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ABSTRACT

This report describes the TOTMOS code, which calculates the scalar neutron spectrum in a

reactor cell as a function of the position by the collision probability method. One-dimensional

cylindrical or spherical geometries can be treated. The neutron spectrum is used to compute

cell-weighted cross sections, which can be used in gross reactor calculations. Furthermore,

“equivalent” cross sections are calculated, which are employed to study the efficiency of

absorber rods in a reactor on the basis of the diffusion theory.
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1 INTRODUCTION

The present report describes the TOTMOS code, which solves the integral neutron trans-

port equation in one-dimensional cylindrical and spherical geometry by the method of col-

lision probabilities.1 The TOTMOS code is used as a neutron spectrum code in order to

generate cell-weighted group cross sections for gross reactor calculations and to determine

”equivalent” cross sections2−4 for absorber rod calculations. The method of equivalent cross

sections represents one of the methods which makes it possible to study the efficiency of

absorber rods in a reactor by of the diffusion theory.

The TOTMOS code emerged in different stages of development from the THERMOS

code,5 which was written to calculate thermal neutron spectra in one-dimensional slab and

cylindrical reactor lattices and to generate thermal broad-group cross sections. The first

major change made in comparison to the original THERMOS code was the extension of the

solution method to include the whole energy range as required for reactor calculations.6 A

further modification was that the TOTMOS code no longer uses the velocity as a variable

but the energy. This makes it possible to use cross section data generated by the com-

mon multigroup cross section processing codes without major additional conversions. The

THERMOS code solves a fixed source problem, where the sources for the thermal energy

range are the inscatter processes from the epithermal energy range into the thermal range.

The calculation of the neutron spectrum in the TOTMOS code for both fast and thermal

energies therefore made it necessary to solve a different type of transport equation and the

code was changed so that it solves an eigenvalue problem.

In a second step, the original integration method used in the THERMOS code for cal-

culating the collision probabilities was replaced by a new and more efficient integration

technique, which was first developed and realized for cylindrical geometry.7 In this tech-

nique, the determination of the collision probabilities is reduced to the calculation of escape

probabilities and the escape probabilities are determined in such a way that the integration

over the source volume is coupled to the possible directions of flight, in which the source

particles intersect with the system under consideration. The treatment of slab lattices was
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abandoned in connection with the transition to the new integration technique. Furthermore,

the option for the reflecting boundary condition was omitted due to problems connected with

this boundary condition in cell calculations.8 Instead, the possibility was incorporated into

the TOTMOS code of using a white or albedo boundary condition at the outer surface of the

system under consideration in addition to the vacuum boundary condition.8,9 In a further

step, it was shown that the new integration method for calculating the collision probabilities

can also be extended without major changes to one-dimensional spherical geometries.10

Additionally, the TOTMOS code was revised with respect to number of other aspects.11

Thus, all data fields used in the code are variably dimensioned and held in a container ar-

ray, which makes it possible to adapt the storage requirements in a TOTMOS run to the

specific problem of interest. The editing of the results, as for example, the fluxes and the

balance tables, was modified in order to improve the readability of the output. Furthermore,

the programming in the calculation of cel- weighted cross sections was totally revised. In

this context, the TOTMOS code was modified so as to treat in two subsequent calculations

double-heterogeneous systems, as they occur in high temperature reactors. Here, the nu-

clear fuel is used in the form of coated particles, which are embedded either in spherical fuel

elements or in the rods of block-shaped fuel elements.12 Finally, the option was incorporated

into the TOTMOS code of computing equivalent cross sections for the absorber rod calcu-

lations.a During these revisions, the new name TOTMOS was also chosen for the code in

order to indicate its descent from the THERMOS code and to describe the fact that the

code treats the total energy range of interest in reactor physics.13

After this introduction in Section 1, a derivation of the integral transport equation is given

in Section 2. This form of the transport equation is the basis and starting point of the collision

probability method used in the TOTMOS code. The method of collision probabilities for

solving the integral transport equation is described in Section 3. Furthermore, the properties

of the collision probabilities, as for example the reciprocity relation, are discussed. The

aIt should be mentioned here that the possibility was also incorporated into the TOTMOS code of

performing a burn-up calculation in order to determine the depletion of the boron-10 isotope in a zone

containing borated material. This fact is not further discussed in this report and is only explicitly addressed

in the input description for the TOTMOS code.
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transport coefficients are connected to the collision probabilities and are defined as the

volume average of the transport kernel of the integral transport equation over a source

region and as an integral over a target region. If the total cross section in a target region is

zero recourse has to be taken to the use of the transport coefficients.

It is shown in Section 4 that the calculation of the collision probabilities can be reduced

to the calculation of escape probabilities. This procedure can be applied to most spatial

transfers which occur in a practical problem. Section 5 deals with the computation of

the escape and collision probabilities and, if needed, with the explicit calculation of the

transport coefficients. The determination of the escape probabilities requires the solution

of a five fold integral. It is explained that four integrations can be performed analytically

such that the problem is reduced to the evaluation of a one-dimensional integral, which

is solved numerically. Depending on the properties of the source and target regions six

case distinctions have to be made in the calculation of the collision probabilities and of the

transport coefficients, which are described in Section 5 as well. It is furthermore explained

how the concept of the albedo boundary condition can be incorporated into the collision

probability method. It has to be ensured that numerical inaccuracies in the calculation of the

escape or collision probabilities do not have a detrimental influence on the particle balance.

For this reason the collision probabilities and the escape probability for leaving the system

are normalized in an appropriate manner. The procedure in the normalization process is

described. Furthermore, the sequence of the calculations of the collision probabilities by the

use of the reciprocity relations for the collision probabilities and for the transport coefficients

is explained.

The integral transport equation in the form of the collision equations is solved by the

application of the power iteration method and by the use of source iterations. The power

iteration method is combined with additional numerical techniques in order to accelerate

the convergence. These are the normalization (or scaling), the over-relaxation, and the

extrapolation, which represents a special form of over-relaxation. The iteration techniques

used are discussed in Section 6.

The cross section data employed in the TOTMOS code are described in Section 7. The

main portion of the data required in a TOTMOS run are taken from an external library,
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which has the format of the cross section library used in the MUPO code.14 For nuclei, for

which no chemical binding effects need to be considered, the free-gas model1 may be used in

the TOTMOS code in order to determine the thermal scattering cross sections and thermal

scattering kernels. Here, the Brown and St. John form of the free-gas model is employed.15

The scattering kernels are averaged by a weighting function in order to calculate the group-

to-group transfer cross sections for the free-gas model. The weighting function used in the

TOTMOS code is based on the Westcott formalism,16 which is also presented in Section 7.

The format of the MUPO cross library is described in Section 8.

Section 9 deals with the computation of the cell-weighted cross sections by the TOTMOS

code. The method used for the determination of the equivalent cross sections for the absorber

rod calculations is explained in Section 10. Section 11 presents a short description of all the

subroutines of the TOTMOS code.

Section 12 gives the input instructions for the TOTMOS code. The input data required

to run a problem with the TOTMOS code are listed and a description of each input item is

given. Furthermore, the logical units are needed for the input and output, are specified. A

list of the literature used for preparing the present report is compiled in Section 13.

The following nomenclature is used. A zone is defined as a spatial region which exhibits

the same material properties and may be subdivided into further spatial intervals. A lower

case sigma (σ) is employed to represent the microscopic cross sections and the capital sigma

(Σ) is used for the macroscopic cross sections. A lower index is utilized in order to specify

the reaction type of a specific cross section. If additional indices are required, in order to

specify for example the spatial interval or the energy group for which the cross section is

defined, the lower index for the reaction type is changed into an upper index. The terms

scattering matrices and group-to-group transfer cross sections are used synonymously. In

the section describing the iteration methods used in the TOTMOS code, the macroscopic

scattering matrices are also denoted by the capital letter P , in order to simplify the notation

in the equations used there. The symbol Φ is employed for the angular flux and for the total

flux. The distinction between the two quantities is indicated by the arguments. Although

other arrangements are conceivable, the common procedure is used to give the geometric

dimensions in centimeters, the dimensions of the cross sections in barns per atom and the

4



atomic number densities in atoms per barn and centimeter. The dimension of the scalar

group flux is then neutrons per cm2 and source neutron and that of the zone integrated

group flux is cm per source neutron. The neutron energies are given in electron volt. The

dimensions of the other quantities used in the TOTMOS code may be deduced from these

definitions. It should also be mentioned that the notation used in this report is different

from that employed in the TOTMOS code.

The author would like to thank Dr. W. Scherer, formerly at the Institute of Energy

Research of Forschungszentrum Jülich, for many helpful discussions and assistance in clarifing

for the author numerous areas addressed in the TOTMOS code. He is also indebted to Ms A.

Kuhr of the same institute for her help in the preparation of the figures used in this report.
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2 THE INTEGRAL TRANSPORT EQUATION

The neutron population in a nuclear system is commonly described by the angular flux

Φ(r, E,Ω) = v n(r, E,Ω) , (1)

where n(r, E,Ω)dV dEdΩ is the average number of neutrons in the volume element dV about

the space point r, in the energy interval dE about the energy E and in the solid angle element

dΩ about the direction Ω and v is the absolute value of the neutron velocity. The angular

flux Φ(r, E,Ω) can be determined by the time-independent neutron transport equation1,17

Ω∇Φ(r, E,Ω) + Σt(r, E) Φ(r, E,Ω) = Q(r, E,Ω) , (2)

which is a balance equation for the number of neutrons in the generalized volume element

dV dEdΩ. The right side of Eq. (2) gives the neutron sources and the left side the neutron

losses in the volume element. Furthermore, Σt(r, E) is the total cross section at the position r

and at the energy E. The losses are absorption reactions, scattering processes, which remove

the neutrons from the interval dE about E, and the neutron leakage out of the system under

consideration. The neutron sources considered in the following are the scattering processes

and the fission reactions. The total source density Q(r, E,Ω) may then be written in the

form

Q(r, E,Ω) = S(r, E,Ω) + F (r, E,Ω) , (3)

where S(r, E,Ω) is the neutron source density due to scattering processes and F (r, E,Ω)

the fission source density. The source density due to scattering may be written in the form

S(r, E,Ω) =

∫
E′

∫
Ω′

Σs(r, E
′,Ω′ → E,Ω) Φ(r, E ′,Ω′) dE ′dΩ′ (4)

where Σs(r, E
′,Ω′ → E,Ω) is the transfer cross section, which describes how the energy and

the direction of a neutron are changed (sich ändern) during a scattering event. The term

S(r, E,Ω)dV dEdΩ gives the number of neutrons in dV which emerge in the energy interval

dE about E due to scattering processes from all other energies E ′ and in the solid angle

element dΩ about Ω from all other directions Ω′.
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In the calculation of the fission source density, it is a good approximation - also used in

the TOTMOS code - to assume that the energy of the fission neutrons is independent of

the incident neutron energy and that the emission of the fission neutrons is isotropic in the

laboratory system. Thus, the fission source does not depend on the direction Ω and may be

written in the form

F (r, E,Ω) =
1

4π
χ(E)

∫
E′

∫
Ω′
ν(E ′)Σf (r, E

′) Φ(r, E ′,Ω′) dE ′dΩ′ , (5)

where Σf (r, E) is the fission cross section, ν(E) the average number of neutrons emitted

in a fission process, and χ(E) is the energy distribution of the fission neutrons, which is

normalized to unity.

The transfer cross section Σs(r, E
′,Ω′ → E,Ω) only depends explicitly on the directions

of flight before and after scattering in special cases, when for example the medium in which

the particle transport is studied is moving or consists of a single crystal. In most practical

applications, the transfer cross section is a function of the cosine of the scattering angle in

the laboratory system µL = Ω′ ·Ω, i.e.

Σs(r, E
′,Ω′ → E,Ω) = Σs(r, E

′ → E,Ω′ ·Ω) . (6)

Eq. (2) is an integro-differential equation. The method of collision probabilities is based

on the integral form of the transport equation and Eq. (2) is therefore first converted into the

required form using the method of characteristics. This method solves the transport equation

along the direction of flight Ω. For this purpose, the leakage term Ω∇Φ is converted into a

different form. In a Cartesian coordinate system the leakage term is given by

Ω∇Φ = (Ωx
∂

∂x
+ Ωy

∂

∂y
+ Ωz

∂

∂z
) Φ . (7)

If s denotes the space variable along the direction of flight Ω (see Fig. 1), the total derivative

of the angular flux is given by

dΦ

ds
=
∂Φ

∂x

dx

ds
+
∂Φ

∂y

dy

ds
+
∂Φ

∂z

dz

ds
. (8)
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Fig. 1: Spatial coordinate along the direction of flight Ω.

A comparison of the Eqs.(7) and (8) gives the relations

dx

ds
= Ωx , x = x0 + sΩx

dy

ds
= Ωy , y = y0 + sΩy

dz

ds
= Ωz , z = z0 + sΩz , (9)

which can be written in the vector representation as

r = r0 + sΩ . (10)

Thus, the transport equation may be represented by

d

ds
Φ(r0 + sΩ, E,Ω) + Σt(r0 + sΩ, E) Φ(r0 + sΩ, E,Ω) = Q(r0 + sΩ, E,Ω) (11)

or abbreviated by
dΦ

ds
= −a(s)Φ(s) +Q(s) , (12)

where a(s) is the abbreviation for the total cross section. If it is assumed that the function

Φ(s) in the source term Q(s) is known, an ordinary differential equation of first order is ob-

tained, which can be solved by a variation of the constant. The solution of the homogeneous

8



equation is

Φ(s) = c exp

[
−
∫ s

s0

a(s′)ds′
]
. (13)

The complete solution is the sum of the inhomogeneous and of the homogeneous solution,

i.e.

Φ(s) =

∫ s

s0

Q(s′) exp

[
−
∫ s

s′
a(s′′)ds′′

]
ds′ + c exp

[
−
∫ s

s0

a(s′)ds′
]

(14)

with c = Φ(s0), where s0 is an arbitrary point on the connection line of the points r′ and r.

Thus

Φ(s) =

∫ s

s0

Q(s′) exp

[
−
∫ s

s′
a(s′′)ds′′

]
ds′ + Φ(s0) exp

[
−
∫ s

s0

a(s′)ds′
]
. (15)

If s0 is set equal to sB, the value of s at the boundary of the system under consideration, and

if there is no incoming flux (this corresponds the vacuum or free-surface boundary condition),

the solution becomes, because of Φ(sB) = 0,

Φ(s) =

∫ s

sB

Q(s′) exp

[
−
∫ s

s′
a(s′′)ds′′

]
ds′ . (16)

If there is an incoming flux, the latter can be treated as a surface source with free-surface

boundary conditions.17 In the literature, the lower integral limit is commonly extended to

minus infinity. With sB → −∞, Eq. (16) goes over into

Φ(s) =

∫ s

−∞
Q(s′) exp

[
−
∫ s

s′
a(s′′)ds′′

]
ds′ (17)

or into

Φ(r0 + sΩ, E,Ω) =

∫ s

−∞
Q(r0 + s′Ω, E,Ω) exp

[
−
∫ s

s′
Σt(r0 − s′′Ω, E) ds′′

]
ds′ . (18)

The vector r0 on the right side of Eq. (18) is now replaced by r − sΩ. Furthermore, the

variables s′ and s′′ are transformed in a such way that they are no longer counted from the

point r0 but from the target point r (see also Fig. 1). Thus, the following result is obtained

Φ(r, E,Ω) =

∫ ∞
0

Q(r− s′Ω, E,Ω) exp

[
−
∫ s′

0

Σt(r− s′′Ω, E) ds′′

]
ds′ . (19)

The integral term, which appears in the exponential function of Eq. (19), is the optical path

length

τ(r′, r) =

∫ s′

0

Σt(r− s′′Ω, E) ds′′ (20)

between the source point r′ and the target point r. The optical path length is a measure of

the attenuation of the neutrons during their flight through matter.

9



3 THE COLLISION PROBABILITY METHOD

In the following, the reactor cell to be analyzed is divided into a number, K, of spatial

intervals. The volume of the kth interval (k = 1, 2, · · · , K) is denoted by Vk. The total

number of collisions in the interval k of a heterogeneous configuration due to neutrons in the

energy interval dE about E is then obtained by multiplying the integral transport equation

in Eq. (19) by Σt(r, E) and integrating the resulting equation over the volume Vk and over

all directions Ω, i.e.∫
Vk

∫
Ω

Σt(r, E) Φ(r, E,Ω)dV dΩdE

=

∫
Vk

∫
Ω

∫
s′
Q(r− s′Ω, E,Ω) Σt(r, E) e−τ(r

′, r, E)ds′dΩdV dE . (21)

If the origin of the coordinate system is shifted into the detector point r, it is seen that

the integrations over s′ and Ω correspond to a volume integration using spherical polar

coordinates, i.e.

dV ′ = s′ 2ds′dΩ

or

dΩ ds′ =
dV ′

s′ 2
=

dV ′

|r− r′|2
.

Thus, Eq. (21) becomes∫
Vk

∫
Ω

Σt(r, E) Φ(r, E,Ω)dV dΩ =

∫
Vk

∫
V ′
Q(r′, E,Ω) Σt(r, E)

e−τ(r
′, r, E)

|r− r′|2
dV ′dV , (22)

where the integration over r′ is perfomed over the whole cell. Furthermore, the average flux

density

Φk(E) =
1

Vk

∫
Vk

∫
Ω

Φ(r, E,Ω)dV dΩ (23)

and the average source density

Qk(E) =
1

Vk

∫
Vk

∫
Ω

Q(r, E,Ω)dV dΩ , (24)

in the interval k are introduced. If the total cross section on left-hand side of Eq. (22) is

additionally expressed by the flux averaged cross section Σt
k(E), the collision equations may

10



be written in the form

Σt
k(E)Φk(E)Vk =

K∑
k′=1

Qk′(E)Pk′k(E)Vk′ , (25)

where

Pk′k(E) =
1

Vk′ Qk′(E)

∫
Vk

∫
Vk′

Σt(r, E)Q(r′, E,Ω)
e−τ(r

′, r, E)

|r− r′|2
dV ′dV (26)

is the probability that a neutron is born in the interval k′ due to a scattering or fission

process and makes the next collision in the interval k. This can be seen if the coordinate

system for the r integration is shifted into the source point r′. The volume element dV may

then be written as

dV = |r− r′|2 ds dΩ . (27)

The term

Q(r′, E,Ω)

Qk′(E)Vk′
dV ′dΩ e−τ(r

′, r, E)

is the probability that a neutron is born due a scattering process or a fission reaction in the

volume element dV ′ about r′ and in the solid angle element dΩ about the direction Ω and

reaches the space point r without collision. The term Σt(r, E)ds is the probability that the

neutron makes the next collision in the interval ds about the point r.

In order to calculate the collision probability in practical applications, a spatially constant

(flat source approximation) and isotropic source density is assumed. In this case, the collision

probability is given by

Pk′k(E) =
1

Vk′

∫
Vk

∫
Vk′

Σt(r, E)
e−τ(r

′, r, E)

4π |r− r′|2
dV ′dV (28)

and depends only on the spatial structure and the total cross sections of the configuration

to be analyzed. In order to enable an analytical evaluation of the collision probability, it is

furthermore assumed in the following that the total cross section in the interval k is constant.

This is a justified assumption if a sufficiently fine spatial division of the reactor cell is chosen.

Thus,

Pk′k(E) =
Σt
k(E)

Vk′

∫
Vk

∫
Vk′

e−τ(r
′, r, E)

4π |r− r′|2
dV ′dV . (29)
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In order to simplify the notation, the energy variable is omitted in the following when its

use is not required for understanding.

The quantity

T (r′, r) =
e−τ(r

′, r)

4π |r− r′|2
, (30)

which occurs under the integral for the collision probability, is called the transport kernel,

for which the relation

T (r′, r) = T (r, r′) (31)

holds. The transport kernel is the uncollided neutron flux at the position r due to an isotropic

neutron source at the position r′.

Due to the assumption that the total cross section in the interval k is constant, a reci-

procity relation for the collision probabilities can be derived from Eq. (29), which is

Vk′Pk′k
Σt
k

=
VkPkk′

Σt
k′

(32)

or

Vk′Σ
t
k′Pk′k = VkΣ

t
kPkk′ . (33)

In addition to the collision probabilities, the transport coefficients are defined by

Tk′k =
1

Vk

∫
Vk

∫
Vk′

T (r′, r) dV ′dV =
1

Vk

∫
Vk

∫
Vk′

e−τ(r
′, r)

4π |r− r′|2
dV ′dV . (34)

are defined by. They have the property

Tk′k =
Vk′

Vk
Tkk′ (35)

and are related to the collision probabilities by the equation

Tk′k =
Vk′

VkΣt
k

Pk′k . (36)

If the total cross section in the target interval k is zero, the collision probability Pk′k vanishes

and one has to go back in this case to the transport coefficient Tk′k.

If the system under consideration has a conserving boundary condition, the equation

∑
k

VkΣ
t
kTk′k = 1 (37)

12



must be fulfilled. This leads to the following statement of neutron conservation

K∑
k=1

Vk

∫
E

Σa
k(E)Φk(E)dE =

K∑
k=1

Vk

∫
E

Fk(E)dE , (38)

which is obtained from Eq. (25) by the use of the normalization condition∫
E

Σs
k(E

′ → E) = Σs
k(E

′) , (39)

where Σs
k(E

′) is the total scattering cross section in the interval k and at the energy E ′. If

a vacuum or an albedo boundary condition is used, the equation

K∑
k=1

VkΣ
t
kTk′k = qk′(E) (40)

must hold, where qk′(E) is the first flight non-leakage probability. The statement of neutron

conservation is then

K∑
k=1

Vk

∫
E′

Φk(E
′)

[
Σt
k(E

′)−
∫
E

qk(E)Σs
k(E

′ → E)dE

]
dE ′ =

K∑
k=1

Vk

∫
E

qk(E)Fk(E)dE .

(41)

During the iteration process for solving the transport equation, extensive use of Eq. (38) or

Eq. (41) is made in order to normalize the iterated flux Φk(E) and to conserve the global

particle balance by this procedure.

13



4 REPRESENTATION OF THE COLLISION PROBABILITIES

BY ESCAPE PROBABILITIES

In this section, it is shown that the calculation of the collision probabilities can be reduced

to the calculation of escape probabilities. In the following derivation the positions at which

the trajectory of a source particle starting at r′ with the direction Ω intersects the inner or

the outer boundary of the target interval k are denoted by rk−1 and rk, respectively. The

optical path length between the points r′ and r may then be expressed by

τ(r′, r) = τ(r′, rk−1) + Σt
k(s− sk−1) , (42)

where sk−1 is the geometrical path along the direction Ω from the source point r′ to the

inner boundary of the interval k. If, furthermore, sk denotes the geometric path length to

the position rk and s the length of the path to the point r in the interval k, it may be written∫
Vk

dV
e−τ(r

′, r)

|r− r′|2
= =

∫
Ω

dΩ

∫ sk

sk−1

ds exp−
[
τ(r′, rk−1) + Σt

k(s− sk−1)
]

=

∫
Ω

dΩ e−τ(r
′, rk−1)

∫ sk

sk−1

ds exp
[
−Σt

k(s− sk−1)
]

= − 1

Σt
k

∫
Ω

dΩ e−τ(r
′, rk−1)

{
exp

[
−Σt

k(sk − sk−1)
]
− 1
}

=
1

Σt
k

∫
Ω

dΩ
[
e−τ(r

′, rk−1) − e−τ(r′, rk)
]
. (43)

If this result is inserted into Eq. (29), the following expression is obtained for the collision

probability

Pk′k =
1

4πVk′

∫
Vk′

dV ′
∫

Ω

dΩ
[
e−τ(r

′, rk−1) − e−τ(r′, rk)
]

= Ck′k−1 − Ck′k , (44)

where the quantity Ck′k is defined by

Ck′k =
1

4πVk′

∫
Vk′

dV ′
∫

Ω

dΩ e−τ(r
′, rk) . (45)

The meaning of Ck′k can be seen from the following consideration. If the neutron source

strength in the interval k′ is constant and equal to unity, the expression

dV ′

Vk′

dΩ

4π
e−τ(r

′, rk)

14



is the probability that a neutron emerging in the volume element dV ′ about r′ with directions

in the solid angle element dΩ about the direction Ω reaches the outer boundary of the interval

k without collision. Thus, Ck′k is the probability that a particle emerging in interval k′ leaves

the interval k across the outer surface Ak without collision. This is the usual definition of

the escape probability.

Eq. (44) can be interpreted as a balance equation. A neutron entering the interval k

across the inner boundary Ak−1 either makes a collision in k or leaves the interval across the

outer boundary Ak without collision and this is finally the reason that the calculation of the

collision probabilities can be reduced to the calculation of escape probabilities.
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5 COMPUTATION OF THE ESCAPE AND COLLISION

PROBABILITIES AND THE TRANSPORT COEFFICIENTS

5.1 General Considerations

In this section, the integrals in Eq. (45), which defines the escape probability Ck′k, are

evaluated for one-dimensional cylindrical and spherical geometries. It is explained that four

of the five integrations can be performed analytically. It is furthermore shown that the same

procedure for calculating the escape probabilities can be used for both geometries and that

essentially only the integrands of the remaining integral are different. These are the Bickley

functions18 in the case of the cylindrical geometry and the exponential function in the case of

the spherical geometry. The procedure is first explained with the example of the cylindrical

geometry. Depending on the spatial transition and on the total cross sections in the source

interval or in the target interval, six case distinctions have to be made and are described.

The collision probabilities Pk′k can then be determined by the use of the calculated escape

probabilities. If the total cross section in a target interval is zero, the transport coefficients

Tk′k have to be computed instead of the collision probabilities. The procedure for treating

the spherical geometry is described subsequently.

5.2 Cylindrical Geometry

For cylindrical geometry, the coordinates of the position vector r are denoted by r, ϕ, z,

where r is the projection of the vector r into the x-y plane, ϕ the polar angle, which is counted

from the x-axis, and z is the usual axial coordinate (see Fig. 2). In curved geometries, the

coordinates of the direction variable Ω are given in a coordinate system which is connected

to the spatial variable r. This coordinate system is also shown in Fig. 2. It has its origin

in position r. The êz-axis is parallel to the z-axis of the spatial coordinate system. The

direction variable Ω is described by the spherical polar coordinates θ and ω. The polar angle

θ is counted from the êz-axis. The azimuthal angle ω is the angle between the plane formed

by the vectors ẑ and r̂ and the plane formed by the vectors êz and Ω, where ẑ is a unit

16
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Fig. 2: Coordinates in cylindrical geometry. (The axis intercepts µ, η, ξ denote the Cartesian

coordinates of the direction vector Ω).

vector in the z-direction. The solid angle element is then given by

dΩ = sin θdθdω . (46)

The infinitesimal source volume element dV ′ is given by

dV ′ = r′dr′dϕ′dz′ . (47)

In order to evaluate the integrals in Eq. (45), it is convenient to express the optical path

length τ(r′, rk) by the projection t = τ sin θ into x-y plane. The escape probability may then

be written in the form

Ck′k =
1

4πVk′

∫
Vk′

dV ′
∫ π

0

dθ

∫ 2π

0

dω sin θ e−t/ sin θ

=
1

4πVk′
2

∫
Vk′

dV ′
∫ π/2

0

dθ

∫ 2π

0

dω sin θ e−t/ sin θ

=
1

2πVk′

∫
Vk′

dV ′
∫ 2π

0

dωKi2(t) , (48)

17



where Ki2(t) is the Bickley function of the order two. The Bickley functions are defined by

Ki0(x) = K0(x)

Kin(x) =

∫ ∞
x

dx′Kin−1(x
′) for n ≥ 1 , (49)

where K0(x) is the modified Bessel function of the order zero.18 The Bickley functions may

be written in the form

Kin(x) =

∫ π/2

0

dθ sinn−1 θ e−x/ sin θ for n ≥ 1 . (50)

For reasons of symmetry, the integration over the polar angle θ only needs to be performed

explicitly over the range 0 ≤ θ ≤ π/2. Since the integrand in Eq. (48) does not depend

on the source variable z′, the cylinder height cancels out in the expression for the escape

probability. Thus, the volumes Vk′ of the intervals k′ (as the volumes Vk) are to be understood

in cylindrical geometry in the sense that they are given for a unit height.

Fig. 3 shows the projections of the flight paths from the position r′ in the source interval

k′ to the outer boundary of the interval k for different azimuthal angles ω. The projections

of the optical path lengths may be expressed in the cylindrical coordinates by

t = t(r′, ω) = Σt
k′

[√
r2
k′ − (r′ sinω)2 − r′ cosω

]
+ t∗k′k , (51)

where t∗k′k is the optical path length from the outer boundary of the interval k′ to the outer

boundary of the interval k along the flight path belonging to ω. Since the possible trajectories

do not depend on the angle ϕ′, the integration over this variable can be performed, which

gives a factor 2π. The escape probability Ck′k can then in principle be determined by

integration over the spatial variables r′ and the azimuthal angle ω. It turns out, however,

that it is convenient in practice not to use r′ and ω as integration variables but to perform the

spatial integration along the trajectories of the neutrons. The possible trajectories shown

in Fig. 3 may be represented as parallels to the x-axis at different distances y in the x-y

coordinate system and the outstanding integration over r′ and ω is replaced by an integration

along the parallels to the x-axis in the source interval k′ (see Fig. 4).

18



Fig. 3: Trajectories for different azimuthal angles ω.

Fig. 4: Representation of the trajectories as parallels.
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The procedure is realized by the variable transformations

x = r′ cosω − rk′ cosωk′

y = r′ sinω (52)

with

r′dr′dω = dxdy . (53)

where ωk′ is the azimuthal angle of Ω at the position where the flight path intersects the

outer boundary of the interval k′. The optical path length t in Eq. (51) is given in the new

coordinates by

t = t(x, y) = Σt
k′ [a(y)− x] + t∗k′k , (54)

where a(y) is the length of the chord or of a section of the chord which runs parallel to the

x-axis at a distance y through the circle of the radius rk′ or a circular ring with the outer

radius rk′ , respectively (see Fig. 5). The variable x is counted from the intersection point of

the parallel with the outer boundary of the interval k′ in the second quadrant.

k'

x

a(y)

k

x

y

×

rk

rk' t
+

k' k

a(y) a(y)

t
+

k'-1 k

t
-

k' k

t
-

k' k

t
-

k'-1 k

t
+

k' k

rk-1

rk'-1

Fig. 5: Optical path lengths in the integration.
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In order to show the further procedure for computing the escape probability exemplarily,

the special case is considered in the following in which the source interval k′ is the innermost

interval. The collision probability Ck′k may then be written in the form

Ck′k =
1

Vk′

∫ rk′

−rk′
dy

∫ a(y)

0

dxKi2{Σt
k′ [a(y)− x] + t∗k′k} . (55)

For reasons of symmetry, it is sufficient to perform the integration over y for y ≥ 0 only. It

is furthermore convenient to make the variable transformation x′ = Σt
k′x. If the variable x′

is subsequently again denoted by x and if the section a(y) is also given in the following in

mean free paths, Eq. (55) may be written as

Ck′k =
2

Σt
k′Vk′

∫ rk′

0

dy

∫ a(y)

0

dxKi2[ a(y)− x+ t∗k′k] . (56)

The derivative of the second expression in Eq. (49) with respect to x gives the relation

Kin−1(x) = − d

dx
Kin(x) for n ≥ 1 (57)

which allows the integration over x to be performed in Eq. (56). Thus

Ck′k =
2

Σt
k′Vk′

∫ rk′

0

dy {Ki3(t∗k′k)−Ki3[ a(y) + t∗k′k]} . (58)

In the following, the six case distinctions are discussed which have to be considered in

the computation of the collision probabilities and the transport coefficients in practice. In

the resulting expressions, the optical path lengths t−k′k, t
−
k′−1 k, t

+
k′k, and t+k′−1 k occur, which

are illustrated in Fig. 5. The length t−k′k may be expressed by

t−k′k =
k∑

i=k′+1

xi(y)Σt
i , (59)

where xi(y) is the geometrical path length in the interval i in the first quadrant, and the

length t+k′k by

t+k′k = t−k′k + 2
k∑
i=1

xi(y)Σt
i , (60)

where xi(y) = 0 for y ≥ ri. The collision probabilities and transport coefficients are cal-

culated explicitly only for k′ ≤ k which corresponds the outward-directed transfers. The

inward-directed transfers can be determined by applying the reciprocity relations given in
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Section 3.

Case 1: k′ < k, Σt
k′ 6= 0 and Σt

k 6= 0

This case occurs most frequently in practical problems. The escape probability is composed

of the following contributions

Ck′k =
2

Σt
k′Vk′

∫ rk′−1

0

dy
[
Ki3(t

+
k′−1 k)−Ki3(t

+
k′ k)
]

+
2

Σt
k′Vk′

∫ rk′−1

0

dy
[
Ki3(t

−
k′ k)−Ki3(t

−
k′−1 k)

]
+

2

Σt
k′Vk′

∫ rk′

rk′−1

dy
[
Ki3(t

−
k′ k)−Ki3(t

+
k′ k)
]
. (61)

Because of

t+k′−1 k = t−k′−1 k , if rk′−1 ≤ y ≤ rk′ (62)

the three terms in Eq. (61) may be combined to the expression

Ck′k =
2

Σt
k′Vk′

∫ rk′

0

dy
[
Ki3(t

+
k′−1 k)−Ki3(t

+
k′k) +Ki3(t

−
k′k)−Ki3(t

−
k′−1 k)

]
. (63)

The remaining integration in Eq. (63) over the variable y is performed by the use of a Gaus-

sian quadrature. When the escape probabilities have been determined, the collision probabil-

ities Pk′k are computed by the use of Eq. (44) and the transport coefficients Tk′k subsequently

by the use of Eq. (36). The quantities Pkk′ and Tkk′ are determined by applying the reci-

procity relations given in Eqs.(33) and (35).

Case 2: k′ < k, Σt
k′ = 0 and Σt

k 6= 0

The escape probability for this situation can be written as the sum of the following three

terms

Ck′k =
2

Vk′

∫ rk′−1

0

dy xk′(y)Ki2(t
+
k′−1 k) +

2

Vk′

∫ rk′−1

0

dy xk′(y)Ki2(t
−
k′ k)

+ 2
2

Vk′

∫ r′k

rk′−1

dy xk′(y)Ki2(t
−
k′ k) (64)

One of the last two integrals can be directly added to the second integral. Because of Σt
k′ = 0,

it furthermore holds

t−k′ k = t−k′−1 k = t+k′−1 k , if rk′−1 ≤ y ≤ rk′ (65)
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such that the other integral can be combined with the first integral. Thus, it can be written

Ck′k =
2

Vk′

∫ rk′

0

dy xk′(y)
[
Ki2(t

+
k′−1 k) +Ki2(t

−
k′ k)
]
. (66)

The collision probabilities Pk′k and the transport coefficients Tk′k as well as the correspond-

ing quantities for the transfers k → k′ are obtained in the same manner as in Case 1.

Case 3: k′ < k, Σt
k′ 6= 0 and Σt

k = 0

Since the total cross section in the target interval k is zero, it holds for the escape probability

that Ck′k = Ck′k−1. Furthermore, the collision probability for this transfer vanishes, i.e.

Pk′k = 0 . (67)

For this reason, the transport coefficient Tk′k has to be calculated directly in this case. The

integral in Eq. (34), which defines the transport coefficients, can be evaluated in the following

way

Tk′k =
1

4πVk

∫
Vk′

dV ′
∫

Ω

dΩ

∫ sk

sk−1

ds e−τ(r
′, rk−1) exp

[
−Σt

k(s− sk−1)
]

=
1

4πVk

∫
Vk′

dV ′
∫

Ω

dΩ e−τ(r
′, rk−1) (sk − sk−1)

=
1

2πVk

∫
Vk′

dV ′
∫ 2π

0

dωKi1 [t(r′, ω)] xk(r
′, ω) , (68)

where xk(r
′, ω) is the projection of the path sk − sk−1 into the x-y plane. The integrations

can be performed in the same way as for the escape probability described above. The result

is

Tk′k =
2

VkΣt
k′

∫ rk′

0

dy
[
Ki2(t

+
k′−1 k−1)−Ki2(t

+
k′k−1) +Ki2(t

−
k′k−1)−Ki2(t

−
k′−1 k−1)

]
xk(y) ,

(69)

where, because of Σt
k = 0, the index k − 1 in the arguments of the Ki2 functions may also

be replaced by the index k, which corresponds to the notation used in the TOTMOS code.

The collision probability Pkk′ for the inward-directed transfers can be calculated by the use

of the relation

Pkk′ = Tk′k Σt
k′ (70)
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which is obtained by combining Eqs. (33) and (35). The transport coefficient Tkk′ is deter-

mined as in Case 1.

Case 4: k′ < k, Σt
k′ = 0 and Σt

k = 0

The escape probability Ck′k is obtained in the same way as in Case 3. Since the collision

probability Pk′k is zero for the situation considered, the transport coefficient Tk′k has to be

calculated again directly. This is composed of the following contributions

Tk′k =
2

Vk

∫ rk′−1

0

dy xk′(y)Ki1(t
+
k′−1 k−1)xk(y) +

2

Vk

∫ rk′−1

0

dy xk′(y)Ki1(t
−
k′ k−1)xk(y)

+ 2
2

Vk

∫ rk′

rk′−1

dy xk′(y)Ki1(t
−
k′ k−1)xk(y) . (71)

Because of

t+k′−1 k−1 = t−k′ k−1 , if rk′−1 ≤ y ≤ rk′ , (72)

Eq. (71) can be brought into the form

Tk′k =
2

Vk

∫ rk′

0

dy xk′(y)xk(y)
[
Ki1(t

+
k′−1 k−1) +Ki1(t

−
k′ k−1)

]
, (73)

where the index k − 1 in the arguments of the Ki1 function may again be replaced by the

index k, which corresponds to the notation in the TOTMOS code. The quantities Pkk′ and

Tkk′ are obtained as in Case 3.

Case 5: k = k′, Σt
k′ 6= 0

The escape probability Ck′k′ is determined as in Case 1 by applying Eq. (63) where t−k′k′ = 0.

The collision probability Pk′k′ can be calculated from balance considerations. A neutron

which emerges in the interval k′ either has its next collision in k′ or leaves this interval

through the boundary Ak′ or experiences its next collision in one of the inner intervals

j < k′. Thus, the following equation must hold

Pk′k′ + Ck′k′ +
(
Ci
k′ k′−1 − Ca

k′ k′−1

)
= 1 , (74)

where Ci
k′ k′−1 is the probability that a neutron which emerges in interval k′ reaches the

boundary Ak′−1 without collision and Ca
k′ k′−1 is the probability that a neutron which emerges
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in interval k′ crosses the boundary Ak′−1 and reaches the boundary Ak′−1 again after passing

through the inner intervals j < k′. The expression in parentheses then gives the probability

that a neutron which emerges in interval k′ experiences its next collision in one of the inner

intervals j < k′. Thus

Pk′k′ = 1− Ck′k′ −
(
Ci
k′ k′−1 − Ca

k′ k′−1

)
. (75)

The escape probability Ck′k′ is given in Eq. (63). The probabilities Ci
k′ k′−1 and Ca

k′ k′−1 are

given by

Ci
k′ k′−1 =

2

Σt
k′Vk′

∫ rk′−1

0

dy
[
Ki3(t

−
k′ k′)−Ki3(t

−
k′−1 k′)

]
(76)

and

Ca
k′ k′−1 =

2

Σt
k′Vk′

∫ rk′−1

0

dy
[
Ki3(t

+
k′−1 k′−1)−Ki3(t

+
k′ k′−1)

]
, (77)

where t−k′ k′ = 0. If both expressions are inserted into Eq. (75), the upper integral limits can

be extended to rk′ , since, because of

t+k′−1 k′−1 = t−k′ k′ and t+k′ k′−1 = t−k′−1 k′ , if rk′−1 ≤ y ≤ rk′ , (78)

the added terms cancel each other due to the difference in the parenthesis. After some

further conversions the following result is obtained

Pk′k′ = 1− 2

Σt
k′Vk′

×
∫ rk′

0

dy
{

2Ki3(t
+
k′−1 k′) + 2

[
Ki3(t

−
k′ k′)−Ki3(t

−
k′−1 k′)

]
−Ki3(t+k′ k′)−Ki3(t

+
k′−1 k′−1)

}
. (79)

The transport coefficient Tk′k′ is calculated again using Eq. (36).

Case 6: k = k′ and Σt
k′ = 0

Since the source interval and the target interval coincide and the corresponding total cross

section is zero, the collision probability vanishes, i.e.

Pk′k′ = 0 . (80)

The escape probability Ck′k′ can be written, similar to Case 2, as the sum of three terms

Ck′k′ =
2

Vk′

∫ rk′−1

0

dy xk′(y)Ki2(t
+
k′−1 k′−1) +

2

Vk′

∫ rk′−1

0

dy xk′(y)Ki2(t
−
k′−1 k′)

+ 2
2

Vk′

∫ rk

rk′−1

dy xk′(y)Ki2(t
+
k′ k′) . (81)
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Since t−k′−1 k′ = 0 and because of

t+k′−1 k′−1 = 0 and t+k′ k′ = 0 , if rk′−1 ≤ y ≤ rk′ , (82)

the integrals in Eq. (85) can again be combined. Thus

Ck′k′ =
2

Vk′

∫ rk′

0

dy xk′(y)
[
Ki2(t

+
k′−1 k′−1) +Ki2(0)

]
, (83)

where Ki2(0) = 1.

Since Pk′k′ is zero, the transport coefficient Tk′k′ has to be calculated again in this case.

Due to the coincidence of the source interval and the target interval, the integrations over

these intervals are no longer independent. The occurring integrals are of the form∫ x̃k′

x̃k′−1

dx′
∫ x̃k′

x′
dx =

1

2
(x̃k′ − x̃k′−1)

2 =
1

2
x2
k′(y) (84)

where x̃k′−1 and x̃k′ are the limits of the variable x for the interval k′. The transport

coefficient is composed of the following three terms

Tk′k′ =
2

Vk′

1

2

∫ rk′−1

0

dy x2
k′(y)Ki1(t

+
k′−1 k′−1) +

2

Vk′

1

2

∫ rk′−1

0

dy x2
k′(y)Ki1(0)

+ 2
2

Vk′

1

2

∫ rk′

rk′−1

dy x2
k′(y)Ki1(0) , (85)

where Ki1(0) = π/2. Because of

t+k′−1 k′−1 = 0 , if rk′−1 ≤ y ≤ rk′ (86)

the terms in Eq. (84) can be combined to the following expression

Tk′k′ =
1

Vk′

∫ rk′

0

dy x2
k′(y)

[
Ki1(t

+
k′−1 k′−1) +Ki1(0)

]
. (87)

5.3 Spherical Geometry

The coordinate systems used in spherical geometry are shown in Fig. 6. The spatial

coordinates are denoted by r, ϑ, and ϕ, where r is the distance to the point r, ϑ the polar

angle, and ϕ the azimuthal angle. The êr-axis of the coordinate system for the direction

vector Ω points in the direction of the spatial vector r. The polar angle θ of Ω is counted
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Fig. 6: Coordinates in spherical geometry. (The axis intercepts µ, η, ξ denote the Cartesian

coordinates of the direction vector Ω).

from this axis. Furthermore, the azimuthal angle ω is defined as the angle between the

plane formed by the vectors ẑ and r̂ and the plane formed by the vectors êr and Ω. The

infinitesimal source volume element dV ′ is given by

dV ′ = r′ 2dr′ sinϑ′dϑ′dϕ′ (88)

and the solid angle element again by

dΩ = sin θdθdω . (89)

The expressions for the volume element and the solid angle element are inserted into Eq. (45).

Since the possible flight paths from a source point r′ do not depend on the angle ω, the

integration over this variable can be performed. For reasons of symmetry, the problem

furthermore does not depend on ϑ′ and ϕ′ such that the integrations over these variables can
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also be performed. Thus, it may be written

Ck′k =
1

2Vk′

∫
Vk′

dV ′
∫ π

0

sin θdθ e−τ

=
2π

Vk′

∫ rk′

0

r′ 2dr′
∫ π

0

sin θdθ e−τ , (90)

where

τ = τ(r′, θ) = Σt
k′

[√
r2
k′ − (r′ sin θ)2 − r′ cos θ

]
+ t∗k′k . (91)

The quantity t∗k′k is again the optical path length from the outer boundary of the interval k′

to the outer boundary of the interval k along the direction θ. The symmetry properties of

the problem in the case of the spherical geometry have the consequence that the flight paths

need only be considered in a plane through the sphere which contains the source point r′ and

the center of the sphere. Thus, the flight paths can be treated by the use of the same scheme

as in the case of cylindrical geometry with the sole difference that instead of the azimuthal

angle ω the polar angle θ is used as the angle variable. Similar to the case of the cylindrical

geometry, the variable transformations

x = r′ cos θ′ − rk′ cos θk′

y = r′ sin θ′ (92)

are made, where θk′ denotes the polar angle at the position at which the flight path intersects

the outer boundary of the interval k′. Furthermore, it follows

r′ 2 sin θ′dr′dθ′ = ydxdy . (93)

If a(y) again denotes the length of the chord or of a section of the chord which intersects the

interval k′ at the distance y, the escape probability can be written in the form

Ck′k =
2π

Vk′

∫ rk′

0

y dy

∫ a(y)

0

dx exp−
{

Σt
k′ [a(y)− x] + t∗k′k

}
. (94)

In order to simplify the integral, the variable transformation y′ = y2 with dy′ = 2ydy is

made. If the quantity y′ is subsequently again denoted by y and if the variable x and the

section a(y) are again given in mean free paths, the following is obtained

Ck′k =
π

Vk′Σt
k′

∫ r2
k′

0

dy

∫ a(y)

0

dx exp−{[a(y)− x] + t∗k′k} . (95)
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The integration over x gives

Ck′k =
π

Vk′Σt
k′

∫ r2
k′

0

dy {exp(−t∗k′k)− exp− [a(y) + t∗k′k]} . (96)

It is seen that the structure of the integral is the same as that in Eq. (58) for the cylindrical

geometry except that the integrand contains the exponential function instead of the Bickley

function. Thus, the computation of the collision probabilities in spherical geometry can be

made by the same procedure as is used in cylindrical geometry.

If, for example, the Case 1 in Section 5.2 with k′ 6= k and Σt
k′ 6= 0 and Σt

k 6= 0 is considered,

the following expression is obtained for the escape probability in spherical geometry

Ck′k =
π

Vk′Σt
k′

∫ r2
k′

0

dy
(
e−t

+
k′−1k − e−t

+
k′k + e−t

−
k′k − e−t

−
k′−1k

)
, (97)

where the remaining integration over y is again solved numerically by a Gaussian quadrature.

The results for the other cases can be taken over analogously.

5.4 Albedo Boundary Condition

The above procedure for calculating the collision probabilities also enables an albedo

boundary condition at the outer boundary of the system under consideration to be readily

accounted for.8,9 The albedo concept states that a fraction of the particles which leave the

system, re-enter the system through the outer boundary A with an isotropic angular distri-

bution. The escape probability that a particle which emerges in the interval k leaves the

system without collision is CkK , which will be denoted in the following by Ck A. If α is the

albedo at the outer boundary, which may be a function of the energy, the fraction αCk A

will re-enter the system.

If the incoming angular flux at the outer boundary A is denoted by Φ(rA,Ω), the incoming

current density is j(rA,Ω) = Ω Φ(rA,Ω). If, furthermore, nA denotes the outward-directed

unit vector normal to the surface A and dA an infinitesimal surface element on A, the total

number of particles re-entering the system is given by∫
A

∫
Ω

j(rA,Ω)dAdΩ =

∫
A

∫
Ω

(nA ·Ω)Φ(rA,Ω)dAdΩ

= Φ(rA,Ω) πA , (98)
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where the Ω integration has been performed over the incoming directions nA ·Ω < 0. If the

number of particles re-entering the system is unity, the incoming angular flux is given by

Φ(rA,Ω) =
1

πA
(99)

and the incoming current density by

j(rA,Ω) =
Ω

πA
. (100)

The probability PAk that a particle which re-enters the system across the boundary A ex-

periences its next collision in the interval k is thus given by

PAk =
1

πA

∫
A

∫
Ω

∫
s

(nA ·Ω)e−τ(rA, r) Σt(r) dAdΩds , (101)

where the integrations over the incoming direction Ω and the spatial variable s have to be

performed in such a way that all points in the interval k are covered. It is convenient for

this reason to again replace the integration over s and Ω by a volume integration over the

interval k, where

dV = |r− rA|2 dsdΩ .

In order to perform the integration over the surface A, the origin of the coordinate system

is shifted into the target point r. The surface integration is then replaced by an integration

over all directions. With

dΩA =
(nA ·Ω)dA

|rA − r|2
(102)

and

τ(rA, r) = τ(r, rA) (103)

the following result is obtained

PAk =
Σt
k

πA

∫
Vk

dV

∫
4π

dΩA e
−τ(r, rA)

=
4Σt

kVk
A

CkA , (104)

where it has again been assumed that the total cross section Σt(r) is constant in the interval

k. By the albedo boundary condition, the collision probability Pk′k for the vacuum boundary
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condition is increased due to the returning particles. If one re-enter process is regarded for

the first instance, the new collision probability P ∗k′k is given by

P ∗k′k = Pk′k + αCk′A PAk . (105)

A fraction of the particles which re-enter the system through the outer surface A crosses the

system without collision. The probability CAA for this process may be expressed by

CAA = 1−
K∑
k=1

PAk . (106)

The fraction α of these particles re-enters the system again and can experience a collision

in the interval k. This process is repeated infinitely. Thus, the collision probability P ∗k′k can

be written as an infinite sum

P ∗k′k = Pk′k + αCk′A PAk + α2Ck′ACAA PAk + · · ·+ αmCk′A (CAA)m−1 PAk + · · ·

= Pk′k + αCk′APAk
[
1 + αCAA + · · ·+ αm−1 (CAA)m−1 + · · ·

]
. (107)

If αCAA < 1, the sum converges and the resulting collision probability may be written as

P ∗k′k = Pk′k +
αCk′A PAk
1− αCAA

. (108)

If the additional term in Eq. (108) is expressed in terms of escape probabilities only, the

following result is obtained

P ∗k′k = Pk′k + αCk′A
γkCkA

1− α
(

1−
K∑
n=1

γnCnA

) , (109)

where

γk =
4

A
Σt
kVk . (110)

5.5 Application of the Reciprocity Relation and Normalization

The collision probabilities Pk′k are explicitly calculated for the outgoing directions, i.e. for

k′ = 1, 2, · · · , K and k = k′, k′ + 1, · · · , K. These are the terms which appear in the matrix

in Table I on the diagonal and below the diagonal. The remaining collision probabilities for

k′ = 2, 3, · · · , K and k = 1, 2, · · · , k′ − 1 above the diagonal are determined by applying the

reciprocity relation given in Eq. (33).
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Table I

Matrix of the spatial transitions k′ → k.

k k′ = 1 k′ = 2 k′ = 3 · · · k′ = K

1 1→ 1 2→ 1 3→ 1 · · · K → 1

2 1→ 2 2→ 2 3→ 2 · · · K → 2

3 1→ 3 2→ 3 3→ 3 · · · K → 3

· · · ·

K 1→ K 2→ K 3→ K · · · K → K .

A particle which emerges in interval k′ either experiences a collision in one of the intervals

k = 1, 2, · · · , K or leaves the system without collision. Thus, the condition

K∑
k=1

Pk′k + Ck′A = 1 (111)

must be satisfied for each source interval k′ and its fulfillment represents the degree of

accuracy with which escape probabilities and the collision probabilities are calculated. The

condition in Eq. (111) represents a particle balance and is therefore of crucial importance

for the convergence behavior of the numerical method used for the solution of the collision

equations. For this reason, the collision probabilities Pk′k and the escape probability Ck′A

are normalized in order to force Eq. (111) to be satisfied.

The following procedure is used for the normalization process in the TOTMOS code.

For k′ = 1 the collision probabilities P1k are normalized by the reciprocal of Eq. (111). The

terms Pk′1 are then calculated for k′ = 2, 3, · · · , K by applying the reciprocity relation. If

Eq. (111) is written in the form

K∑
k=k′

Pk′k + Ck′A = 1−
k′−1∑
k=1

Pk′k (112)

and the above procedure is continued successively for the other values of k′, the right side

of the equation is already normalized and in this sense correct such that the normalization

factors

fk′ =

1−
k′−1∑
k=1

Pk′k

K∑
k=k′

Pk′k + Ck′A

, k′ = 2, 3, · · · , K (113)
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may be used in order to normalize the remaining collision probabilities for the transfers in

the diagonal and below the diagonal of the matrix in Table I and the escape probability

Ck′A.
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6 ITERATION TECHNIQUES

6.1 Power Iteration Method and Source Iterations

As next step, the collision equations are brought into the multigroup form. The neutron

energy range of interest is divided into a finite number, G, of energy intervals or groups, which

are separated by the energies Eg, where g = 1, 2, · · · , G. The order of numbering is such that

as g increases, the energy decreases, i.e Eg > Eg+1. The energy-dependent fluxes and cross

sections in Eq. (25) are then replaced by the corresponding group-averaged quantities. If the

collision probabilities in Eq. (25) are furthermore expressed by the transport coefficients, the

following equations are obtained

Φk g =
∑
k′

Tk′k gQk′g

=
∑
k′

Tk′k g(Fk′g +
∑
g′

Σs
k′g′→gΦk′g′)

=
∑
k′

Tk′k g(Fk′g +
∑
g′

Pk′g′gΦk′g′) , (114)

where the nomenclature has been changed by replacing Σs
k′ g′→g by Pk′g′g in order to simplify

the notation.b The summation index k′ in Eq. (114) runs from 1 to K and the index g′ over

all groups from 1 to G. The summation indices are not explicitly given in Eq. (114) and the

following equations for the sake of simplicity. In order to discuss the iteration techniques

used to solve the integral transport equation, it is convenient to write Eq. (111) in a symbolic

notation, i.e.

Φ = T(F + PΦ) . (115)

where the array Φ is defined by

Φ =


Φ1

Φ2

...

ΦG

 with Φg =


Φ1g

Φ2g

...

ΦKg

 . (116)

bThe simultaneous use of the capital letter P for the collision probability in the previous sections should

not lead to confusion, since the latter is not dealt with in this section.
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The matrices T, F, and P can be defined in a similar way.

The total fission source is normalized to unity. If A denotes the absorption operator (or

absorption plus leakage operator, if the vacuum or the albedo boundary condition is used)

the normalization condition for the fluxes is

AΦ = 1 . (117)

If a conserving boundary condition is used at the outer boundary of the system, the absorp-

tion operator is defined by

AΦ =
∑
k, g

VkΣ
a
k gΦk g , (118)

where Σa
k g is the absorption cross section in the interval k and the energy group g. If a

vacuum or an albedo boundary condition is used, it must hold that

AΦ =
∑
k, g′

VkΦk g′

(
Σt
k g′ −

∑
g

qkgPkg′g

)
. (119)

Eq. (115) is solved by flux and source iterations. During the flux iterations the fission

source is kept constant. The flux is calculated by the use of the power iteration method.

This method is characterized by a trial solution Φn being inserted into the right side of

Eq. (115), which gives a new improved solution Φn+1, i.e.

Φn+1 = T(F + PΦn) . (120)

At the beginning of the iterations a flux estimate and an estimate of the initial eigenvalue is

made, with which the initial neutron source in the system under consideration is calculated.

The flux iterations start with the first energy group and the fluxes Φ1 are determind

by the use of Eq. (120) on the assumption that the fission source is known and constant.

The procedure is continued gradually for all further groups g = 2, 3, · · · , G. Subsequently,

the scattering source PΦ is recalculated and the power iterations are started again. If the

relative difference of all fluxes Φ in two subsequent iterations is smaller than a given value

(normally 10−4) the flux iterations are assumed to have converged. A complete run through

all groups is called a source (or outer) iteration.

With each outer iteration the fission source is recalculated and a new eigenvalue

keff =
productions

absorptions + leakage
=

< νΣfΦ >

< ΣaΦ > +L
(121)
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is determined, where the symbol <> stands for the spatial integration over the whole system

considered and the integration over all energies. This corresponds in the TOTMOS code to

a volume weighted summation over all spatial intervals and a summation over all energy

groups. The quantity L is the leakage out of the system. The k-eigenvalue is used to correct

the fission source in order to keep the total number of neutrons in the system nearly constant.

If the relative difference of the fission source in two subsequent iterations is smaller than a

given value (normally 10−5 ) the outer iterations are assumed to have converged and the

iteration procedure is terminated.

If Φ∞ is the exact solution to the problem, the difference εn = Φn −Φ∞ is the error in

the flux calculation after the nth iteration. In order to study the convergence behavior of the

power iteration method, it is convenient to expand the fluxes in terms of the eigenfunctions

of the operator TP, which are defined by

TPΨ = λΨ . (122)

The eigenvalues of Eq. (122) are denoted in the following by λi and the eigenfunctions by Ψi.

For the following considerations, the eigenvalues are ordered such that λ1 > λ2 > λ3 > · · · .

The largest eigenvalue λ1 is called the spectral radius of the operator TP. The error εn, the

term TF, and the solution Φ∞ are now represented by the following series expansions

εn =
∞∑
i=1

ani Ψi (123)

TF =
∞∑
i=1

biΨi (124)

and

Φ∞ =
∞∑
i=1

ciΨi . (125)

The iteration with Φ∞ should reproduce itself, such that the equation

Φ∞ = T(F + PΦ∞) (126)

should be fulfilled. If the series expansions in Eqs.(124) and (125) are inserted into Eq. (126),

the solution Φ∞ can be expressed by

Φ∞ =
∞∑
i=1

bi
1− λi

Ψi . (127)
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Because of

εn+1 = TPεn , (128)

the error after the nth iteration may be written as

εn = (TP)nε0

= (TP)n
∞∑
i=1

a0
iΨi

=
∞∑
i=1

a0
i (λi)

nΨi . (129)

The error goes to zero, if it holds for all eigenvalues that λi < 1. Since λ1 is the largest

eigenvalue, the contribution of the higher modes to the error will be small compared to the

first mode after a sufficiently large number of iterations. Thus, for large n the error will

approximately decay as

εn ≈ a0
1(λ1)

nΨ1 = a0
1e
n lnλ1Ψ1 . (130)

The term eln λ1 is the decay factor for the error and

v = − lnλ1 . (131)

is denoted as the decay rate of the iteration. The quantity a0
1 is the difference between the

amount of the first mode in the initial vector Φ0 and the exact solution vector Φ∞.

If the Eq. (122) for the eigenvalue λ1 is multiplied by the total cross section and integrated

over the cell volume and the whole energy range, it is seen that λ1 can be interpreted as

the ratio of the number of collisions in the first mode due to neutrons emerged in scattering

processes to the total number of collisions in the first mode. Thus, the value of the first

eigenvalue depends on whether the neutrons which make a collision originate directly from

the fission source or whether they have undergone one or more scattering processes. This

system property may be described by the quantity Σs/Σt, which is therefore also denoted as

dominance ratio in the context of the convergence behavior of the power iteration method.

For weakly absorbing systems, as for example graphite-moderated systems, the value of

Σs/Σt is close to unity such that the error decays only slowly in this case.

In order to accelerate the convergence of the power iteration method, the TOTMOS

code applies the same techniques as those used in the THERMOS code. These techniques
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are renormalization (or scaling),19 over-relaxation,20 and extrapolation,21, which will be de-

scribed in the following.

6.2 Renormalization

The first technique applied in the TOTMOS code for accelerating the convergence is

renormalization. The basis for this technique is the experience that the convergence rate

can be improved if the particle balance in the system is fulfilled during the iteration steps.

If the iterated flux Φn is normalized in the sense that AΦn = 1, the new flux Φn+1 will not

in general be normalized. For this reason, the iteration equation is changed in order to force

the particle balance to be correct on the average, i.e.

Φn+1 =
T(F + PΦn)

AT(F + PΦn)
. (132)

The convergence behavior of the modified iteration equation can be analyzed again by using

the eigenfunction expansion of the error εn. With

Φn = Φ∞ + εn (133)

Eq. (132) can be written in the form

Φ∞ +
∞∑
i=1

an+1
i Ψi =

Φ∞ +
∑

i a
n
i λiΨi

1 +
∑

j a
n
j λjAΨj

. (134)

If the errors are small after a sufficiently large number of iterations and the renormalization

is near unity, the denominator of Eq. (134) can be expanded. If the terms in the expansion

which are quadratic and of a higher order in the error are neglected a comparison of the

coefficents on both sides of Eq. (134) yields

an+1
i = ani λi(1− αi) , (135)

where

αi = bn
AΨi

1− λi
. (136)

The αi give the fraction of the neutrons absorbed in the ith mode, since

AΦ∞ =
∞∑
i=1

αi . (137)
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It is reasonable to expect that the lowest eigenfunction Ψ1 is positive everywhere and that

Ψ2 and the other eigenfunctions have one or more zeros and change sign. Most of the

absorptions would then occur in the first mode such that α1 ≈ 1 and the other αi are small.

In weakly absorbing systems with λ1 ≈ 1 this is particularly true. If the source is everywhere

positive, α1 is positve and the convergence is accelerated. It is observed in actual calculations

that after many iterations the errors resemble the expected behavior of Ψ2 so that

λ1(1− α1) < λ2(1− α2) > λi(1− αi), i = 3, 4, · · · (138)

with the result that the errors decay like λn2 (1−α2)
n. Thus, the effect of the renormalization

is to eliminate the Ψ1 component of the error. The decay of the error then occurs with

λ2(1− α2) instead of with λ1.

6.3 Over-Relaxation

The flux vector changes in one iteration by the amount

Rn = Φn+1 −Φn . (139)

The quantity Rn is called the residual vector. For the purpose of speeding up the convergence

of the iteration the solution is overcorrected (or perhaps undercorrected ) by an amount ω.

The iteration equation might then be written in the form

Φn+1 = Φn + ωRn

= (1− ω) + ωT(F + PΦn) , (140)

where ω is a real number. The iteration procedure is called over-relaxation for ω > 1 and

under-relaxation for ω < 1. In order to find a value for ω by which the convergence rate

is improved it is convenient to express the error of the iteration procedure in terms of the

eigenfunctions of the operator (1− ω)I + ωTP, which are defined by

[(1− ω)I + ωTP] Ψ = µΨ , (141)

where I is the unit matrix. By rearranging, Eq. (141) can be brought into the form

TPΨ =
µ+ ω − 1

ω
Ψ . (142)
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The eigenfunctions of the Eq. (142) are thus again the functions Ψi. The eigenvalues µi are

given by

µi = ωλi − ω + 1 . (143)

The error may then be written as

εn =
∞∑
i=1

a0
i (ωλi − ω + 1)nΨi . (144)

Assuming that the spectral radius is µ1 = ωλ1 − ω + 1, the error approximately decays for

large values of n as

εn ≈ a0
1(ωλ1 − ω + 1)nΨ1 . (145)

The value of ω which eliminates this component of the error is ω = 1/(1−λ1). The iteration

procedure which uses this value of ω is called an extrapolation. It has been observed that by

the use of a straightforward power iteration the shape of the residuals Rn remains the same

but that they are reduced after many iterations by the factor µ1 for each iteration, i.e.

Φn+1 = Φn + Rn

Φn+2 = Φn+1 + Rn

= Φn + Rn(1 + µ1)

Φn+3 = Φn + Rn(1 + µ1 + µ2
1)

... =
...

Φ∞ = Φn + Rn/(1− µ1) . (146)

Thus, one can extrapolate to an infinite number of iterations if the shape of the residuals

and the rate at which their level is changed are known. If the observed behavior of the

residuals concerning their shape and decay were exact and if there were no contamination

from higher modes the extrapolation procedure would lead to the exact solution. However,

even if the initial error vector were orthogonal to the eigenfunction, say Ψj, belonging to

the eigenvalue µj, round-offs in computations would introduce components along Ψj and

influence the convergence rate. This means that a value for ω must be found which refines

the solution by also eliminating the contamination by all higher modes.
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After extrapolating the solution an appropriate value for ω thus has to be sought for in

order to refine the solution. If large values of the index i are considered, then µi approaches

1−ω, since λi → 0 for large values of i. Thus, |µi| may be greater than unity and the higher

modes will grow. As the best value of ω that value ωb is chosen for which |µ1| = |µi|, when

i→∞, i.e.

ωbλ1 − ωb + 1 = ωb − 1 (147)

or

ωb =
2

2− λ1

. (148)

It is seen from Eq. (148) that the permissible range of ωb is 1 ≤ ωb < 2. The best decay rate

that can be obtained is then

µb = ωb − 1 =
λ1

2− λ1

. (149)

When the renormalization and the over-relaxation techniques are combined, the following

iteration equation is obtained

Φn+1 = Φn + ω

[
T(F + PΦn)

AT(F + PΦn)
−Φn

]
. (150)

The error after the nth iteration is

εn =
∞∑
i=1

a0
i (µi)

nΨi , (151)

where the eigenvalues µi are given by

µi = 1− ω + ωλi(1− αi) . (152)

The spectral radius is given again by the largest eigenvalue, i.e. by

µk = max(|µ1|, |µ2|, · · · , |µi|, · · · ) , (153)

such that the error decays for large n approximately as

εn ≈ a0
k(µk)

nΨk . (154)

In practice, the final solution is not known and hence nor is the error at the current iteration.

However, the residuals are calculable at any stage of the iteration. The residual vector rep-

resents the error vector in a transformed space and the convergence criteria for the residuals

41



are the same as those for the errors. Furthermore, the asymptotic behavior is the same.

Thus

Rn+1 =
1

ω
(Φn+1 −Φn) =

1

ω
(εn+1 − εn) (155)

and

Rn+1 → 1

ω
(µk − 1)(µk)

nΨk , (156)

The approximate behavior of Rn+1 can be used as a basis for determining the spectral radius

µk. It is found in practice that a reliable estimate of µk can be obtained by using an averaged

value of the residuals, i.e. by using the approximate behavior〈
Rn+1

〉
/ 〈Rn〉 → µk , (157)

where

〈Rn〉 =

[∑
k,g

(Ak gR
n
k g)

2/
∑
k,g

(Ak g)
2

]1/2

. (158)

Here, the Ak g are the elements of the matrix A defined by Eqs.(118) or (119). Since the

fluxes are normalized at any iteration step, it holds

ARn =
∑
k,g

Ak gR
n
k g = 0 . (159)

The complete iteration process is then performed by the use of the following scheme.

Eq. (150) is iterated with an initial value ω0 and the quantity

ωe =
1

1− µk
(160)

is computed at each iteration. If the relative deviations of the ωe from `e subsequent iterations

agree within a given range εe, the iteration with the current ω value is stopped and an

extrapolation is made using the most recent value of ωe. The value λ∗k = λk(1 − αk) is

determined from

λ∗k =
µk − 1 + ω0

ω0

(161)

and a new ω is computed by the use of ω1 = 2/(2−λ∗k). If ω1 < 2, the iteration is continued

with the new value, otherwise the iteration is carried on with the previous ω value until the

condition is fulfilled. The process is repeated until the residuals Rn+1
k g are less than εrΦ

n
k g

for all values of k and g, where εr is the convergence criterion for the flux.
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For the iteration parameters ω0, `e, εe, and εr default values are given in the TOTMOS

code which may be replaced by other values in the input. Testing for a possible extrapolation

is not made during the first `b iterations nor during the `d iterations after an extrapolation.

For the quantities `b and `d default values also exist, which may be changed in the input.
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7 CROSS SECTION DATA

7.1 General Considerations

The TOTMOS code has been designed to process three different types of cross section

data. The standard procedure is to use complete sets of tabulated multigroup cross sections,

which are given in the format of the library used in the MUPO code. These data are

computed by separate programs, transformed into the MUPO library format and stored for

later use in the TOTMOS code.

For those nuclides for which no chemical binding effects have to be taken into acccount,

the free-gas kernel model can be applied in order to calculate the one-dimensional thermal

scattering cross sections and the thermal transfer cross sections. Since the free-gas model

is frequently used and easy to compute, it has been incorporated into the TOTMOS code.

Here, the free-gas scattering model is employed in the Brown and St. John form, which is

described in Section 7.3. The Brown and St. John free-gas scattering kernels are calculated

for neutron energies up to 2 eV. These data are averaged by an appropriate weighting function

in order to determine the group-to-group transfer cross sections for the free-gas model. The

weighting function used is based on the Westcott formalism, which is described in Section

7.4.

The fission products generated in nuclear fission normally have no effect on the scattering

properties of the nuclear systems considered. Thus, it is not necessary to calculate the

complete group-to-group transfer cross sections for these nuclei. Rather, it is sufficient in

this case to give the absorption cross sections and to restrict the transfer cross sections to

the self-scatter term, which is set equal to the total scattering cross section. This procedure

has been incorporated into the TOTMOS code in order to save computer memory while

simultaneously guaranteeing that the particle balance is fulfilled.

7.2 MUPO Cross Section Library

The tabulated cross section data used by the TOTMOS code have to be given on an

external device in the format of the MUPO library. The MUPO library uses a 43 group
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structure, which consists of 18 groups in the fast and epithermal energy range and 25 groups

in the thermal energy range. The energy range considered extends from 0.0025 eV to 10

MeV. The thermal energy limit is at 3.059 eV.

The moderator materials on the MUPO library for which the effects of chemical binding

on the cross sections are considered are beryllium oxide, graphite, light water, and heavy

water. The scattering matrices for these moderators are given at different temperatures. The

TOTMOS code has been programmed so that the scattering matrices can be determined at

a specific temperature of interest. For this purpose, the temperatures in the zones of the

reactor cell, which contain a moderator material, can be defined in the TOTMOS input.

These are then used in order to calculate a volume-averaged moderator temperature. The

thermal scattering matrices at this temperature are then determined by interpolation of the

temperature-dependent data, which are given on the MUPO library.

Furthermore, the library contains the cross sections for the most important fissionable

nuclides. The remaining data given on the MUPO library concern the light materials, struc-

tural materials, fission products and non-fissile heavy metals.

The nuclides thorium-232, uranium-238, plutonium-240, and plutonium-242 are treated

as explicit resonance nuclides, for which temperature-dependent self-shielded resonance cross

sections may be calculated. The procedure for determining the resonance cross sections has

been taken from the MUPO code and uses the equivalence principle in order to calculate the

resonance cross sections in heterogeneous systems. This means that the same procedures can

be used for both homogeneous and heterogeneous systems in order to calculate the shielded

flux under the resonance and to determine the corresponding self-shielded resonance cross

section.

If the narrow resonance approximation is used, the shielded resonance cross section in

group g with the group boundaries Eg+1 and Eg is given by1

σra,g =
Σp

ln Eg

Eg+1

∫ Eg

Eg+1

σra(E)

ΣT (E)

dE

E
, (162)

where ΣT (E) is the total macroscopic cross section of the system considered. This is given

by

ΣT (E) = Na

[
σra(E) + σrn,res(E) + σrn,int(E) + σp

]
, (163)
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where Na is the atom number density of the absorber, σra(E) the capture cross section of the

resonance absorber, σrn,res(E) the elastic resonance cross section, σrn,int(E) the interference

cross section, and σp the total potential scattering cross section of the system per absorber

atom. It is additionally assumed in Eq. (162) that the influence of the resonance on the total

flux in the group g is negligible. For the two resonance nuclides, tables of resonance cross

sections are given on the MUPO library, which depend on the temperature and the potential

scattering cross section

σp = σpa + κ
Nm

Na

σpm , (164)

where σpa is the potential scattering cross section of the resonance absorber, σpm the potential

scattering cross section of all admixed moderators, and Nm the atom number density of all

admixed moderators. The parameter κ is used in order to describe the heterogeneity property

of the system considered. The resonance tables are given at present for five temperatures and

for 20 potential scattering cross sections. In principle, a different partition may be chosen.

The only limitation is that the total number of temperatures and cross section parameters

must be equal to 25. The resonance cross section for a specific temperature and a specific

potential cross section is determined by interpolation. A quadratic interpolation is used

concerning the temperature and a linear interpolation concerning σp. The cross sections of

the remaining resonance nuclides on the MUPO library are given in infinite dilution.

The MUPO library, which is available at present for TOTMOS calculations,22 is based

on ENDF/B-VII data23 and was generated by the use of the cross section processing code

NJOY,24 where the NJOY version 99.269 was employed. The shielded resonance absorption

cross sections of Th-232 and U-238 were determined by the ZUT-DGL code.25 This is an

extension of the ZUT code 26 in which escape probabilities for double-heterogeneous config-

urations in spherical and cylindrical geometries can be calculated. The shielded resonance

absorption cross sections of Pu-240 and Pu-242 were calculated for a typical pebble bed con-

figuration as a function of the temperature and the parameter κ by the use of the MCNP4C

code.27
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7.3 Free-Gas Scattering Kernels

The simplest scattering model in the thermal energy range is the free-gas model, in which

the thermal motion of the atomic nuclei in a material is described by a monatomic gas at

a temperature equal to the material temperature. The scattering cross sections, which are

based on the free-gas model, are characterized by the fact that they are frequently used in

applications and easy to compute. For this reason, the computation of the free-gas scattering

kernel has been incorporated into the TOTMOS code, where the formulation of the free-gas

model by Brown and St. John is used.

The free-gas scattering cross section in the Brown and St. John form is represented by

the series expansion

σs(vr) =
N∑
n=1

σn exp(−κnv2
r) , (165)

where vr is the relative speed between the neutron and the atomic nucleus, and Σn and κn

are parameters chosen such that σs(vr) fits the measured scattering cross section. In many

practical cases, it is sufficient to use only one term in the series expansion in Eq. (165). In

this case, the parameter κ1 is set equal to zero and σ1 equal to the scattering cross section

at 2 eV.

The scattering kernel in the Brown and St. John form is given by

σs(E
′ → E) =

N∑
n=1

σnΘ2
nA

2E ′
τnβ

2

β2 + κn(A+ 1)

×
{

exp

(
−κnτ 2

n

E ′

E0

)
E1 + exp−β

2

A

[
E ′

E0

− β2 + κn(A+ 1)

β2 + κn

E

E0

]
E2

}
(166)

where

E1 = erf(βξn
√
E ′ + βΘn

√
E)∓ erf(βΘn

√
E − βξn

√
E ′) (167)

E2 = erf(βΘn

√
E ′ − βξn

√
E)± erf(βΘn

√
E ′ + βξn

√
E) . (168)

The remaining parameters are defined by

β2 =
A

kT
E0 (169)

τ 2
n =

β2

β2 + κn
(170)
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Θn =
A+ 1

2A
τ 2
n (171)

ξn = τn −Θn , (172)

where E0 = kT0 and T0 = 293.15 K. Furthermore, erf(x) is the Gaussian error function

erf(x) =
2√
π

∫ ∞
x

e−t
2

dt = −erf(−x) . (173)

The upper signs in Eqs.(167) and (168) are to be used if E ′ < E and the lower signs if

E ′ > E. If there is no absorption, a thermal equilibrium is established between the up-

scattering and the down-scattering processes. The resulting thermal neutron flux is then a

Maxwellian distribution at a temperature which is equal to the temperature of the atomic

nuclei. In this case, the transfer cross section in Eq. (166) fulfils the condition of the detailed

balance, which states that the number of collisions leading from energy E ′ to energy E, is

equal to the number of collisions leading from E to E ′, i.e.

E ′ e−E
′/kTΣs(E

′ → E) = E e−E/kT Σs(E → E ′) (174)

The above formula for the free-gas scattering kernel is used in order to calculate the

group-to-group transfer cross sections

σsg′→g =

∫
g′

∫
g
σs(E

′ → E)Φ(E ′)dE ′dE

Φg′
(175)

for the free-gas model, where

Φg′ =

∫ Eg′

Eg′+1

Φ(E ′)dE ′ . (176)

As weighting function Φ(E) the Westcott flux defined in Section 7.4 is used. The group-

averaged values are computed in the TOTMOS code by replacing the integrals in Eq. (175)

and Eq. (176) by sums. For this purpose, each energy group is subdivided into M subgroups

of equal width. The value of M may be defined in the TOTMOS input. The possible

values are restricted to the interval 2 ≤ M ≤ 5. The cross sections and the fluxes for each

subgroup are approximated by their values at the energy midpoints of the subgroups. The

within-group cross sections of the scattering matrix are calculated by

σsg′→g′ = σsg′ −
∑
g 6=g′

σsg′→g , (177)
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where σsg′ is the group-averaged scattering cross section for the group g′.

If the free-gas model is used for a nuclide in the thermal energy range, the group-to-

group transfer cross sections in the energy range from 2 eV up to 10 MeV are calculated

in the TOTMOS code on the assumption that the atomic nuclei by which the neutrons are

scattered are at rest and that the scattering is isotropic in the center-of-mass system.

7.4 The Westcott Formalism

There are two situations in which the TOTMOS code requires an estimate of the energy-

dependent flux in the reactor cell under consideration. The first is the calculation of the

group-to-group transfer cross sections in the TOTMOS code on the basis of the free-gas

model, where a weighting function is needed to average the free-gas scattering kernels. The

other situation arises at the beginning of the iteration process for solving the transport

equation. In this case, a starting flux is required, with which the initial fission source in the

reactor cell to be analyzed is calculated.

A quite good flux estimation up to an energy of 2 eV is given by the Westcott formalism.

The energy-dependent flux is thus defined by

Φ(E) = const

[
1− 2√

π
r

√
T

T0

√
E0

∫ ∞
0

∆(E)√
E3

dE

]
E
E0√
T
T0

e
−E/E0

T/T0 + r∆(E)

√
T
T0

E
E0

, (178)

where

r =

√
πΣ̄a

2ξΣ̄s

√
T/T0 + 4

√
µ Σ̄a

with µ = 5 (179)

and

∆(E) =
1

1− 0.26
1+(2.131E)3

1

1 + (4.95kT
E

)7
. (180)

The quantities Σ̄a and Σ̄s are the total absorption cross section and the total scattering cross

section of the reactor cell considered. Furthermore, ξ is the mean logarithmic energy loss of

a neutron in the cell. The parameter T is the volume-averaged temperature of the system

and T0 is 293.15 K.

The constants required to calculate the Westcott flux are determined in the subroutine

WEST. The Westcott flux is used in the subroutines FREEGAS and FLUX.
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8 THE MUPO LIBRARY FORMAT

This section describes the structure of the MUPO library. One characteristic of the

library in its original form is that an unformatted cross section representation is used. This

form of data storage is often chosen when a large amount of data is to be read since it is,

compared to the card-image format,c a more efficient method which permits faster access to

the data and requires less space for storage. In order to enable the exchange of the cross

section data betweeen different computer installations, an auxiliary program was written

which converts the unformatted library into the card-image format. The cross sections are

stored on the MUPO library for increasing energies. The TOTMOS code needs the data

starting with the highest energy. The sequence in storing the cross sections is changed in a

TOTMOS run during the reading of the MUPO library. The following records are used in

order to read the data of the MUPO library.

Record 1 (general information)

The record with the general information is the first record and has the structure

(TXT(I), I=1, 9), NI, NJ, NK, ID

where

TXT - Text describing the library

NI - Number of nuclides for which group-averaged cross sections are given

NJ - Number of resonance nuclides on the library

NK - Number of temperature-dependent scattering matrices on the library

ID - Identification number of the library

Record type 2 (energy group boundaries and fission spectrum)

This record type specifies the energy group boundaries in eV followed by the fission spectrum.

The structure is

(EG(I), I=1, IMP, -1), (XSI(K), K=18, 1, -1)

cThe term card-image format is used here in the sense that the data are given in a formatted form which

can usually be readily exchanged between installations with different computers.
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where IMP is IX+1 and IX is the number of MUPO groups. The fission spectrum is given

for the 18 fast and epithermal MUPO groups.

Record type 3 (temperature-independent average cross sections)

This record type is used to present the group-averaged cross sections. The data are given

successively for NI nuclides. The structure is

(BU(I), I=1, 6), ANU, A, XMU, (DUM, I=10, 21),

(XT(I), I=IX, 1, -1), (XA(I), I=IX, 1, -1),

(XP(I), I=IX, 1, -1), (XF(I), I=IX, 1, -1)

where

BU - Text describing the nuclide

ANU - Type of nuclide

< 0 nuclide is non-fissionable

> 0 nuclide is fissionable

A - Decay constant of the nuclide

XMU - 1-µL, where µL is the average scattering angle in the laboratory system

DUM - Yields for the 12 most important fission products if ANU > 0, otherwise zeros

(These quantities are not used in a TOTMOS calculation.)

XT - Transport cross section

XA - Absorption cross section

XP - Production cross section

XF - Fission cross section

Record type 4 (mass number, scattering cross section, and mean logarithmic

energy loss for moderators)

The structure is

(TXT(I), I=1, 6), MC, SSC, XIC, MBE, SSBE, XIBE, MWA, SSWA, XIWA,

MSW, SSSW, XISW

where

TXT - Text describing the data of this record

MC - Mass number of graphite
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SSC - Scattering cross section of graphite

XIC - Mean logarithmic energy loss in graphite

MBE - Mass number of beryllium

SSBE - Scattering cross section of beryllium

XIBE - Mean logarithmic energy loss in beryllium

MWA - Mass number of water

SSWA - Scattering cross section of water

XIWA - Mean logarithmic energy loss in water

MSW - Mass number of heavy water

SSSW - Scattering cross section of heavy water

XISW - Mean logarithmic energy loss in heavy water

Record type 5 (information describing the tables of resonance cross sections)

This record type is used to identify the resonance cross sections for the resonance nuclide K

(K = 1, 2, · · · , NJ). The structure is

(X(I), I=1, 9), JRES(K), IEZ(K)

where

X - Text describing the resonance nuclide K

JRES - Identification number of the resonance nuclide

IEZ - Array length of the resonance cross section table

Record type 6 (tables of resonance cross sections)

This record type is used to present tables of resonance cross sections. One table contains the

resonance cross sections of a resonance nuclide for a number of temperatures and potential

scattering cross sections. The total number of temperatures and potential scattering cross

sections must be 25, while the partition between these parameters may be arbitrary. The

structure is

(RES(I), I=1, N)

where N is 25*IEZ+1 and RES(1) is the potential scattering cross section for the resonance

absorber.

Record type 7 (information on the temperature-dependent scattering matrices )
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This record type is used to identify the scattering matrix I (I = 1, 2, · · · , NK). The structure

of the record is

(TXT(L), L=1, 9), DI(I), X(I), IEZ(I)

where

TXT - Text describing the scattering matrix

DI - Identification number of the scattering matrix

X - Temperature in Kelvin for which the scattering matrix was calculated

IEZ - Array length of the scattering matrix

Record type 8 (temperature-dependent scattering matrices)

This record type is used to read the temperature-dependent scattering matrix. The structure

is

(RES(K), K=1, NL1)

where NL1 = IEZ. The structure of the array RES is as follows:

Magic word for a group

Terms for scattering from the group

Magic word for the next group

Terms for scattering from this group
... .

The magic word MW is defined for each source group NKK by

MW = NII - 1 + 0.01*(NJJ -1) + 0.00001*NKK

where NII is the number of the first group into which the group NKK scatters and NJJ is

the number of the last group into which the group NKK scatters. The magic word is used in

order to suppress the storing of zero values in the scattering matrix, which appear outside

the range characterized by the magic word.
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9 CELL-WEIGHTED AND “INNER-CELL”-WEIGHTED

CROSS SECTIONS

Once the neutron flux has been computed within the reactor cell, the results may be

incorporated into the gross diffusion calculations for the whole reactor, in which the detailed

structure within the cell is no longer considered. For this purpose, the cross sections of the

different nuclides present in the cell are homogenized in order to obtain so-called cell-weighted

or “effective” cross sections. The procedure for determining the effective cross sections is

based on the requirement that the reaction rates are preserved in the homogenization process,

i.e.

σ̄GN̄

∫
cell

dV

∫
G

dEΦ(r, E) =

∫
cell

dV N(r)

∫
G

dE σ(r, E)Φ(r, E) (181)

where

σ̄G = cell-weighted cross section in group G,

σ(r, E) = space- and energy-dependent cross section,

N(r) = space-dependent atomic number density,

Φ(r, E) = space- and energy-dependent weighting function.

Furthermore, N̄ is the homogenized atomic number density in the cell, which is given by

N̄ =
1

Vcell

∫
cell

dV N(r) , (182)

where Vcell is the total volume of the cell.

The TOTMOS code has been programmed so that it is able to generate two types of

weighted cross sections. The first weighting type is the common cell-weighting over the

whole cell. This is the usual option to generate cross sections for a gross reactor calculation.

The second weighting type is the inner-cell-weighting. In this case, the weighting is performed

over specified inner zones of the system under consideration. Which of the inner zones M1

to M2 are to be considered in the weighting process can be defined in the TOTMOS input.

This option is generally employed as follows. A “cell” is described in the same manner as for

the common cell-weighting except that in this case it may be surrounded by a homogeneous

representation for the remainder of the core or by a reflector, etc. The flux calculation is then
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made for the complete system, by which a more realistic treatment of the leakage across the

outer boundary of the interior cell can be made. The cell-weighting is subsequently performed

only over the interior cell. If the multigroup notation is used and if the cross sections and

the atom number densities are constant within a spatial zone, Eq. (181) becomes

σ̄G N̄

M2∑
j=M1

∑
g∈G

Φjg =

M2∑
j=M1

Nj

∑
g∈G

σjgΦjg , (183)

where

Φjg =

∫
Vj

dV

∫ Eg

Eg+1

dE Φ(r, E) . (184)

The energy integration in Eq. (184) is to be performed over the fine group g and the spatial

integration over the zone j, where Vj denotes in this context the volume of the zone j.

Furthermore, it holds that

N̄ =
1

V

M2∑
j=M1

NjVj . (185)

In a similar manner, the group-to-group transfer cross sections are cell-weighted. Here,

it is required that the scattering rates from one group to the other are conserved in the cell,

i.e.

σ̄sG′→GN̄

∫
cell

dV

∫
G′
dE ′Φ(r, E ′) =

∫
cell

dV N(r)

∫
G′
dE ′Φ(r, E ′)

∫
G

dE σs(r, E
′ → E) .

(186)

If the multigroup notation is used again, the following equation is obtained

σ̄sG′→G N̄

M2∑
j=M1

∑
g′∈G′

Φjg′ =

M2∑
j=M1

Nj

∑
g′∈G′

Φjg′

∑
g∈G

σsj g′→g . (187)

The sums over the fine group fluxes on the left side of Eqs.(183) and (187) may be replaced

by the broad-group flux Φj G, because

Φj G =
∑
g∈G

Φjg . (188)

The TOTMOS code calculates both microscopic and macroscopic cell-weighted and con-

densed cross sections. The microscopic cross sections are written on the external unit IRG3.

The data stored are the absorption, fission, production, and transport cross sections. Sub-

sequently the scattering matrices are given. The macroscopic cross sections are processed in
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a such form that they can be employed in the CITATION diffusion code.28 The computed

broad-group data are in this case the diffusion constants, the removal cross sections, the

fission and production cross sections, and the scattering matrices. The data are written on

the external unit 27.

On the basis of the cell-weighted cross section, the TOTMOS code also calculates disad-

vantage (or shielding) factors which are defined as the ratio of the actual reaction rate and

that which would be found for the same material exposed to the volume averaged flux. In

the fine-group picture, the disadvantage factors are given by

dg =

∫
cell

N(r)σg(r)Φg(r)dV∫
cell

Φg(r)dV
∫
cell

N(r)σg(r)dV
. (189)

In terms of dg, the cell-weighted cross section may be written as

σ̄gN̄ = dg

∫
cell

dV N(r)σg(r)

Vcell
. (190)

The disadvantage factors are stored on the external unit NSX and are used when the ho-

mogenized cross sections for a double heterogeneous system are computed.
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10 THE METHOD OF “EQUIVALENT” CROSS SECTIONS

The representation of absorber rods in diffusion calculations for the whole reactor requires

special considerations, since the diffusion theory fails within and in the vicinity of strong

absorbers. The use of “equivalent” cross sections represents one of the methods which enable

the application of a diffusion code for this type of calculations.2−4 The basis of this method

is to determine cross sections for the absorber region on the basis of a transport calculation,

which can subsequently be used in the diffusion calculation such that the reaction rates in

and the leakage into the absorber region are the same in both types of calculations. The

method used in the TOTMOS code for determining equivalent cross sections was developed

in connection with the diffusion code CITATION.

It should be mentioned that the method of equivalent cross sections described in this

report differs from the original method given in Ref. 2. Although the term of the equiva-

lence is still used here it has a different meaning and is employed only in connection with

the determination of the diffusion constant for the absorber rod region. In contrast to the

previous method, the equivalence of certain neutron fluxes from the transport and the dif-

fusion calculation is now required in the calculation of the diffusion constant while the cross

sections for the absorber rod region correspond those which are obtained in the conventional

homogenization by the use of the flux-volume-weighting.

The basic features of the present method are:

- The cylindrical absorber rod is represented in the r-φ-z or the x-y-z mesh of the

CITATION code by conserving the rod volume.

- The neutron fluxes and reaction rates in the absorber rod and its surroundings are

determined by a one-dimensional (1-d) transport calculation in fine energy groups.

- The transport fluxes and the diffusion fluxes at a sufficiently great distance from the

surface of the absorber rod are assumed to be equivalent.

- The transport fluxes and the diffusion fluxes in space points having the same distance

from the surface or from the center of the rod are assumed to be equivalent independent
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of the geometry.

- The numerical procedure used for calculating the leakage in the CITATION code is

included in the calculation of the equivalent cross sections.

- The absorber rod is represented in the CITATION calculation by one mesh element in

the plane perpendicular to the rod.

The method for determining equivalent cross sections as is described in the following was

developed for the x-y-z geometry of the CITATION code. A z-dependence of the absorber rod

is not considered in the calculation of the equivalent cross sections so that the explanations

are restricted to the x-y plane, in which the absorber rod is represented by a rectangle. If an

axial dependence needs to be considered, the absorber rod has to be subdivded into several

axial regions and a TOTMOS calculation has to be made for each of these regions. The

statements made in the following are also valid for a sector of a circular ring, by which the

rod is described in r-φ geometry, if the rod is not located too near to the center of the system

considered.

In the CITATION calculation, the rectangle of the rod region is surrounded by four

neighboring mesh elements. The right and the left mesh elements and the front and back

mesh elements shall be identical. The side length of the rod mesh element in the x-direction

is denoted in the following by a and the side length in the y-direction by b = p a. The side

length of the neighboring mesh element in the x-direction is denoted by c = px a and that

in the y-direction by d = py b = py p a (see Fig. 7). When the values of a, p, px, py are given,

the CITATION mesh for the absorber region is fixed. The equivalent rod data can then be

determined as a function of these parameters by the use of the principles given above.

If R is the radius of the absorber rod (or of the region to be represented), the volume-true

representation of the absorber region in the CITATION calculation requires

πR2 = p a2 . (191)

By the use of Eq. (191) either the side length a or the parameter p can be determined. The

values of px and py can be chosen freely and are read in the TOTMOS input.
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Fig. 7: CITATION mesh for the absorber region.

The 1-d transport calculation for the absorber rod gives the following information which

is needed for the determination of the equivalent cross sections:

- the average flux Ψ̄R in the rod region,

- the homogenized cross sections in the rod region,

- all reaction rates in the rod including the leakage,

- the one-dimensional flux distribution ΨR(r) in the vicinity of the absober rod.

The problem is the assignment of the CITATION fluxes in the four neighboring mesh ele-

ments of the absorber rod (see Fig. 7) to the transport fluxes in the vicinity of the absorber

rod. Since the transport calculation provides no two-dimensional information, a certain ar-

bitrariness in this assigment cannot be avoided. If necessary, a two-dimensional transport

calculation may be performed. According to the principles given above, fluxes at points

which have the same distance from the surface of the rod (this procedure is denoted in the

following as Method I) or from the center of the rod (this procedure is denoted in the fol-

lowing as Method II) are considered to be equivalent. Furthermore, the right and the left
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neighboring mesh element of the rod and the front and the back mesh element of the rod

are considered as equivalent.

In the CITATION model, the reference point for the flux has the distance

∆x =
1

2
px a (192)

from the surface of the rod mesh element in the x-direction. Correspondingly, it holds for

the y-direction

∆y =
1

2
py p a . (193)

For Method I, the reference points for the flux in the 1-d transport calculation are thus to

be located at the positions

R2ox = R + ∆x = a

(√
p

π
+

1

2
px

)
(194)

and

R2oy = R + ∆y = a

(√
p

π
+

1

2
p py

)
. (195)

For Method II, they are to be located at

R2cx =
1

2
a(1 + px) (196)

and

R2cy =
1

2
pa(1 + py) . (197)

The transport fluxes at these points are considered to be equivalent to the CITATION fluxes

in the neighboring intervals of the absorber rod. Thus, the transport calculation must have

interval midpoints at the radii r = R2x and r = R2y. Which of the two methods for

calculating the position of the reference points is more accurate cannot be decided without

knowing further details. A sensitivity study may help in a specific case.

For the rod mesh element, the leakage per unit length in the z-direction is calculated in

the CITATION code by the relation

Lc =
Ay(Φx − ΦR)

δx/DR + ∆x/Ds

+
Ax(Φy − ΦR)

δy/DR + ∆y/Ds

. (198)

The quantities used in Eq. (198) have the following meaning:

Φx = Φ(x−neighbor) and Φy = Φ(y−neighbor) with
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Φx ≡ Ψ(R2x) and Φy ≡ Ψ(R2y)

ΦR = Φ(rodmeshelement) ≡ Ψ̄R

Ax = area to the y-neighbor = 2a

Ay = area to the x-neighbor = 2pa

δx = distance of the center of the rod mesh element to the x-surface = 1
2
a

δy = distance of the center of the rod mesh element to the y-surface = 1
2
pa

DR = diffusion constant in the rod mesh element

Ds = diffusion constant in the neighboring mesh elements

The effect of the anisotropic diffusion is not considered in the present version of the TOTMOS

code.

If the quantities Φx, Φy, ΦR, and Lc are set equal to the corresponding values of the

transport calculation, the diffusion constant DR can be determined by the use of Eq. (198).

Thus
1

DR

= 2p
Φx − ΦR

L
+

2

p

Φy − ΦR

L
− px + py

2Ds

+
√
X (199)

where

X =

(
2p

Φx − ΦR

L
+

2

p

Φy − ΦR

L
+
px − py

2Ds

)2

+ 4p(px − py)
Φx − ΦR

L

1

Ds

(200)

Thus, the homogenized reaction cross sections give the correct reaction rates in the diffusion

calculation, and the use of the diffusion constant in Eq. (199) yields the correct leakage term.

The region over which the homogenization is made can again be specified by the parameters

M1 and M2, which are defined in the TOTMOS input (see also Section 9).

The method described above to calculate the equivalent cross sections can be also em-

ployed to treat a central absorber rod in r-z cylinder geometry. For this purpose the geomet-

ric dimensions defined in the input for the x-y mesh are converted into the corresponding di-

mensions as are required for the r-z geometry. If a triangular mesh is used in the CITATION

calculation the method can be furthermore applied to determine the equivalent cross sections

for a symmetric triangular absorber rod. A description of the spatial parameters defining

the triangular mesh is given in the CITATION report.

It should be mentioned here that the TOTMOS code additionally calculates “equivalent”,

i.e. the CITATION mesh adapted, rod constants.3 Within the frame of the diffusion theory,
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the leakage into the absorber region may be written in the form15

L = AR ΦR CR , (201)

where the rod constant CR is defined by

CR = − Ds

ΦR

∂Φ(r)

∂r

∣∣∣∣
r=R

(202)

The radius R defines the rod boundary and AR is the surface of the absorber. The relation

in Eq. (202) is used in the CITATION code in the form of a boundary condition and its

use is explained in more detail in the CITATION report. Using this method the restriction

that the absorber rod region has to be represented by one mesh element in the CITATION

calculation is no longer necessary. A drawback of the method, however, is that only one rod

constant CR can be defined for all absorber rod regions in the CITATION calculation.

The rod constant CR is usually determined by the relation

CR =
j(r)

Φ(r)

∣∣∣∣
r=R

(203)

where j(R) is the net current at the boundary of the absorber region. The ratio of the net

current density to the flux may be computed by a transport calculation for the absorber rod

and the resulting value of CR may be used in a subsequent CITATION calculation in which

the leakage into the absorber region is determined by the equation

Lc =
AyΦx

1/CR + ∆x/Ds

+
AxΦy

1/CR + ∆y/Ds

. (204)

The concept developed for the determination of the equivalent cross sections can now

also be applied in order to compute the rod constant CR by the use of Eq. (204). Thus

1

aCR
=

Φy + pΦx

L
− px + ppy

4Ds

+
√
Y , (205)

where

Y =

(
Φy + pΦx

L
+
px − ppy

4Ds

)2

− p(px − ppy)
Φx

L

1

Ds

. (206)

This procedure for determining the rod constant explicitly considers the method of calculat-

ing the leakage in the CITATION code and thus is a methodological improvement compared

to the previous procedure. If the method of the equivalent rod constant is employed for

determining the efficiency of absorber rods, the restriction to represent an absorber rod by

one mesh element is furthermore no longer necessary.
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11 DESCRIPTION OF THE TOTMOS SUBROUTINES

The MAIN program defines the length, NLIM, of the array A(NLIM) which contains

all the data fields used in a TOTMOS run. The variable NLIM has to be increased if the

number of storage allocations for a specific problem is not sufficient.

Subroutine CALLER starts all subroutines, which initiate a new problem area processed

in the TOTMOS code. The unit NTLIB is connected to the MUPO cross section library

and the unit NTSCR is connected to a scratch device which is used to store the microscopic

scattering matrices temporarily. Furthermore, the external units NTPUN and NSX are

defined, which are used to store the equivalent cross sections and the disadvantage factors,

respectively, computed in a TOTMOS calculation. If the memory allocated in the MAIN

program is not sufficient for the problem under consideration, a message is written out and

the run is terminated.

Subroutine DIMENS calculates the addresses of all arrays used in a TOTMOS run and

determines the total number of allocations required for the problem to be analyzed. The

addresses are given in the common KEYS, which are made available in this way to the

subroutine CALLER.

For each zone in the system considered, subroutine GEOM successively reads the zone

number, the thickness of the zone and the number of spatial intervals in the zone. Using this

information the inner and outer radii of the zones, the interval boundaries, and the volumes

of the intervals, as well as the total number of intervals, are calculated for the geometry used

in the actual TOTMOS run.

Subroutine READNC reads the concentrations of all nuclides considered in the problem

to be analyzed. If a double-heterogeneous problem is treated, READNC furthermore reads

the zone numbers for the disadvantage factors which have been determined in the first run of

the double-heterogeneous calculation and which are used to correct the cross sections to be

employed in the second run (see also the input description of the TOTMOS code in Section

12). The disadvantage factors are read from the scratch device NSX and are used in the

subroutines MACRO and EDIT1.
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Subroutine MUPLIB reads the tabulated multigroup cross section data from the external

unit NTLIB. After the general parameters describing the library, the absorption, transport,

fission and production cross sections are read. The scattering cross sections required in

the TOTMOS calculation are determined from the transport cross sections and the average

cosines of the scattering angle in the laboratory system. Subsequently, the resonance cross

section tables are read for all temperatures and all potential scattering cross sections given

on the library. The resonance cross sections are interpolated at the average fuel temperature

in the reactor cell and at the required potential scattering cross section. Furthermore, the

scattering matrices of the moderator materials are read for the given temperatures. The

data are interpolated in order to determine the scattering matrices at the average moderator

temperature in the cell. If required, the subroutine FREEGAS is called, which calculates

the scattering matrices of further nuclides in the system on the basis of the free-gas model.

In order to solve the transport equation by an iteration procedure, a starting flux is

needed with which the initial fission source is calculated. On request, subroutine WEST

determines the different constants required to calculate the initial flux on the basis of the

Westcott formalism. The Westcott flux is also used as a weighting function in order to

determine the group-to-group transfer cross sections when these are computed on the basis

of the free-gas scattering model.

Subroutine FREEGAS calculates the thermal scattering kernels of the free-gas model

by the Brown and St. John formalism. The thermal scattering kernels are averaged by

the Westcott flux in order to compute the thermal group-to-group transfer cross sections

of the free-gas model. The group-to-group transfer cross sections in the fast energy range

are calculated on the assumption that the scatterers are at rest and that the scattering is

isotropic in the center-of-mass system.

For some nuclides, as for example the fissionable nuclides or the fission products, it is not

necessary to consider for the complete scattering matrix in the transport calculation. For

these nuclides no scattering matrices are given on the MUPO library. Instead, subroutine

DIAG generates an artificial scattering matrix for these nuclides, which contains the total

scattering cross section at the position of the self-scatter term of the scattering matrix. The

other elements of the scattering matrix are set equal to zero. This procedure saves computer
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memory and guarantees that the particle balances is fulfilled.

Subroutine OUTNC prints the mixing table, which instructs which nuclide is to be added

to the different material mixtures in which concentration.

Subroutine MACRO calculates the required macroscopic cross sections by the use of the

nuclide concentrations read in subroutine READNC. These are the macroscopic absorption,

fission and production cross sections. Furthermore, the macroscopic scattering matrices

are determined. The total cross section is calculated as the sum of the absorption and

the scattering cross section. If the calculation to be made is the second run of a double-

heterogeneous calculation, the self-shielding factors, determined in the first run and read in

subroutine READNC from the external unit NSX, are taken into account in the computation

of the macroscopic cross sections to be used in the second run. If requested, the macroscopic

cross sections are printed out.

Subroutine TRANSK calculates the escape probabilities, the collision probabilities, and

the transport coefficients for the spatial mesh defined by subroutine GEOM and by the use

of the total cross sections determined in subroutine MACRO. A buckling correction may be

made in order to consider an axial leakage. The required buckling values are defined in the

TOTMOS input. They are assumed to be spatially constant and can be group-dependent.

The buckling data may be read in the form of DB2 or B2 values. If they are read as B2

values, a fine group diffusion constant D is determined by the use of the total cross section

with which the quantity DB2 is computed. In the case of an albedo boundary condition the

albedo values are read by group. Subsequently, the geometrical and optical path lengths of

the possible flight paths in the individual intervals of the reactor cell are determined. The

escape probabilities and the collision probabilities are then calculated for the outgoing direc-

tions. The collision probabilities for the incoming directions are determined by applying the

reciprocity relation for the collision probabilities. In order to guarantee that the particle bal-

ance is not detrimentally influenced by numerical inaccuracies, the collision probabilities and

the escape probabilities for leaving the whole system are normalized. Controlled by an input

option, the escape probabilities, the collision probabilities and the normalization factors may

be printed out. If an albedo or white boundary condition is used, the collision probabilities

are corrected for this effect using the albedo values given in the input. Finally, the transport
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coefficients are calculated by using the relation between the transport coefficients and the

collision probabilities. The transport coefficients may be printed out on request.

The functions F1, F2, and F3 calculate the values of the Bickley functions Ki1, Ki2,

and Ki3 for a given argument in the case of cylindrical geometry. For spherical geometry,

the value of the exponential function is determined. The functions are called by subroutine

TRANSK.

The numerical solution of the integral transport equation is carried out in subroutine

FLUX. First, the initial fission source is calculated by the use of a flux estimate. The fluxes

may be energy-dependent and are assumed to be constant over the system considered. The

starting fluxes are either determined on the basis of the Westcott formalism or are read in

the input. The fission source is normalized to unity and the initial fluxes are normalized

such that the total losses in the system are unity. The normalized fluxes are then used for

the calculation of the initial scattering source. The new spatial distribution of the neutron

flux within a single energy group is calculated by the power iteration method, which is

accelerated by additional iteration techniques. These are renormalization, over-relaxation,

and extrapolation, which is a special form of over-relaxation. After a complete run through

all energy groups, which corresponds to a source (or an outer) iteration, the new fluxes are

renormalized such that the total losses in the system are unity (global scaling). Furthermore,

new values for the mean squared residuals (see Section 6) are determined. Subsequently, sub-

routine RELAX is called, which calculates the over-relaxation factors. The new fluxes are

extrapolated or over-corrected, if the conditions which are defined in the code by default

values or in the input are fulfilled for these corrections. The scattering source is recalculated

with the new fluxes and the power iterations are started again. If the relative deviations of

the fluxes in two subsequent iterations are smaller than a predetermined value, the power

iterations are terminated. The fission source is then recalculated with the new fluxes. Fur-

thermore, a new eigenvalue is determined, which is used to correct the fission source in order

to keep the number of neutrons in the system nearly constant from one outer iteration to the

next. The new fission source is again normalized to unity. Subsequently, the power iterations

are started again and new fluxes are calculated by the use of the new fission source. If the

deviations of the fission sources in two subsequent outer iterations are smaller than a given
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value, the outer iterations are converged and the iteration process is terminated. At the end,

the converged fluxes are normalized again such that the total losses in the system are unity

and thus equal to the fission source.

In a first call, subroutine RELAX assigns default values to the iteration parameters, which

may be overwritten by values defined in the input. During the power iterations, subroutine

RELAX is called in order to calculate appropriate over-relexation factors for accelerating the

iterations. If the over-relaxation factors for the extrapolation are equal within a given limit

and in a predetermined number of subsequent iterations, an extrapolation of the fluxes is

performed. Furthermore, an optimum over-relaxation factor is sought in order to refine the

extrapolated solution in the subsequent iterations. An iteration monitor edits the iteration

number at which the extrapolation is made, the extrapolation factor, the lowest µ eigenvalue,

the lowest λ eigenvalue and the present value of the optimum over-relaxation factor (see

Section 6).

Subroutine EDIT lists the neutron fluxes in the zones of the system considered in three

different ways. The group fluxes in the zone (integrated fluxes) are edited as are the zone av-

eraged group fluxes (group fluxes), and the zone and group-averaged fluxes (averaged fluxes).

Furthermore, disadvantage factors by group are edited for each zone. The above data are

also given for the total system. In addition, subroutine EDIT calculates and prints balance

tables for all zones and for the total system. The balance tables contain the absorption rate,

the fission source, the fission rate, the inscatter and outscatter rate, the total scattering rate

and the total collision rate. Furthermore, the radial leakage out of the system and the leak-

age due to axial buckling are determined and listed. Further data of a TOTMOS calculation

are written on the external unit NFLU1 for later processing. These are the title card, the

number of energy groups and the number of intervals used in the problem. Furthermore, the

widths of the energy groups and the midpoints of the energy groups are written. For each

interval, the midpoint of the interval and the scalar neutron fluxes per lethargy unit in the

interval are subsequently stored for all energy groups. Subsequently, subroutine EDIT1 is

called for computing the homogenized cross sections. If required, subroutine RCS is called in

order to determine the equivalent cross sections. Finally, the fine-group disadvantage factors

are written for all zones on the external unit NSX.
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Subroutine EDIT1 calculates the cell-weighted and condensed cross sections. The nu-

clides, for which the weighted cross sections are determined, may be defined in the input.

Otherwise the data of all nuclides used in the problem under consideration are weighted

and condensed. An additional input option allows the zones to be specified over which the

cross sections are weighted. Both microscopic and macroscopic cell-weighted cross sections

are calculated. The macroscopic data are written on an external unit in a such form that

they can be read by the CITATION code in order to be employed in a subsequent diffusion

calculation for the gross reactor. The weighted microscopic cross sections are stored on the

external unit IRG3. If the calculation performed is the second run of a double-heterogeneous

calculation, the self-shielding factors determined in the first run are taken into account in

the computation of the macroscopic cell-weighted cross sections.

For those zones for which the cell-weighting has been performed, subroutine EDIT2 lists

the broad-group fluxes in the zone, the zone-averaged broad-group fluxes, and the zone-

and broad-group-averaged fluxes, as well as the broad-group disadvantage factors. These

quantities are also given for the whole system.

Subroutine RCS provides the equivalent cross sections, which may be employed in ab-

sorber rod calculations for the gross reactor by the use of the diffusion code CITATION. The

macroscopic cell-weighted cross sections for the absorber cell computed in the subroutine

EDIT1 are made available to RCS via the parameter list. At the beginning, the RCS routine

reads the parameters which define the mesh for the absorber rod and its surroundings as

is used in the CITATION code (see also the explanations in Section 9). Furthermore, the

broad-group diffusion constants for the surroundings of the absorber rod are read. Sub-

sequently, the numbers of the zones containing the reference points for the fluxes in the

TOTMOS transport calculation are defined via the input. By the use of the transport fluxes

in the reference points, the geometric parameters for the CITATION mesh, and the diffusion

constants of the absorber surroundings, the leakage into the absorber rod is employed in

order to determine the group-dependent diffusion constants for the absorber region. The

diffusion constants thus determined and the cell-weighted cross sections are written on the

external unit NTPUN in such a format that the data can be directly used in a subsequent

CITATION calculation. The method of equivalent cross section can also be applied if a sym-
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metric triangular mesh is used in the CITATION calculation. In addition to the equivalent

cross sections, the subroutine RCS computes equivalent rod constants, which may also be

employed in absorber rod calculations for the gross reactor by the use of a diffusion code.
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12 INPUT INSTRUCTIONS

The input data required to run a problem using the TOTMOS code are given in the

following. Each section of input data is itemized and provided with a short comment. The

input format with which the data are read is given in parentheses. Some input arrays or

some blocks of data are only required if a related integer variable read in before exhibits

a specific value. The condition whether such an array needs to be read is given in braces.

The number of entries in each array is denoted in square brackets. In order to facilitate the

input, some default values have been programmed into the TOTMOS code. Where such

values exist, they are given in parentheses.

12.1 Input Data

A) Title Card (a72)

B) General Parameters (14i5)

1. IX - Number of energy groups

2. NX - Number of spatial intervals

3. MX - Number of zones

4. NNUC - Number of nuclides considered in the problem

5. NRES - Number of resonance nuclides

6. NSTREU - Number of nuclides with scattering matrices

7. NGAS - Number of nuclides with free-gas kernel computation

8. MSUB - Number of subgroups per thermal group in the computation of the group-

to-group transfer matrix of the free-gas model (2)

9. INF - Editing options

0 - no effect

≥ 1 - print one-dimensional macroscopic cross sections

≥ 2 - print energy group boundaries, energy midpoints, group widths, and

macroscopic scattering matrices

≥ 3 - print transport coefficients and non-leakage probabilities
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≥ 4 - print escape and collision probabilities

10. NXOLD - option for a double heterogeneous calculation (DHC)

≤ 0 - simple heterogeneous calculation or first run of a DHC

(It is set in the code MXOLD = 1.)

> 0 - number of zones in the first run of a DHC

(It is set in the code MXOLD = NXOLD.)

11. NBURN - option for boron-10 burn-up calculation

≤ 0 - no effect

> 0 - burn-up calculation with NBURN time steps

C) Parameters Defining the Burn-up Calculation {NBURN > 0} (5x, i5, 2e15.5)

1. MREF - Number of the zone which is used as a reference zone for the determination

of the flux level

2. FREF - Average group flux (cm−2 s−1) in zone MREF

3. DELTAT - Time interval (days) for the burn-up calculation

D) Geometry Data (14i5)

1. NGEOM - Problem Geometry

0 - cylinder

1 - sphere

E) Definition of the Material Zones and Spatial Intervals (2i5, e10.4)

1. NR - Zone number in ascending order

2. NP - Number of intervals in the zone

3. TH - Thickness of the zone

Repeat card E for all zones in the reactor cell and terminate the geometry input by a blank

card.

F) Information on the Cross Section Data of the Nuclides Used in the Calculation

(2i5, 6e10.4)

1. KDNUC - Nuclide identification number

2. KSTREU - Option for the treatment of the scattering matrix

-1 - calculate scattering matrix by the use of the free-gas model

0 - scattering matrix contains only self-scatter term (for strong absorber only)
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1 - read scattering matrix from the MUPO cross section library (BeO, C, H2O,

and D2O)

3. AAM - Mass number of the nuclide

4. APPA - κ value used in the resonance calculation (only for Th-232, U-238, Pu-240,

and Pu-242)

G) Free-Gas Kernel Calculation (i5, 5x, 6e10.4 and, if required, 7e10.4) {KSTREU = -1}

1. KG - Number of summands in the free-gas kernel representation (0 < KG < 6),

(AKAP(I), BKAP(I), I = 1, KG) - Exponents and pre-factors in the series expan-

sion of the free-gas scattering cross section

H) Contribution of the Nuclide KDNUC to the Material Mixtures

1. DEN - Nuclide concentration by zone [MX] (7e10.4)

I) Data Required in the Second Run of a DHC {MXOLD > 1}

1. MDF - Numbers of the zones in which nuclide KDNUC appears in the first run of

a DHC. The possible values are 1 to MXOLD and are used for the assignment of

the disadvantage factors determined in the first run [MX] (7i10)

Repeat cards F to I for each nuclide required and terminate this part of the input by a blank

card.

J) Material Temperatures

1. TEMP1 - Fuel temperatures in Kelvin by zone [MX] (7e10.4)

2. TEMP2 - Moderator temperatures in Kelvin by zone [MX] (7e10.4)

K) Boundary Condition and Buckling Data (2i5, e10.4)

1. LEAKT - Boundary condition at the right boundary of the system

-1 - albedo boundary

0 - vacuum boundary

1 - white boundary

2. NBUC - Option for buckling correction

-1 - B2 values by group

0 - no effect

1 - DB2 values by group

3. WEGMIN - Parameter in the transport kernel calculation (10−4)
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L) Buckling Values {|NBUC| 6= 0} 5(i5, e10.0)

1. (IG(I), DBSQ(I), I = 1, 5) - Limit group, B2 or DB2 values for the groups

IG(I-1)+1 to IG(I), where IG(0) = 0

M) Albedo Values {LEAKT < 0} 5(i5, e10.0)

1. (IG(I), ALBEDO(I), I = 1, 5) - Limit group, albedo values for the groups

IG(I-1)+1 to IG(I), where IG(0) = 0

N) Iteration Parameters (each value can be individually overwritten) (4i5, 6e10.4)

1. ITMAX - Flux iteration maximum (100)

2. ITBG - Minimum iterations before extrapolation (20)

3. LCMX - Number of over-relaxation factors tested (6)

4. ITDM - Minimum delay between extrapolations (10)

5. EPS - Scalar flux convergence criterion (10−4)

6. RELC - Initial over-relaxation factor (1.9)

7. EPSG - Extrapolation criterion (0.05)

8. OVERX - Maximum extrapolation factor (100)

9. FACTOR - Under-extrapolation factor (1.0)

O) Parameters for the Starting Flux and the Source Iterations (2i5, e10.4)

1. IFLUX - Option for the flux guess

0 - Westcott flux (calculated in TOTMOS)

> 0 - input flux guess

2. ITA - Number of outer iterations (50)

3. EPSK - Convergence criterion for the source iterations (10−5)

P) Flux Guess {IFLUX > 0}

1. F - Flux values by group [IX] (7e10.4)

The fluxes are used in each interval of the system considered.

Q) Parameters for the Cross Section Condensation and Homogenization (14i5)

1. NBRGR - Number of broad energy groups

2. NDUM - Not used

3. NCD - Option for the condensation

0 - this is the last condensation
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1 - a further condensation is made

-1 - module RCS is called in this condensation in order to calculate equivalent

cross sections for absorber rods

4. MM1 - Innermost zone in the spatial homogenization

5. MM2 - Outermost zone in the spatial homogenization

6. MNNUC - Number of nuclides for which broad-group and homogenized cross sec-

tions are generated. If MNNUC = 0, the data of all nuclides used in this

calculation are condensed and homogenized.

R) Nuclides for which Condensed and Homogenized Cross Sections are to be Generated

{MNNUC > 0}

1. INUC - Nuclide identification numbers [MNNUC] (14i5)

S) Definition of the Broad Groups

1. LIM - Broad groups specified by fine group numbers [NBRGR] (35i2)

Repeat the cards Q to S for all condensation and homogenization procedures required and

set NCD = 0 in card Q in the last condensation and homogenization.

T) Data Required in the Calculation of the Equivalent Cross Sections {NCD = -1}

1. TITLE - Title card (TITLE(1) is the number of the CITATION zone in which the

equivalent cross sections are used.) (15a4)

U) General Parameters {NCD = -1} (5i5)

1. IGEOM - Geometry of the Absorber

1 - slab

2 - cylinder

3 - sphere

2. ITYP - Specification of the Absorber

1 - central rod

2 - symmetric triangular rod

3 - excentric rod

3. METH - Method for Calculating the Flux Reference Points

1 - reference point R2S is counted from the outer boundary

2 - reference point R2S is counted from the center of the rod
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4. MKX - Zone number of the x-reference flux point

5. MKY - Zone number of the y-reference flux point

The zones MKX and MKY must contain only one mesh element.

V) Information on the Absorber Rod Geometry in CITATION {NCD = -1} (6e12.4)

1. P - Side ratio b/a of the absorber mesh element in CITATION (1.0)

2. PX - Side ratio ax/a of the x-neighbor mesh element in CITATION (1.0)

3. PY - Side ratio by/b of the y-neighbor mesh element in CITATION (1.0)

4. PPX - Relative distance of the reference point from the x-boundary of the absorber

mesh element (1.0)

5. PPY - Relative distance of the reference point from the y-boundary of the absorber

mesh element (1.0)

The quantities PPX and PPY are used in special cases, as for example, if the

absorber can only be represented by more than one mesh element in CITATION or

if the absorber mesh element is a boundary interval.

(Example: absorber at the x-boundary: ⇒ PPX = 0.5)

The detailed description of the CITATION mesh for the absorber rod region is given in

Section 10.

W) Diffusion Coefficients in the Region Surrounding the Absorber {NCD = -1}

1. DA - Diffusion coefficients [NBRGR] (6e12.4)

The diffusion coefficients may be taken from a reactor design calculation.

The second run in a double heterogeneous calculation requires a complete input once again.

12.2 TOTMOS Input/Output Specifications

TOTMOS requires the following input/output assigments

Logical No. Purpose

NTIN(5) card input

NTOUT(6) standard output

NFLU1(2) device for the external flux storage

NTPUN(7) library of the equivalent cross sections

produced by the TOTMOS code
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NTSCR(8) scratch device

NSX(9) device for the storage of the disadvantage

factors

IRG3(11) microscopic cell-weighted cross section library

produced by the TOTMOS code

NTLIB(17) MUPO cross section library (input)

27 macroscopic cell-weighted cross section library

produced by the TOTMOS code
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14. J. Schlösser, “MUPO, An IBM-7090 Programme to Calculate Neutron Spectra and

Multi-Group Constants,” D.P. Report 172 (1963).

15. H. D. Brown and D. St. John, “Neutron Energy Spectrum in D2O,” DP-33 (1954).

16. C. H. Westcott, W. H. Walker, and T. K. Alexander, Proc. Second U.N. Conf. on

Peaceful Uses of At. Energy, 16, 70 (1958).

17. K. M. Case and P. F. Zweifel, “Neutron Transport Theory,” Addison-Wesley Publishing

Co., Inc. (1967).

18. M. Abramowitz and I. A. Stegun, eds., “Handbook of Mathematical Functions with

Formulars, Graphs, and Mathematical Tables,” John Wiley and Sons, Inc. (1972).

19. D. Young, Amer. Math. Soc. 76, 92 (1954).

20. R. B. Kellogg and L. C. Noderer, J. Soc. Indust. Appl. Math. 8, No. 4, 654 (1960).

21. K. F. Hansen, “An Exponential Extrapolation Method for Iterative Procedures,” ScD

Thesis, Mass. Inst. Tech (1958).

22. K. Nünighoff, J. Li, C. Druska, and H.-J. Allelein, Proc. of PHYSOR 2010 - Advances

in Reactor Physics to Power the Nuclear Renaissance, Pittsburgh, Pennsylvania (2010).

23. M. Herman, ed., “ENDF-102, ENDF-6 Data Formats and Procedures for the Eval-

uated Nuclear Data File ENDF-VII,” BNL-NCS-44945-01/04-Rev. Brookhaven Na-

tional Laboratory (2005).

24. R. E. MacFarlane and D. W. Muir: “The NJOY Nuclear Data Processing System,”

Version 91, LANL-12740-M, Los Alamos National Laboratory (1994).

78



25. E. Teuchert and R. Breitbarth, “Resonanzintegralberechnung für mehrfach heterogene

Anordnungen,” Jül-551-RG, Kernforschungsanlage Jülich (1968).
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