclides (List of nuclides and 

activity levels are shown in Table-2) [7]. Detailed calculations on inventories of irradiated Hg-

targets were performed for SNS, ESS, EURISOL and JSNS facilities [6, 8]. Also the chemical 

behavior of the target hull for liquid mercury is of importance with respect to the safe 

operation and post irradiation handling of the target systems and materials as well as for an 

assessment of the potential risk under various accident scenarios [7]. The spent mercury is 

thereby considered as high level radioactive waste and must be treated and disposed off in a 

safe way. Present nuclear facilities indicate that costs for these waste management issues 

are very high. Special attention must be paid to treatment and disposal of the irradiated 

mercury target due to its potential chemical (bio-toxic) as well as radiological hazards in a 

repository. Therefore, this radioactive waste must be disposed off in the well-designed 

repository in order to be safely isolated from the biosphere for a sufficient time span until 

radiotoxic nuclides have decayed. A repository may be constructed near the surface, 

typically for the emplacement of short lived, low and intermediate level waste. Concentrating 

and confining this radioactive waste and isolating it are the accepted strategy. Radioactive 

waste confinement can be provided by a number of methods and depends on waste product 

packaging, back fill materials and host geology. For long lived and high-level waste, a 

repository with engineered and multiple barriers at depths up to several hundred meters in 

geological stable formation is preferred. Germany, Switzerland and some other European 

countries have decided to dispose all kinds of radioactive waste in a deep geological 

repository. 

Because the EURISOL facility site is not yet identified and thus the regulations of a specific 

host country can not be applied, it was decided to use in this study the waste management 

methodology recommended by the European and IAEA regulations [9]. This approach is 

based on the concept of clearance. Clearance is defined as the removal of the radioactive 

materials or radioactive objects within the authorized practices from any further regulatory 

control by the regulatory body. The classification system proposed by the IAEA places the 

radioactive waste into one of following three classes [10]: 

1. HLW:  High Level Wastes

Highly radioactive liquid (> 10 14 Bq/m3)

Heat generating waste (> 2 kW m-3)
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2. LILW:  Low and Intermediate Level Wastes (< 10 14 Bq/m3) divided in: 

2.1 LILW-LL:  Low and Intermediate Level Wastes -Long Lived

 Half life > 30 years 

 Long lived alpha emitters: > 400 Bq g-1 average 

2.2 LILW-SL: Low and Intermediate Level Wastes -Short Lived

Half life < 30 years 

3. EW:   Exempted Wastes 

Disposal of mercury in a liquid form is not acceptable in Europe. Different types of treatment 

are possible to transform the mercury to a solid waste form. Whereas non Hg-nuclides can 

be separated, the separation of activated Hg-nuclides from mercury target is virtually 

impossible. 194Hg (t1/2 = 512 y) and its short-lived daughter nuclide 194Au (t1/2 = 38.02 hr) are 

an important nuclides because of their emitting high energetic γ-radiation. For that, even after 

separation of non - Hg nuclides the irradiated mercury has to be considered as high-level 

radioactive waste. As mentioned before, besides of the radiotoxic impact of mercury, its 

pronounced chemical or bio-toxicity has to be taken into account. In this thesis, the 

demonstration of a complete disposal strategy for proton-irradiated mercury is the main 

objective. This work was performed as part of the EURISOL project of 6th European 

framework program (see also www.eurisol.org) [11]. 

Present work is divided in order to solve this main objective as follows: 

� R&D on behavior of mercury compounds in repository conditions 

� Selection of a solid mercury compound and an embedding matrix formation, suitable 

for safe disposal of proton irradiated mercury 

� A detailed chemical engineering study on the mercury solidification and matrix 

embedding processes 

� Design, construction and application of experimental setup solidification with main 

the point effort to be workable in hot cell laboratories
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2. Literature review 

2.1. Basic terminology 

There are two distinct approaches for neutron production: spallation sources, in which 

accelerated protons smash or “spall” neutrons out of a heavy metal target, and nuclear 

fission reactors. Public concern over the present operational safety of nuclear reactors, 

together with problems associated with long-term management of radioactive waste, has 

made construction of new reactors increasingly difficult. Further, the neutron generation by 

fission system has reached its maximum capacity with ILL (Institute Laue-Langevin) reactor 

for thermo hydraulic reasons. Considerable efforts have thus been made to investigate the 

use of accelerator-based systems as an alternative in almost all areas traditionally covered 

by research reactors. In particular, these are: 

� Material structure research by neutron backscattering method 

� Material irradiation studies 

� Isotope production 

� Transmutation of radioactive waste 

A comparison between reactors, spallation sources, and the recently proposed but still 

far-sighted inertial fusion source in figure 1 provides a short overview of future neutron 

research based applications demand. 

Figure 1: Neutron source flux facilities versus year of operation start [12]* 
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* Shown in figure 1 “Effective flux” values are notional equivalent reactor core fluxes that provide an accepted 
approximate comparison between the different types of sources for many classes of experiments. The figure.1 
includes the existing Intense Pulsed Neutron Source (IPNS) at Argonne, ISIS -pulsed neutron and muon source 
located at the UK Rutherford Appleton Laboratory in Oxford, the new high-flux reactor FRM-II in Munich, the 
reactor at Institute Laue-Langevin (ILL) in France and spallation neutron source (SNS) in USA, which started to 
operate 2006.

Spallation sources generally employ a high intensity proton beam with high energy of 

typically 1-2 GeV, although beam energies up to 10 GeV are proposed too. Key element is 

an efficient target system to produce the high neutron fluxes. Besides being a research 

instrument with neutrons, spallation neutrons can also be used to transmute the highly-

radiotoxic nuclei which are present in nuclear waste into stable or very short lived isotopes 

that can be disposed easier. The various uses impose, in detail, different requirement for 

targets. The main challenge for the target designer is to optimize the neutron production 

within the practical engineering constraints and taking into account the radiation damage on 

the target (if solid) structural materials and target (if liquid) hull damage by pulses. The above 

figure 1 illustrates how currently available neutron sources are reaching the limits of existing 

technologies. 

2.1.1. Spallation and Fission 

Neutrons have been for many years an ideal probe for understanding the microscopic 

structure of the matter and its behavior, in particular for technically important materials like 

polymers, metals and super-conductors. Fission, the first method for neutron production, is 

efficiently induced by thermal neutron capture in U-235 or Pu-239 and results in the prompt 

evaporation of 2-3 neutrons from the excited heavy nucleus. Fission based sources produce 

also a small fraction of delayed neutrons caused by one or more steps of β-decay. A number 

of important differences between irradiation facilities with a fission source or an accelerator-

based spallation source should be noted. The spallation process is illustrated in the figure 2. 

Protons are accelerated and injected into a target by a particle accelerator and make multiple 

collisions with nucleons in a nucleus causing spallation (an intra-nuclear cascade). The high-

energy particles such as neutrons and protons emitted during this process of collision with 

other nuclei, causing similar reactions (inter-nuclear cascade). We can see the incoming 

proton from the left striking a nucleus, which includes both spallation of the nucleus into 

smaller products and the evaporation of neutrons from these new atomic products. In this 

process, a minimum of ten fast neutrons are emitted for each proton. 
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Figure 2: Schematic representation of spallation reaction 

2.1.2. Multi megawatt spallation sources and target configurations

For any target, the dependence of the field of neutrons per proton as a function of beam 

energy (E [GeV]) and target material (atomic mass number A), is approximately given by 

equations 1&2 : [13] 

Yield      =   0.1 (A+20) (E-0.12)    (A<238)             (1) 

    =    50 (E-0.12)      (Fissionable targets)             (2)

The desirable properties of a spallation target materials are: 

� High atomic number  

� High density  

� High boiling point (to reduce the target volatilization) 

� Chemically inert, low corrosion 

� Low neutron absorption cross section 

� Resistance to radiation damage (for solids only) 



7

The most important properties are the high atomic number and the high density to maximize 

the neutron production. The usual materials considered are tungsten, molybdenum and 

tantalum (and their alloys) for solid targets. Liquid metals in consideration are lead, 

lead/bismuth eutectic (LBE) and mercury. Liquid metal targets have several advantages: As 

irradiation damage does not occur much, so lifetime of a facility should last long. Thus 

minimizes the waste disposal problem. Additionally the mean density of the liquid metal 

target is not diluted by a coolant because the target itself acts as the coolant. They do not 

suffer from radiation damage. However in short pulse operation, shock waves are a major 

problem in liquid metal targets. On the other hand, the crystal lattice of solid targets serves 

as an activity retention barrier. But there are limited data available for irradiation effects on 

solid materials in a high intensity proton beam [14]. 

Liquid PbBi (LBE) (lead bismuth eutectic), based project called MEGAPIE (MEGAwatt PIlot 

Experiment) [15], is supported by a large international collaboration interested in the 

development of liquid metal targets for accelerated driven systems (ADS). It is expected to 

increase its neutron flux by another 40-50% mainly due to the higher average density 

compared to solid targets. The reduced amount of structural material and the absence of 

water in the beam are additional advantages. That is the reason why it is the preferred target 

material in systems where neutron absorption must be minimized in order to obtain a high 

average neutron flux over the time or where, as in power generating systems, a high 

operating temperature is desired. Since it is not intended to drain the liquid metal from 

container during extended shutdown periods, the PbBi must be kept in the liquid state all 

times because it is known to expand after solidification, which damages the target structures. 

A separate heating is thus required. Uncertainty in the effects of radiation damage and 

transient thermal stress on solid targets has resulted in mercury target being chosen for ESS 

and SNS. Currently EURISOL is designing their facility with a target similar to ESS. 

Mercury has the advantage that no heating system is required to keep it liquid. As in all liquid 

targets, the retention of volatile radioactivity is small. This creates problems in the case of 

enclosure failure and may have problems of volatilization (because of low boiling points) and 

disposal as solid. Liquid target (mercury) compared to a solid target (tungsten), it seems to 

be more advantages of liquid target (mercury) for cooling reasons. The operation power of 

solid targets at 5 MWb questions the whole system. This is respected particularly for the 

safety and licensing. But disposal problems are more extensive to be solved in case of liquid 

mercury target than solid target. On that basis, many preliminary investigations are carried 

out continuously at different facilities. 
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A mercury target can handle increasing power, but pulses are a problem. Preliminary 

experiment studies at SNS confirm that when the pulse of the beam hits the mercury, 

bubbles are created which lead to cavitations [16]. When these occur near the surface of the 

vessel, they can collapse, gouge into the container material [17], and erode its surface. 

Damages caused by cavitations erosion decrease the lifetime of the target container material 

and may require frequent exchanges of the container. This becomes more of a concern as 

operation of the SNS and JSNS compared to long pulse spallation facilities (EURISOL- 

5MWb, ESS- 5MWb,). The concept was first proposed for the 5 MWb target of the European 

Spallation Source (ESS) and was then adopted and slightly modified for the USA-SNS and 

the Japanese JSNS projects. 

All spallation concepts are based on horizontal beam injection and laterally extended ("slab") 

target geometry. The concept of a coalescing hollow jet is also the ruling idea in the target 

system considered for the next generation radioactive beam facility (EURISOL). Apart from 

having different flow rates due to different design power levels ((EURISOL - 5 MWb, ESS - 5 

MWb, JSNS - 1 MWb) the three targets differ mainly by the way in which the flow is directed 

across the window. ESS follows essentially the MEGAPIE philosophy to direct part of the 

flow across the window by providing a bottom inlet channel. 

The SNS team decided to use a double walled container with a narrow channel to guide a 

partial flow all the way across the window and out of the target again (figure 3) [18], while the 

JSNS group developed an elaborate system of blades to establish a horizontal flow across 

the window and in the whole beam interaction zone. In the following figure 3 different flow 

patterns of liquid mercury in each high-power target test facility are shown. These 

assessments of the most compelling issues for pulsed liquid metal spallation targets have 

changed recently. As a result it was planned to research to master issues in the critical areas 

identified initially and furthermore of the discovery of an additional degradation phenomenon. 

The most prominent key areas identified originally were radiation effects in the target 

container structural material and compatibility of that material with liquid mercury or liquid 

lead–bismuth. Much progress has been made in these areas and we now have quantitative 

bases for target design parameters and lifetime estimations which indicate that the new 

spallation targets will meet their service requirements. During this time, however, the 

additional phenomenon of cavitations erosion or pitting of the liquid mercury contact surface 

of specimen containers that simulate aspects of the actual spallation targets has to be 

investigated.
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Figure 3: Schematic view of the “realistic” different target configurations [19] 

2.1.3. Liquid mercury target inventory 

The good knowledge of the radioactive inventory within of the ESS and EURISOL targets 

and of its radiotoxicity are of major relevance for safety analyses. The radioactive inventory 

in Hg-target was calculated for SNS, ESS and JSNS and the most relevant nuclides present 

in an Hg-target were identified. Based on volatility, nuclides were divided into 3 categories: 

1. High volatile nuclides (tritium, iodine, noble gases) 

2. Mercury isotopes (having an average volatility) 

3. Low volatile nuclides (most metals other than Hg) 

It should be noted that for a short time periods (1000 years after shut down) the inventory of 

a 4-5 MW Hg-target is even larger than an accumulated activity of a 20 MWth research 

reactor as indicated in figure 4. 
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Figure 4: Comparison of activities in an Hg-target and in the core of a 20 MWth research 
reactor (accumulated activities, relevant to waste disposal) [7] 

As advantage, very long-lived actinides are not formed in an Hg-target in contrast to fission 

reactor and non-fissile long-lived nuclides are not present in Hg-target, too. But summarizing 

safety and disposal items, activity/power produced in spallation sources is of similar order as 

that of fission reactors. 

The most relevant nuclides in the ESS and EURISOL target from a handling safety but not 

disposal point of view are given in table-1 together with their estimated inventories, their half-

lives, their radiation type and their boiling points. The radio toxicity is presented in terms of 

the dose, which results from an emitted activity of one GBq (assuming dispersion, 

incorporation, external irradiation etc. as in [StrlSchV, 2001]) [20, 21]. Dominating nuclides 

for the different pathways are given in full-tone. For tritium, the inventory in the target is 

presented as scaled up from SNS-calculations; other values are calculated by ESS. The 

inventories are mainly best estimate values, multiplied by a factor of 1.6 in order to obtain 

conservative figures [22]. The selection of table-1 assumes that volatile nuclides are more 

relevant than low volatile ones due to the more limited accidental release of the latter [23]. 
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Table 1: Radiological most relevant nuclides in a 5 MW mercury target (40 y operations 
with 5000 h/y) Inventories as in [Bongardt 2006] [20] 

The conservative dose/emission factors of table-1 should only cautiously be used in realistic 

accident analysis. A comparison of the radiotoxicity of mercury with its chemical toxicity was 

performed for the inhalation pathway. Main result is that the radiotoxicity dominates within 

the licensing framework, but the chemical toxicity cannot be neglected, particularly for 

beyond licensing events. 

Table-2 contains the nuclides most relevant for target waste disposal with their halve lives 

and radiation energies data: these data are taken from SNS and ESS calculations, by criteria 

as of activity 100 years after shutdown >0.1 GBq. Fortunately, several of the nuclides listed 

play a relevant role in fission reactor disposal too. Accordingly, some knowledge is already 

available concerning their management. The total activity 100 years after shutdown is 8 X 

105 GBq for a 5 MW mercury target, as it is shown in figure 4. As shown in table-2, the 

dominant activity (>105 GBq) is resulting from isotopes 193Pt and 194Hg. These nuclides don’t 

exist in solid tungsten target. This will lead to total activity of only 10% compared to mercury 

one. It can be observed from the table-2 that, long-lived 194Hg (512 years half-life), a hard 

gamma-emitter with high radio-toxicity by its daughter nuclide 194Au (38h), is produced in 
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large quantities in mercury and LBE targets (shown in the figure 5). A new total radioactivity 

estimate of EURISOL 4 MWb Hg target as a function of cooling time is depicted in figure 5. 

Figure 5: Total radioactivity estimate of EURISOL 4 MWb Hg target as a function of cooling 
time [24] 

These new calculations have been done for a continuous irradiation time of 40 years with the 

proton beam intensity of 2.28 mA (milliampere) (up 1 GeV protons and 4 MW target), 

representing an average load of the installation. Figure 5 shows the “most probable” 

radionuclide inventory obtained with three different models or model combinations. The 

contribution to the total activity of high volatility nuclides (tritium, iodine), some of the mercury 

isotopes with an intermediate volatility, and low volatile but long-lived nuclides (148Gd, 172Hf, 
195Au) are shown explicitly. Broad practical scenarios for decommissioning have to be 

studied in terms of transportation, conditioning and other nuclear waste management issue 

relevant for the inventories of nuclides in the mercury [25]. 
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Table 2: Disposal of relevant nuclides in a 5 MW mercury target 100 y after end of operation 
(40 y operation, 5000 hr/y) inventories from [7] 
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2.2. Overview of aspects for safe disposal of mercury and 
liquid wastes 

As mentioned before, special attention must be paid to treatment and disposal of the 

irradiated mercury target due to its potential chemical as well as radiological hazards in a 

repository. Some major aspects are following hereafter, based on the acceptance 

requirements of the German repository proposed by BfS [20]. Disposal of ADS - target is 

considered as high active waste (HAW), because, the overall activity of the target is 8x105

GBq, even 100 years after shutdown. Often, the spent nuclear fuel arising from reactor 

operations is chemically reprocessed. The respective radioactive wastes include highly 

concentrated liquid solutions of nuclear fission products. These are later solidified generally 

in a glass matrix form in a process know as vitrification. Other solidification processes for 

HAW (high active waste) like ceramization are not available but in lab-scale developed. 

However, the above mentioned vitrification process is not suitable for liquid mercury target 

inventory because elementary mercury has a low boiling e.g. high volatilization at vitrification 

temperature of 1200°C. 

As in fission systems nuclides relevant for long-term disposal are not fully identical to those 

relevant for operational time safety. 194Hg is expected to be the most relevant nuclide for 

disposal considerations. It takes at least 5000 y (halve life 520 y) to decay to normal level for 

handling and further options. Also, the Hg target inventory generates such intense levels of 

radioactivity that heavy shielding would be required during handling and temporary storage, 

and in the following disposal. 

The basic requirement for any geological formation is its ability to contain and isolate the 

radioactive mercury target until the radiotoxicity of the waste has decayed to non-hazardous 

levels. In order to increase the safety of geological disposal, most such disposal concepts 

rely on a system of independent and often redundant barriers to the movement of 

radionuclides [26]. These barriers generally include  

(1)  The leach-resistant waste form itself  

(2) Corrosion-resistant containers into which the wastes are encapsulated 

(3)  Special radionuclides and groundwater- retarding material placed around the waste 

containers, commonly referred to as backfill material for gallery and shafts. 
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(4)  The geological formation itself -- the principal barrier -- which should have to retard the 

transport of radionuclides against circulating deep underground water (depends on disposal 

land) and isolate the waste from human's environment.  

There are five important reasons why deep geological disposal on land has evolved into the 

disposal method of choice for virtually most countries involved with such programs[27]: 

� It is an entirely passive disposal system with no requirement for continuous human 

involvement to ensure its safety.  

� Radioactive wastes present no hazard while they remain in a deep underground 

repository. Because of their depth of burial (several hundreds of meters), the 

possibility of intentional human intrusion is virtually eliminated. 

� Flexibility and convenience are provided by the large variety of geological 

environments suitable for disposal. Geological units under consideration are rock salt, 

argillaceous formations (clays), and a range of crystalline rock formations [28] 

� The disposal option is demonstrably practical and feasible with currently existing 

technology used in other mining and civil engineering practices.  

� Although waste disposal implies the lack of intention to retrieve the waste, the 

repository can be designed so that the waste can be recovered, during repository 

operation or even after closure.  

The following general basic requirements must be met by all kinds of waste packages: 

� Waste package must be suitable for handling and transportation 

� Waste must be in solid form with high chemical durability and long-term 

(thermodynamic) stability 

� Compatibility with geological environment and resistance to bio-degradation 

� Waste packages must be sufficiently radiation resistant 

� Waste packages must not contain explosives or fissile materials to a certain extent 

In following chapters, final waste forms of mercury also embedded in an immobilizing matrix 

material (e.g. cement, concrete, and polymer compounds as polysiloxanes) are discussed in 

more detail under irradiation conditions. Especially the selection of a solid mercury 

compound and clear-cut strategy on synthesis or preparation under radiation or active 

conditions has to be done before final disposal. A preliminary scheme for disposal of Hg-

target with all process steps is following in figure 6. 
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Figure 6: One of the possible schematic layouts for Hg-target waste management strategy 

2.3. Decommissioning and final waste disposal 

A considerable number of nuclear power plants have been built in the European Community 

since the 1950s, ranging from low power materials test reactors, through various medium 

power prototype/experimental reactors, up to high power commercial stations. There is a 

number of fuel fabrication and reprocessing plants associated with the nuclear fuel cycle and 

additionally military reactors in France and UK for plutonium (Pu) production. The 

responsibility of the waste producers is to reduce the quantities of waste generated. However 

it is stated as a general principle of rationalized radioactive waste management by the 

nuclear regulatory bodies and organizations to take care for disposal of resulting waste 

streams with long-term planning and decision-making associated with nuclear energy 

production [27]. These bodies also point out that, in order to treat the waste appropriately, it 

is necessary to consider safe performance, economic factors, the radioactive levels and 

types of radioactive materials included, so that the waste can be classified appropriately and 

managed and disposed of in an optimized manner. Hence, it is necessary to consider 

whether to adopt managed disposal at shallow or intermediate depths, or to implement deep 

geological disposal to ensure isolation from the human environment and to prevent the future 
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influence of human activities. The main sources of radioactive waste are nuclear power 

generation and reprocessing of waste. The radioactive waste from accelerators like 

spallation sources facilities played a minor role so far. In some facilities dedicated to scientific 

research, the amounts of nuclear waste stemming from targets (depend on liquid targets or 

solid targets) and shielding materials have to be considered. Large accelerators were not 

dismantled up to now. The increasing size of spallation facilities requires appropriate 

disposal methods for accelerator/target wastes which contain a wide range of nuclide 

concentrations [29]. Since country’s availed options, it is considered that the repository site 

selection is an important issue and that the present disposal concept (clearance, shallow 

disposal, intermediate-depth disposal, geological disposal) must be implemented effectively 

and flexibly in order to ensure the safety of the environment [30]. 

Most countries with nuclear power now seem to have opted for geological disposal as the 

ultimate solution for the problem of processed or non-processed spent nuclear fuel or non 

commercial rad-waste. No state has yet made a definitive decision concerning for high level 

disposal siting. Although different policies for radioactive waste management have been 

developed in different countries, the basic problem is the same everywhere: to find a location 

and a method for long time isolating radioactive waste from the biosphere. A flexible 

stepwise by public accepted approach is required to radioactive waste management. It 

depends on the country for final waste disposal [30]. Countries that are planning, or that have 

considered, repositories for radioactive wastes equivalent to high level waste and other 

intermediate wastes include, Belgium (ONDRAF/NIRAS), Canada (Ontario Power 

Generation), Finland (POSIVA OY), France (ANDRA), Germany (BfS), Japan (NUMO), 

Spain (ENRESA), Sweden (SKB), Switzerland (NAGRA), the United Kingdom (Nirex), and 

the United States (OCRWM). 

The US has an operational facility (Waste Isolation Pilot Plant (WIPP)) which is disposing 

transuranic wastes (broadly equivalent to LL-ILW) and is about to apply for a license to 

construct a geological disposal facility. In France, surface disposal for low - level and 

transuranic – free waste is in operation. The geological disposal facility is planned to be 

partitioned for separate disposal of transuranic waste (TRU) waste, HLW and spent fuel. This 

plan avoids interaction between each waste group. In order to minimize interaction of TRU 

waste, HLW and spent fuel, disposal areas would be separated by several 100 m to ensure 

isolation of the wastes. In relatively homogeneous sedimentary rock, it is considered that 

separations of several 100 m would be sufficient to rule out interaction of these wastes.  

As mentioned before, the producers of radioactive waste are responsible for its safe 

management. The disposal remains in the hand of governments. This means permanent, 
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safe disposal of the waste in government owned repositories. Each power utility is 

responsible for waste management of the operational waste and for the decommissioning of 

its nuclear power plants. In Switzerland, the National Cooperative for the Disposal of 

Radioactive Waste (NAGRA) is responsible for the research and development work 

associated with the final disposal of all categories of radioactive waste. Other aspects of the 

waste management system, such as conditioning and interim storage of wastes, are carried 

out by the individual producers or by organizations set up by the producers specifically for 

these purposes (i.e. ZWILAG for interim storage of radioactive wastes). The central interim 

storage in Würenlingen (ZWILAG) has started operation in 2001 [31]. The ZWILAG facility is 

to be used for interim storage of all categories of radioactive waste, from spent fuel to 

medical and industrial waste, and comprises equipment for the conditioning and incineration 

of low- and medium-level waste. There is no national strategy on the way of 

decommissioning nuclear installations. NAGRA operates two rock research laboratories: one 

at the Grimsel site (granite) and one at Mont Terri (Opalinus clay). Since the quantities of 

high level radioactive waste (HLW) and low level radioactive waste (LLW) in Switzerland are 

very small, an international repository is considered as well as a national repository. 

However, the political environment is not yet ready for an international approach. 

Swedish nuclear utilities, Svensk Kärnbränslehantering AB (SKB) is responsible for all 

handling, transport and storage of the nuclear wastes outside of the nuclear power stations. 

According to Swedish law, SKB is also responsible for an R&D-programme required to deal 

with radioactive wastes (SKB, 1996a) [32]. The programme comprises, among others, a 

general supportive geo-scientific R&D and the Äspö Hard Rock Laboratory (HRL) for more 

in-situ specific tasks (SKB, 1995a) [33]. A repository concept involving deep geological 

disposal has to be adapted to the overall geologic and tectonic conditions. The Swedish 

reference repository concept thus considers an excavated vault at ca. 500m depth in 

crystalline rocks. In this concept (KBS-3), copper canisters with high level waste will be 

placed in deposition holes from a system of tunnels. These disposal holes, with a diameter of 

1.75m and a spacing of 6m, are drilled vertically downwards. Blocks of highly compacted 

swelling bentonite clay are placed in the holes leaving ample space for the canisters. At the 

final closure of the repository, the galleries are backfilled with a mixture of sand and 

bentonite or crushed rock (SKB, 1995b) [34]. This repository design aims to make the 

disposal system as redundant as possible. Although the KBS-3 concept is the reference 

concept, alternative concepts and/or repository lay-outs are also studied. The main 

alternative, currently under development at SKB, is disposal in boreholes of 4-5 km in depth 

[35]. The geoscientific research of SKB is thus related to crystalline rock and the KBS-3 

repository concept. The scope of this research will, to a great extent, be guided by the 
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demands posed by the performance and safety assessments. Furthermore, the 

constructability issues are emphasized [36]. Likewise, the criteria for safety of mercury 

disposal are based on the protection of human health at an individual level. The estimation of 

an acceptable mercury load is based on WHO’s threshold value for tolerable daily intake and 

the Swedish standard for drinking water. The Swedish EPA (Environmental Protection 

Agency) suggests that 0.5-10 g mercury per year is an acceptable leakage from the 

repository [37]. The calculation involves a number of elements, such as character of 

recipient, water flows, etc. 

Germany has taken a decision to have disposal facilities for all waste available by 2030 or 

later (studies at the proposed Gorleben facility are under consideration), and is preparing to 

operate the Konrad facility for non-heat generating wastes in 2014: The Morsleben facility 

which contains LLW is in the process of backfilling it [38]. In Germany, the responsibility for 

the final disposal of radioactive waste is with the federal government: It has charged the 

Federal office for Radiation Protection (BfS) at Salzgitter with the final disposal of radioactive 

waste. With respect to planning, erection and operation of these installations, the BfS is 

using the services of the German Company for Construction and Operation of Final 

Repositories (DBE) at Peine as a third party [39]. For some of these disposal sites exist 

based on waste acceptance requirements, e.g. amount of chemo-toxic substances in the 

final repository or the allowed maximum concentration of radioactive/nuclide specific 

material. As previously stated, in Germany all radioactive wastes are to be disposed of in 

deep geological formations. 

The mentioned Konrad iron ore mine near Salzgitter in the Federal State of Lower Saxony 

was selected for disposal of radioactive waste with negligible heat generation [28], i.e. waste 

packages which do not increase the host rock temperature by more than 3K on an average 

(for LLW, ILW) [40]. For the former Asse salt mine, which was used as an experimental 

disposal facility for nuclear waste and as an underground research laboratory, a closure 

concept is in preparation. Some operational information is given: In total, 124494 drums of 

low level radioactive waste (approximately 1.9 x 1015 Bq) and 1293 drums of intermediate 

level radioactive waste (approximately 1.2 x 1015 Bq) were disposed of there before 1978. 

The disposal of nuclear waste was started in 1967 and was stopped in 1978 because the 

license was expired. Since that time the Asse salt mine was used as an underground 

laboratory for research and development on the safe disposal of radioactive waste [41]. The 

Gorleben facility is intended to be the only one in the Federal Republic of Germany that will 

get a license for the long-term storage of vitrified high-level radioactive waste from the 

reprocessing of German fuel elements abroad. These conditions have to be assumed in case 
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of final disposal of spallation targets are opted into German or Switzerland facilities. The 

general nuclear waste management scheme is shown in figure 7. However the common 

principle practices have to be applied to the types of wastes and on national laws. 

Figure 7: General scheme for nuclear waste management 
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2.4. Mercury and its compounds 

In order to evaluate handling for the spallation target system using mercury, it is necessary to 

have a better overview on physical and thermo-chemical data of inorganic mercury 

compounds formed with other elements including spallation products. Radionuclides are 

important for decay studies and for disposal too. The most important isotopes of mercury 

with respect to radiological consequences are Hg-189, Hg-193, Hg-194, Hg-195, Hg-197 and 

Hg-203. Most of them are however short-lived in terms of disposal considerations. A list of 

natural isotopes of mercury is given in table-3. The generated radioactive mercury isotopes 

are homogeneously diluted in stable mercury matrix, the origin of the target [42]. 

Isotope Natural isotope mass % 
abundance 

202Hg 29.7% 

200Hg 23.1% 

199Hg 17.0% 

201Hg 13.2% 

198Hg 10.1% 

204Hg 6.8% 

196Hg 0.15% 

There exist 24 nuclides of Hg. Unstable nuclides have half-life (t1/2)
between 520 y (for 194Hg) to 0.17 sec (for 177Hg) 

Table 3: Mercury isotopes (ordered according to decreasing abundance) [42-44] 

The most important physical properties [42] are listed in the table-4. Mercury is chemically 

inert toward water so the interaction of mercury and water is treated on purely physical 

considerations in the accident analyses. Important physical characteristics of mercury include 

its high density of 13600 kg/m3, substantial surface tension, and its slow evaporation at the 

temperatures of interest in accident scenarios. The density difference between water and 
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mercury and the mercury surface tension restrict its contact with water under accident 

conditions; usually, such contact would involve only a limited amount of surface between 

pools of mercury and overlying water. Mercury exists in the oxidation states 0, +1, +2. It 

forms many compounds in environment as organic and inorganic forms. Liquid mercury is an 

aggressive solvent toward many other metals, forming alloys called amalgams. In sufficient 

amounts, these amalgams may crystallize out of solution. Most of them are lighter than 

mercury, so they will float on a mercury pool. 

Color Silver white 

Mol. Wt 200.5 g/mol 

Melting point (mp) -38.9°C 

Boiling point (bp) 357.3°C 

Density  (0°C) 13.6 g/cm 3

Specific heat capacity cp (0°C ) 0.1397 J g-1 K-1

Heat of fusion 11.807 J/g 

Heat of evaporation (375°C ) 59.453 kJ/mol 

Thermal conductivity  (17°C) 0.052 W cm -1 K-1

Thermal expansion coefficient β (0-100°C ) 1.826E-4 K-1

Electrical conductivity (0°C ) 1.063E-4 mΩ-1 mm-2

Dynamic viscosity η (20°C) 1.554 mPa. s 

Surface tension 480.3E-5 N/cm 

tcrit 1450°C 

pcrit 105.5 MPa 

Critical density 5 g/cm3

Evaporation number (25°C ) 0.085 mg K-1 cm-2

Saturation vapor pressure (t- 20°C) 0.170 Pa 

Table 4: Physical properties of elemental mercury (Hg°) [42] 
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The redox potentials at 298.1 K and 101.325 kPa relative to standard hydrogen electrode are 

shown in table-5. The standard potential shows that mercury is a relatively noble metal. 

There are many organic, inorganic, and metallic Hg compounds available in present 

chemistry world, out of them only very few compounds as stable under normal conditions. 

The high-temperature stability of all mercury compounds is limited. Inorganic compounds of 

mercury are easier to handle than organic compounds of mercury because organics are far 

more toxic. 

E°, Volts 

Hg2+        +             2e-          Hg +0.851 

2Hg2+       +             2e-          Hg2
2+ +0.920 

Hg2
2+        +            2e-          2Hg +0.797 

Hg2(CH3COO)2    +  2e-          2Hg + 2(CH3OO)- +0.511 

Table 5: Redox potentials of mercury compounds with different oxidation states[43, 45]  

These organic compounds are out of discussion for disposal considerations under highly 

radioactive conditions also because of their limited stability. The main properties of inorganic 

mercury compounds such as density, melting point and boiling points, standard enthalpy of 

formation, standard Gibbs energy of formation, constant-pressure heat capacity, vapor 

pressure and solubility in water are presented in following pages. In this work, mercury solid 

compounds are discussed from disposal point of view, i.e. stability under strong hydrolysis 

conditions, high thermal conditions and stability under radiation. The long term behavior of 

the compounds under geological disposal conditions has to be considered seriously. The 

conventional toxicity of mercury and its compounds have resulted in a strong effort to control 

the disposal of mercury. Solidification is required for elemental mercury. There is thus a 

stringent need for an appropriate solid form of mercury for final disposal. A few solid 

compounds of mercury are chosen in our present study and are shown following in the table-

6. These are stable at normal conditions and available in solids form. Merits and demerits of 

compounds will be discussed in the following paragraphs. 
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2.4.1. Mercury salts 

Compounds of mono-valent mercury contain ions in the form of Hg2+
2. These compounds are 

not very stable and disproportionate easily to form elemental mercury and corresponding 

divalent mercury derivative [46]. Most of the mono-valent compounds are sparingly soluble in 

water, such as sulfate (Hg2SO4), chloride (Hg2Cl2) (calomel) and nitrate Hg2(NO3)2, and 

undergo considerable hydrolytic cleavage in water. The more soluble salts, e.g., the nitrate, 

are partially hydrolyzed in aqueous solution: After acidification of these solutions, the poorly 

soluble compounds can be obtained by precipitation. The compounds of divalent mercury 

can be divided into those that are strongly dissociated and those that are weakly dissociated. 

The weakly dissociated compounds, e.g. the chlorides HgCl2, are less prone to hydrolysis by 

water. But with excess anions, they form complexes that are more soluble than the salts 

themselves. Other compounds of mercury, called mercury chalconides are divalent mercury 

compounds that exist in nature as minerals: the oxide (HgO) as montroydite, the sulfide 

(HgS) as cinnabar and metacinnabar, finally the selenide (HgSe) as tiemannite. For these 

compounds the solubility data are given in the table-6. 

Chemical formula Compound name Solubility 
(g/l) 

Hg2Cl2 (Calomel) Mercury (I) Chloride 2 

HgCl2 Mercury (II) Chloride 7000 

HgO Mercury (II) Oxide 395 

Hg2SO4 Mercury (II) Sulfate 500 

HgS(Cinnabar, Meta cinnabar) Mercury (II) Sulfide 0.0041 

HgSe Mercury (II) Selenide 00012 

HgNH2Cl Mercury(II) amidochloride 0.094 

Hg Elemental Mercury 0.06 

Table 6:  Solubility data of inorganic salts of Hg and elemental Hg in water (at room 
temperature and standard conditions) 
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From the table-6, it is easily predictable that the mercury sulfide (HgS) and mercury selenide 

(HgSe) are extremely low water soluble and in addition from literature, they are insoluble in 

non-oxidizing mineral acids and in caustic alkali too. They dissolve only in aqueous solutions 

and release sulfur and selenium, and alkali sulfide solutions, to form thio-complex-salt ions, 

such as [HgS2]
2-. Mercury sulfide has also a well-defined chemistry under standard 

conditions. Mercury selenide is a highly toxic compound. For the disposal point of view, these 

are the most favorable options from inorganic compounds to convert the elemental mercury 

into a solid form. Even from heat of formation enthalpies and vapor pressure date with 

respect to temperature, Hg-chalcogenides have better stability than Hg-halogenides (shown 

in figure 8 and figure 9). Radiation stability data are still to be investigated. 

Figure 8: Heat of formation for mercury halogenides and chalcogenides with respect to 
atomic number [47] 
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Figure 9: Vapor pressure of mercury and mercury compounds as function of reciprocal 
temperature [46] 

2.4.2. Metal alloys or amalgams 

The alloys of mercury (amalgams) are solid and semi-solid at room temperature. Solid 

amalgams contain intermediated phases, and often may contain liquid-phase inclusions [48]. 

The solubility of metals in mercury depends strongly on temperature (shown in figure 10). 

The amalgam formation may be endothermic or exothermic depending on the metal. 

Technically important amalgams are those of tin-copper-silver used in dental application. Still 

the formation of amalgams under low temperatures is not well developed. Amalgams are 

typically chemically very reactive [49]. Depending on the elements involved, they may react 

spontaneously with air, water, or even organic materials. The resulting oxides, or other 

products of such reactions, are typically very insoluble in liquid mercury. As these oxides are 

generated, they will form a skin or dross on the surface of the mercury pool, but some may 

collect on the surface of the mercury vessels and piping. The heat of formation enthalpies of 

amalgams shows that HgX-My (amalgams- M stands for metal) has better solubility [50] than 

Hg-inorganic compounds (as shown in figure 11). Most of heats of formation values are just 

below the zero. Their thermal and dissolution behaviors are more discussed in subsequent 

paragraphs. 
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Figure 10: Solubility of some metals in mercury as function of temperature [51] 

Figure 11: Heat of formation for mercury amalgams with respect to atomic number[52] 
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2.4.3. Stabilities of mercury compounds as chalcogenides and 
amalgams 

In order to evaluate fully the various potential release mechanisms, supporting analyses 

include assessments of the behavior of mercury inorganic spallation products and metal 

alloys (amalgams) of the mercury and metallic spallation products have to be considered. 

This subsection briefly summarizes some of the results of the assessments. The full scale 

processing of highly level radioactive wastes requires certain parameters for final waste form. 

Therefore, a standard approach has to be developed for waste treat forms that should meet 

the final disposal requirements. However, this approach is not completely applicable to a 

mercury target, because of cross contamination problems associated with mercury 

contaminated with many nuclides (shown in table-2), including tritium oxide. Because 

accidents considered release of tritium either in elementary form (HT) or as water vapor 

(HTO) can result in contamination of plants in the form of tritium water. This leads to 

classification of activated mercury or mercury target inventory as hard as mixed waste. For 

that, separation of other nuclides from mercury is still under study to lower is classification. 

Mercury sulfide 

As a mercury compound in a geological repository, mercury sulfide (HgS) is one of the most 

favorable options. Before discussing the synthesis parameters, the geological factors of 

mercury sulfide are important for a disposal point view. Two modifications of HgS exist: red 

(cinnabar or α-HgS) and black (metacinnabar β-HgS). Both forms have been found as stable 

mineral in the earth crust. In hot brines metacinnabar is formed as crystallized form and 

transformed into more stable cinnabar [53]. In the following figure 12 examples of HgS 

minerals are shown. The stability relations and formation of cinnabar and metacinnabar have 

not been well understood. It was assumed that in that past cinnabar and metacinnabar were 

formed in the nature as mercury ore deposits. Cinnabar or red mercury sulfide (α-HgS) was 

considered as the generally stable modification of HgS. However, the results of previous 

studies on HgS indicate that the red HgS (cinnabar) inverts to black HgS (metacinnabar) at 

386°C, at one atmosphere. The inversion is comparat ively rapid and is reversible. In 

presence of small amounts of iron or other impurities, an equilibrium reaction takes place 

between the two forms. The thermodynamic correlation [54] between metacinnabar and 

cinnabar and its activation energies also during the reaction are shown in the following figure 

13. In general, HgS formation clearly shows that it is stable even at high temperatures above 

350°C (in absence of oxygen), and that the reaction  also proceeds at low temperatures 
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forming metacinnabar from elemental mercury and solid sulfur power and inverts at 345°C to 

form stable cinnabar[55]. 

Figure 12: Metacinnabar (β-HgS) (Left) and cinnabar (α-HgS) (Right) 

Figure 13: Thermodynamic data for the sulfide process reaction [56] 
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The preferred chemical state for mercury in geological repository conditions should be stable 

even under different salt brines (chloride environments) and aqueous acidic conditions. 

Earlier mercury extractability studies from cinnabar and metacinnabar were conducted by 

Nevenka et al. 2003 and Martinez et al. 1998, especially on soil matrices [57]. They observed 

that both forms of HgS were insoluble in all HNO3 and HCl concentrations in aqua region as 

pure compounds. The aim of their study was to check the influence and feasibility of two 

common extracting agents (50% v/v HCl and 50% v/v HNO3) on the leaching of mercury from 

soils containing HgS[58]. These observations were made at room temperatures and at higher 

temperatures between 70°C and 100°C. This was done mainly to evaluate the soil matrix 

influence on the HgS solubility. 

Figure 14: Solubility of HgS in soil matrix) (50% v/v HNO3 and HCl) [57] 

Several studies indicate that certain compounds can promote the solubility of HgS in acid 

solutions. A similar effect was observed in alkaline solutions. Sulfate and halide salts of metal 

at their highest valence state, such as Cu (II) or Fe (III), may partially induce dissolution of 

the HgS in hydrochloric acids. The behavior of HgS in the presence of Fe (II) was also 

investigated. Dissolved iron increases the solubility HgS and other mercury species in acids 

under reducing conditions as is clearly shown in the above figure 14. Of course, these are 

extreme conditions compared to disposal state. It is shown only the behavior of mercury 

sulfide in behavior highly oxidizing conditions. The effect of pH on leaching of Hg from soil 
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containing HgS in the presence of iron compounds, acts as container material, is plotted in 

figure 15. The Hg concentration gradually increased by dissolution as the pH of the 

suspension increases from pH 2 to 10.6. However, the presence of Fe (III) reduced the 

concentration of dissolved Hg significantly at all pH conditions. The change in pH conditions 

also changed the redox-condition of the suspension: as the pH increases the suspension 

becomes reducing. Bound mercury in waste form was in the stabilized forms HgS(s) and 

HgCl2(s) and did not leach as oxidizing condition prevailed. Alkaline and reducing conditions 

were found to enhance the soluble level of Hg. At high pH, the solubility of HgS in waters 

increases measurably by forming various bisulfide species (Clever et. al,. 1985) [59].  

Figure 15: Concentrations of Hg in the leachate at different pH values 

The high solubility of Hg as HgS complexes in solutions within the stability field of cinnabar in 

high concentrations of reduced S and neutral to alkaline pH is well known. A number of Hg–S 

solution species have been proposed to account for this solubility. Schwarzenbach and 

Widmer (1963)[60] proposed the (pH dependent) species Hg(HS)2, HgS(HS)− and HgS2
2−. In 

contrast, Barnes et al. (1967) proposed four possible complexes, HgS(H2S)2, Hg(HS)3
−,

HgS(HS)2
2− and HgS2

2−, to model results from experiments in which Hg(II) was dissolved in 

2.5 M sulfide solutions[60]. According to Barnes (1979) [61], Hg(HS)2 is the dominant species 
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at pHs less than 6, HgS(HS)− between pH=6 and 8, and HgS2
2− above pH=8; HgS(HS)(OH)2−

requires high pHs which are outside the pH range of natural waters. 

Allen, Crenshaw, and Merwin et al. studied aspects of the chemical and thermal behavior of 

HgS, with the aim of determining the conditions under which cinnabar and metacinnabar are 

formed [53]. Red HgS and black HgS were heated in evacuated vessels in the presence of 

substances such as ammonium sulfide and sulfuric acid, at temperatures ranging from 100°C 

to 570°C, for times varying from one-half day to fi ve days. After cooling the samples were 

examined under the microscope for evidences of inversion. Red HgS was reported to be 

unchanged, but black HgS was either partially or completely altered to red HgS. They 

concluded that red HgS was stable at all temperatures up to 570°C and that metacinnabar 

was not stable under any of the conditions of their experiments. They found the thermal 

behavior of HgS to be rather confusing, however. They reported that HgS, initially red, 

heated to 445° C appeared black to the naked eye, b ut after the samples were ground fine 

and examined under the microscope they were seen to be made up mostly of cinnabar [62]. 

The black color of the underground samples was apparently caused by a thin layer of 

metacinnabar on the cinnabar-particles. No satisfactory explanation was presented for the 

appearance of black HgS, which had formed from red HgS in contradiction to their 

conclusion that red HgS was the stable phase at 445°C.

Amalgams behavior

As mentioned in the previous chapters, mercury forms semi solid solutions, known as 

amalgams, with varieties of metals. Essentially, amalgamation relies on dissolution of 

mercury in the solid metal or vice verse to form a solid solution, and this technique has 

previously found application in the extraction of precious metal, such as gold and silver from 

their ores. Following amalgamation, the amalgam is subject to a thermal treatment to 

volatilize the mercury and thereby recover the precious meta l[63]. While the technique of 

amalgamation is a convenient, speedy and relatively inexpensive process for the handling of 

small amount of elemental mercury, it can be difficult to scale up. The amalgamation process 

requires the assistance of dilute nitric acid in order to achieve high efficiency but there is the 

problem of hydroxide formation. Of course, this technique is generally applicable to the 

disposal of elemental mercury, which is contaminated with radioactive materials. The 

amalgamation process mainly depends on the solubility of metals in the elemental mercury. 

The selection of a metal for amalgamation depends on waste disposal scheme, in terms of 

operating conditions and price.  
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Dental amalgams behavior

Silver is the major component of the dental amalgam and the alloy most consists of other 

metals like tin and copper. First the metal alloy mixed with mercury in an about 1:1 mass 

ratio. Then the amalgam reaction starts at high pressure, leading to the hardening of the 

mixture. A number of intermetallic mercury compounds originate in the course of this reaction 

[64, 65]. In overview, the most important mercury phases are shown in table-7:  

Phase Composition of metals 

γγγγ Ag – Sn (Ag3Sn7)

γγγγ1 Ag - Hg –Sn (Ag3SnHg2)

γγγγ2 Sn – Hg (Sn7Hg) 

Table 7: Structural phases of dental amalgams with Hg 

This process is not feasible in large quantities and especially for disposal application. In 

dental amalgams, many intermediate phases are formed during mixing, and these phases 

depend on inter-atomic reactions. γ1-Ag3SnHg2 and γ2-Sn7Hg are stable phases and γ2-

Sn7Hg forms a protective layer during the oxidation process in mouth environments. However 

γ2-Sn7Hg phase is thermally unstable. Based on heat of formations (as shown before in figure 

11), only silver-amalgam, copper and gold amalgam could be possible solutions for 

immobilization of large amounts of elemental mercury under highly activated conditions. For 

this reason, solubility data of amalgam powder in elemental mercury are necessary to predict 

the operating conditions and formation of stable phases. Phase diagrams of mercury with 

gold, silver and copper are given in the following figure.16. Although copper is readily wetted 

by mercury, the solubility of copper in mercury at room temperature is very low. Lindhal et al. 

have carried out a detailed examination on copper-mercury solid solutions and found the 

following phases in the solid solutions: Cu7Hg6, Cu4Hg3 and Cu15Hg11 at different 

temperatures. The debate about composition ended in favor of Cu7Hg6 and at maximum 

miscibility was observed from phase diagrams [66]. Lugscheider et al. determined that the 

stable phase is formed at a temperature of 128°C, w hereas Costa et al. proposed slightly 

higher temperatures of 140°C. Here only one phase o f copper (Cu7Hg6) is considered. 
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Figure 16: Phase diagrams of gold, copper and silver in elemental mercury 
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Similarly the mercury-silver phase is also studied [67]. The maximum miscibility with 

elemental mercury at room temperature solubility is good. This holds even more for the gold. 

Details of gold are not discussed here because it is economically not a favorable option for 

disposal. 

In terms of dissolution and thermal stabilities of mercury in amalgam form, there are enough 

data available for the pure single metal amalgams, like Cu and Ag amalgams. Much 

information are based on dental amalgam studies: Tsutsumi et al. performed a thermal 

analysis for dental amalgams at a temperature range of 25-130°C, heating in air and 

observed local melting of amalgam structures because of a solid-state diffusion for different 

amalgam phases without accompanying the weight loss. Dental amalgam is not completely 

stable in the corrosive environment of the mouth and leads to dissolution of mercury from 

amalgam even in less saline conditions like saliva [68]. The level of mercury release depends 

mainly on the amount of Sn-Hg phase (γ2-Sn7Hg) and on the amount of copper in the mixture 

too. The composition of the alloy used for the preparation of dental amalgam affects both 

phase structures and corrosion resistance of resulting materials. With existing information, 

the use of the amalgams process for large quantities of mercury is a very questionable 

option. It may lead to continuous release of mercury from the matrix at any stage. Still 

amalgam’s radiation stability is also questionable in long term nuclear application. More 

detailed information about amalgams is going in next chapters. 

2.5. Mercury solidification/stabilization in a compound 

2.5.1. Safety aspects consideration during chemical processes 

After sufficient "beam on" operations, the mercury target contains radioactive mercury atoms 

and radioactive spallation product atoms. This includes both radioactive isotopes of many 

elements and unstable isotopes for each of these elements after 40 years of operation. As 

mentioned in the previous chapters, this irradiated mercury has to be solidified before 

disposal. This is because liquids are not permitted in a radioactive repository. A sufficient 

separation of radioactive nuclides from mercury is virtually impossible because of its 

significant content of long-lived Hg-194. This work mostly deals with disposal of elemental 

irradiated mercury. Most particularly, it is concerned with techniques for the treatment and 

safe disposal [69]. Currently a good number mainly inactive mercury treatment processes are 

available in the world. The selection of a solidification process however, involves many 
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factors, mainly method and material properties. It should demonstrate the effectiveness of 

chemical process technologies that can achieve the following: 

� Minimize secondary waste generation 

� Minimize worker exposure 

� Maximize operational safety-flexibility and radionuclide containment

2.5.2. Overview of mercury stabilization technologies 

Earlier the U.S environmental protection Agency’s recommended as technology for 

radioactively contaminated mercury treatment is amalgamation process called DeHg™ (de-

merk) process. It is an ambient-temperature, chemical process that converts the mercury 

component in mixed waste to a non-hazardous final waste form suitable for land disposal. 

The process was developed by Nuclear Fuel Services, Inc. (NFS) to address elemental, 

ionic, and complex forms of mercury in mixed waste. NFS has applied the chemistry specific 

to their process over a variety of processing configurations for different waste matrices [70] 

(i.e., shred/slurry treatment for debris, damp blending treatment for soils, decontamination 

treatment for non-shreddable debris, and batch treatment of bulk elemental mercury). The 

NFS process consists of a two-stage treatment that addresses the treatment of elemental or 

ionic mercury species alone or in combination. The general features of the DeHg process 

[71] are depicted in figure.17. The process uses standard equipment connected in typical 

fashion. The first stage of the process involves amalgamation of the elemental mercury 

component (if present). Before amalgamation, sample preparation (shredding, grinding or 

slurrying) may be necessary, depending on the capability of the mixing equipment to be 

used. The second stage of the process is the stabilization of soluble mercury species using a 

proprietary reagent. This reagent has the capability to free mercury from stable form. Sulfur 

polymer cement offers some potential for mercury stabilization. However, this process is 

sensitive to water content of the subject material and requires elevated temperature for 

application. Sulfur polymer cement would be as useful as other competing technologies, 

such as the DeHg process, given the high water content and the relatively low decomposition 

temperature of ion-exchange material. Nuclear Fuel Services, Inc. (NFS) focus on mixed 

waste mainly generated from nuclear fuel production, high-enriched Uranium 

recovery/conversion, decommissioning and decontamination (D&D), environmental services 

and process development/metals recovery mercury Mixed Waste treatability treatment 
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facilities. Mercury mixed waste had consisted mainly metal like lead, nickel, chromium, 

mercury and zinc. There was no specific radioactivity data available at the moment [72]. 

Figure 17:  Block flow diagram of NFS DeHg process 

ADA Technologies, Inc. (ADA) and its subcontractors demonstrated a process for stabilizing 

radioactively contaminated elemental mercury with sulfur [72]. The process combines and 

mixes waste mercury with sulfur in a commercially available pug mill to produce a stable 

mercury sulfide product. Initial testing was performed on surrogate waste, followed by 
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demonstrations on two actual mixed waste streams. ADA’s treatment of liquid mercury 

involves adding powdered sulfur and mercury to the pug mill. As the mill continues to mix 

and reactions take place, additional chemicals are added. The temperature of the mixture is 

monitored, and samples are taken periodically and analyzed on their mercury content. 

Processing is performed at ambient conditions without the addition of heat. Water vapor and 

heat are evolved during processing. Room air is swept over the pug mill and then filtered to 

remove mercury vapors from the mixing area. The pug mill is manually decontaminated after 

processing each waste stream. ADA’s sulfur treatment process was successfully 

demonstrated. By use of a proprietary additive mixture the process achieved a more than 

90% completion of reaction and met vapor pressure requirements. The final waste product 

consistently achieved toxic characteristic leaching procedure (TCLP) results below 0.1 mg/L. 

The pug mill is well-suited to the mercury and sulfur mixing process because of its ability to 

adequately mix the components and control the residence time to ensure complete reaction. 

Moreover, the process demonstrated the use of a commercially available mixer. Radioactive 

contamination control requirements were readily implemented using the pug mill. This 

process is easily scalable to match the treatment needs at individual DOE (department of 

energy) sites. Consequently, the primary technical issue associated with the amalgamation 

of mixed waste mercury was related to scale-up of the process to a cost-effective operations 

level. 

However, it was mentioned in previous paragraphs that an alternative of the amalgam 

process is the mercury sulfide process (produces more stable solid compound of mercury). 

In the following paragraphs, merits and demerits of mercury sulfide processes are described 

in more technical and chemical handling aspects for a final disposal point of view.  

Formerly the formation of mercury sulfide from elements (called dry process) was done in a 

laboratory scale by stirring elemental sulfur powder and elemental mercury in various 

portions at 200°C [Oji et al. 1998][73] and at 40°C  [Fuhrmann et al. 2002][74]. There are 

many chemical processes available for formation mercury sulfide like wet precipitation, 

adsorption, ion exchange treatment, chemical reduction and membrane separation as 

emerging technologies. One of the most established approaches is precipitation. The most 

commonly reported precipitation method is sulfide precipitation by a chemical mixing process 

as mentioned before. This process advantage is that it forms easily low soluble mercury 

sulfide (HgS). In these processes, conversion of mercury was not 100%. Unloading and 

failure of the reactor's stirrer question the safety of the chemical process. Recently Svensson 

et al. reported a room temperature process for formation of mercury sulfide from different 

mercury and sulfur sources [75]. They found that mercury sulfide under alkaline conditions 
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has maximum formation. Highest yields were observed for the samples containing elemental 

sulfur where both elemental mercury and mercury oxide were transformed into HgS. Sulfur 

may disproportionate into S (-II) and S (+VI) under anaerobic conditions, which lead to more 

efficient sulfide penetration whereas aerobic conditions lead to increased oxidation and 

content of sulphate, e.g. through following equations 3 and 4: 

4S(S) + 3Hg° + 3/2O 2+H2O  3HgS + SO4
2- + 2H+

∆G° = -645 KJ/mol          (3) 

4S(S) + 3HgO + H2O   3HgS + SO4
2- + 2H+      ∆G° = -471 KJ/mol           (4) 

The reactions are both thermodynamically favorable. The stoichometric ratio between Hg 

and S is important for optimal formation of HgS. There is an alternative method of producing 

the HgS, in which cinnabar precipitates from solutions. In this process, solutions containing 

Hg+ and Hg2+ (HgNO3.2H2O or HgCl2) are treated with a gas phase H2S at low temperatures, 

by stabile mercury sulfide formation followed by filtration step. Here one important aspect 

about the process is the gas phase involvement and thus controlling the reaction is difficult. 

That makes complications during handling of activated mercury. However, it is still under the 

investigation to continuation for the next steps. In addition, mercury-selenide (HgSe) is also 

under investigation, because it has similar properties as HgS and is the most insoluble 

compound of mercury. However, it is a more toxic chemical compound in handling. These 

methods have to be considered under irradiation aspects, long term stability of final form of 

mercury, chemical process engineering safety as important factors. 

2.6. Immobilization by encapsulation techniques 

As element, mercury cannot be destroyed but it can be converted into less soluble or 

leachable forms to inhibit its migration to environment after disposal. Encapsulation 

technologies are based primarily on solidification processes that to substantially reduce 

surface exposure to potential leaching media. Encapsulation technologies can also involve 

combination of physical entrapment through solidification and chemical stabilization through 

precipitation, adsorption or other interactions. Sometimes these processes are combined 

[76]. Conventional stabilization/solidification methods typically include the fixation of metals 

using Ordinary Portland cement (OPC) and fly ash or slag material. This produces an 

impermeable, solid waste form at high pH that limits the solubility and leachability of most 

metals[18]. However, it is very difficult to stabilize mercury in elemental or other mercury 

forms with cement based processes because it doesn’t form a low soluble hydroxide. 
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Mercury is difficult to treat as elemental metal in solid waste. Stabilization/solidification (S/S) 

technologies have been proven to be effective in immobilizing of other heavy metals, such as 

Pb, Cd and Cr, but difficulties have been encountered to stabilize/solidify elemental mercury 

because of noble behavior [77]. The immobilization of mercury by solidification/stabilization 

involves its conversion to a stable immobile form. The role of Portland cements in nuclear 

waste and in other waste treatments are discussed in following chapters. 

2.6.1. Solidification/stabilization in a cement matrix 

Nuclear wastes can be broadly categorized as high, medium, low level, and different 

techniques are required for encapsulation for disposal. These wastes are frequently wet and 

difficult to dry. This forces the need for a water-tolerant containment matrix, and so cement is 

viewed as material for the choice. It is likely to be the major component in immobilization of 

low and medium level radioactive waste in underground repositories, as both a solidification 

matrix and as backfill and construction material. Favored techniques entail the encapsulation 

of waste by cement in containers such as steel drums [78]. The exact method used depends 

on the nature of waste. Firstly, cement acts as physical barrier from waste migration into 

biosphere because cement provides physical strength to the repository, and inhibits ground 

water through flow. And also the more important feature is that cement acts as chemical 

barrier. When cement clinker is hydrated, excess water is used to ensure that freshly mixed 

slurry is plastic and workable. The aqueous phase of cement is high pH, and it is this feature 

which makes cement so suitable for waste immobilization, as many radionuclides have 

reduced solubility at higher pH [79]. Furthermore, the microporosity, i.e. the high surface area 

of cement inhibits the transport of radionuclides out of the repository by adsorption onto 

surfaces. It is anticipated that the pH will decrease over time, both as result of leaching of 

soluble ions by groundwater and chemical attack by aggressive species such as sulfate, 

chloride, and magnesium. Major cement hydrate phases such Ca(OH)2, C-S-H (calcium 

silicate hydrate), C3Al6 (tri calcium aluminum silicate) will be effected by aggressive ions as 

SO4
2-, Cl- and following degradation of cement waste form. Poon et al. (1985) found that the 

retention potential of the cement matrix for mercury was related to the amount of calcium in 

the solidified waste. Mcwhinney et al. (1990) also found evidence of close association of 

calcium rich deposits with mercury, and strongly supposed that physical sorption processes 

were closely associated with the calcium content and were mainly responsible for mercury 

containment in the cement matrix [48]. Poon and coworkers (1986) identified a mechanism 

that consisted of a combination of chemical fixation and a physical isolation process that was 

responsible for the containment of mercury waste form as amalgam in the cement matrix 
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[61]. Yang (2002) successfully solidified a mercury containing sludge using a commercially 

available sludge treatment agent, which was a cement-based binder with some proprietary 

additives. Physical and chemical durability tests were also conducted on the solidified 

monolith. Much more mercury was leached out after physical durability tests, which showed 

the significance of physical encapsulation. Therefore, it is suggested that cement-based 

systems alone may not fix mercury in a stable form, due to the complicated chemistry of 

mercury (Conner, 1990) [79]. Roy et al. (1992) [80] used a variety of microscopic and X-ray 

diffractive techniques to study the microstructure and microchemistry of a mercury containing 

sludge that had been solidified/ stabilized in ordinary Portland cement (OPC) [80]. They were 

unable to detect any mercury in their solidified/stabilized samples. Hamilton and Bowers 

(1997) attributed this to the unique potential of mercury to volatilize [81]. They investigated 

Hg emissions from the finished solidified/stabilized cement monolith and found that HgS 

showed no propensity to volatilize, while HgO or Hg0 (liquid) led to the evolution of Hg vapor. 

These materials have to be studied more precisely under irradiation conditions of with 

impregnated mercury waste as HgS. At least it can infer from literature data that cement 

process could be simple and it is economical factor for final disposal cost estimation.

2.6.2. Material for immobilizing nuclear wastes 

The primary objective of these encapsulation technologies is to immobilize physically the 

wastes to prevent contact with leaching agents or water ingress is regarded as accident 

scenario. Because this cannot be completely fulfilled some times by cement it self. But 

significant research has gone into development of other encapsulation materials that can be 

used as alternatives the cement-based process. Sulfur polymer stabilization or polymer 

stabilization/solidification (SPSS), chemical bonded phosphate ceramic (CBPC) 

encapsulation, and polyethylene encapsulation are few technologies that currently being 

tested and used to improve the long term stability of hazardous wastes [82]. Recently 

polysiloxanes or ceramic silicon foams (CSF) are also considered for long-term storage of 

low and intermediate level radioactive wastes. These materials are considered seriously in 

nuclear-waste processing operations. Silicon elastomers (polysiloxane materials) are based 

on silicon and oxygen with organic substitutes, have very good chemical, thermal and 

radiation stabilities to waste for long-term storage and disposal. Especially to immobilize 

elemental mercury, mercury-containing debris, and other mercury-contaminated wastes, 

there is always the problem of mercury vaporization. Therefore it is always an advantage to 

work at low temperature for mercury waste treatment process. 
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2.6.3. Polysiloxanes in nuclear waste management 

Before discussing the application of polysiloxane as encapsulating material, it is good to 

know some basic information about polysiloxane materials and how they did arrive in nuclear 

waste field. Polysiloxane is a part of inorganic and part by thermosetting polymer. Once 

formed, the material consists of about 50% vinyl-polydimethyl-siloxane, 20% quartz (used as 

filler material), 25% proprietary ingredients, and <5% water. The basic polysiloxane process 

involves simple mixing of the base polysiloxane materials with the mixed waste in a mixer. 

This is followed by extruding the waste blend outside of the mixer while adding a platinum 

catalyst. The addition of the catalyst starts a silicon polymerization process, which results in 

a solid waste monolith upon curing. In terms of basic chemistry principles, polysiloxane is 

formed not unlike common Room Temperature Vulcanizing (RTV) of silicone foam sealants. 

The basic liquid chemicals SiH and SiOH (like shown in the equation 5) are thoroughly mixed 

with the waste and react in the presence of the catalyst to form the desired thermosetting 

polymer and hydrogen gas. The fundamental chemical formulation is as follows: 

R3SiH + R3SiOH    (--R2Si – O – Si R2 -- )N  + H2(g)             (5) 

The goal is to provide sufficient mixing and cure time to allow the polymer chain to be formed 

around the waste at a micro level and thereby create a barrier between the waste and the 

environment. Examples are as follows: 

Originally polysiloxane was investigated in Russia for filling material in the destroyed 

Chernobyl reactor. It is important to mention that Polysiloxane materials as matrices were 

tested first time at laboratory scale in western countries. FZ Juelich had also done some 

seriously investigations relevant to long term stability in connection to containers/casks for 

transport, interim storage, and final disposal of nuclear waste and nuclear fuel [83]. The risk 

dominating accident in most European repositories is water ingress. These polysiloxane 

encapsulation techniques are used for experimental investigation for immobilization of the 

mercury waste in this report. 

Throughout the US Department of Energy (DOE) Complex there are large inventories of 

homogeneous mixed waste solids, such as soils, fly ashes, and sludges that contain 

relatively high concentrations (greater than 15% by weight) of salts. The inherent solubility of 

salts makes traditional treatment of these waste streams difficult, expensive, and 

challenging. Many of these materials are in a dry granular form and are the by-product of 
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solidifying spent acidic and metal solutions used to recover and reformulate nuclear weapons 

materials over the past 50 years. 

At the Idaho National Engineering and Environmental Laboratory in USA (INEEL), there are 

approximately 8000 m3 of salts (potassium and sodium nitrate) stored above ground only 

with earthen cover. One of the obvious treatment solutions for these wastes is to immobilize 

the hazardous components to meet US Environmental Protection Agency’s stringent 

requirements. 

One proposed solution is to use thermal treatment via melting / vitrification to immobilize the 

hazardous component and thereby substantially reduce the volume, as well as provide 

exceptional immobility. However, these electrode smelter systems involve expensive capital 

apparatus with complicated off gas systems. In addition, the vitrification of high salt waste 

may cause foaming, vaporization problems and usually requires extensive development to 

specify glass formulation recipes. As an alternative to thermal treatments, stabilization of 

these materials in cementitious grouts has also been widely employed earlier. However, salts 

interfere with the basic hydration reactions of cement, leading to an inadequate set or 

deterioration of the waste form over time. Sufficient and compliant stabilization in cement can 

be achieved by lowering waste loadings, but this involves a large and costly increase in the 

volume of material requiring handling, transporting, and disposal. As a consequence of these 

stabilization deficiencies associated with soluble salt containing mixed wastes, the Mixed 

Waste Focus Area (MWFA), a DOE program, sponsored the development of low-

temperature stabilization methods as an alternative to cement grouting. One alternative is 

microencapsulation by polysiloxane, which in some applications provides higher waste 

loadings and a more durable waste form than the baseline method of cementitious grouting.  

[Some introducing sentences for the next 7 points is required] 

� Potential ability to adequately (i.e., comply with disposal requirements) 

encapsulate/stabilize salt 

� Containing wastes at higher waste loadings then conventional Portland cement, 

� Broad applicability to the many different types of wastes, 

� Elimination of potential subsidence upon burial, 

� Low cost treatment that uses no large equipment, 

� Low temperatures, low emissions, and minimal secondary waste, 

� Ability to control cure time. 
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The use of this polysiloxane material for encapsulation is patented by Orbit Technologies. 

The polysiloxane technology was demonstrated on salt waste surrogates, which were spiked 

with lead, mercury, cadmium, and chromium at 1,000 ppm levels. Up to 50 wt% waste 

loading was demonstrated. The final waste form had a compressive strength of 600 psi at 40 

wt% loading. For high chloride salt wastes, the mercury toxic characteristic leaching 

procedure (TCLP) was 0.01 mg/L and for high nitrate salt wastes the mercury TCLP was 

0.06 mg/L. The final waste forms for both waste types did not pass for chromium. The 

authors recommend pretreatment for the chemical stabilization of wastes with metals at 

levels greater than 500 ppm (DOE, 1999c). In addition, Miller et al. (2000) reports on the use 

of silicone foam to encapsulate a DOE surrogate waste containing high levels of chromium. 

Salt waste loadings of up to 48 wt% were achieved in their study. 

These polysiloxane materials and their supportive materials play a crucial role in nuclear 

waste storage and as coating materials in stabilization/solidification (S/S) of mercury wastes. 

Recently different polysiloxane materials were also investigated under γ-irradiation as coating 

material for fuel elements in FZ Juelich and shown very good stability towards radiation [84]. 

Zhang and Bishop (2002) [85] used powdered reactivated carbon (PAC), along with Portland 

cement, to encapsulate mercury-contaminated wastes. Surrogate wastes were created with 

up to 1000 mg/kg of mercury using sand, water, and Hg(NO3)2. These wastes were mixed 

with PAC and then solidified with Portland cement. The wastes were successfully treated to 

below the U.S. EPA TCLP limit for mercury. In addition, it was determined that pretreating 

the PAC with CS2 increased its adsorption capacity for mercury by a factor of 10 – 100 times 

depending on pH conditions. In the following chapters, real behavior of mercury waste as 

HgS, HgSe, with and without cement matrix and in alternative matrix form like polysiloxane 

under aggress leaching conditions and irradiation behaviors are discussed.
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3. Experimental section 

3.1. Introduction 

The main objective of present work was to undertake the experimental work and develop 

economical and feasible waste management strategy for proton irradiated mercury 

generated from spallation sources like EURISOL, ESS and other similar facilities. A major 

part of the work was to select stable mercury compounds and study their stability under 

irradiation relevant to disposal conditions. 

3.2. Experimental details 

All these investigations were aiming to the possibility to compare stable compounds of 

mercury from a long term point of view with available resources and technologies of interest 

in the relevant geological media of practical importance for radioactive waste disposal. It is 

very important for comparing these results obtained from different experiments, performed 

under a range of conditions relevant to anticipated repository environments. 

3.2.1. Reagents and materials 

Elemental mercury (Hg°), mercury sulfide (called as  Cinnabar, red powder, HgS), mercury 

selenide (HgSe), mercurous nitrate (Hg2(NO3)2. 2H2O) and mercuric nitrate (Hg(NO3)2·H2O)

were used in these present investigations and were provided by Merck, Darmstadt. They 

were of analytical grade of 99.6 % purity level and were used without any pretreatment for 

preliminary experiments. For amalgam preparation, crystalline powders, 8-20 mesh, ≥99.99% 

silver and copper, were used and were provided by Sigma Aldrich, Germany. 

The chemicals like ammonium sulfide (NH4)2S solution (wt.45%) and concentrated nitric acid 

were provided by Merck, Darmstadt and were diluted to respective standard solution molar 

concentrations before using for experiments. The cement type used was an ordinary 

Portland cement (OPC) (CEM I 52.5 R) manufactured by German Portland cement firm. In 

our present studies polysiloxane compound type (RT 622 Elastomer® with catalyst from 

Wacker Chemie GmbH, Germany) was used because it had better alcohol condensation 

properties compared to other type of polysiloxanes.
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3.2.2. Preparation of salt brines 

For long-term safety assessments of the final repository, different accident scenarios must be 

taken into account. One such scenario assumes groundwater penetration into the repository, 

accompanied by the formation of highly saturated salt brines. Compositions of naturally 

occurring saline solutions have variable concentrations of the main components and are 

controlled by temperature-dependent salt/solution equilibrium within the six-component Na-

K-Ca-Mg-Cl-SO4 system of oceanic salts. Most salt brines are saturated with halite. 

However, Mg-rich brines were also found during underground investigation of the Gorleben 

site. Commonly, three different types of highly concentrated salt brines are taken into 

account as relevant for the Gorleben salt dome repository. Similarly the geochemistry of the 

Opalinus Clay pore water represents an important scientific basis for predicting the behavior 

of radionuclides from deep geological repository for radioactive waste following their release 

into the Opalinus Clay at the Mont Terri in Northern Switzerland. 

In the present work, two salt brines (Brine-2 and Brine-3), opalinus clay water and deionised 

waters were selected as leachates. The compositions of the leachant solutions are shown in 

the following table-8. Per one liter of salt brine the following salt amounts in grams were 

used:

Table 8: Composition of salt brines used for leaching experiments (*Opalinus clay water) 

After complete dissolution of salts in deionised water at 70°C, the solution was cooled down 

to room temperature and its volume was adjusted to 1L in a volumetric flask. 
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3.3. Analytical instruments 

Optical microscope    Karl Zeiss KS300 with image processing software 

(KS300) 

SEM, EDX     JEOL JSM 840 coupled with Tractor Northern 5502 

XRD      Stoe Stadi transmission diffractometer, Co-anode 

(CoK
α
 line, λ = 0.178897 nm) 

Mercury analyzer ICP-MS  A Perkin-Elmer analyst 300 cold atomic absorption 

spectrophotometer equipped with FIMS (Flow Injection 

Mercury system 

Raman spectrometer   PerkinElmer® Raman Station™ 400 

BET      Quanta chrome Monosorb (BET) surface analyzer 

Desiccator      Heraeus T-12 

pH and Eh meter    Metrohm 691 pH meter 

pH electrode     Orion 8103 ROSS combination pH electrode 

Eh-electrode     Metrohm 6.0412.100 Pt electrode 

Centrifuge      Heraeus Christ Laborfuge 15000 

Analytical balance    Chyo JL-200 

Digital calliper     TESA DIGIT CAL Capa calliper 

Polishing machine    Struers RotoPol-22 with RotoForce-4 head 

Water purification    Elga Elgastat maxima HPLC 

(The specific resistance of purified water is 18.2 mΩ)

3.4. Leaching experiments and sample preparation 

3.4.1. Leaching experiment sample preparation using solid mercury 
compounds 

For the leaching, commercial solid mercury compounds were selected on solubility based at 

standard room temperature conditions. Mercury compounds were mercury sulfide (HgS), 

mercury selenide (HgSe), mercury (I) nitrate, silver amalgam and copper amalgam. The 

aqueous solutions selected for leaching experiments are shown in table-8. The specimens (1 

gram of mercury compounds) were transferred to 30 ml volume glass ampoules containing 

10 ml of leaching solution, sealed and mixed thoroughly. The glass ampoules were 

evacuated first for anaerobic tests and then were filled with argon gas before they were 
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sealed by melting. The glass ampoules for aerobic tests contained air. This specific 

equipment was designed by Fachinger et al. and installed at FZJ hot cell laboratory. This 

equipment was used to evacuate and to fill argon gas in the glass ampoules. It is shown in 

following figure 18. Again the solutions for leaching experiments were degasified prior to 

experiments in vacuum and then argon saturated by bubbling. Then the glass ampoule’s 

upper portion was removed by glass melting procedure to keep the experiment under argon 

gas during leaching experimental time. 

Figure 18:  Evacuation and gas filling equipment for glass ampoules 

3.4.2. Preparation of cement-mercury compounds as matrices 

The chemical composition of Ordinary Portland Cement (OPC) used in our experiments is 

shown in table-9. It is used in pure form without pretreatment and mixed with sand (50-20 

mesh passed) and a sand to cement ratio of 4. Cement to mercury compounds (HgS, HeSe, 

Hg (I) nitrate) ratio of 10, 3 and 2 were used during our experiments. A constant water-

cement ratio (0.4) was used for cement pastes preparation. Cement pastes were hydrated 28 
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days in 98% relative humidity at 20±2°C in cylindri cal form in plastic bottles. After 28 days 

curing time, the plastic caps were removed and were analyzed for chemical composition. 

Then these hardened cement mercury matrix samples were used in leaching experimental 

studies both for irradiation experiments and non-irradiation leaching experiments.  

As described in chapter 3.4.1, the solutions were degasified prior to experiments in vacuum 

and then saturated with argon by bubbling. Then the glass ampoule’s upper portion was 

prepared in the way such that cylindrical samples (1.5cm X 1.5cm X 4cm) fit into it directly. 

The upper part was removed by glass melting procedure to keep argon gas during leach 

experimental time. The leacheant solutions were collected to measure pH and the Hg 

concentrations to determine the leach rate cement –mercury matrix. 

CaO SiO2 Al2O3 MgO Fe2O3 SO3 CaSO4
Specific 
gravity 

Specific 
surface 

area 
cm2/g 

65 22 5.1 1.4 3.2 1.6 3.1 3.17 3220 

Table 9:  Typical composition Ordinary Portland cement type (CEM I 52. 5 R) in wt % 

3.4.3. Preparation of Polysiloxane-mercury compounds as matrix 
form 

A general proof was performed earlier to investigate the use of polysiloxane material for 

coating and encapsulation/stabilization of burnt up fuel elements and nuclear waste at FZJ. 

The present experimental study is encapsulating three different mercury final waste forms in 

polysiloxane material and performing a variety of leaching, compressive strength, and 

durability tests on the final waste forms. In present studies polysiloxane compound type RT 

622 Elastomer® with catalyst and mercury compounds (HgS, HgSe and cement matrix) were 

used for the preparation of polysiloxane matrices [86].  

ELASTOSIL® RT 622 is a pourable, addition-curing two-component silicone rubber that 

vulcanizes at room temperature. It has better alcohol condensation and prevents any 

moisture formation during curing time. Some physical properties information is shown in the 
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following table-10 (uncured and cured). As it is shown, two components of polysiloxane 

material were mixed thoroughly in order to make a homogeneous phase at room 

temperature. Then HgS and HgSe (0.02 g/g of polysiloxane) were introduced in two 

component mixture and stirred again till uniformly mixed. The samples were placed in plastic 

capsules for curing. Samples were cured at room temperature for 48 hr. 

Some cured samples were taken again for second coating to cover the outer surface with 

pure polysiloxane surface for resistance against ground water. Scanning Electron 

Microscope (SEM) studies were performed on polysiloxane specimens for mercury 

distribution in waste loading. 

Property (uncured) Value 

component A B (catalyst) 

Appearance White Reddish brown

Viscosity at 23°C [mPa. S] 18000 800 

Density at 23°C [g/cm 3] 1.14 1.01 

Cured   

Mixing ratio 

  Appearance 

Density at 23°C [g/cm 3]

Hardness 

Tensile strength [N/mm2]

Elongation at break [%] 

1:9 

Light reddish brown 

1.01 

27 

6.5 

550 

Table 10: Properties of polysiloxane type ELASTOSIL® RT 622 
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3.5. Leaching experiments under irradiation 

In the present work, sequential leaching experiments with un-irradiated mercury waste form, 

Hg-cement matrix form under γ-irradiation were performed. More over the mercury waste 

form behavior in different conditions like oxidizing and reducing conditions were also 

investigated. All experiments were conducted under argon atmosphere to simulate the 

anaerobic conditions of the final repository. The experimental temperature was chosen to be 

50-60°C, representing the conservative case of geol ogical depth temperature in repositories 

more than 1000m depth. 

An overview of the experiments carried out is presented in table-11 and the procedure of 

each experiment is described in detail in the following chapters. The solutions for leaching 

experiments, either deionised water, salt brines or acidic solutions, were degasified prior to 

experiments in vacuum and then argon-saturated by bubbling as described before (chapter 

3.4.1 and 3.4.2). The leaching experiments were performed in glass vessels with Teflon gas 

valves (except for experiments under γ- irradiation), which were pre-treated several times by 

1M HNO3 for at least 24 hours, followed by careful rinsing with deionised water. After loading 

the vessels were purged by argon (in the case of irradiation experiments the loading was 

performed in a glove bag under argon atmosphere), tightly closed and placed in a desiccator 

maintaining the temperature of 50-60 °C. The pH of the solutions before and after 

experiments was measured at the experimental temperature under a continuous flow of 

argon. Before the measurements, the pH electrode was calibrated at the same temperature 

against two suitable buffer solutions from the set of buffers for pH 4, 7 and 10. The correction 

for pH values measured in highly concentrated salt brines was applied.  

In order to investigate the influence of aqueous phase radiolysis on the leachability of waste 

forms of mercury, the leaching experiments with frequent sampling at least 60 days during 

first phase under γ-irradiation were performed in the MTR (Material Testing Reactor) cooling 

pool of the FRJ II (DIDO). The glass vessels were loaded with mercury final waste as HgS, 

HgSe and cement matrix form filled with 10 ml of deionised water or salt brines, and closed 

with screw caps. The initial surface to volume ratio of about 5 m–1, similar in experiments 

without irradiation, was selected to simplify the comparison between these experimental 

series. The PVC screw caps used had a fluorine-free silicon sealing and are relatively stable 

with respect to irradiation. However, the caps were replaced after each sampling. 
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Medium T°C HgS HgSe Hg(I) Nitrate Hg-Cement matrix 

DI Water 50-60 Γ, γ Γ, γ γ γ

Brine-2 50-60 Γ, γ Γ, γ Γ, γ Γ, γ

Brine-3 50-60 Γ, γ Γ, γ γ γ

Opalinus clay 

water 
50-60 Γ, γ Γ, γ γ γ

Γ – Static and batch leaching experiments with mercury waste form for 6 months 
γ – Leaching experiments under γ-irradiation (all doubled) for 3 months

Table 11:  Overview of the leaching experiments 

All irradiation experiments were performed in duplicate. The vessels were placed in a closed 

steel sample holder (figure 19a). The sample holders were surrounded by a heating jacket 

(figure 19b) and placed in a waterproof irradiation container. The mounted irradiation 

container with heater and sample holders is presented in figure 19c. The sealed irradiation 

container was placed under water between four MTR fuel elements, providing the γ-field 

(figure 19d). Then the container was heated up to 50-60 °C and kept at this temperature 

during the experiment. 

The scheme of the irradiation container is shown in figure 21. Every two months, the heating 

was switched off, the container cooled down and taken out of the irradiation position. The 

reaction vessels were opened, and samples were taken and analyzed and new sample again 

were placed for new or for repetition of measurements. Thereafter, the container was 

lowered again and kept at 50-60 °C till the next sa mpling. After the third sampling (about 6-8 

months), the experiments were stopped, the pH and Eh of solution were measured. Then the 

solutions were sent for total Hg-concentration analysis. 

The dose rate at the location of the irradiation container was measured several times during 

the experiments. The doses are presented in figure 20 show that during the first two 

experimental periods as the mean dose rate approximately 1.5 kGy/h. During the third period 

the mean dose rate was somewhat lower, amounting to approximately 1.0 kGy/h. Most of 
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these experiments are non-conservative type experiments because the dose rates are 

decreasing time scale. 

Figure 19: Experiments under γ-irradiation: reaction vessels in holder (a), container, heater 
and sample holders (b), mounted (c) and installed (d) container 

Figure 20: Evolution of average dose rate in irradiation experiments 
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Figure 21: Irradiation container scheme 



55

3.6. Batch leaching experiments 

Polysiloxane-mercury waste matrices, mercury cement matrices and mercury solid 

compounds as HgS and HgSe were loaded into each vessel and they were filled with 50 ml 

of deionised water or salt brines. The surface to volume ratio (S/V) was constant for all 

experiments, amounting to 8 m–1. All experimental sets were accompanied by blank tests. A 

set of leaching experiments at room temperature and at 50-60°C in the oven were performed 

(shown in figure 22). These non irradiation experiments were carried out for a period of about 

one year for Hg-cement matrices, HgS and HgSe samples and 6 weeks for polysiloxane 

samples. After specific experimentation time, the vessels were opened and leachates and 

analyzed as described in previous chapters. Additionally, the samples were filtered and dried 

for a week in a desiccator and then analyzed to check the surface and phase changes by 

scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Total mercury 

concentration was analyzed by flow injection cold vapor atomic absorption 

spectrophotometer. The pH of samples was measured with a glass electrode calibrated in 

the range pH 4 to 7, pH 7 to 10 and pH 10 to 12. 

Figure 22: a) Reaction vessel with polysiloxane sample and b) set of leaching experiments in 
an oven 
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3.7. Methods and Procedures for the stabilization /
solidification 

The aim of current experiments was to investigate the low cost solidification/stabilization 

methods for the elemental mercury, i.e. transform elemental mercury to chemical insoluble 

mercury forms. Specifically these investigations were concentrated mainly to assess 

conditions for the formation of mercury sulfide (red sulfide, cinnabar, HgS) at room 

temperature from elemental mercury.  

3.7.1. Formation of cinnabar 

One of the more commonly reported precipitation methods for removal of inorganic mercury 

from waste water is sulfide precipitation. The same sulfide precipitation technique was used 

here (e.g., as hydrogen sulfide or another sulfide salt) to convert the soluble mercury 

compound to the relatively insoluble mercury sulfide form. 

The following two solidification variables were investigated: ratio of HNO3/mercury (Hg°) and 

(NH4)2S /mercury (Hg°) for complete conversion of element al mercury (Hg°) to mercury 

sulfide (HgS). Initial solidification/stabilization reactions were started with elemental mercury 

and concentrated nitric acid (conc. HNO3). All reactions were investigated with different ratios 

of Hg°/Acid. At first concentrated HNO 3 was diluted and prepared in different standard molar 

solutions (1 - 5 molar solutions). Then HNO3/mercury (Hg°) molar ratios used were 1, 1.5, 2, 

2.5, 3, 3.5, 4, 4.5 and 5. A respective amount of nitric acid was taken in a glass vessel and 

placed in a cooling tank filled with ice. The acid solution was cooled for more than 3 hr to 

maintain a temperature of 0-3°C. Then a respective amount of elemental mercury (Hg°) was 

added drop by drop to reaction vessel to be oxidized to mercury (I) nitrate (mercurous 

nitrate). It was mixed 8 hrs at constant pH of 2.5 under cooling. Before the neutralization 

step, the samples were analyzed for mercurous nitrate concentration in solutions by Raman 

spectrometry.  
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Figure 23: Preliminary batch reactor vessel set up for preparation of HgS from Nitric acid. 

For secondary precipitation experiments, reagent-grade chemical ammonium sulfide (NH4)2S

solution (w/w 45 %) was used to transform the Hg(I) to Hg(II) oxidation state as in HgS or 

mercury sulfide. Here also the same (NH4)2S /mercury (Hg°) molar ratios used were 1, 1.5, 2, 

2.5, 3, 3.5, 4, 4.5 and 5 for precipitation experiments. The reaction times investigated were 2, 

4, 8, 12 and 24 hrs with different (NH4)2S /mercury (Hg°) ratio. Respective amount of Hg (I)  

nitrate was taken in glass vessel and placed on a hot plate which was preheated to a 

temperature of 45-50°C. Then a respective molar amo unt of ammonium sulfide (NH4)2S

solution (w/w 45 %) was added to the reaction vessel to precipitate the mercury sulfide. The 

reaction was taken about 2-4hrs for secondary precipitation at pH 8-9.5 and at a temperature 

of 45-50°C. After complete precipitation, the mixtu re was filtered through 0.45μm filters. The 

filtrate was analyzed for mercury concentration, and the solid part was dried in oven 25-30°C 

for solidification. Then dried samples were analyzed for mercury and sulfur by XRD and XRF 

characterization techniques. Further experimental details and process design information are 

going to be in discussed in results and discussions part. 
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4. Results and discussions 

4.1. Leaching experiments for mercury compounds 

4.1.1. Performance comparison of leaching samples 

The purpose of this work is to study the solubility of mercury compounds (Hg2+) in four 

different liquid leach solutions. The investigation includes how different parameters (time, pH 

and (Hg2+)/solution ratio) effect the distribution of oxidized species and Hg° in aqueous phase. 

As mentioned earlier (chapter 3.1.2) the three different inorganic mercury compounds used 

in the leaching experiments were with equal amount of Hg2+ standard to ensure that the 

measurements would not differ too much because of different leach solution composition. 

Figure 24: Relative comparison of added mercury compounds as Hg2+ in leaching solutions 

Figure 24 visualizes the relative difference between Hg2+ concentrations in the four samples. 

A maximum of 2.3% in difference was observed between the samples. Hence, such a small 

difference can be neglected when comparing the solubility experiments. Because, the 

difference in solubility between mercury samples in solutions is in most cases of several 

orders of magnitude.  
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4.1.2. Limitations of mercury under radioactive disposal conditions 

In Europe, each country has its own limitations to nuclide inventory relevant to dangerous 

nuclides solubility limit in ground water. An independent study at Konrad facility (a radioactive 

waste storage facility for non heat generating waste) had done some basic research on 

metallic waste migration to groundwater contamination. These studies showed that if 43.7 Kg 

Hg waste was contacted accidentally with deep group waters in equivalent volume of 106 m3

about the time scale of 3000 years, the probable concentration of total concentration of 

mercury in ground water at surface level is 0.0044μg/l. In Germany, the total amount mercury 

allowable limit for Hg in ground water is 0.1μg/l. In repositories, a concentration up to 100μg/l 

is tolerable due to a requested multi barrier system. 

4.1.3. Leaching experimental studies without γ-irradiation 

Leaching experiments in different aqueous phases under argon atmosphere without γ-

irradiation lasted for 6 weeks in sealed glass ampoules at room temperature as described in 

the chapter 3.4.1. After this time, the samples from the glass ampoules were taken out by 

breaking the seal and analyzed for mercury concentration in solutions. Our experimental 

results of mercury sulfide (HgS), silver amalgam (Ag-Hg), copper amalgam (Cu-Hg) and 

mercury selenide (HgSe) solubility in different aqueous solutions are given in the figure 25. 

These experiments are compared to samples under irradiation. 
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Figure 25: Dissolution behavior of HgS, HgSe, silver amalgam and copper amalgam without γ
–irradiation about 3 months in different aqueous solutions at room temperature. 
(*Ar- Argon atmosphere) 

The standard deviation of measurements of solubility, based on replicate determinations, is 

12 %. This uncertainty includes all factors, such as dilutions during measurement and 

filtration steps. The solubility of mercury increases for aerobic conditions up to 20-30% in 

almost all mercury compound samples. The solution pH values are 4.5 (Brine-2), 5.6 (Brine-

2), 6.8 (DI water) and 7.6 (opalinus clay water) at room temperature. Mercury solubility is 

high for both silver and copper amalgam compared to inorganic mercury compounds like 

HgS and HgSe. In the presence of these aggressive leachants, like brine-3 and brine-2, 

there is a clear effect on mercury solubility. Yamamoto et al. reported that presence of 

molecular oxygen combined with halogens, like chloride, stimulates the oxidation of 

dissolved elemental mercury in a linear fashion [87]. Despite the fact that the chloride 

concentrations in the solutions brine-2 and brine-3 are the same, the total solubility of 

mercury is little bit higher in brine-2 in most cases. This is likely an effect of the pH and high 

chloride complexes formation. Canela et al. observed in their studies of the pH dependency 

of mercury solubility, that at pH 7 and 8, the dominating species is Hg°aq (dissolved mercury 

in aqueous phase). They found, that in solutions with pH 7 and 8 the solubility of Hg°aq

accounts for 74% and 58%, respectively, of the total mercury solubility[88].  
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Figure 26: Pourbaix diagram of Hg-S species at room temperature 

A Pourbaix diagram, also known as potential/pH diagram, maps out possible stable 

(equilibrium) phase of an aqueous chemical system. As such a Pourbaix diagram can be 

read much like a standard phase diagram. A lower pH increases the redox potential and 

should thus increase the oxidation rate of Hg° to H g(I) and Hg(II). From Pourbaix diagram in 

the above figure 26, the dominating species at pH < 4.6 and high potential are Hg complexes 

of chlorides and sulfates. Comparing in brine-2 (pH 4.5) with brine-3 (ph 5.8) there is a 

promoted oxidation which probably is due to the lowered pH (figure 25). Under aerobic 

conditions, there is an oxidation layer buildup on the surface and that enhances higher 

mercury concentrations in solutions. When the molar ratio is 1, essentially all of the Hg is in 

the form of insoluble mercury-sulfide. The HgS solubility is somewhat sensitive to pH. 

But in the case of HgSe, it is complete different. HgSe is very little influenced by Cl- ion and 

pH. In both cases the concentration of Hg in solution is below 100 μg/l. The lowest solubility 

happens over the pH range 6-8 and the solubility increases at both low and high pH values, 
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as it is supported by literature. On the other hand, HgS oxidation in the distilled water was as 

low as in clay water. The oxidation rate of dissolved mercury in natural water tended to be 

accelerated in presence of Cl- ion irrespective of temperature. The fact that MgCI2, which has 

2 equivalents of chloride ions, showed nearly 2-fold higher oxidation rate than NaCl is 

compatible with this theory. That is the reason that brine-2 solution has a stronger effect 

compared to other brine solutions. Under strong oxidizing conditions in the solutions, the 

dissolved Hg2+ was suggested to form HgCI+, HgCI2, HgCl3- and HgCI4
2- complexes (Benes 

and Havlik, 1979). In Ag-amalgam, MgCl2 attacks directly the reaction zone surrounding the 

grain boundaries of the γ1-Ag2Hg3 (the matrix phase in the microstructure phase) at the 

surface of the amalgam. Because of that, the released mercury comes into aqueous phase 

via forming soluble mercury compounds. Cu-amalgam is more sensitive than Ag-amalgam in 

chloride environments. Dental amalgam literature reports that the mercury concentration at 

near neutral pH reached about 200 µg/l even in shorter time of exposure. The Ag-Hg-Sn 

phase of the dental amalgam released substantially less mercury than Ag-Hg phase. This 

difference is attributed mainly to a tin oxide surface film which forms a diffusion barrier for 

mercury. Our investigations are limited to Ag-Hg only because metal introduction in the 

amalgam needs higher temperature and high pressure. Due to safety reasons, those studies 

are not performed in the active laboratories for this work. 

4.1.4. Leaching experimental studies under γ-irradiation

The behavior of the mercury waste form in contact with aqueous phases is quite different 

under γ-irradiation. The material structure undergoes several changes during irradiation: As it 

was observed from table-2, irradiated mercury contains many metal nuclides in soluble 

metallic phase. Even after transformation to solid form, their stability might be changed under 

irradiation. In order to investigate the irradiation stability and the effect of the aqueous phase 

radiolysis, the following experiments were done. Figure 27 compares the measured dose 

rate in these experiments and dose rates calculated for an activity of 1.4 X 105 GBq of Hg-

194, which is expected in a 5 MW target. Two different geometries for an Hg-194 waste 

package are assumed. It becomes obvious that the experimental dose rates are sufficiently 

high. After irradiation the solutions are analyzed by cold vapor atomic absorption 

spectrometry for determination of the mercury concentrations in the aqueous phase. The 

aqueous phases lead to formation of additional reactive species under solution radiolysis. 

Concentrated chloride solutions as our salt brines, lead under radiolysis to the formation of 

several strong oxidative species, such as hypochlorite, chlorite and chlorate. 
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Figure 27: Comparison of energy dose rate calculated for Hg-194 (1.4E+5 GBq) and dose 
rates in the fuel storage tank of the FRJ-2 reactor (Conditions: inert atmosphere, 
time =100 days and T = 50-60°C) 

4.1.5. Comparison studies on mercury sulfide and silver amalgam 
under irradiation 

The first series are the long-term experiments of mercury leaching in deionised water and 

different salt brines at 50-60°C under argon atmosp here and under γ-irradiation. The duration 

of these experiments were approximately 3 months. Before and after leaching, the pH 

measurements were done and did not show any significant changes during the leaching time. 

The values measured in the solutions after different leaching times are within the 

experimental error, estimated as 0.2. For initial studies, HgS and laboratory prepared Silver 

amalgam were taken for our investigation. Figure 29 shows the results of leaching 

investigations. One important result is that HgS has better stability than silver amalgam 

under γ-irradiation. One main objective of this set of experiments is to study the effect of 

irradiation and chlorides on the mercury release from waste forms. As discussed before the 

dissolution of mercury from amalgams depends mainly on solution conditions and on pH 

value. All transition metals, able to exits in more valences, generate a large number of free 

radicals, including most powerful ones, the hydroxyl radical, so does Hg. In amalgam, 

mercury concentration is the much higher solution due to free radicals reaction with chloride 

ions. From figure 28, it can be guessed that much of the chloride salts were deposited on the 



64

amalgam surfaces and that enhanced the slow release of mercury in solution phase. 

Preparation of amalgam is another factor for mercury dissolution from silver amalgam. A thin 

film of oxide layer is formed on surface of Ag-Hg matrix phase, which is the main source of 

mercury and acts as an effective layer to dissolution (Marek, 1990). Oxide and hydroxide 

films of mercury are less stable at low pH. As earlier it is discussed that similar sort of 

behavior was identified in the case dental amalgams dissolution studies.  

The mercury concentrations in opalinus clay waters are much higher compared to other 

brines. This gives different information on amalgams. By comparing un-irradiated leaching 

samples (figure 25), the behavior of amalgam is worse under irradiation and gives higher 

concentration in orders of magnitude. Literature report suggests that  the higher mercury 

concentrations at higher pH has to be expected, since opalinus clay water contains high 

concentration of hydroxides, which form relative strong complexes with dissolved mercury 

and thus increases the solubility. These experiments are of non-conservative type because 

during repetition the experiments, the samples received a slightly less gamma dose rates. 

Similar investigations were carried on copper amalgams too. But it is a know fact that copper 

is an unstable element in corrosive and chloride environment. The values are far beyond the 

acceptable limit (above 1 mg/l). A comparison of concentrations of Hg in solutions from HgS 

and Ag-amalgam, the values below 200 μg/l in aqueous phase are taken for further 

investigation. Gold is ruled out because of its high price. Not only the solubility behavior of 

Hg/Cu system is not satisfactory at room temperature, but copper amalgam is more difficult 

to process than silver amalgam 

The radiolysis of water produces both molecular and radical oxidants and reductants, which 

may influence the redox conditions in the repository and the stability of the waste, waste 

container and buffer materials. Several pairs of radicals or ions (primarily e-
aq, OH* and H3O

+

in pure water) are formed in small isolated volume elements (spurs) in the initial radiation 

process. Species within the spurs interact as they diffuse into homogeneous distribution and 

these interactions result in the reformation of water and in the formation of molecular 

products. In pure water under γ- irradiation the decomposition products which appear in 

homogeneous distribution are e-
aq, OH, H2 and H2O2��

Radiolysis of salt brines produce large amount of chloride radical in solutions. The radiation 

chemical reactions occurring in the presence of Cl- ions have a great effect on solute 

dissolutions. This effect enhances the formation of soluble forming Hg2Cl2 and HgCl4
2− and 

other Hg-chloride complexes in solutions. In our investigation under irradiation, mercury 

dissolution increases in brine solution 10-20% values for case of HgS and even for 
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amalgams case. Comparing HgS un-irradiated sample in deionized water, concentration is 

almost the same.  

Figure 28: Samples after irradiation experiments A) HgS and B) Ag- amalgam 

Figure 29: Mercury concentration in solution containing HgS and Ag-amalgam under γ -
irradiation in diverse aqueous environments after 100days 
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Figure 30 gives information about stability region of HgS in soluble sulfide solutions. HgS-

water systems under oxidizing condition, HgS tends to change Hg(OH)2 at 4-8 pH range. 

Under reducing conditions, either polysulfide molecules will be generated. This is the 

probably the reason that the smaller concentrations of mercury in solutions are observed in 

the case of deionized water and opalinus clay waters. 

Figure 30: Metastable potential–pH diagram for the Hg---S---H2O system at 298 K with 
activities of dissolved mercury and sulfur of 10−6 and 1, respectively, in 
equilibrium with HgS (c, red) and HgO (c, red, orthorh.)[89] 

�

The metastable potential–pH diagram shown in figure 31 best predicts the kinetic behavior of 

HgS, at least in neutral chloride media. The upper limit of stability of HgS is the vertically 

hatched region. Hence, the most probable oxidation reaction appears to the following 

equation under irradiation condition: 

HgS + 4Cl− + 4H2O → HgCl4
2− + SO4

2− + 8H+ + 8e−                   (6) 

According to the potential–pH diagram illustrated in figure 30 & 31, a reducing agent with a 

reversible potential less −0.096 V should be capable of reducing HgS to metallic mercury at 

extremely low pH values. But in these investigations, no reducing agent was used at low pH 

value. 
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Figure 31:  Metastable potential–pH diagram for the Hg---S---Cl---H2O system at 298 K with 
activities of dissolved mercury, chloride and sulfur of 10−6, 1 and 1, respectively, in 
equilibrium with HgS (c, red) and HgO (c, red, orthorh.) [89] 

4.1.6. Leaching behavior of mercury sulfide and mercury selenide 
under irradiation 

The strong influence of γ-irradiation on dissolution rates of HgS becomes obvious by 

comparison of the blind (un-irradiated) specimen in brine 2 with irradiated ones: HgS-

specimen without irradiation reveal dissolution rates by more than an order of magnitude 

smaller than irradiated ones (from figure 32). The dissolution of HgS comes probably from 

oxidation reactions forming soluble mercury sulfate (Hg2SO4) or reduction reactions forming 

polysulfide compounds (HgS2
2-) [88], but chlorine may play critical role too. The altogether 

small amount of mercury dissolved from HgS in salt brines and clay water shows the strong 

stability of HgS and its suitability as solid compound for disposal. Literature data indicate that 

the mobility of mercury in aquatic environments without irradiation varies with pH and redox 

conditions: Oxidizing environments result in medium Hg mobility, reducing environments 

however in very low mobility up to immobility. Acidic environments generate high mobility, but 

in neutral to alkaline environments, a very low mobility up to immobility was observed. 

Therefore experiments were carried out under oxidizing (aerobic) [90], anaerobic/neutral and 

anaerobic/acidic conditions for the most promising compounds HgS (figure 32) and HgSe 

(figure 33). Oxidizing conditions were examined by introducing an oxidizing agent (ferric 

chloride) in addition to air (aerobic conditions): These experiments revealed that the mercury 
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mobility increased in oxidizing environments. Fe(III) chloride is reduced by Hg to Fe(II) 

chloride and an equivalent amount of mercury chloride is formed. Also, at low pH values the 

solubility increased. Comparing the dissolution behavior of HgS and of HgSe in these 

experiments, HgSe is found to be even some more stable than HgS, although altogether 

similar dissolution behavior was detected. Although not found in absence of irradiation, HgSe 

underlined the increased dissolution rate in presence of Cl-. The main conclusion drawn from 

these results is that the stability of chalcogenides during accidents in a repository is larger 

than amalgams. Despite of its still better dissolution behavior mercury selenide (HgSe) was 

not considered for detailed studies: High costs and bio-toxicity of selenium (Se) are major 

disadvantages. The HgS was chosen as solid compound for final disposal. Because of that 

further investigations are concentrated only on HgS. 

Figure 32: Dissolution behavior of HgS under γ-irradiation in different aqueous solutions and 
different reducing conditions 
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Figure 33: Dissolution behavior of HgSe under γ-irradiation in different aqueous solutions 
and different redox conditions 

4.2. Encapsulation of mercury compounds in cement 

4.2.1. Leaching behavior of mercury sulfide and Hg (I) nitrate 
embedded in cement matrix under irradiation 

In figure 34, the dissolution behavior of mercury compounds (HgS, Hg(I)nitrate) from cement 

matrices is shown. As additional parameter the influence of the Hg/cement ratio on 

dissolution behavior is studied for HgS. A photo of diverse Hg/cement matrix specimens is 

presented in figure 35. Due to large density differences of mercury compounds and of 

cement, a homogeneous Hg distribution in cement was difficult to achieve: Here further 

improvements are required. As expected, the retention of soluble HgNO3 is relatively small 

compared to HgS. Poon et al. studied the effect of heavy metal oxides (Cr, Cu, Zn, Cd, and 

Hg and Pb) in cement physical properties [61]. Their studies had shown that metal interaction 

with hydration and microstructure of the hydrated cement in the early stages of hardening 

and seriously affect strength devolvement. 
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Figure 34: Dissolution behavior of mercury compounds embedded in a concrete matrix under 
γγγγ-irradiation 

Figure 35: Concrete specimen containing mercury compounds
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Figure 36: Composite–leaching profile of pH from waste material at different Eh and pH 
conditions (Randall et al., 2003)[18] 

In fact the leaching kinetics is strongly affected by the experimental conditions and the 

frequency at which the solutions reach the pores of Hg-cement matrices. This leads to more 

interfacial pore reactions. More or less the Hg release is believed to be controlled by diffusion 

through cement matrices [91]. Stepanova et al. [92] also found that metal chlorides interact 

with silicate and aluminate components of cement to form complexes whose stability makes 

a substantially contribution to final compressive strength. Our investigations on Hg (I) nitrate 

and HgS with cement have given high concentrations (above 1 mg/l) due nitrates/sulfates 

reaction with hydration products of the cement. These reactions might have influenced the 

hydration and mechanical strength. And due to that porosity increased in Hg-cement matrix 

[93]. 

The irradiation conditions produce an accelerated leaching environment in the presence of 

Cl- too [91]. Under these conditions the result showed that leachants had very high initial 

alkalinity, probably due to the dissolution of hydrated cement. Figure 36 shows the leaching 

profile of Hg-waste material at different pH conditions. Mentioned studies of Stepanova et al. 

exactly match our investigations about release of Hg in solutions [88]. 

Another important point for high dissolution of mercury from cement matrices is that 

dominant species like Hg(OH)2 (90-99%) is formed during surface reaction. Due to density 

differences of the mercury compounds, HgS migrates to the bottom of the cylindrical shaped 
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specimen. This also influences the release of Hg from the sample in the olution. In addition, a 

number of physiochemical processes can affect the fate of solidified/stabilized Hg (shown in 

figure 37). 

Figure 37:  Possible physiochemical processes involved in the solidification/stabilization of 
Hg-waste in cement matrices 

Under irradiation, the interstitial liquid in concretes is affected by radiolysis. Water radiolysis 

changes the composition of leachates and forms soluble products which influence the 

degradation of the cement matrix. 

Gamma radiation from radioactive wastes is especially important because of its ability to 

deeply penetrate and degrade materials. Early studies indicated that damage to concrete will 

only occur for gamma doses on the order of 102 MGy. However, there has been little attempt 

to determine whether the dose rate is an important factor in concrete degradation in the long 

time deposition. In these investigations, samples received dose rate is below this values (it is 

almost below 100 KGy). So concrete irradiation induced mercury dissolution is considerable 

less on our samples. 
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4.2.2. Mercury waste (Hg) in ordinary Portland cement (OPC) 

The effect of HgS/OPC ratio on embedding is shown in figure 34 already. It can be seen that 

the waste/OPC ratio has a small effect on the mercury concentration (Hgtot) in solution. When 

the HgS/OPC ratio increases 2 to 3, the mercury concentration in solution is almost the same 

in deionized water and opalinus clay water. There is a small increase in brine solutions; this 

might be the influence of chloride ions in solutions. Zhang et al. reported similar results with 

Hg (I) nitrate samples and Hg(I)/OPC ratios above 4: There is a large increase in Hg 

concentration in filtrates. In the case of Hg (I) nitrate solutions, there is a large amount of 

mercury in solution because: It forms easily soluble hydroxides with dissolved oxygen 

molecules. 

4.2.3. Chloride effect on mercury embedded in cement matrix 

As mentioned in previous chapters, chloride ions can significantly increase the mobility of 

mercury. Schuster et al. (1991) [94] pointed out that, at a chloride ion concentration of 10-4 M 

(naturally occurring) increased the solubility of Hg(OH)2 and HgS by a factor of 55 and 400, 

respectively (as shown in figure 38). The increase of Hg release with increasing Cl-

concentrations is attributed to the dissolution of the adsorbed Hg through its complexation 

with Cl- (Wang et al., 1991)[95].  

At low pH (as in the case of Brine-2), alkalinity originating cement from cement was 

increasingly consumed during the leaching. The cement matrix was weakened, leaving 

relatively large pores in the cementitious matrix. Additionally an intense decalcification of C-

S-H (calcium silicate hydrate) in the presence of chloride occured due to greater ionic 

strength that they generate [96]. Figure 39 shows the pore size distribution of an initial 

sample and a degraded sample. The gauss mode distribution is not present in the degraded 

cementitious matrix: It is flattened and pores were wide opened. Perlot et al. [97] mentioned 

that the degradation behavior of cement paste is influenced by chloride ion diffusion through 

the matrix. Their investigations exhibited a chloride ion diffusion coefficient DeCl- of about 

25.6 x 10-13 m2 s-1. Svensson et al. [98] calculated the apparent diffusion coefficient to 10-14

m2 s-1 in OPC. The diffusion coefficient is increased by 2.5 times due to influence of chloride 

ion. 
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Figure 38: Predicted speciation of Hg as influenced by pH and chloride ions (Hanhe et al. 
1973a)[94] 

As a thumb rule, the greater the diffusion coefficient is the greater the penetration of 

aggressive ions from solutions to material.  Recently Svensson (2008) et al. have done 

long-term experiments for diffusion through concrete barriers with mercury waste as Hg(II) 

and announced that the apparent diffusion coefficient is about 0.4 - 0.2 x 10-14 m2 s-1.

Assuming apparent diffusion coefficient (Da ) = 10-14  m2 s-1 in Ordinary Portland cement, it 

would take years to release 1% of initial mercury concentration and 35000 years for 50% 

through 10 cm barrier (Drevel et.al, and Freeze et al.) [99] 
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Figure 39:  Pore size distribution of comparison between Hg-cement matrix before and after 
irradiation 

4.2.4. SEM investigations on mercury sulfide embedded in cement 

The evolution of the HgS-cement matrix surface during leaching experiments was 

investigated. During preliminary studies on matrix specimen, there are visible changes in 

surface of matrix after leaching studies in Brine-2. The EDX analysis on the surface of HgS-

cement matrix leached in Brine -2 (figure 40) shows that Ca, Cl and Mg are the main 

elements of the phase formed. The presence of Mg and Cl is connected to the formation of 

salt precipitations on top of the surface during the leach process. The dissolution of HgS-

cement matrix comes probably from surface and pore reactions with MgCl2 by forming 

soluble cement complexes and soluble mercury sulfate (Hg2SO4) or reduction reactions 

forming polysulfide compounds (HgS2
2-). The above mentioned chemical processes, make 

an enhanced degradation of the cement matrix. In figure 41(b), it is shown that mercury 

sulfide is located at one specific point and the surrounding mercury compound is leached 

completed by these aqueous phases. Simultaneously pore region also is affected by 

aqueous solutions too [96]. Because of that reason the samples become more porous after 

leaching time. Precipitated chloride and magnesium elements were deposited on pore walls 

and outer surface of the matrix (figure 41(c) and figure 41(d)). EDX analysis also revealed 

that the content of magnesium is relatively low compared to chloride (figure 40). 
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Figure 40: EDX spectrum of coverage of Hg-cement matrix after 3 months leaching in Brine-2 
under γ-irradiation 

Figure 41:  SEM photosgraphs of degraded HgS-cement matrix after 3-months leaching in 
Brine-2 under γ-irradiation a) Outer surface with distributed HgS in cement b)HgS 
is located specific point c) Precipitated Mg and Cl on porous surface d) HgS 
located on single point 
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The EDX line scanning was done to identify mercury distribution in the cement matrix. It 

revealed complex issues of the mercury and other elemental distribution. In figure 42(a), the 

mercury compound is located in specific points in 50 μm scale region. From figure 42(b), it 

can be inferred that the surface distribution of mercury is very limited. Mercury is leached by 

the aqueous phase and this can be either done by the direct reaction or by desorption from 

high surface area hydration products. However, alkaline hydrolysis of mercury compounds 

could lead to the formation of other soluble hydroxides and of free mobile sulfur complexes. 

These free sulfur complexes may form soluble mercury sulfates compound, which will be 

released from pore sites and eventually degrade the cement matrix. It can be concluded that 

pore fluid chemistry has clear a influence on Hg-cement matrix. In the long term, this is the 

potentially worst scenario as it leaves species free in ground water in accidental situations. In 

addition to that the irradiation helps the solubilization of Hg radionuclide’s and migration in 

fast pace. The outcome from above studies is that there is a serious requirement for 

alternative to cement type material for mercury embedding matrix. 
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Figure 42: SEM photograph of degraded HgS-cement matrix with EDX line scan through 
porous surface at specific points: a) 50μm and b) at 3μm
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4.3. Encapsulation studies for mercury compounds using 
polysiloxane material 

4.3.1. Leaching behavior of mercury compounds embedded in 
polysiloxane matrix  

Embedding nuclear waste in polysiloxanes is under examination for certain wastes from 

nuclear fission reactors, too. Unfortunately it was not possible to perform leaching 

experiments on polysiloxane with embedded HgS under γ-irradiation, because the Juelich 

Research Reactor was shut down and the dose rate in the fuel decay tank became too small. 

The transfer of the irradiation equipment to another irradiation site was examined but was 

found to be to time consuming. Nevertheless leaching experiments but without γ-irradiation 

were performed. 

Besides the standard waste package, a layered polysiloxane waste package was 

manufactured: In a first step a polysiloxane/HgS mixture was manufactured and hardened 

out. After that some HgS/polysiloxane specimens were embedded in an additional but HgS 

free polysiloxane layer. This was done in order to compensate a possible inhomogeneous 

HgS distribution in the polysiloxane due to the density difference between HgS and 

polysiloxane. 

In these experiments, polysiloxane type RT 622® Elastomer with catalyst from Wacker 

Chemie GmbH, Germany was used. Figure 43 contains pictures of unlayered and layered 

HgS/polysiloxane specimens. Leaching experiments with brines shown in table-8 were 

performed at 50-55°C for 6 weeks under aerobic cond itions. Besides HgS specimens also 

those containing HgSe were examined. Figure 44 shows specimens in leaching solutions. 

Figure.45 shows the results of these leaching experiments. For comparison one result of a 

cementitious embedded HgS specimen without radiation is presented, too. It becomes 

obvious that layered specimen reveal a substantial better leaching behavior than unaltered 

specimen. A standard cementation specimen reveals a better leaching behavior than 

unaltered polysiloxane specimen but a worse one than polysiloxane layered specimens. 

Unaltered HgSe/polysiloxane specimens reveal a better leaching resistance than unaltered 

HgS/polysiloxane specimens but there is no difference for layered specimens. Altogether this 

indicates that polysiloxane is very promising candidate as matrix material for HgS waste 

packages. However a layered polysiloxane waste package has to be used. Future work has 

to reveal details about the leaching behavior under γ-irradiation, too. It has to be noted that 

layered cementitious specimen are not easily to manufacture because of shrinkage effects 
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during hardening, potentially leading to cracks. Figure 46 shows some results on the 

leaching rate of unlayered polysiloxane/HgS specimen depending on time and on leaching 

temperature. There is obviously only a small temperature dependence of the leaching rate in 

the examined temperature regime 20 to 55°C.  

Figure 43: HgS/polysiloxane specimen - unlayered (top) and layered (bottom) 

Figure 44: HgSe/ and HgS/polysiloxane specimen in leaching solutions 
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Figure 45:  Leaching behavior of HgSe/ and HgS/polysiloxane specimen in 4 different leaching 
solutions at 50-55°C. For comparison a value of a c ementitious specimen is 
presented, too (single= unlayered, double=layered) 

From figure 46 comparing leaching studies of unlayered HgS/polysiloxane samples at both 

temperatures, there is an equilibrium value reached for leaching at temperature 25°C after 3 

weeks. The HgS/polysiloxane sample at 55°C is also behaving similar as at 25°C up 4 weeks, 

after that there is slight increase in concentrations in solution about 2 µg/l. Randall et al. [82] 

investigated high nitrate salt waste surrogate (contains Pb, Cr, Hg salts) mixed with 

polysiloxane at 50% waste loading. They reported that mercury TCLP (Toxic Characteristic 

Leaching Procedure) result exceeded the 25µg/l level from 1 g/l of mixed metallic waste 

containing mercury oxide from similar time scale at room temperature [72]. From our 

investigations, mercury concentration in solution reached by less 20 µg/l from 18 g/l mercury 

sulfide (HgS). Figures 47(a) and 47(b) show the Hg distribution in HgS/polysiloxane of the 

outer layer and the middle of sample (double layer specimen). The outer layer of 

HgS/polysiloxane shows no mercury on the top and there are no shrinkage effects during 

hardening and no migration of Hg to the surface as in the case of cement matrices. In the 

middle of the layer, mercury is located at specific sites and exists as HgS only (figure 47(b)).  

From these investigations, it can be concluded that polysiloxane encapsulation is applicable 

for mercury wastes containing large amount of hazardous metals, but may require 

pretreatment steps for higher concentrations to ensure that distribution is homogeneous and 

therefore leachability limits are met. Based on the preliminary studies, the polysiloxane 
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encapsulation is a competitive method to the usage of cement for mixed Hg-waste 

stabilization. 

Figure 46:  Temperature and time dependence of leaching behavior of unlayered 
HgS/polysiloxane specimens 

Figure 47: Hg-distribution in HgS/polysiloxane matrix by SEM/EDX a) outer layer (left) b) 
middle of sample (right) 
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4.4. Chemical engineering study of HgS generation 

4.4.1. Selection of a process for formation of HgS from liquid 
mercury 

In principle there are many different ways of formation of HgS from liquid mercury: 

1. Formation by adding a solid sulfur compound (S, FeS) to liquid mercury and reaction 

to HgS at elevated temperatures. It is a long term process and requires continuous 

stirring and requires large excess of the sulfur compound for a complete reaction of 

Hg to HgS. Accordingly, a separation of excess sulfur from the product is required. 

This HgS formation process is technically relevant and called ‘Dry process’. A highly 

water insoluble (0.0125 mg/l) mercury sulfide or meta-cinnabar is thus formed, which 

is converted to red sulfide or cinnabar by heating (at temperature of 386°C). Similar 

dry process investigations were carried in our laboratories at room temperature 

under aerobic and anaerobic conditions in glass ampoules. The sulfur powder is 

added to mercury in an S: Hg ration of 1:1, 2:1, and 3:1. These experiments were 

opened after 12 months. The samples were analyzed by SEM for mercury sulfide 

formed from elemental mercury and sulfur powder. From figure 48, still there is 

unreacted mercury in sample even after one year chemical stabilization. Svensson et 

al.[100] had done similar investigations with Hg°, HgO and different elemental sulfur 

sources (FeS and FeS2) about 3-4 years in anaerobic conditions. They reported that 

their reaction kinetics reached only 90-95% of elemental mercury conversion under 

alkaline conditions. Svensson et al. results match with our investigations of elemental 

Hg° and elemental sulfur.  
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Figure 48: SEM photo of HgS form dry process 

2 Formation from the gaseous elements: This process, in principle is possible, however 

has no technical relevance. The problem: is that the gas phase reactions with solid 

products are difficult to control (e.g. deposition of educts together with the product). 

Therefre this process requires major chemical engineering R&D for becoming mature 

for application under hot cell conditions. 

3 Formation by dissolution of mercury in HNO3 and subsequent precipitation of HgS by 

a soluble sulfide. This is process is technicall relevant. The advantages are:  

• Potential for continuous or semi-batch process (i.e. only a small amount 

of mercury is present in the reaction step, which is safer to process 

operation). 

• Reactions in water solutions are easy to control but It has to be 

mentioned that the use of water and other chemicals significantly 

increases the amount of waste. 

After a detailed literature survey and after preliminary experiments, the gas phase reaction 

and the reaction from elemental mercury with sulfur compounds in the condensated phase 

were ruled out: For the first, major R&D on the process is required and the second because 

of difficulties to realize a complete reaction of mercury, because of the need of a batch 

process and because of the long term character of the reaction. Thus we concentrated our 
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examinations on the process with dissolution and precipitation, called ‘Wet process’ (reaction 

scheme shown in figure 49). 

Figure 49: General reaction scheme of the wet HgS formation process 

A lab scale apparatus for process studies on the formation of HgS by the wet process was 

constructed and operated in the chemical hot cells of FZJ. Because of its high conventional 

toxicity the treatment of major amounts of mercury was not permitted outside of these 

chemical hot cells. Figure 50 contains a scheme and figure 51 a photo of the apparatus 

used. Exhaust gas purification is required because of the toxicity of the nitrous oxides formed 

and of the hydrogen sulfide, which may occur during the precipitation step. As the figures 

indicate, a careful pH and temperature control in the process is required. 



86

Figure 50: Schematics of the apparatus used for HgS formation 

Figure 51: Photo of the lab-scale experimental set-up constructed for formation of HgS from 
mercury 
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4.4.2. Formation of mercury sulfide by wet chemical process 

4.4.2.1. Dissolution of Hg in nitric acid: 

From the general reaction scheme of the wet HgS formation process (figure 49), the 

dissolution of mercury metal in nitric acid is the first important step. The dissolution is a 

prohibitively slow reaction, but small amounts of mercury form mercurous nitrate which 

causes a vigorous and exothermic reaction. It is obtained by the reaction of mercury with 

cold nitric acid.  Literature suggest that formation of Hg2(NO3)2 which arises from mercury 

ion, probably mercury(I) occurs at low temperature of about 0-5°C and at low pH of 2-3. 

Higher temperatures lead to formation of Hg(NO3)2, mercury (II) nitrate in nitric acid. In the 

course of our investigation on the mechanism for this reaction, we found that the ionic 

mercury, in the mercurous ion form, is unique in that it exits only in the dimeric form, Hg2
+2,

and never as a simple monomer. In solution this will exists only below a pH of about 2.5 to 

about 3 because of its reactivity with water or hydroxyl ions at higher pH values via 

disproportionate reaction (7). The precipitation reactions involving ionic mercury ions are 

complicated by disproportionate reaction yielding elemental mercury and mercuric compound 

as follows including the equilibrium constant for disproportionation reaction (8): 

Hg2
2+ + 2OH-                  Hg + H2O + HgO              (7) 

Hg + Hg 2+                  Hg2
2+, K = 166             (8) 

Figure 52: mercury (I) nitrate formation with respect to molar ratio (HNO3: Hg)
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Figure 52 shows the effect of excess of a amount acid in nitric acid for dissolution of mercury. 

An excess amount of nitric acid leads to additional formation of mercuric complexes in 

aqueous solutions. In addition to that reduction to elemental mercury readily achieved, but 

oxidation to the mercuric ion is more difficult. The oxidation potential of the elemental 

mercury to the mercuric ion [Hg (0) – Hg(II)] and the mercurous to the mercuric ion [Hg(I) – 

Hg(II)] are close. In order to determine the mercury oxidation state in solutions, the samples 

were periodically analyzed by Raman spectrometry [101]. Figure 53 shows the formation of 

mercury (I) nitrate at different molar ratios of acid to Hg. The Raman spectrum of the nitrate 

ion is a sensitive indicator of the nitrate ion coordination environment.  

Figure 53: Mercury (I) nitrate ions identification in aqueous phase by Raman spectroscopy 
(wave numbers range 900-1600) 

When the nitrate ion contacts a cation, it is polarized, resulting in the Raman active 

symmetric stretch with frequency lower than 1050 cm-l; the out-of-plane infrared active mode 

occurs at frequencies lower than 830 cm-1 and becomes Raman active; the asymmetric 

stretch which is a doublet for the equated peak generates two more-widely separated bands, 

one of which is polarized in the Raman spectrum; polarization of the lower frequency 

member of the pair is indicative of unidentate cation-nitrate ion binding whereas polarization 

of the higher frequency member of the pair is indicative of bidentate orientation; the 

deformation mode occurs at a frequency higher than 718 cm-l. The Raman peak at 1050 cm-1

was assigned to the (NO3
-) (nitrate peaks) [102]. If the peak shifts to lower wave numbers, 



89

this vibration can be assigned to the (NO3
-Hg+). The Raman signal at about 718 cm-1 was 

assigned to the Hg+NO3
- deformation mode (shown in figure 51). In the case that this 

vibrational mode shifts to higher wave numbers, then it will be assigned to the NO3
-Hg+

deformation mode. A very strong band at wave numbers higher than 170 cm-1 can be 

assigned to the large non-bonded Hg-Hg stretching mode in the crystals. The absence of the 

band at about 1385 cm-1 suggests that no Hg(II) was formed (figure 54).

Figure 54: Mercury (I) nitrate ions identification in aqueous phase by Raman spectroscopy 
(wave numbers range 300-900)

At higher molar ratio, the concentration of Hg (I) is reduced in solution and leads to the 

formation of mercury hydroxides and oxides. Controlling the dissolution reaction of mercury 

in nitric acid is an important step for a secondary reaction called precipitation to HgS. Our 

investigations indicated that a ratio of HNO3 to Hg of about 2 - 3 plays a critical role. 

Dissolution is limited by heat generation because of the exothermic reaction. This limitation is 

overcome by continuous cooling of the whole system for a long time (approximately 24 - 48 

hrs).  

Due to the complex spallation process (EURISOL/ESS targets), various nuclear reaction 

products will occur in different states. Many elements produced by nuclear reactions will 

undergo chemical reactions also with structural materials and impurities and form solid 
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compounds, e.g. oxides or intermetallic phases, which have a low solubility in Hg. These 

compounds, according to density, will tend either to float on top of the liquid metal (most 

probable), to sediment or to form particles dispersed in metallic mercury. Hardly soluble 

elements in mercury may also be precipitated at a cold surface as solid particles. The 

oxidative dissolution step in the wet process generates ionic soluble form of almost all metals 

and also of mercury in an aqueous phase that will facilitates the next step. 

4.4.2.2. Precipitation of HgS from ammonium nitrates solution 

A broad spectrum of technologies of mercury treatment has been described in the technical 

literature, ranging from established full scale applications to innovative approached 

investigations which are to date only at bench scale or pilot scale. The literature, however, 

provides only limited information on actual full scale treatment technologies performance and 

almost no full scale economic date of a mercury solidification process. 

One of the more commonly reported in literature for precipitation methods for removal of 

inorganic mercury from waste water is sulfide precipitation. In this process, sulfide (e.g., as 

H2S, sodium sulfide or another sulfide salt) is added to the waste stream to convert the 

soluble mercury to the insoluble mercury sulfide form [103]: Here also the same technique is 

applied to convert all the soluble mercury in aqueous phase to insoluble form as HgS with 

precipitating agent (NH4)2S. The sulfide precipitant as (NH4)2S is added to the mercury nitrate 

solution in a stirred reaction vessel, where the soluble mercury is precipitated as mercury 

sulfide. The precipitated solid as HgS (Cinnabar) is then removed by gravity settling in 

reaction vessel as shown in figure 51 and followed by filteration step. Table-12 presents the 

sulfide treatment results with respect to the molar ratio of Hg and the precipitating agent 

(NH4)2S. Literature report suggests that for initial mercury levels in excess of one mg/L, 

sulfide precipitation can achieve 99% removals of mercury. In our experimental studies it was 

found that the dissolution of mercury occurs with a reasonable rate at temperatures of 50 – 

80°C. Neutralization was performed at temperatures lower than ambient, as the precipitation 

of the HgS, too. The whole process went straightforward, as it is required in hot cell facility. 

HgS + S 2-                         [HgS2]
2-                         (9) 

[HgS2]2- + H20                    HgS + OH-1 + HS-                 (10) 

[HgS2]2- + NH4
+                   HgS + NH3+ HS                           (11) 
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There is some solubility of HgS in polysulphides so that an excess of sulphur in the product 

should be avoided. In the literature it is suggested that a maximum excess of 10 – 30 % is 

tolerable. For that the composition of the product was analyzed depending on the Hg/S ratio 

in the reacting solutions. The reaction mechanism for the formation of HgS precipitation is 

given in equations by 8, 9. 10. Mercuric sulfide is insoluble in hydroxide solution. But it is 

sufficiently acidic and that influences the HgS to dissolve at higher concentration of sulfide 

present in solutions via reaction 8. Such solutions precipitate the sulfide upon dilution 

because hydrolysis of equilibrium sulfide ion as in reaction 9. Maintenance of species in the 

solutions thus requires large quantities of metals, alone or with added alkali metal hydroxide. 

Table 12: Product and residue composition depending on the Hg/S ratio in solution 

As table-12 indicates for a sulphur excess by a factor of 2 in the solution an almost 

stoichometric product is gained with only a slight excess of sulphur. The composition of this 

product is almost ideal. For a sulphur excess by a factor of 4 or 5 in solution an excess in the 

solid product by a factor of 1.7 was measured, which is too high. Accordingly the excess of 

sulphur in the solution should be restricted to about 2. The table also contains the residual 

mercury concentration in solution: Values of < 0.1 µg/l were found, which is sufficiently low. 

Altogether this means that this procedure allows a complete conversion of liquid Hg to solid 

HgS. As in this precipitation treatment, the process is usually combined with pH adjustment, 

at the beginning, the pH of solution was not fully recorded, but it remained always acidic. 

After the neutralization step, (NH4)2S+water was added slowly as a buffering agent to 

stabilization of pH and to precipitate any mercury form to mercury sulfide. The total 

concentration of mercury in solution was monitored for kinetic studies with pH monitoring too. 

Figure 55 indicates that concentration of ionic mercury during precipitation reaction. The 
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most effective precipitation, with regard to minimizing sulfide addition, is reported to occur in 

the near neutral pH range. Precipitation efficiency declines significantly at pH above 9 

(Patterson, 1985). The molar ratio has clear effect on the precipitation. The prolongation of 

the reaction time has a negligible effect and less than 8 hrs is enough for total precipitation 

reaction to be finished. 

Figure 55: Concentration profile of Hg in solution during the HgS precipitation process

After that the precipitated mercury sulfide sample (shown in figure.48) was filtered and dried 

over 2 days in dessicator. After that the sample was analyzed for the mercury phases and 

purity of formed mercury sulfide. In figure 53 XRD data of formed mercuy sulfide are 

depicted. It suggests almost pure mercury sulfide and there is no visible unstable meta-

cinnabar in the final compound. 
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Figure 56 : XRD information of stable cinnabar phase can be synthesized by wet process 

It can be conclude that the above examined process mainly depends on the dissolution acid 

(HNO3) and soluble precipitating agent (NH4)2S which is added to the elemental mercury at  

a ratio of 1:3 and 1:2 for complete conversion to final insoluble form of HgS. In this process, 

the precipitated mercury compound is removed by a physical separation process. 

Additionally solutions from filtration step can be recycled to remove all dissolved mercury. 

The main advantage is that elemental mercury conversion to solid form is almost 99.8%. 

There are an extraordinary number of patents and papers that deal with the treatment of 

mercury. Many of the described processes are adapted and optimized to special applications 

of the used mercury and the removal of a certain kind of impurities. But sulfide precipitation 

appears to be the common practice for mercury treatment in many chlor-alkali plants already. 

The removal efficiencies of 95 to 99.9 percent are reported for well designed and managed 

processes. The same well designed chemical process engineering techniques can be 

applied to up scale this wet sulfide treatment process to handle large amounts of elemental 

radioactive mercury in batch experiments in hot cells. 
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4.5. Development and scale up studies 

During the research and development of a new chemical process, one of the problems that 

merits close to attention and often proves to be problematic is the scaling up. The focus here 

is especially on the chemical treatment process of irradiated elemental mercury relevant to 

the radioactivewaste management industry. In fact, however, the problems are similar for all 

material conversion processes, and the methodology presented can therefore be applied 

equally well to the chemical and allied industries. Radiation protection guide lines have also 

come into considerations to up scale such chemical processes. 

The starting point generally consists of laboratory results that concern chemical 

transformation whose translation to economic gain appears viable. Process development 

should serve to treat quantities of raw materials to large scale, amounting to tons, where as 

only grams or kilograms of the raw materials are used in laboratory. This is the precise 

function of change of scale or scale up. The problem is to reproduce the laboratory results on 

a large scale: in other words, to achieve the same conversions, yields and selectivity and in 

some cases, possibly improve the results. 

To go directly from laboratory to large scale is rarely feasible. As a rule, one or more 

additional parameters are necessary. Specifically, the problem is to define these additional 

steps in order to gather all the information required at maximum safety and economically 

feasibility. It is here that the methodology of process devolvement, and hence of scale up, 

becomes decisive for success of the operation. Different phases are some distinguished in 

the devolvement of a process, by referring to scale at which the experiment is conducted. 

In our laboratory-type experiments, certain aspects of the chemical process are investigated 

by handling relatively small amounts of mercury in order to meet safety requirement. Our 

investigations on mercury solidification and disposal outlined here is a first step in 

development of a complete disposal strategy for a mercury target. It may however be taken 

as an indication that the disposal of proton irradiated mercury is possible even within the 

strict limitations of European regulations. However because of the required solidification, 

which as a chemical process resembles to a small scale nuclear reprocessing step, the effort 

is very large compared to target materials which do not need a solidification process. Before 

upscaling, this type of chemical process requires a lot engineering studies and chemical 

safety analysis relevant to hot cell conditions. 
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4.6. Cost estimation studies 

In principle, for a cost estimation of the whole process in a radioactive waste treatment plant, 

detailed knowledge of each separation step and its technical implementation is important. 

The detailed implementation of a suitable waste treatment plant based on distillation or 

aqueous treatment techniques into the EURISOL design will largely depend on the 

peculiarities and details of the transfer of conventional methods to a highly radioactive 

environment and its adaptation to the overall layout of the EURISOL facility. Furthermore, 

there is a complete lack of experience with the handling of large amounts of radioactive 

mercury. In particular, the combination of high radioactivity, chemical toxicity and volatility is 

special to this material and poses problems that have not been encountered before. Because 

of the little information available, in this report we have to confine ourselves to derive 

estimations for the costs of such a plant, based on the information we collected from 

companies that run conventional industrial purification plants. This will be combined with 

recommendations concerning the transfer to a radioactive environment obtained from 

experts in the field of radioprotection, technical radiochemistry and radioactive waste 

management at Julich and PSI. These estimations should give a reasonable order of 

magnitude for the costs that will arise from the setup and operation of a chemical treatment

of the complete amount of mercury within the EURISOL multi-MW target based on 

conventional treatment techniques. It should be pointed out that very crude assumptions 

were taken for this estimation of the additional costs of radioprotection such as shielding, 

monitoring, filtering and venting systems and the costs caused by the disposal of the 

additional waste produced. Therefore, a relatively large error margin is possible here. A more 

detailed discussion of this estimation is presented below. 

Finally, these assumptions led to the conclusion that a radioactive plant for mercury 

treatment should, in a conservative assessment, be at least 20 times as costly as a 

conventional one.  

We will confine our estimations to those conventional treatment techniques that seem 

feasible for. Alternative chemical methods that could be especially suitable for a spallation 

system are discussed in the following section. Since these methods have not been applied in 

an industrial scale, there is no knowledge with respect to efficiency and economical 

practicability. For some of these methods, even fundamental research has to be completed 

before a technical up scaling can be envisaged. Therefore, we will not give any cost 

estimations for these methods. 
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For both conventional treatment techniques considered, i.e. amalgmation and sulphide 

precipitation techniques, where chemical laboratory installations allowing high levels of 

radioactivity are required. These have to be integrated into the hot cell of the spallation 

source unit. Depending on the treatment method chosen, this laboratory has to be furnished 

with special safety equipment and installations, i.e. double enclosures, gas monitoring and 

mercury gas filtering systems for a distillation plant or corrosion or acid resistant systems and 

installations for the handling of large amounts of acid aqueous solutions in case of a wet 

process. Therefore, the price for devices treating high level radioactive mercury is obviously 

several times higher than for conventional plants. After discussion with experts, we estimate 

that a reasonable cost multiplier for the transfer of a conventional mercury distillation to a 

plant for highly radioactive mercury would lie in the range 10 to 20. For conservative cost 

estimation, we will use a multiplier of 20 in the following. We stress again at this point that the 

following estimations are not precise and give only the order of magnitude of the costs that 

have to be expected.  

Nuclear Fuel Services, Inc developed amalgamation process called NFS DeHgSM early 1990. 

They projected costs for treating more than 1,500 kg were 200 /kg, assuming waste is 

elemental mercury (there is not data available about specific activity) and does not include 

disposal costs of the treated waste. At the Pacific Northwest National Laboratory, DOE 

conducted laboratory scale testing of the Sol-Gel process to stabilize high salt content waste. 

Two salt-containing, non-radioactive surrogates - one with high levels of nitrate salts and one 

with high levels of chloride and sulfate salts - were used for the tests to simulate wastes at 

DOE facilities. While a detailed cost analysis had not been performed on the process, an 

order of magnitude estimate indicates that the process would cost in the range of 500,000

to 1  million. 

Idaho National Engineering and Environmental Laboratory’s (INEEL) results showed that the 

polysiloxane process produced a durable waste form for all three high-salt content 

surrogates. The waste forms met the target TCLP levels for heavy metals, and the more 

stringent UTS standards for several of the metals tested. The process is currently limited to 

nonaqueous solid materials. Treatability testing is recommended for specific wastes prior to 

use of this technology. In addition, long-term durability testing of the polysiloxane waste 

forms is needed. Costs for full-scale polysiloxzane treatment are about $8/lb or $573 per 

cubic foot of salt waste. The cost for polysiloxane encapsulation is competitive with the 

baseline technology of Portland cement stabilization. 
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Considering non-cost criteria only, the storage options rank most favorably. If both cost and 

other criteria are considered, then landfill options are preferred, because they are the least 

expensive ones. Long term storage options ranked unfavorably on cost because: (a) even 

relatively small per annum costs will add up over time; and (b) storage is a temporary 

solution and, sooner or later, a treatment and disposal technology will be adopted, which 

adds to the cost. However, current analysis supports continued storage for a short period (up 

to a few decades) followed by permanent disposal when treatment technologies have 

matured. 

Considering the above points, these estimations do not include the decommissioning costs of 

the plant after the shut-down of the facility and the disposal of the additional waste produced 

by each chemical and technical operations. These are not negligible. Since the costs for the 

decommissioning of 1 m3 of radioactive waste are currently about 70 k  to 100 k

A wet process would probably be a little less expensive regarding the costs of installation 

and operation, but produces a large amount of liquid waste that is difficult and expensive to 

dispose. Depending on the frequency that is chosen for the disposal procedure, this can lead 

to exorbitant costs. [SNS and ESS cost estimates, see EURISOL deliverable last chapeter] 
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5. Summary 

Radioactive mercury and radioactive waste management can be seen as extreme cases 

where the modern notions of risk management and product control reach almost their limits. 

The hazards associated with these categories of waste entail a requirement for safe handling 

over long term. At the same time, it is not possible to fully predict the consequences of any 

chosen way of waste disposal. Despite these uncertainties, those who supply the proposed 

solutions to mercury radioactive waste disposal cling to the notion of safety- i.e. any future 

leakage will be minimized to a level that is harmless to human health and the environment. In 

the course of achieving effective final disposal of radioactive mercury waste, there are many 

uncertainties. Since the issue of risk versus safety almost always becomes a major point. 

These investigations would argue that the adherence to the notion of predictable long-term 

safety and provides a path final disposal of mercury waste. 

About 15000 kg (1.1 m³) of mercury will be irradiated in the EURISOL target for about 30 

years. After shut down (about 10 years) the mercury still contains an activity of about 6·106

GBq. Mercury must be solidified prior to disposal. It is advisable to start treatment of 

irradiated mercury for production of waste packages not earlier than after 5 – 10 years of 

cooling time, because in this period a decay of activity by a factor of 10 has to be expected 

(decay storage). The facilities therefore need an action plan for the conditioning of mercury 

waste. 

The main objectives of the present work were to perform R&D on the behavior of mercury 

compounds under repository conditions and which mercury solid compounds will be 

embedded in a suitable matrix for safe disposal. Another major task is a chemical 

engineering study on the mercury solidification and the design of an experimental setup for 

Hg-solidification which is suitable for hot cell laboratories. 

5.1. Selection of solid mercury compounds 

The initial selection of mercury compounds is based on solubility data. Solid compounds of 

mercury considered for our investigations are inorganic compounds (HgS, HgSe and Hg(I) 

nitrate and alloys (Ag-amalgam and Cu-amalgam)). Organic compounds are not considered 

because of their smaller stability under radiation and their even more pronounced 

conventional toxicity and mobility. 
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In general the risk dominating accident in most European repositories is water ingress. In salt 

mines (German concept) the ingressing water will be converted into salt brine. For accidents 

in clay repositories (Swiss concept) solutions with low salt concentrations have to be 

expected. In any case γ-radiation, which from the radwaste packages induces radiolytic 

reactions. Experiments were performed to study stability of hardly soluble solid mercury 

compounds [(HgS, HgSe and Hg(I) nitrate) and alloys (Ag-amalgam and Cu-amalgam)] in 

water, clay water and salt brines under γ-irradiation (5 - 25 kGy/h) at temperatures of 50 –

60°C to reciprocate the repository conditions. Thes e experiments were done for 2 - 3 months 

in the spent fuel storage of the FRJ-II DIDO reactor. 

The main conclusion drawn from our experimental investigations is that the stability of 

amalgams during water ingress in a repository is less than that of chalcogenides (HgS and 

HgSe). Further, formation of amalgams from elements without un-reacted mercury creates 

chemical engineering problems under hot cell conditions. The Ag-amalgam process is a 

complex chemical process and it is not easy to perform it at room temperature. Loading of 

Hg in amalgams is therefore questionable. The presence of radiation reduces the stability 

HgS and HgSe in salt brines and in Opalinus clay water. Despite of its better dissolution 

behavior mercury selenide (HgSe) was not considered for more detailed studies: High costs 

and the biotoxicity of selenium (Se) are major disadvantages. Hence HgS is selected as final 

disposal compound for further investigations related to immobilization by encapsulation 

techniques

5.2. Matrix embedding studies in HgS with cement and 
polysiloxane materials 

For the stabilization/solidification of hazardous metallic wastes cement and its supportive 

materials (like pulverized fly ash and blast finance slag materials) are the most commonly 

used encapsulation materials. In these investigations, cement was used as one of the 

encapsulating materials with chalcogenides (HgS and HgSe) and Hg (I) nitrate. As expected 

the retention of soluble HgNO3 is relatively small compared to HgS in cement matrix. These 

investigations also reveal that the combination of HgS-cement matrix is not fully stable at all 

final disposal conditions. Alkaline conditions and cement chemistry destabilized Hg-cement 

matrix and enhances the Hg release into solutions under γ-radiation. Another important point 

to be considered seriously here is that the volume of waste generated is increased too. 

These considerations resulting in work on an alternative encapsulating material. 

Polysiloxanes are considered for investigations. Previously Julich research center had done 
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lot of investigations on thermal and radiation stabilities of polysiloxane materials extensively. 

These results were implicated to these investigations. Unfortunately we were not able to 

perform leaching experiments on polysiloxane embedded HgS under γ-irradiation due to the 

shut down of the facility. Our leaching experiments without γ-irradiation however have shown 

that encapsulating HgS in polysiloxane may potentially be the best option in relation to 

cement encapsulation. The high salt concentration itself seems to have virtually no influence 

on the dissolution of the materials investigated, and the “aggressiveness” of MgCl2 - rich 

brine is attributed mainly to the relatively low solution pH. Our investigations proved that 

HgSe with polysiloxane is best encapsulating technique, but this rules out for the same 

reasons as discussed before. Multilayer encapsulating HgS in polysiloxane fulfills the primary 

purpose of the barriers in the repositories to isolate the waste, to protect human health and to 

protect the environment. In case of any leakage, the barriers shall impede or delay the 

transport of the hazardous substance to the biosphere. 

5.3. Conversion of elemental mercury to mercury sulfide 

The fundamental reaction for generation of mercury sulfide or cinnabar (HgS) is by mixing 

elemental mercury Hg° and sulfur source. As known b y the negative ∆Gf°, formation of 

cinnabar is theoretically feasible by mixing elemental mercury and sulfur (elemental sulfur 

power, Fe2S, and FeS). These investigations have shown that this reaction is not feasible at 

room temperature and it is time consuming and the most important Hg-conversion of 100% is 

not achievable. There is also the danger of stirrer break down during the operation which 

creats major safety and operational problems under the required hot cell conditions. All these 

factors lead us to develop a new process based on wet process chemistry starting from 

elemental mercury to HgS. Based on the requirements, a small laboratory experimental set 

up was built up with 2 liter capacity. 

Several experiments were done on the wet process dissolving Hg by HNO3 and precipitating 

HgS by adding (NH4)2S. Our investigations reveal that an almost 99.9% Hg conversion can 

be achieved. The analyses of HgS formed reveal that it is almost pure. Whereas for a mole 

ratio S/Hg of 2 in the solution the product is almost stoichometric HgS with a slight Sulfur 

excess, higher ratio leads to a more pronounced excess of sulfur in the precipitate. The 

concentration of Hg in the filtrate was negligible. This invention related was generally to the 

process of removing of mercury from waste streams in industrials environment. More 

specifically, the present invention is directed to continuous process and safe handling of 

mercury in hot cell condition. The whole wet chemical process is controlled easily by properly 

engineering techniques. 
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6. Outlook 

This thesis work evaluated the effectiveness of diverse methods for conversion of radioactive 

mercury into a sufficiently stable solid, which includes encapsulation in matrices.These 

investigations are intended to allow decision makers sufficient insights into this problem 

However, this thesis should be taken as a first step and respective work has to be continued. 

Future work should include: Reduction of pH of concrete for a better stability of mercury 

compounds has to be examined. Mercury compound encapsulation with polysiloxane 

remains to be investigated under gamma irradiation.  

Separation of other nuclides than Hg from a spent target should be studied more detailed, 

too. Solidification/stabilization of elemental mercury is done up to now by chemical wet 

process. The route for formation of mercury sulfide was done in a laboratory scale only. Up 

scaling to pilot plant and pilot plant to large scale studies have to be investigated seriously 

and safety analysis has to perform relevant to hot cell condition.
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9. Appendix 

App. Fig 1: a) Silver amalgam b) copper amalgam prepared for irradiation experiments at room 
temerature

App. Fig 2: a) Hg compounds encapsulated in cement (HgS (red), HgSe (gray). b) Hg(I) nitrate 
encapsulated in cement 
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App. Fig 3: Enlarged picture of HgS in cement with Hg/Ca/Si compositions measured at 
specific points 

App. Fig 4: EDX spectrum of coverage of Hg-cement matrix after 3 months leaching distilled 
water under γ-irradiation (Au sputtering was used)
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App. Fig 5 : SEM photosgraphs of degraded HgS-cement matrix 

App. Fig 6 :  XRD information of Cement-HgS phase 
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App. Fig 7: SEM photograph of degraded HgS-cement matrix with EDX line scan through inner 
surface
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App. Fig 8: The influence of gamma-irradiation on the tensile strength after a total dose rate of 
1.1 mGy [84] 

App. Fig 9: HgS/polysiloxane specimen – a) &b) unlayered (top), layered (c) and (d) 
HgS+cement+polysiloxane layered 
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App. Fig 10: SEM photograph of degraded HgS-polysiloxane matrix with EDX line scan through 
outersurface
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App. Table 1: Standard Gibbs energy formation of species in Hg-S-Cl-H2O system at 298°K [89]

The following chemical reactions were used to analyze the Hg-S-H2O system in different 
aqueous solution containing solution HgS. [89] 
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*The Raman peak at 1050 cm-1 was assigned to the υs(NO3
-). If the peak shifts to lower 

wavenumbers, this vibration can be assigned to the υs(NO3
-Hg+). 

**The Raman signal at about 718 cm-1 was assigned to the NO3
- deformation mode. In the 

case that this vibrational mode shifts to higher wavenumbers, then it will be assigned to the 
NO3

-Hg+ deformation mode. 

***unidentate cation-nitrate binding 

****bidentate orientation 

*****A very strong band at wavenumbers higher than 170 cm-1 can be assigned to the large 
non-bonded Hg···Hg stretching mode in the crystal. 
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