
JiiI - 797 - FF
September 1971

KERNFORSCHUNGSANLAGE JOUCH
GESELLSCHAFT MIT BESCHRl\NKTER HAFTUNG

Institut fur Festkorperforschung

Dynamical Diffraction Theory

by

Peter H.Dederichs

Als Manuskrlpt gedruckt



Berichte der Kernforschungsanlage Jiilich - Nr. 797
Institut fOr Festkorperforschung Jol • 797 • FF

Dck.r Eleclron Diffraclion· Theory
Neutron Diffraction ..Theory
X-Roy Dtffrcctlcn- Theory
Leed
Defects ..Distribution, Statistical

1m Tausch zu beziehen durch: ZENTRALBIBLIOTHEK der Kernforschungsanlage Jolich GmbH,
JOlich, Bundesrepublik Deutschland



Dynamical Diffraction Theory

by

Peter e~richs

I
I
I

\





Contents

1. Introduction-------------------------------------------------- 1

2. Electrons in Periodic Crystals-------------------------------- 5

2.1 The Crystal Potential------------------------------------- 5

2.2 Bloch Waves----------------------------------------------- 8

2.3 Complex ~,E and Symmetries of E (k)-----------------------12
y -

2.4 Band Structure for Complex k (One Dimension)--------------18

2.5 Band Structure for Complex k (3 Dim. and V+V~-------------25

2.6 Two-Beam Case--------------------------------------------- 31

2.7 Some Multiple Beam Cases---------------------------------- 39

2.8 Orthogonality on the Dispersion Surface------------------- 46

3. Diffraction of Electrons by Ideal Crystals-------------------- 50

3.1 Wavefields in the Vacuum and in the Crystal--------------- 50

3.2 Scattering by a Crystal Slab I 54

3.3 Scattering by a Crystal Slab II---------------------------59

3.4 Current Conservation--------------------------------------6 4

3.5 Symmetrical Laue-Case------------------------------------66

3.6 Symmetrical Bragg-Case------------------------------------73

4. Single Scattering Matrices and Neutron Scattering-------------7 8

4.1 Multiple Scattering with Single Scattering Matrices-------78

4.2 Scattering by Muffin-Tin Potentials-----------------------3 4

4.3 Diffraction of Neutrons-----------------------------------9 1



5. Dynamical Diffraction of X-Rays-------------------------------l02

5.1 Fundamental Equations for X-Ray-Diffraction--------------- 10 2

5.2 Current, Boundary Conditions, etc.------------------------ 108

References-------------------------------------------- 115

Figures----------------------------------------------- 118



-1-

1. Introduction

Two theories are widely used to describe the inten­

sities observed in electron or X-ray diffraction by

crystals. The "kinematical theory" treats the crys­

tal as perturbation and is therefore valid only for

sufficiently small crystals. For larger crystals one

has to take into account the multiple scattering of

the incident wave. This problem, which is simplified

substantially by the periodicity of the crystal, has

been dealt with first by Darwin in 1914 [1). More

fundamentally the problem has been treated in a se­

ries of papers by Ewald in 1917 (2) and later on by

von Laue I3 J . These papers form the basis of the so­

called "dynamical theory", which has been extended

further by Bethe [4] for the case of electron diffrac­

tion.

The dynamical theory for X-ray diffraction is summa­

rized in the books of von Laue [5J , Zachariasen [6J
and James [7J as well as in two more recent review

articles of Batterman and Cole [8J and James [9J. For

electron diffraction we refer to the books of von

Laue [ lOJ, Heidenreich [llJ and Hirsch et al. 1I2].

In the last twenty years there has been a renewed

and steadily increasing interest in dynamical dif­

fraction of X-rays and electrons, which is due partly

to the availability of large, perfect crystals and to

the development of the electron microscope. New branches
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have evolved,such as low-energy-electron-diffrac­

tion (LEED), channelling of high energy electrons

and positrons or dynamical scattering of Moessbauer­

quanta. Also the dynamical theory has made consi­

derable progress. For instance starting with the pa­

pers of Moliere [13J and Yoshioka [14], the theory

for the elastic or "coherent" wave could be suffi­

ciently generalized to take into account the effects

of inelastic waves, thermal motion or statistical

defects.

In this report we review the conventional form of the dynamical

theory. We will emphasise not so much the two beam case or special

wave fields or special applications of the theory, but present the

basic principles in a self-contained way, including some new methods

such as the band structure for complex wave vectors or the t-matrix

method. Moreover we parallelly develope the theory for electron-,

X-ray- and neutron-diffraction and discuss the similarities and

differences. A condensed version of this report will be published

as the first part of a review article in SOLID STATE PHYSICS.

The second part of that review, being referred to as "Part II"

in this report, deals with the theory of the coherent wave and the

effects of inelastic waves, thermal motion, and statistically distri­

buted defects, both for electron and X-ray diffraction.

Since this is a purely theoretical article, we will

not give any long list of tables of atomic form fac­

tors, wavelengths etc. Nevertheless we feel obliged

to give the reader, being not familiar with dynamical
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diffraction, an idea of the order of magnitude of the

most important quantities. Therefore the following

table gives some typical values of the energy E, etc.

for the cases of neutron-, X-ray-, electron-, and

low-energy-electron-diffraction, being abreaviated by

the symbols n, X, e and LEED. The most important

quantity for diffraction is the extinction length,

which is essentially the thickness of the crystal for

which the Kinematical theory breaks down. For neu­

trons and LEED, the extinction lengths differ by a

factor 105, meaning that the dyna~mical theory is ab­

solutely necessary for LEED, but that most experi­

ments with neutrons and X-rays are well described by

kinematical theory. For electrons and X-rays the ab­

sorption length ~ ,given in the fourth line, is rough­

ly a factor 10 larger than the extinction length.

Here neutrons are an exception, since they are prac­

tically not absorbed. The last quantity ~ is the ab­

sorption length for the case that a Bragg reflection

is excited (anomalous transmission). For X-rays the

absorption is then reduced by a factor ~30, which is

known as the Bormann effect, whereas the absorption

of electrons is only slightly reduced.
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n X e LEED

energy E 10 meV 10 keV 100 keV 100 eV

wave 0 c 0 Q

length l- I A 1 A 0.05 A 1 A

extinction
105 c

10
4 c

102_103 0 e

length de x t
A A A 5 A

absorption
108 e 105

c
103_104 " 0

length 1 A A A 10 A

f'-

1
>10

8 v
30.105 0

3. (10 3-104)A 0

bf
A A 10 A

j
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2. Electrons in Periodic Potentials

In this section we will review the basic facts and

theorems about the ban~eOry of electrons in ideal

crystals as far as they are important for diffraction.

For more details we refer to the literature. [15]

2. 1. The Crystal Potential

The motion of the electron is described by the Schr6­

dingerequation for the wave function ~:

where E is the energy and veE) the crystal potential.

In an infinite periodic crystal the potential veE) is

periodic, too. Therefore we have for all lattice vec­

tors R: VeE) = V(E. + g). Furthermore V(E) can be split

up into contributions from the different unit cells

of the crystal. Therefore we have

where vCr), the potential of the Wigner-Seitz-cell, is

directly connected with the charge distribution. For a

primitive lattice we have:

(3) veE)
_ Ze2

= r +
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The first term represents the attractive interaction with

the nucleus of charg~number Z, the second one the repul­

sive interaction with the electron density ~(E) in the
first cell (Vc = volume of the unitcell). Because of

electric neutrality the volume~ntegral of SeE) over one
unit cell is equal to z.

v (E) can be expanded in a Fourier series.

Due to the periodicity of veE) we have to sum only over
reciprocal lattice vectors h because only these vectors
fulfill the periodicity co~dition eih~ = 1 for all g.
By considering

(5) !.... (' dr ei(h ­
V J-c V

C

we get for Vh

_h ' )_r (\
= a h h'-'-

(6) 1
= V

c
-ihr

e - - veE) dE

-tOQ

1 S. -ihr= - eVc -/>0

where we have used equ. (5) and transformed the sum
over the different uni t cells irto an integral over the
whole space. Substituting (3) into (6) we get finally

( 7) v =- 411 e 2 1 (Z - f h) withh Vc hi
fn. = S dr -ihr

geE)e --
Vc

Here fh is the "atomic scattering factor for X-rays",

being smaller than or equal to f o = Z for all h. There­
fore all coefficients Vh are negative. For large h only

the first term, i.e. the interaction with the nucleus,

remains. For small h1Vh approaches a constant. By ex-
ihr -panding e -- in (7) in powers of h, the first and second

terms cancel ( ~ (E) = 8 (-E») and the third one gives,
assuming cubic symmetry or a radially symmetric charge
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density

( 8)

As a simple analytic example we can calculate Vh for

a free H-atom. Here we have

(9)

(10)

1 'It' 2 2r (
+ L)S (£) =

11 a 3 e-~ ; v(£) = - ~ e-o; 1 aB
B 2

2 2 2 ... (¥)"1t e aBV =- Vc •h t1 + l~)2r
Whereas for small r the Coulomb attraction of the nu­
cleus dominates, the potential vCr) decreases exponen­
tially for large r.

For many elements the coefficients Vh ,the scattering
amplitudes for electrons,have been calculated numeri­

cally [12J.
Due to the reality of V(£) we obtain from (6)

( 11)

Furthermore,if 5 is a symmetry operation of the lattice

then we have V(£) = V(5£) and 5R is again a lattice
vector. Therefore we get for Vh ' since E'~=(5E) '(5~)

For instance, if 5 is the inversion (5£ = -£), this means
together with (11)

(13)

The modifications for nonprimitive lattices are abvious.

In this case the potentials vCr) is a sum of the potentials

vr (£ - Sf") of the atoms /'" at the pos!tions Sl" in the
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first cell, Therefore we have for Vh instead of (7)

(14) V
h

=

where fh' is

the atom,..

the atomic

"L (z - ft) e - i!!R f-
f'v 1"" -

scattering factor for X-rays of

2.2. Blochwaves

The periodicity of the potential has important conse­

quences for the eigenfunctions cP and for the allowed

eigenenergies. To see this we introduce the translation

operator TR ,which shifts every function f(E) by a vec­

tor ~ being a lattice vector in the following.

(15) f (E) = f (E + ~) with

•
'R '" :!r..'R·o

T = e -"VI = e. -toI - +0­
R

that they are
denoting ilk

eigenfunction
equations

Due to this representation TR commutes with the kine­

tic energy. But because of the periodicity, TR also

commutes with V(E) and consequentlywith H.

Therefore the eigenfunctions ~ (E) of H can be choosen so
simultaneously eigenfunctions of T

R
• By

as the eigenvalues of the operator E, the

ikReigenvalues of TR are e --. Thus the simultaneous

t (E), indexed now by~, obeys the

(17)
ikR .

= e -- tl. (r)
'Y~ -

ihRDue to e -- = lone obtains the same eigenvalue

if one replaces ~ by k + h. Therefore the index



-9-

only determined up to a reciprocal lattice vector and

only the "reduced" value of k is important.For instance,
•k can be restricted to the first Brillown-zone.

By making an ansatz of the form

( 18) '" (r) = e i ls !. u (r)
'Y~ - ]i -

=L Vh-h, Ch' (~)
h' - - -

one verifies directly by applying TR on ~k that uk(~)

is a periodic function in ~.

(19) u]i (~) = u~ (~ + ~)

A. ikrTherefore ~k(~) is essentially a plane wave e --

modulated bya periodic function U(E) and is called a

"Blochwave", whereas Uk(~) is often refered to as

"Blochfunction" •

Due to its periodicity uk(~) can be expanded in plane

waves e i h!. analogously to (4). Therefore we have for ~k{~)

.(20) ~k (~) = L C
h

(]i) e i (]i + !!)~
- h

The coefficents C
h

can be determined by introducing(20)

into fueSchrOdingerequation (1). Considering the orthogo­
nality of the different plane waves e i h r (5), this re­
sults in an infinite system of linear homogeneous equa­

tions for the Ch(k).

(21) {Ek - ~~ (k + !!)2 } C!!(~)

This system has only a solution, if its determinant

vanishes.



(23)

-10-

For each k the determinant vanishes for an infinite num­

ber of energies Ey(~) ('<' = 1, 2, ••• ) being compatible
with ~. They can, for instance, be ordered according
to their magnitude.

E{ (~) I: •.• ~Ey (~) !: EY+l (~) b ...

All the energies obtained for a given V by varying ~

in the first Brilloum-zone are called the y~energy

band. If k varies in a certain direction, we may get
qualitatively the behaviour of E as a function of k

as shown in fig. 1. The energy El,being lower than all

energies of the first bandJ1s forbidden. For E = E2
we get just one k vector. Between the first and se­
cond band there is an energy gap so that E3 is not
allowed. For E = E4 we have a banqpverlap. We get as

solutions k-vectors belonging to different bands.

The orthonormalization condition for the Bloc~aves is

+(' dr

J (211 )3
-(J4

for all ~ and~' in the first BrilloUi~zone.We have

choosen the factor (2~ )3 to get the same condition
as for plane waves.

By introducing the ansatz (18) into (23) we get for the
Blochjfunctions

(24) 1
Vc

dr *~,~I(£)U~,y(£) =

where we have taken into account that
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'5"'" ei (k_ - _k) _R = (2 11") 3 r- •)
L ' 0 (~ - ~
R Vc

for ~,~' in 1. Br.zone.

Analogously we get for the coefficients Ch(~'~ ) using (5)

(26)

The system of Blochwaves is also complete,

(27) .h * (_r')
't'k ~-'

yielding for the coefficients

and (28) mean that the matrix
-1 tunitary (M = M ). M represents

of a Bloch­
the trans-

(28) L c;. (~, \l ) Ch (~, V )
~ -

The equations (26)

M = ~ (k,~ ) is'V,h -h

just the transformation from all the planes waves

ei(k + h)! with the same reduced k-vector to the Bloch-

waves .h with the same ~, as can be seen from equation'Yk, \l
(20) •

An important quantity is the current density
wave, being periodically in space because of

lation properties of ~~,~

(29) i~,v (!) = 2~i { ~~~\l (!) ~! ~~d (!) - ~~d ()! ~~~'ll }

Using the plane-wave-expansion (20) and averaging over a
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unit cell, we obtain for the average current density
by using equ. (5):

(30)

(32)

Therefore the curTents of the different plane waves add
incoherently. This result can be simplified further by
using the Sch~oedinge~equation (21) for the Ch• Multi­

plying (21) by C~(15-,\> ), summing over h and dIfferentia­
ting with respect to h~, one gets

(31) L{l vE _11 (15- + h) } Ichl2.~ Ok m
k -

+L [(E
,j'[2

(15- + h) 2 ) C
h

- L } 1 v*- 2m Vh - h'Ch' -R kCh
!l h'

+ Lt (E
-1\2 2) ,. L hIC;}.:k g15-Ch '

- -(k + h) c
h,-

Vh = 02m -
~ "

Obviously the second line vanishes and by considering
equ. (11) the third one, too. Further according to (26) we

have L ICh 12 = 1 and so we get
M -

( i k (£) >
-I~ Vc

Therefore the current is always perpendicular to the

two dimensional surfaces E~(15-) = constant, which are
called dispersion surfaces.

2.3. Complex 15-, E and Symmetries of Ev(15-)

Up to here we have tacitly assumed, that the eigen­
values 15- and E are real. However this has not necessarily

to be so, because the determinant (22) has formal solu­
tions also for complex 15- and E. For instance, the eigen­

solutions ~k for complex 15- are damped waves, decreasing

in one direction and increasing in the opposite. But
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they are also eigenfunctions of TR and H as (17); the

only, but very impo~ant difference is that the scalar
product (23) diverges due to the exponential increase.

In an infinite ideal crystal and for stationary problems
such eigenfunctions for complex ~ and E are only of

pathological interest, since all the Blochfunctions for

real ~ and E form already a complete set (27). However
scattering of electrons by a finite crystal produces
"damped" Blochwaves (with real E) qUite naturally, as
will be seen in section 3. Furthermore for a finite crystal
there are no divergence difficulties for the scalar pro­

duct because the volume of integration is finite. Similary
by considering time dependent problems, e. g. initial value
problems, complex E's can occur as decay constants. There­
fore in the following we will allow E and ~ to have com­
plex values and will consider the symmetries of the

function Ev(k) in the complex E,~ space.

First we see from the determinant (22) after replacing ~ by

k+h" and then introducing !:!.+!:!." and !:!.'+!:!." as new summation
indices, that for k+h we have the same manifold of allowed

energies E1,E2, •.• as for the Bloch vector k. Therefore

we obtain

as long as ~ and ~+!:!. refer to the same band (i.e. belong
to the same Riemann's sheet; see below)

Because the Blochwaves ~ and ~ + h also have the same

ikReigenvalue e -- for the translationpperator ~ , they
can be choosen as periodic in k.

(34) ~k ~ (£) = ~k + h y(£)
-' --'

Further if S is a symmetry operation of the crystal,

then we have V(£) = V(S£) and together with h also Sh
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is a reciprocal lattice vector. Using (12) and by substituting

in (22) S~ and S~' as new summation indices, we get the same mani­

fold of solutions Elifor the wave vectors k and S~, so that

if k and S~ belong to the same band. Therefore E has the same

symmetry as the potential.
Especially for the inversion this means:

A special consequence of the inversion symmetry is that

for k - 0 we get

(35b)
'.) E ,,(~) I

~;~ k-O
= 0

On the other hand, if there is a reflectio~symmetry around

a plane, then we have for all ~ on this plane

(35c) n • = 0

where n is perpendicular to the plane.

Further, since V(~l is a local potential, the matrix­

element of V(r) in the determinant depends only on the

difference h - h'. Because the first term in (22) is

sYmmetrical in h and h' one has

independent of the existence of the inversion as a
symmetry operation, as one sees by interchanging ~ and h'

in (22).
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Due to the reality of V(E) we obtained in (12) Vh = V~h

Therefore by forming the complex cQnpgate of the determinant

we must have

(37) E (~) = E"'(~")

where E (~) and E"(~") will refer to the same band r mostly,
but not necessarily. This result is important for the sub­

sequent discussion.

Combining the symmetry relations (35), (36) and (37)
we have

From the following identities for the eigenvalues of

the translationoperator TR

we see that in the absence of degeneracies the corres­

ponding Blochwaves are equal apart from phasefactors.

(40) I'·'" (r) = ~. J, (Sr) = A·.j, (-r) = A' ~ -1t (-r)
r~,y - rs~,~ - r-k,~ - ~,v -

For .pecial choices of the phasefactors we refer to the
literature [151 •

So far we only considered pura~elastic scattering by the

potential VeE) of section 2.1. However this is a poor
approach because inelastic effects often are very impor­
tant and cannot be neglected. In part II of this review

we will see that some of the effects of inelastic scat­

tering can be taken into account in a relatively simple

way by considering only the coherent wave. For this co­

herent wave inelestic effects lead to an apparen~

absorption, which can be described by a socalled

"optical potential". However this "optical potential"
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is no longer such a simple potential as V(£) of section 2.1.,
as will be discussed in detail in part II. For instance,
it is a nonlocal potential, i. e. an integral operator

Moreover, it es nonhermitian: U + ut . Most important,
however, is the fact that in an infinite crystal the
optical potential U is periodic.

(42) U(£,£') = U(£ + ~, £' + ~)

Therefore Bloch's theorem and the equation (15) - (22)

of section 2.2. remain valid. For instance, for the dis­
persion condition(22) we get for such a potential

with
00

(44) Uk
1 5 dr 5 d ' -ilk + h)£= r e -+ ht1~ + h' Vc Vc -..,

• U(£,£')
i(k + h') £'e -

The regions of integration for r and r' can also be inter­
changed due to the periodicity of U.

Now we will discuss the symmetries of E~(~) for the
optical potential U.First we note, that the periodicity

of E',)(k) (33) and ~~,,, (£) (34) in ~ space remains

because this is a direct consequence of the periodicity
of the potential. Similarly the symmetry (35) due to
symmetry operations S does not change either. However,

*)It is interesting to see, that a nonlocal potential U(E,E') can
always be represented by a local, but "velocity" dependent p.­
tential

i- n·R
e1; "'" -

Here E = f dr is the impulsoperator, and
translation operator for a translation R.

i
e'i" El! is the
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the relations (36) and (37) will change.

According to (44) we get the following identities for

the matri~lements of V

( 45) ~ t
V = (V ). = (V )

k+,h,Js.+h' -~-h' ,-Js.-h Js.+h' ,Js.+h

where U is the transpose of V and Vt the hermitian adjoint.
Making the anologous substitutions as in (36) (37) we

get a relation connecting the band structure of the po­

tentials V, U and vt :

(46) (Js.)

for E y(Js.)

"E" (-Js.) for V = V

E*(k*) for V =vt
y -

'* vt = U (V <.!> E' ) real) *)E.,1 ( - Js.'K- ) for(47c)

For the special cases that V = D or V = vt we get

symmetry relations

(47b) E'"(Js.) =

(47a)

These relations are in agreement with the special rela­

tions (36) (37) for local potential. For instance, equ.

(36) immediately follows from (47a) because a local po­

tential veE) is always symmetric as can be seen by wri­

ting it in the nonlocal form V(E)O(E - E'). Similarly

equ. (37) follows from (47b) because a local, but her-

mitian potential is real. As is shown in part II, the optical

potential V(£,£') is symmetrical. Therefore the inversion sym­

metry E(Js.) =E ( -Js.) is always valid.

The Bloch waves for complex Js. will in general be no more

orthogonal as (23), simply because these integrals

~)A real potential V(£,E') is invariant with respect to time
inversion. Note however that the optical potential is not real.
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diverge for complex~. However, one can still give an

orthogonality relation for the eigen:Eunctions ~ of U

and ut for the same ~-vectors by the following identity:

=

( 48) o = (/dut j
'I'k*;>' '
-)

Gt~} (~)

Due to (46) the scalar product has to vanish for

V 'l' v I. Therefore we get for the Blochfunction ~ t ~r)
-I

(the exponential factors ei~~ in (48) cancel each

other so that there is no divergencel):

(49) 1
Vc

(50)

This is a generalization of (24) for nonhermitian po­

tentials andcomp~x ~.Especially for hermitian po~en­

tials but complex k we have

1 S·l\- C'
V dr Uk" ,(E) Uk v (£) = 01l'lJ

CVc -1;> -) ,

Thus one can see, that due to these orthogonality relations and due

to the divergence of the scalar product for different ~ and k' one

has to be somewhat careful by operating with "damped" Bloch-

waves. However, many relations and methods familiar from
"normal" Blochwaves can be used for damped ones as well.

2. 4. Bands tructure for Complex k (one dimension ).

For the scattering of electrons by a crystal, the energy

E is real, of course. For the representation of the

wave function in the crystal we therefore need only
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those Blochwaves which, wether oscillating or damped,
all have the same given energy E, as will be discussed
in section 3 in detail.

Moreover we consider only the scattering at crystals
being infinite in two directions (x and y) and limited

in the other (z), i.e. we consider only the scattering

by a crystal filling the half space z ~ 0 or by a crys­
tal slab filling the space with 0 ~ z ~ t. For these
crystals the periodicity of the crystal potential in
x and y direction is not perturbed by the crystal sur­

faces because the potential in the vacuum V(E) = 0
fulfills every periodicity condition. Therefore the

potential in the whole space has the x-y periodicity of

the crystal potential. Accordingly, the x-y components B
of the incident plane wave ~ = (~,Kz) are good quan­
tum numbers, meaning that all allowed Blochwaves in the

crystal must have the same reduced x-y-component ~,

which is also real.

Therefore only the z-component k z of the Blochvector

k = (&,kz) can be complex and we are interested in the

band structure Ev(kz) as a complex function E of the
complex z-component kz, with kx =~ being given and- ,y
real. Especially we have to know those complex kz
values being compatible with real energies Ey(kzl.
These k z values lyon lines in the two dimensional
kz-plane named "real lines" by Heine [16] • On hi.s
work the following section is based.

First we want to discuss the one dimensional band struc­

ture. We start with the symmetry relations for Ey(kl
which are for a local and real potential according to

(36) (37) (33) :

(51) E (k) = E (-k) = E"(k*l = E(k + n2:)

for n = 0, ± 1, ± 2, •••
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'*One sees immediately that for k = k we have Ev(k)

= E ;(k), L e. the real axts k = k ~ is a real line

E = E '*. Moreover the lines

be real lines, too, being
axis. For we get from (51)

k = n'! + ik" with real k" cana

perpendicular to the real

(52) E (n~ + ik") = E (-n~ - ik")

*= E (n~ + ik")

..
= E (-n~ + ik")

Therefore E is either real, if the energies on both sides

refer to the same band (Eyen ';'/a + ik") = E}), or there
are two bands with comple~ conjugate energies (Ey-en ~/a + ik") =
E;, (n '"/a + ik"»).

As will be shown later, these are
real lines in the one dimensional
real axis,

boundary k

the imaginary axis and
'Ir= ±- + ik". Further wea

already all the
case, namely the
the Brillouin-zone

have on these lines

E I'(k) = EI'(-k) = E v(k lt ) . Therefore the whole 'band
structure is specularly symmetrical with respect to
the real and the imaginary axis.

The Schroedinge~quation in one dimension with a perio­
dic potential Vex) = vex + a) is an ordinary second or­
der differential equation having two linear independent

solutions for each energy. From this it follows simply

that the functionf4E) = cos ka is an entire function
of the complex variable E as has been shown by Kohn [17]
Hence the inverse E Cf) of the entire function IdE) is
an analytic function of!" except where

df;fdE = O. In the vicinity of such a point It we have

~2 Ior E = Et + -. (/-/1')
h'
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As a function of k this means

Therefore E is an analytic function of k in the whole
k plane with the exception of the branch points kt·

Above we have seen that the real axis also is a real
line and that at the points leo = n1L real lines leavea
the real axis going into the complex plane. At what

points ko on the real axis can this occur generally? In
order to see this we expand E(k) and E(k*) in the vici­

nity of ko'

(54)

with

+ ~E" (kO) (elk) 2 + ...

Sk = k - k o

Because for a real line we have E(k) = E(k*) and because
k should be complex we find

(55) E r (ko ) = 0 and dk = iok" with real J'k"

Therefore real lines can leave the real axis only at
extrema of Ey{k) and only at right angles (Fig. 2).
Moreover such an extremum ko is a saddle point, i.e.
ei ther a maximum on the real axis «dk) 2?; 0) and a

minimum on the perpendicular real line with

{Sk)2 = _{[k,,)2~ 0 or vice versa.
'"

In the one dimensional case we have extrema at the
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posi tions ko = 0 and ko = ±~a (or n lTja) which follows

directly from E .,,(k) = E .~(-k) and E \'(! + k) = E ./f - k).
No other extrema can occur because this would automati­
cally lead to more than two linear independent solutions,
which is a contradiction. (Fig. 3) Moreover the real

lines, leaving the real axis at ko = ni ' are straight

lines, as has been shown by (52).

The behaviour of the real lines in the vicinity of a

saddlepoint also can be studied by the following con­
tour integral around a contour ~ surrounding ko close

enough to include no branch point (Fig.2,IT6]). By a
well known theorem we have

(56)

I

I = Sdk ~k{ln f(k)~= 2tri(Z - P)

t
where Z and P are the number of zeros and poles, res­

pectively, enclosed by the contour and counted according

to their multiplicity. Putting f(k) = E(k) - E(ko)
we have due to the saddle point at ko: Z = 2 and P = 0

and consequently

(57) I = 4li = { ln IE (k) -E (ko)1 +iargfE(k) ..j; (ko»)}
t

Here the bracket with the index 1::' means the change of

the bracket by going around the contour. Because the ln

gives no contribution, the argument of E(k) - E(ko) in­
creases from 0 to 4~ on going around the contour. There­
fore, there are four points k on the contour with
real E(k), namely the k values belonging to
arg[E(k)-E,ko 1F' O,lT,2rr and 31T which are the crossing
points of the real lines with the contour 1:' (points

A, B, C, D in Fig 2). From this simple theorem it fol­

lows directly that real lines cannot simply terminate.
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For we get the result I = 4ti for every closed contour

surrounding ko• For the same reason they cannot branch.
Moreover the energy varies monotonically along the real

line exept at the saddle points ko' because every point

with ~ = 0 has to be a crossing point of real lines (56).

Because the argument (56) (57) holds always as long the

contour 1: does not enclose a branch point k f , there are

only two possibilities for the real line in the complex

plane (line BD in Fig. 2). Either it reaches a branch

point k t or it does not. If it reaches a branch point

then it behaves in the vicinity of k t as (53), namely

the real line runs around the branch point into another

Riemann sheet of the complex k plane, from where it

will loop back to the real axis, running on the same

line in k-space, but on the other edge of the branch

cut in the next Riemann sheet. All along the energy va­

ries monotonically until the next saddle point kb on the

real axis in the next Riemann sheet is reached where the

line crosses the real line an the real axis.

On the other hand, if the real line encloses no branch
point, then the line has to run to infinity while the energy

always varies monotonically. However, then the k-value
gets extremely large:

2 2
I\~ I» VCr) and the band structure can be calcu-

lated by neglecting VCr). But for free electrons we have

(58a)
2'lr 2 1\2

E(k) = (k + naJ 2m , n = 0,. ±1, :\- 2, •••

Or with k = k' + ik" and - !. L k'!: ! we obtaina a
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2
(58b) ~~ EJk) = (k l + n2:) + 2ik".(k' + n2;) - k,,2

and only get a real line for k' = 0 and n = O. This is
the imaginary axis along which E decreases to -~ for
increasing Ik"l. Therefore the imaginary axis is the
only real line running to infinity, all other ones reach
a branch point and loop back to the real axis.

Therefore in the one dimensional case we can summarize
the result as follows. The whole band structure is
specularly symmetric to the real and the imaginary axis.
For large negative energies we have purely imaginary k

values (Fig. 4 and 5, point A). By moving along the ima­
ginary axis to k = 0 the energy increases to the lowest
values of the first band (point B). Then moving along

the real axis the energy, continuously increasing,
assumes all the values of the first allowed band until
one reaches the saddle point C at the Brillouin zone
boundary. Here the real line again enters the complex
plane and moves to the branch point kl, the energy in­

creasing to D. There the real line leaves the first Rie­
mann sheet and moves in the second one back from k t to
the real axis, where the energy reaches the bottom of
the second band (point E). From here on the energy assu­
mes all the values of the second allowed energy band,
whereas the real lines run to k = 0 in the second sheet
(F). By going around the branch point k2 (G) we get
into the third Riemann sheet and to the third band on
the real axis (H), etc.
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2.5. Band Structure for Complex k (3 dimensions and v+vt )

For the three dimensional case many results of the one

dimensional band structure remain valid. First we want

to define the appropriate bas~s vectors of the lattice
for the scattering at a given crystal surface lying
in the x-y plane. We choose the two shortest (non-pa­

rallel) translation vectors ~I and ~2 in the crystal
surface. Then the total potential in the crystal and

in the vacuum is invariant under a surface translation

"'_!!~ = nl~l + n2~2 • Further the third basis vector ~3

is perpendicular to both ~1 and ~2 and gives the shor­

test periodicity in z-direction. As an example we have

plotted in Fig. 6 the basis vectors ~l ~2 and ~3 for
the (100) surface of a f.c.c. crystal. This is a non­
primitive description of a primitive lattice.with each

unit cell containing two atoms. Analogously ~l and ~2

are the reciprocal lattice vectors of the surface

net, lying in the x-y plane, and ~3 points in z-direc­
tion.

Then according to the last section the reduced x-y com­

ponent If. (in the surface mesh (~l ' ~2») of the Blochvec­
tor ~ = (!, kz) is determined by the incident plane
wave and real. Assuming the surface plane to be a re­
flection plane, we have for the energy E(!, kz) as a
function of kz for a given real ~ the following sym­
metries:

E (kz) = E (-kz) = E *(k;) = E (k z + n.:n:...)a 3

Therefore the real axis kz = k: is again a real line.

Further the whole ban~tructure is specularly symmetri­
cal with respect to the real and the imaginary axis.
Blount[18] has shown that E(kz) is an analytio function

of k z everywhere in the complex plane with the exceptions
of branch points of the type (53), which are the only
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singularities. However, in disagreement to the one di­
mensional case extrema do not only occur at

k = 0z

= 0 at a crossing point. As Herring

Analogously to (54) a real line can leave the real

axis only at saddle points ko and at right angles
(Fig. 2). However, these real lines have not necessa­
rily to be straight lines. They only are straight due
to the inversion symmetry for ko = 0 and

ko =±~a • F.urther the real lines cannot terminate
3

and cannot branch as can be shown by the Z-P-theorem
(56) (57). In principle they can cross, for instance

in ko on the real axis. But a crossing point for com­
plex kz would be highly accidental. For according to

0E
0kz

(56) we have

[i 9J points out this would be vanishingly probable
because the slightest perturbation would destroy E being

aEreal and ~k = 0 at the same point(exept for the crossing

points on the real axis, being a real line for symmetry
reasons). Therefore along the real lines the energy va­

ries monotonically, exept at the saddle poi~ts on the
real axis.

Again there are only two possibilities for a real line
leaving the real axis at a saddle point. Either it can en­
close a branch point of the type (53), enters there into a

new Riemann sheet and loops in this sheet back to an­
other saddle point on the real axis coming so to the

adjacent allowed energy band. Or it has to run to infi­
nity with monotonically varying energy. Because the

k z vector on these lines gets arbitrarily large, the
occurence of these lines can already be seen in the free

electrons approximation. For each reciprocal lattice
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vector h = <t, h z) with x-y component f we get

(60)

where we need only the section of the parabola

<k z + h z)2 which falls into the "first Brillouinrone"

- 11' L.. k' f: J!:... • We see that for k z' = -hz we get aa3 z a 3
real line running to k; - ± IXi ,i.e. we get a real line

for all reciprocal lattice vectors h with

- 'ir '- h f: .L . Therefore in three dimensions we get ~ 2a3 z a 3
real lines running to infinity ,contrary to the one di­
mensional case with one line only.

Qualitatively we have therefore a situation as shown

in Fig. 7. We start with the parabola of hl,o = <jl ' 0)

-11 2 2at the energy 2m <If + b) . The reversed parabola

( /'J: +! l) 2 - k~2 belonges to a real line running to in­

finity. If we add to this the parabolas belonging to
the reciprocal lattice vectors p 2T

hl,n = <.n ' n a3 )

then we have a typical free electron bandstructure in
one dimension. However, we have a lot of other para­

bolas in three dimensions, for instance the one of

h 2,O = <!2 ' 0) and the sections of the parabolas

h2,n = (f2 ' n;Tr) which again look like another typi­

cal one dimensional bandstructure with an additional
real line going to infinity. Thus we had to su­

perimpose an infinite number of one dimensional band-
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structures with one real "infinite" line each.

Now by sWitching on the potential V(£), the degeneracies

at the crossing of the different parabolas is removed

and the bands split up (Fig. 8). The extrema (saddle

pointsl) on the adjacent bands are connected by a loop

due to a real line going into the complex plane around

a branch point. Whereas the real lines for k' ~ 0 and

k' ~:!:~ are straight lines for symmetry reasons, the

"additional" real lines inside the Brillouin zone are

not straight. Moreover one sees that for a given energy

one gets only a finite number of "allowed" BlochwaVes

with real k (in Fig. 8 at most 4), but always an infinite

number of "damped" Blochwaves with complex k z• The whole

bandstructure is symmetrical with respect to the real

and imaginary axis.

Nonhermitian potentials: The basic assumptions for the

foregoing discussion of the bandstructure are the sym­

metry relations (51), (59), especially the equation..
EJkz) ~ E~(k~) resulting in the real axis being a real
line. However the optical potential is in general a

nonhermitian potential, for which this symmetry relation
is not valid. Instead we have the relation (46), namely

{u} ({ut ) ~)*E V (k z) = E V (k z) • Consequently the real lines for
the potential U and the ones for Ut lie symmetrically

to each other with respect to the real axis, which is

no more a real line (Fig. 9.) (exept again for U = ut ,
where both lines coincide on the real axis). There­

fore all the general predictions for the band structure

are no more valid. If however the optical potential is

only weakly nonhermitian, we can study its band structure by

means of perturbation theory, starting from a hermitian
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potential, as will be done in the following.

Splitting the potential U up into an hermi tian part U'
and an antihermi tian part iU"

(61) U = U'+ iU" with U'= u~ut =U·+; U"= u;;f =u"t

we treat U" as a perturbation.
for hermitian potential U'are

The eigenfunctions
defined by

(62) (H +~ th (0) = E (0) (k) rlI (0)
o l~,'r' v - T~,,,

To obtain the Blochwave ~~,v(E) for the potential U

for a given energy E and a given x-y-component g of

~ = {ii,kz~ we make the ansatz for ~k'" :-,

(63)

Blochfunction Uk V

-'
a complete system for

This is really an ansatz for the

in terms of the Uk(o) 's, building
,.."

real ~ (27,28). -

Encouraged by the orthogonality (50), we assume
completeness for complex ~. Then We have for the
efficients C v

also
co-

(64) (E (O~_k ) -E) C.. +i " U" (k) C 1= 0
v .. f. Vli' - 'Y

with

U" (k)
~~' -

N

dE ~ dr'e-i~!:u.(~)*cr) 0

- -x " --III -/ ..

U"'r,r'l (0) (r' )ei~£'
- - ~,)ll -

Now in oth order we have E

in first order ~ = ~ +O~

(0)
= Ey (~). with &J
is determined by

(65) E(O) (k +Sk) - E(o) (k ) = -i U" (k)
~ eo - v ~ "V =
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(66)

and by using the plane wave expansion (20)

(67)

where for a local potentiaIU''<.E.,£')=-V'(£) &'(£-£')
the coefficients U'h are given by ( 6). It is interesting

to see that 6' k z is a periodic function of ~o. Further
for real ko in the allowed energy bands &k z is purely
imaginary representing the absorption of the Bloc~ave.

Moreover it is inversely proportional to the z-component
of the group velocity which is plausible from a classical

QEpoint of view. For .[k: ~ 0 equation (66) is no more va-
oz

lid and in (65) we have to take the quadratic terms in

~kz into account. Due to dispersion this leads to finite

r ~/ (values of ok z even at the extrema/l = 0 insteadElk zo
of DO according to (66) ) •

( 68) t:k _ l±i { U'~v(~o) rz - -
I tiE(~o)(2

'2 uk2
oz

Therefore Okz, being proportional to ~ at the extrema,
is especially large and the absorption is very effective
at these points. For the wave function we get in first
order:
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i (k "'bk) r { (= e _0 - - u~~~,y E) +

where the most important term for real ~o is the dam­

ping factor e i Sk z z (dkz imaginary).

Near the branching points k1- where the energies of

different bands are equal one has to apply degenerate

perturbation theory. The results are somewhat lengthy and

will not be given here.

In Fig. 9 we have plotted the real lines for the nonher­

mitian potential U according to the present perturbation

theory. For simplicity we have choosen the linear case.

Further U=~ is assumed to be symmetric, as it is always the

case for the optical potential, leading to the inversion

symmetry (47a) in the complex k -plane. The upper figure

shows E~) (k
o)

in the expanded ~one scheme, whereas the

lower shows the real lines in the different sheets. The real

lines of the potential ut (dahed lines) are obtained from the

real lines of U by refection at the real axis. Further the

crossing points disappeared, being very sensitive to the

perturbation (68).

2.6 The Two Beam Case [5-12]

For electron diffraction the calculations of the Bloch

waves and the band structures is simplified very much since the

energy is much larger than the potential. Therefore one can apply

perturbation theory. For VeE) = 0, i.e. in the free
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electron case, we get for the Ch's (21)

(70) with

For given energy and given ~ the expression in
brackets will in general not vanish for all hand
there are no allowed waves. However for certain k it

may happen that K2 = (~+h)2 for one h, say for h = O.

Then Ch = 0 and the plane wave ei~~ is allowed.
h,O

For V *0 equation (21) gives

(71) l K~ - (~+h) 2JCh = L vh-h' Ch'
h'

(+hJ

with 2m V and K2 2 2m (E-Vo)vh = = K -vo ="""'2.fi2 h 0
-Ii

Now if VIE) is small, we get by introducing the

plane wave ansatz C
h

= 0'h,O on the right side of
(71) for

(72) h = 0: (K2 _ k2)
Co :li 0o _

vh
h oj. 0: Ch "=

K2 - (~+h) 2
0

For small vh the denominator will normally be much

larger than vh• Therefore all "secondary waves" Ch
for h + 0 are small and we have only ~ strong beam

~ = ei~~ with a slightly renormalized ~-value.

However,
not only

2 N 2if the condition K = (~+h) is fulfilled
for the "primary wave" h = 0, but also for
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other, secondary waves h +0, then these waves may also

become strong and the perturbation theory (72)

breaks down. Graphically this condition means that

for certain h the vectors k+h lie on or near the- --
"Ewaldjsphere" with radius K (Fig. 10). Because the

.fl2 2 _!'i2 2
energies 2m ~ and 2m (~+h) are nearly equal in these

cases, we have to apply degenerate perturbation theory
taking into account all strongly excited plane waves.

In this section we restrict ourselves to the two beam

case where only two plane waves ~ and ~+h are strong.

For this we get from (71)

By setting the determinant equal to zero, we get the

dispersion equation

(74)

The allowed ~ vectors for a given energy lie on a

dispersion surface consisting of two branches (Fig. 11)

For vh = 0 it degenerates into two spheres with radius

Ko' one around the reciprocal lattice vector h and the

other around the origin. For vh + 0 the spheres split

up at the intersecting line, where the Bragg condition

k2 = (~+h)2 is fUlfilled, and the outer branch 2 com­

pletely surrounds the inner branch 1. Exactly in the

2 2
Bragg condition we have for ~ = ~B: ~B = (~B+h) •

Near the Bragg spot ~B we get from (74) by setting
(' rd th t-

~ = kB+o~ and neglecting 3 and 4 order terms ino~:
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2 2
41<0 cos 6 B

Neglecting the higher order terms in 6~ for vh = 0

is equivalent to replacing the spheres in Fig, 11 by

the tangential planes in the point ~B (Fig. 12). By

decomposing the vectors in (75) in ~ and ~ components

we get with Ko sin 6B = h/2

1~/2
(76)

In this approximation the dispersion surfaces are
hyperbolas, the asymptotes of which are the tangen­
tial planes of the spheres. The smallest separation
of the two branches is

(77) .Lik=

211"The distance dex t = Ak ' over which the two Blochwaves

on the opposite branches get a phase difference 2T, is
called the extinction length.

From the quadratic equation we get for the energy as a

function of k

(78) 2m"2 E(k)-vo =
-h -

showing that for k2 = (~+h)2 there is a band gap of

the width hE = 21Vhl • For ~ = (k't,o,O)/lh we have plot.,.

ted E(k~) according to (78) in Fig. 13a. For an ener­

gy E1 below the band gap we get four k -values. For
this energy the dispersion surface is represented by
two nonintersecting spheres. This is shown in Fig. 13b,
where the four ~-values 1/ to h are marked by points.
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For the energy E
2

in the bandgap the spheres have

opened up (Fig. l3c) giving only two k-values in Fig.

l3a, whereas for the energy E3 above the bandgap we

get the dispersion surface of Fig 11.

Introducing K~ from (78) into equation (73) we get

for the ra tio

( 79)

with W=

Here and in the following as well as in (78) the upper

sign refers to the inner branch 1, the lower to the

outer branch 2. By normalizing the Ch's according to

(26) we have

(80) 1
Co = .r::'

~2

(
W )VZ.

1± 11+W2'

h
iCk+ '!) r hr

f2 e - -.cosl~)
Z

For )Wl ~ ~, i.e. if the Bragg condition is not ful­

filled, we get for k vectors on the sphere around the

origin: Co = 1, Ch = 0 and on the sphere around h
Co = 0 and C

h
=± 1 (Fig 11).

Exactly in the Bragg condition we have W = O. The two

Bloc~aves fk(£) are in this case

(81) (cr) = L ei~! (1+ei.!!!) =
- f2
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and

(82)

h
i(~+ ~).!:

e
h.r

sin (-2- )

For vh ~ 0, which is always the case for electron

diffr;ction, the Bloc~ave ~I lies on the outer branch

and ~E on the inner one. This would be reversed for

vh '> ° (x-ray diffractionl). Characteristic for both
h·r

waves are the modulation functions cosl~) and
h. r) ISinl-2- • Therefore ~ is always maximal at the ato-

mic positions on the reflecting planes and vanishes
in the middle between the planes (Fig. 14). Contrary,

T~ has nodal planes at the reflecting planes and is

maximal between these planes. Whereas both waves have
the same energy, the wave on the outer branch has more

kinetic energy due to the fact that ~ and ~+h are
larger than on the inner branch. This can also be seen
at the form of the wave function ~I and ~II. E.g. the

wave ~Irbeing concentrated at the atomic positions,

has a larger (but negative) potential energy than ~II,

and consequently a larger kinetic energy.

It is note~Qrthy that the Bloch functions on the different
branches 1 and 2 of the dispersion surface, but for the

same parameterW, are orthogonal and further we

the following relations (see also section 2.8)

(83)
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According to (32) the average current is always per­
pendicular to the dispersion surface. In the two~beam

case it is given by

(84) + h

In the vicinity of the Bragg condition the direction

of the current changes by an angle of 2 eB ' namely

from the direction k ~ ~B on the sphere around the

origin to the direction ~+h ~ ~B+h on the sphere a­
round h (Fig. 12).
Exactly in the Bragg condition (W = 0) the current is
parallel to the reflecting planes.

For an absorbing crystal, i.e. for a nonhennitian po­
tential, the ~-vectors are complex (see section 2.5.).
It is clear already from Fig. 14 that the absorption

of the Bloc~aves ~I and ~II must be vastly different
because the "absorption power" will be concentrated at

the atoms. We get a higher than nonnal absorption for

,I and an anomalously Ja.1absorptton for the sin-waves tIl
representing the s:><:alled "anomalous transmission"
effect. Quantitatively we have from (67) by assuming a

local imaginary potential iU'~!:) with coefficients
U II =U"

h -h

(85) = -
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Here, as in section 2.4., the z-axis is perpendicu­

lar to the surface and *~~ is the z-component of

(84). In the symmetrical Laue-case the reflecting
planes are perpendicular to the surface, i.e.

h = (h,k,O) and we get for the absorPtion~(W) = 21Skzl
of the waves I and II:

(86) .ttI,II (W) = .u ± 1 .u
t ' / 0 ~ 1+W2/ r h

with fa = .fI.~Kcos e

U"2m'h

;h = 112Kcos 0

where fois the normal absorption coefficient of a

plane wave. f(W) is plotted in Fig. 15. For IWI» 1,
i.e. outside the Bragg condition, we get the normal

absorption,AA-o whereas in the Bragg condition the ab­

sorption of wave II is At= fo- fh' If the absorption

is concentrated at the centers of the atoms, then

U"o = U'h and the absorption for wave field II vanishes

This is plausible from Fig. 14 because the sin-function

vanishes at the positions of the centers of the atom.
By writing U"(£) analogously to the real potential (2)

as U"(£ ) =J:.. U"(£-!9 and by expanding.lvh in powers of h,
R 1-

we obtain for the anomalous absorption coefficient~~

assuming radial symmetry for u"(r) :

with <l> =
)' lu"t£) dE

Su "(£) dE
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Accordingly b'" varies as U2 and is proportional to
ndthe 2 moment of the imaginary potential of the atoms.

However due to the large spatial extent of the outer
orbitals, this is not a good appro~imation in electron
diffraction, but X-ray diffraction only.

2. 7. Some Multiple Beam Cases

Multiple beam cases are very important in electron

diffraction due to the strong interacti"" and the small
wave length. However, unlike the two-beam case multi­
ple-beam cases can no longer be solved analytically.
For instance, to obtain the dispersion relation in

the three-beam case, one has to solve a cubic equation.

Nevertheless, some simple analytical results can be

given for special multiple-beam cases, from which a
number of properties can be derived.

First we will discuss qualitatively the effect of
the socalled systematic reflections ~o,liLThese are

the secondary reflections 2h, 3U,'" and -h, -2h, •••
lying on the same line as the reciprocal lattice point

h corresponding to strong reflection (k+h) of the two-- --
beam case (Fig. 16). Because the radius Ko of the Ewald
sphere is appreciably larger than h, the reciprocal
lattice points nh lie relatively cilBe to the Ewald

sphere and are always excited to some extent. At least
qualitatively, their influence can be determined by

perturbation theory [41 .

Going back to the equation (71) for the Ch ' we assume

that in addition to the two strong beams ~ and ~+h we

have a number of weak beams ~+.9. with 9. +O,h, for
which we get approximately
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N 1 ( )C = v C + v C
~ K~ _ {~+~)2 a 0 ~-h h

On the right side, we have neglected the coeffi­
cients C I of the other weak beams which are assu-

~

med to be small. Going back with this result into the

exact equations for Co and Ch ' we get the modified
two beam equations

( 89)
B

= v C
ho,h

Bwhere the coefficients vh,h' , named Bethe potentials,
are given by

(90)

It is seen that the reciprocal lattice poin~~ lying

inside the Ewald sphere (K~ > (~+~)2) give rise to a
repulsive potential correction wheras the outer ones
give an attractive contribution.

Applying this to the systematic reflections

~ = nh{n = 2,3, ••• ,-1,-2, ••• ) of a low order reflec-

tion h, we get for vh = v_h : and

VB = vB h • Further we replace _k in (90) by theh,o 0,_
vector ~B satisfying the exact Bragg condition

~~ = (~B+h)2 = K~ • Then we have

222
Ko - (~B+nh) = -n{n-1)~ and consequently:
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(91 )
;;'0,1)

v(n-l)h'Vnh-
n(n-l)

With this we get for the branch seperation ilk = Z}JtI<t

(92) Ak = 1

The first teDn in the bracket represents the two
beam expression (77). Therefore the extinction dis­

tance decreases due to the systematic reflectionS.

We may also calculate the influence of the systema­
tic reflections upon the absorption. According to (67,86)
the absorption of a Blochwave ~ for a simple imaginary
potential iutr) can be written as

(93) f=~,

From (88) we get for the systematic reflection nh

(n "" 0,1)

(94)

For instance, we obtain for the absorption of the wave

field II (Fig. 14) exactly in the Bragg condition, by
taking into account only the linear therm in Cnh

(95) +

+••••
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Therefore the systematic reflections diminish the
anomalous transmission effect (vh {Ol).

Now we want to discuss situations, where/for symmetry
reasons,we get more than two strong waves. A first
example is the three-beam case shown in Fig. 17a, for

which we get three strong waves ~, ~+h, and ~+h'. In
Fig 17a we have taken Ihl =/h" • Moreover we assume

that v
h

= v
h'

= v-h' Exactly in the Bragg condition

we have k2 = (~+h)2 = (~+h,)2 and by substituting

K~ - k2 = x we get for this the matrix equation

(96) x -vh -vh-h' Ch

-vh x -v • Co = 0h

-vh-h' -v x Ch,h

Due to the symmetry of the problem we have one anti­
symmetrical solution with Co = 0 and Ch, = -Ch
for which we get the x-value

Further we have two symmetrical solutions with

Ch = Ch' , the x-values of which are

x
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We get an especially interesting case, if the re­

flection h-h ' is forbidden (V
h-h'

= 0). In this case

there is no direct coupling between the coefficient

C
h

and Ch'. Nevertheless by starting with a strong

plane wave ~+h (instead of ~ as before) we get a
strong wave ~+h', too, which is due to the indirect

coupling via the plane wave ~. This effect has long
been known as lUlTMeganregung".

As a second example we discuss the symmetrical four­

beam case shown in Fig. 17b. The reciprocal lattice

vectors h and h' fa:m a rEctangle wi th h+h I and h'-h

as diagonals.1i\Irther here we assume vh = v_h , Vh''''~l.'

- - - -
and similarly vh+h' = vh-h'. The problem is simpli-- - --
fied by considering that Fig. 17b is symmetrical with
respect to reflections on the plane going through the
origin and the line 5 and on the plane through 0 and
5'. Therefore, if the Bragg conditions

~2 = (~+h)2 = (~+h,)2 = (~+h+h,)2are exactly fulfilled,
the eigenfunctions can be chosen as similtaneous eigen­

functions to the reflections 5 and 5'. For instance for
= =

the reflection 5 we have:-
(99) Co Ch Co

Ch Co Ch
5 • = = S·
= C

h+h, Ch' ch+h '

Ch' ch +h '
\

ch '
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where the eigenvalue s of 5 can have the values s = ± 1
=

only. Thus the four eigensolutions can be ordered ac-
cording to their eigenvalues s and s' for the reflec­
tions 5 and 5', namely (s,s') = (1,1),(1,-1),(-1,1)

and (-1,-1). For instance, for the complete symmetri­
cal solution (1,1) we have

(100) (1,1): Co Ch Ch' Ch+h'
1= = = = 2'

and for K2 k 2 K2 2x = - = - (~+h) =... we get0 0

J,(l,l)(r)
't'k -

(101)

The corresponding Blochwave has the form

h+h '
ikr i- 2 E h.r h', r'

= e --e 2 cos 2 . cos 2

It has two modulation factors of the type I shown

in Fig.1~ and vanishes in the middle between the re­
flecting hand h' planes, being maximal on these planes.
Analogously we get for the other waves

(102) (-1,1) Co -C Ch' -Ch+h ,
1= = = = 2'h

(1,-1) Co Ch -C = -Ch+h ,
1= = = 2'h'

(-1,-1) : Co -Ch -C ,= Ch+h'
1= = = 2'h

Especially interesting is the totally antisymmetrical
wave (-1,-1) because it has two sin-modulation factors.



(103) ,1.<-1,-1) (r)
'f'k -
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h+h'
ikr i- 2' E

= e --·e
h. r h', E

sin -2- .sin~

It vanishes on both reflecting planes hand h' and
even quadratically at the atomic positions on the
intersecting lines of these planes. Therefore this
Blochwave has an especially weak absorption, even

weaker than the wave ~I of the two beam case. One gets:

By expanding analogously to (87' ~ into powers of h,

even the quadratic terms in h vani;h ~~+it?= (h+h') 2 )

and the expansion starts with h4 only. This is just

due to the fact that unlike to the two beam case the
wave field vanishes quadratically at the atomic po­
sitions.
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2.8 Orthogonality on the Dispersion Surface

In the inttroductory section 2.2 we have seen, that the Bloch

functions (~~(E) for the same ~-vector, but for different

bands 1i, L e -=- energies E(-(~), are orthogonal (equs. 2.24,26,28).

Now we show, that for a special, but very important case we also

get an orthogonality relation for Bloch functions uk,(E) on

the different branches of the dispersion surface, i.e. for

different ~'S, but for the same energy. ~)

Let us first consider a simple situation, namely where all re­

flecting lattice vectors ~ ly in one plane. Of course, this is

always true for the 2 and 3 beam case, but also for the 4 beam

case of Fig. 17b and for the two-beam case with systematic re­

flections (Fig. 16). By writing ~ = \ft:-, kzJ ' where ~ is the pa­

rallel component of ~ in the plane of the reciprocal lattice

vectors, we get from the Schrodinger equation

(105) -r.: vh - h ' = 0
h --

For a given normal component ~ this represents an eigenvalue rmb1em

of the sort

( 106)

~ ~ ikr
Note that for different k-values the Bloch waves ~k~(E)=e --uk~~

are automatically orthogonal (equ. 23); however not-the Bloch

functions U~t(E) I
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Since Nh,h' does not depend on k and K, but only on the para-
- - z

llel component~, the same is true for the eigenvalues €.l'(~) and

eigensolutions Ch (Y'). Thus the band structure for fixed. B:. con­

sists of parabolas

( 107)

being shifted from the or i.qane by the amount f. v (li) (Fig. 17c).

Further all Bloch functions ukz~(E) on the same parabola are

identical for arbitrary k z' since the coefficients Ch(Y') depend

on ~ and £." (g) only. In general, however, according to

equ , (2.24) all Bloch functions with the same value of ~= t.13, k z l,
but with different band indices are orthogonal (e.g. the Bloch

functions belonging to the points Band C in Fig. 17c). There­

fore we conclude, that any two Bloch functions lying on different

bands are orthogonal, too (e.g. Band D in Fig. 17c). Especially

this is also true for the Bloch functions Acnd B, which belong

to the same energy E=~~K2. On the dispersion surface E = constant

these points lyon the different branches, so that their planar­

componentE is the same. Fig. 17d shows the positions of A and

B on the two beam dispersion surface.

Therefore, if we only have reciprocal lattice vectors lying in

one plane, all Bloch functions with the same planar component ~ I

but on the different branches of the dispersion surface, are

orthogonal and form a complete set.

(l09)

Let us now consider the more general problem with arbitrary re­

ciprocal lattice vectors ~.
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h'
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2Since Ivhl<, K , we write for k:

k = K+bk with

2 2Here K can be thought as the wave vector in the vacuum (~ =K ), and

~~ describes the deviation of the dispersion surface from the free

electron dispersion surface. Por a given direction n of b~=~k n we

obtain by neglecting quadratic terms in &k

(111)

with K+h
IK+h,

From (110) we get then an equation, Which determines the allowed

~k-values for a given direction ~=~~/&k

(112)

By introducing modified coefficients Ch = ~ cos eh Ch ' this can

be transformed in the eigenvalue equation

(113)
h'

with 1
,Mhh ,Vcos Elh• cos eh I --
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For real potential V(r),M is a hermitian matrix (M+=M). Then Mis

hermitian, too, if all cos eh). 0, all Vcos e~ real, respectively.
Consequently the eigenvalues-&k(~) are ·real and the Bloch waves are

undamped. Further the eigensolutions Ch(r) are orthogonal and form

a complete set.

( 114) ;

Note, that this is not an orthogonality condition for the

Bloch functions uk~(E)' since it refers to the modified coeffi­

cients Ch = ycose5h-=-·c...-
h".

However, we obtain such an orthogonality condition for the Bloch
IV

functions if all cos eh are equal, since then Ch(~) and Ch(~) are

equal up to a normalisation constant. For instance, this Is the case

for the example discussed before, where all h lying in one plane per­

pendicular to £. Then equation (114) reduces to (109). Further, and

more important, this is also the case for high energy electrons,

where K»h and cos e h ~ cos eo

Finally we discuss the case ~fMT occuring if either MfM+(VfV+) or if

cos e
h
<0 for at least one h. Then the eigenvalues <6k (.) are complex- Nt 1

and tne Bloch waves are damped. Further theireigensolution C MJ(t)

are no longer orthogonal. However, one can show in analogy to (2.49)

that

(115)

are the eigensolutions of Mt with the eigenvalues
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3.• Diffraction of Electrons by Ideal Crystals

3.1. Wavefields in the Vacuum and in the Crystal

We consider now the scattering of an incident elec­

tron with impuls ~ by a finite crystal of volume

5lcrystal' For th~ total potential of the crystal

we choose the form

(1)

ilcryst.

for r in

vacuum

Here V~(!) is the periodic potential of an infinite

ideal crystal as it has been discussed in section 2.1.
The stepfunction sjl.(!) cuts off the potential V...(:!)

at the crystal surface, so that veE) = 0 in the vacuum.

With the ansatz (1) we have neglected deviations of the

crystal potential from the perfect periodicity in the
immediate vicinity of the crystal surface. However due

to the large extinction length such surface effects

cannot be observed by diffraction (besides in LEED,
where approximation (1) is questionable) •

In the vacuum we have veE) = O. Therefore in the vacuum

the wavefunction ~(!) has to be a sum of plane waves

ei!i! having the same energy dS th~ incident wave !.

On the other hand, in the crystal,. where veE) = Voo(!)'
the wavefunction has to be a sum of Blochwaves ~k'(!)

2 2 -J
wi th the energy E~ (~j) = 112~ • Both results follow from
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the fact that plane waves are the eigenfunctions for
veE) = 0 and Blochwaves are the eigenfunctions for

.f12K2veE) = V~(E) and that the energy E =~ is given

by the incident plane wave. Therefore we have

(2) for r in the

vacuum

crystal

-tt2K
2

with 2m = E =
1'IK 2
-i

2m

How many and which Blochwaves ~j or plane waves ~i'

respectively, are excited, depends very much on the

special form of the crystal. The case of a crystal
slab and a half crystal will be discussed in the next

sections. Knowing the waves ~j and !i' the coefficients
Pj and Ri have to be determined by the boundary con­
ditions for 1t(E) on the crystal surface. Namely at the

surface ~(E) has to be continous and the same applies
to the current through the surface, because there are
no surface sources. If we call ~(E) the normal to the
surface at the point r on the surface, then we have on
the whole surface:

(3) 'rvac (E) =rtfcrys t. (E)

and nCr). dtfvac = nCr). d'Y6ryst
- - dr - - dr

It is important to see that in (2) we cannot restrict

ourselves to plane waves with real !i's or Bloch waves
with real ~j'S, as we always can in an infinite va­
cuum, or in en infinite crystal, respectively. Rather we

have to take complex !i and ~j into account, too, re­
presenting waves evanescent from the surfaces.
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That the solution ~(£) has the form (2), can also be
studied at Born' s integral equation for '!f(£) •

(4) 'If'(£) = e i !5r + ~d£' Go(£-£') V(£') "(£')

2m eiK/£-£'1 I
with Go(£'£') = - ~ 4111£-£', and K = I!

Due to (1) VCr) can be replaced by V (r) if the inte-- '" -
gration is restricted to the crystal vOlume~ryst.

Therefore in the vacuum the wave function consists of

the incident wave and a sum of spherical waves with
the energy E, out-going from the crystal volume. For

£ within ~ryst' equation (4) with the incident plane
wave! seems to contradict equation (2) which con­
tains only Blochwaves. However we have to realize that

112
K2

each Blochwave with the energy E =~ and therefore

also the sum ~ryst = ~ Pj tk' is a solution of the
J _J

homogeneous integral equation:
IiIl

(5) l('cryst (£) = ~ d£' Go (£-£') V,)£') 't'ryst (£')
~QO

By comparing this with (4) we get

Therefore we can see that the plane wave K is extinc­
ted in the crystal by fictive spherical waves outgoing
from the vacuum. This "extinction theorem" can also be

put into another form by using the Schroedinger equa­
tions for '1// t (r) and Go (r-r' ) •Tcr ys - - -
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(7)

(
_1'12 0 2

2m f: - E ) G (r-r') = - 0(r_r')o Q __

From this we obtain after some simple calculations

(8) G (r-r') V (r') 1// (r') = S(r-r') 't1l (r')o - - ~ - fcryst - - - kryst-

- (d G (r-r' »). lJ; (r') }r' 0 - - 1c-

Finally we get by performing the volume integral in (4)

into a surface integral over the crystal surface$' :

(9) iKr 1'12
e -- +­2m

\y(f:) vacuum

= in the

o crystal

Accordingly in the vacuum the scattered wave

is a sum of spherical waves with energy E outgoing
from the surfaces, which in the crystal extinct the
incident wave.

Analogously to (1) we choose for the nonlocal opti­

cal potential U(f:,f:') a cut-off of the form~
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where U~is the optical potential of an infinite crystal.
Unfortunately, the decomposition (2) of ~ in plane waves

and Blochwaves is no longer exact for a nonlocal poten­

tial. However, the range IE-E'" over which U~(E,E')

is unequal zero, is normally much smaller than an ex­
tinction length (besides in LEED). Therefore the an­
satz (2) is nevertheless a good approximation, espe­
cially because U is local anyway in a first apprOXima­

tion.

3.2. Scattering by a Crystal SlabI [2l]

For a crystal slab, filling the space 0'= z i: d, the
potential (1) is given by

'I >

(11) V(~) =s(z),s(d-z)'V.. (E) with s(z) =to for z L 0

Therefore VIE) is periodic with respect to any surface

translation vector ~ in the x-y-plane, both in the
crystal and in the vacuum.

(12) VIE) = v(r+~p,)

where

The vectors~l' ~2' forming the unit mesh on the surface,
are shown for the (100) surface of a f.c.c. lattice in
Fig. 6 (see section 2.5.). Of course, equation (12)

holds only, because both surfaces z = 0 and z = dare
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parallel.

Due to (12) the eigensolution ~(~) can be chosen as
a Blochwave with respect to the x-y-coordinates,
where the plane Blochvector ~ is determined by the

x-y-component of the incident wave !5. = (~, Kz).
Wri ting ~ as ~ =(1!, z) we have

(13) ~
i~1J'

(tC, z) = e -- u/;" (lJ';z)! - A -

nwi th u);'( 11'1-~:...; z) = u ~(tI', z)
0. - - 1>.,-

With the reciprocal lattice vectors f of the surface
net

the Blochfunction u Rand the potential V(~) can there­
fore be expanded in - terms of plane "surface" waves

e i! !!" where the coefficients .Tt and Vs- depend still
on z.

i 11 v:
e ~-

(15)

(16)

1//(lJ-,z) =
'fg-

V(~, z) =

f 1(Z)

L V~ (z)

l' -

(17) 1
with Vp, (z) = S-

! 0

Here So = ~1'~2 is the surface of the unit mesh. By
introducing (15) and (16) into the Schroedinger equa­
tion we get a set of coupled equations determining

- ( 2m)the z-dependence of '1 (z, v.k = .fi2 Vt :
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(18)

Thus the remaining energy for the motion of

the

-I'l:K
2

total energy 2m is therefore sp1itted up in the

x-y-energy h2~!+~ and the energy in z-direction.

Because (f+!) 2ge t s arbitrarily large for sufficiently large

± ' the remaining energy for the z-direction can be nega­

tive. These waves decay exponentially in the vacuum,

as can be seen below.

The equations (18) also can be written in integral

form by using the linear Green's function Go(z-z').

Go(z-z') fulfills the equation.

(19) (LJ/ + Ko
2)

Go(z) = 6(z)

With the correct retardation it is given by:

(20)

e-~ z

-2.~o
; .!to '> 0

for

Considering, that we have an incident wave eiKz z

for! = 0 only, we get the integral equations:
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iK z C eiK! Iz-z' I
e z + J dz ' 2iK

1

.f vi-I.' (z') ~I(Z')

with K
S

=1JrK.....2,-_-(t;,..-+-!-)..,,2')0, if K
i

2 >0

2
or K~ = i~ ,J!J? 0, if Kf <°

Now we can

cuum. For
according

directly see the form of r£(Z) in the

z( ° we havelz-z'l (0 due to ° ~ z' ~ d
to (11). Therefore we get for z L. °

va-

(23)
1 d +iK z'

with Rt = 21'K S e ! L v r _ ,(z')
- to f~.J<

and analogously for z ~ d:

If (z') dz'

(25) with L v g_ ,(z') r,)(z') doz!
f trf d'

~ .
Rr and Tt are called reflect10n and transmission coeffi-

~ 2 2cients. Only for K!,> 0, 1.e. ! » (/r+J) , we get an re-
flected plane wave-Ki- = (lr.+J;.,-K f ) and a transmitted

plane wave !f = (!+~;+Kt) respectively. The waves with

!2 ~ (K+!1 2 or K! = i~1 decrease exponentially into the
vacuum. Whereas-We only can have a finite n~er of re-

2 J:. 2fleeted or transmitted waves with! )- (~+l:.) , we always
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infinite number of decaying waves correspon­

the infinite number of rvectors with

K
2- .

In the kinematical theory one replaces r~, (z') in the

integral (21) by the incident wave (first Born appro-
...

ximation). This gives for R* and T}

(26)

(27)

R} = I- (1 _ ei(Kz+K~+g)d)
v

g 2K f(K z+K} +g) *,g

'V

L
(1 _ ei(Kz-Kt+g)d)

TS- = v
g 2Kg (Kz-Kf +g) *",g

We have used the Fourierpxpansion (g = n:; )'"II.~O,±'/J"')

v g. (z) = L
g

From (26) and (27) we can see that the kinematical

theory fails in two cases. First for K~ = °,
where a socalled "surface wave" !,y = (!!.+,f:,O) moves pa­

rallel to the surface[22]. Second1for the case of a

Bragg reflection Kz j: Kt + g = 0. For this the intM'\sity

of the wave !!- = K + (1,g) is proportional to d2 and

diverges for d-9t». In the Laue case(Kz - K.I- + g = °)
this is a transmitted wave, whereas in the Bragg case

(K z + K + g = 0) it is a reflected wave. For high

energies K2 » VI equations (26) (27) show that we
- ,.,g

get appreciable intensity only if one or more of these

Bragg conditions are fulfilled However for LEED

(!o2 ~ Vt,g) this is no more necessary and all waves

get more or less intensity.
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3.3. Scattering by a Crystal Slab II

Now we construct the wave field in the vacuum and in

the crystal by following equation (2). In the vacuum

we have scattered plane waves !£i having the same ener­

gy as the incident wave !£. Further, due to the surface
periodicity of the total potential (12) the x-y-com­

ponent ~i of ~i only can be different from the x-y­
component ~ of the incident wave ~ by a reciprocal

lattice vector fof the surface net (see also (15)).

Moreover we only have outgoing waves, meaning that for

real K. the z-component Ki has to be positive for
-~ z

z> d and negative for z <.. o. For complex K i z = ilei z
the waves have to decrease from the surface leading

to .lei z > 0 for z > d and Jl'.iz i... 0 for z <.. o. Thus for each

1: we get two waves

with

(!+~' iK z.i )

Kz ~ = ~'-!£-;;-2--(-l.+-f-)=2' > 0 for

forand K Z £ = ilezt ' .\tzf >0

+ -
~~ is allowed for z> d, ~ f for z <.. o , A graphical

- - ±construction for the waves !£ ~ is shown in Fig. 18.
All K} vectors lie on the sphere of radius K. Four

- + ::l:allowed real wave vectors !£g. , ~2} are shown. We have

assumed that f lies in the plane ~f !£ and the surface

normal. The vectors ~31' ~4!'" and ~-1' .. have purely

imaginary z-components.-Therefore the wave function

in the vacuum is, in agreement with the equations

(22, 24) of the last section:



(28)

(29)

iKr= e --

= L.T
t !
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for z'- 0

for a > d

In the crystal only those Bloch waves ~i with

1'j2K2
Ey(~i) = -zm- are allowed. Moreover the x-y-compo-

nent of ki has to be equal to ~ up to a reciprocal

lattice vector I of the surface net. Because Ey(~)

and the Bloch waves ~k are periodic in the reci-_,v
procal lattice, we can set k. = (R, ki ). Therefore

-1. - z

the z-components k i z have to be determined from

h
2K2

E",(!, k z) = 2~ • Fig 19 shows schematically the

band structure Ey(kz) as a function of kz = kz' + ikz"1'j2K2
For each energy E = 2~ , the intersection of E .. (k z)
with the plane E = const. give the allowed k -values.z
From the symmetries (2.59) it follows, that simulta-

neously with k also -k and k* is a solution. There is always anz z z
infinitely large number of intersections with the

"reserved"parabolas giving infinitely many k z with

arbitrarily large k z", of which only two are shown

in Fig. 19. Further we get a finite number of real kz
(two in Fig. 19}.With these k.-vectors the wave function

-J
for 0 I. z I. d is

(30)
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Here we have expanded the Bloch waves into plane waves

ei(~+h)£ , and the reciprocal lattice vector h is

written as h = (l,g) with 9 = n;tr •
3

Irq;
Now according to (3) ~(£) and fZ have to be contineous

at Z = 0 and Z = d. Therefore we get from (28) und (30)

for Z = 0 by comparing the coefficients of the plane

waves e i (!+l)~

(31)

and

= L C
i

_ (ko) P
J
.

jg r,g-J

(32)
"" k .+g(&0 - R~) = ~ Zi't - j,g Z

C1_ (k .) PJo6,g -J

Similarly we have for z = d

(33)

(34)

T S- = L Cf (k.) i (kzj+g-Kz) d P
j,g ,g -J e . j

L k +g
ei(kzj+9-Kz)doPj

T~= zj C (k.)
j,g Kz f,g-J

By adding (32) and (31) and by subtracting (34) from

(33) we get a set of equations for the coefficients Pj
alone, namely

(35) z = 0:
("' ~ k .+g+K
o - L ZJ Zf,o - . 2K

- J,g Z

C ~ (k 0) P..,.,g -J J

(36) z = d s 0 = E
j,g

k .+g-K
ZJ z

2K z



- 62 -

This is an infinite number of equations for the in­

finite number of unknown. P~&.However are the P.'s
J J

unique? To discuss this we consider the N-beam case

assuming that in the plane wave expansion of the

Blochwaves only N beams h ~ (f,g) are excited. In- -
this case the determinant (2.22.) is an algebraic

equation of the order 2N in kz' giving 2N solutions

k zj' j~l, ••• ,2N~ Further, if all reciprocal lattice

vectors h have different x-y-components!:, then (35)

and (36) are exactly 2N equations, too. However if

some of the h-vectors only differ in the z-direction

by a reciprocal lattice vector 9£3' then we have
less than 2N equations. For instance, let us assume

that we have an infinite number of h-vectors, say

hn ~ (0, n~) with n~O,±l,~2,••• , which all have the
3

same x-y-component t ~O. Then Ev(kz) has a typical

one dimensional band structure as shown in Fig. 4.
Of course, the determinant (2.22) gives an infinite

number of k -values for each energy, but only two ofz
them are non equivalent and lie in the first Brillouin

• Therefore we only have two linearzone _:IL L k I .( ..1..
a3 z a 3

independent Bloch functions and two Pj's, which can

be determined from the two equations (35,36) for

f ~ o. Similarly if we have two different! -vectors,- -
say 11 and 12' then we get the band structure as
shown in Fig. 8 and Fig. 19 which is essentially a

superposition of two one dimensional band structures.

Then for each energy we always get 4 non equivalent

k-values and the Pl ••• P4 can be determined from (35,

36) for f ~ Ii and i ~ [2 . Therefore in general for
n different ~ -vectors we get 2n kz- values with
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-T L k\ L ~ and the coefficients Pl •••• P2n can bea 3 - z a 3

determined by the 2n equations (35) and (36).

If we have a half crystal filling the .half space

z >'0, then the above treatment has to be modified.
Practically we also can treat a crystal slab as a
half crystal, if d is very much larger than an ab­
sorption length. In this case, practically no inten­
sity reaches the surface z = d and all T.~ vanish.
For z(O the wavefield has the form (28) '-with the

reflected waves !f, . However, in the crystal we on­
ly can have outgofng waves, because in the absence of

the surface z = d no waves are incident from z = + 110 •

Therefore only those k z are allowed, for which

(37)

or
(38)

I if k z is real

if k = k ' + ik II is complex.
I z z z

(37) means that the z-component of the group velo­
city is positive, whereas (38) forbids waves which in­
crease s;,c:ponentially for z~ +40. Since together

with k z also -kz and kz~ are solutions of the dis­
persion relation, the conditions (37) and (38) are

fulfilled for exactly half the kz-values allowed
for the crystal slab. For if equation (37) holds for
a given k , it does not hold for -k • Similarlyz z
equation (38) can only be fulfilled for either k or
* zk z • Therefore we now have one half of the coeffi-

cients P. of the crystal slab, which can be uniquely
J

determined by the equations (35) alone. Then from

(31) we can get the reflection coefficients RJ.-
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3.4. Current Conservation ~3J

A useful relation between the coefficients Re' Tf
and Pt can be obtained from the continuity equation.

By multiplying the time dependent Schroedinger equa­

tion for "/I(!., t) by tr1,E, t) and subtracting the ana­

logous equation for ·tr~,E, t) ,one has

(39) + J . ;(r,t)
r .... -

where "Im" means imaginary part. The current i is gi­

ven by expression (2.29). For stationary problems i

and 1~/2 are independent of t and Jt vanishes. There­
fore we have for a real potential V(,E) by decompo­

sing ,E into x-y-component ~ and z-component:

Here i!f is the x-y-component of i. Due to the x-y­

periodIcity of V(!.) (12) I the current of the "plane"

Bloch wave A (13) is periodic in the x-y-plane.

By integrating (40) over a unit mesh So = (2.1' 2.2)
of the surface, the term J .j,£, can be integrated by

J!-
parts and vanishes due to the periodicity (41).

Therefore the average over So of the current in z­

direction is constant and independent of z. By c~l­

culating this average for z <0 and z > d , we obtain

by using the ansatz (28,29)



- 65 -

-S
j 0

z(42)

",'The L means a summation over the finite number of

fls with real !! only. All evanescent waves with

K p, = ile r. do not give any contribution to the current.z.,. z~- -Equation (42) expresses the conservation of the
current in z-direction. The incident intensity is
distributed bet10lem fre reflected and transmitted beams

such t.l1at the current is conserved.

For the half crystal we can derive an equation as
(42), too. Here, in the crystal, outgoing waves

(37,38) are allowed only. Further evanescent Bloch
waves give no contribution. This can be seen by

evaluating jz' which is independent of z, for
z -+ + Co. Moreover we can average over the uni t cell

Vc instead of So and use equation (2.32) because jz
is constant anyway. Then one gets

In the case of absorption, veE) is complex and the

current in z-direction is no longer conserved. In­
stead we get by integrating (40) over z from 0 to d

and averaging over So as before

(44) !!. K = ')1
m z L

~

n K (m zf

1
- So S d 2

S dy ~ dz 11
o
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The last term represents the intensity absorbed by

the crystal ( 1m V(E» 0). The current of the scat-

tered waves K is always less than the incident one.

For the case of the nonlocal potential U(E,E') the time

independent continuity equation is:

1>0

(45) Jr "1(E) = -i ~ dE' ('(tE) U(E,,E') r(E') - c.c.)
-,.

Here the right-hand side does not vanish even for u=ut .
Further instead of equation (4¢) we get by using the

periodicity of U and the cut-off (10):

(46)
1iK Z =

m +

+ L r d'lf
S 'd -

o 0

The absorption term vanishes for U = Ut . Whereas for

U = ut the current is not conserved locally (45), it

is conserved globally (46) as in the case of a local

and real potential.

3.5. Symmetrical Laue-Case

Now we apply the results of the foregoing sections

to the case where only one Bragg reflection h is ex­

cited. Then the Bloch waves are well described by

the two beam approximation of section 2.6. Two dif­

ferent situations can occur. For a plane wave ~ in­

cident from z =: -.jlo I the Bragg reflected wave ~+h

either is scattered into the forward direction and
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penetrates the crystal (Laue case) or it is scatte­

red backwards (Bragg case). Both cases are illustra­
ted in Fig. 20. Here we will restrict ourselves to

the "symmetrical" Laue-case, for which the reflecting
planes are perpendicular to the surface and for

which h only has an x-y-component h = (i,O). In the
next section, the symmetrical Bragg-case will be trea­
ted, for which the reflecting planes are parallel to
the surface. Because a fairly large number of artic­

les exists about these cases, our presentation will be
relatively short. For more details, for instance inte­
grated intensities etc., as well as for the unsymme­
trical Laue- and Bragg-cases we refer to the litera­

ture [5-12]

In the symmetrical Laue case we have the following

plane waves in the vacuum: in the region z> d the
+. .

transmitted wave K = K = (~,K ) and the Bragg re-
+. -0 - z

flected wave!s'f = (E+.l:,Kzf ) and in the region z I.. 0
the incident wave !S., the surface reflected wave

~ = (K,-K z ) ' and the wave!S.~ = (!+.!,-K
r t

) being the
+.surface reflected wave of !S.!.. • These wave vectors
J: ~ _ ~

are shown in Fig. 21. The vectors !S. = AO and !S.o = DO
lie on the sphere of radius K around 0 and have the

j:;' +..~ ---l>
same x-y-component ~' whereas !S.f = BH and !S.t = CH
have the x-y-component ~+J; and fie on the sphere around
H. In the crystal we get four Blochwaves k

j
= (~,k. )

- - JZ

where kj Z are determined by the dispersion relation

The dispersion surface as well as ~1""'~4 are shown
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in Fig. 21. Note that the radius Ko =YK2_v; is lar­

ger than K for electrons. However the difference

K -Ko !oJ-K-'" is extremely small for high energy

electrons and is very much enhanced in Fig. 21. For

instance, for E = 100 keV and -V = 10eV one getso

5 . 105• Therefore the vectors ~, ~1 and ~2 in Fig. 21
practically coincide.

In order to determine the Bloch wave coefficients

P1, ••• ,P4, we have to solve the equations (35) and

(36), which are in our case

4 k , +K
C j(48) z=O: 1 = L JZ z P.

j=l 2Kz
o . J

4 kzj+K z C j0 =
~

Pj2K z t
4 k. -K

C j ei(kjz-Kz)d(49) z=d: 0 =
~

~; Z Pjz 0

4 kjz-K z C j ei (k j z-K z) d P.0 = L..
j=l 2K f Jz

Near the Bragg condi tion the factor (kj z+K z) /2Kz

has the order of magnitude

kjz+Kz -{ 1+0(10-4) j=l and 2
(50) for2K z (10-4)0 j=3 and 4
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that P 3 and P4 themse~ves are of the order

in (48) by neglecting

-8P3 and P4 is of the order of 10 only. The reflec-

tion coefficients R! are according to (31,34) given

Therefore the coefficients P3 and P4 practically

do not enter mto fue equations (48). Moreover one
sees from the equations (49) containing the factors
k. -K

]Z z
2Kz

of 10-4• Therefore the error

by

(51)
-k. +K

JZ z
2K

z
C j P

1,g j

It can be seen, that Ro and R i are of the order of
-4 -10 , too. Therefore in the vacuum we practically

have only the incident wave Kand the transmitted
+wave K , whereas in the crystal only the two Bloch

-f
waves E1 and ~2 are important. For PI and P2 we get

the"simplified" boundary conditions:

(52 1 = C1 PI + C'2. Po 0 2 d 0 C1 .p + C2 Pan = h 1 h 2

the solutions of which are very simple. The chj,s

are given by (2,80). By comparing with (2.83) we

get:

(53) P = C j j = 1,2
j 0 )

From (33) we get then for the transmission-coeffi-
cients To and T

f
2

(C j) 2 ei(kjz-Kz)d(54) To = z
j=1 0

2
=:2:­

j=1
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For the difference k Z1 - k Z2 we obtain from (47)

k Z1 - k Z2 = 11k"'; 1+W2'

whereb,k and Ware given by (2.77) and (2.79). Fur­

ther using (2.80) we get after some calculation

(55 ) + 1

1+W2

iT 1
2

=!
1

1+W2
. 2lbkd {1+W

21
)s i n 2

From this one verifies that

which is in agreement with the current conservation

(42) due to ~ ~ 0 and KZ1~ Kz '

Exactly in the Bragg condition (W = 0) we get

(57) 2 Akd
= cos -2-

. 2 Akd
s i.n -2-

which represents the socalled "pendulum solution".

By varying the thickness the intensity oscillates

between the transmitted wave K and the reflected

wave ~+h. The length for a complete oscillation is

211the extinction length dex t = Ak (2.77), whose name

refers to the extinction of the primary

wave K for 1
d = '2 dex t'
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From (53) and (2.80) we obtain for the wave field in

the crystal

+ i

and where Ak and Ware given by (2.77) and 2.79).

Also at the wave field we can see the "pendulum so­

lution". Namely for W = 0 we get ~B = (~I+k2)/2 )

The plane waves ~B and ~B+h have a depth dependent

amplitude. The whole wave field is schematically

shown in Fig. 22a. For IWI»l we get the kinemati­

cal resul t, namely,,,:. ',:;;;','",<1"';0
);:1);1;[1 '

(60) ikr i= e -- + "'iWT sin l.k lWI z
2

In this case the primary wave has the amplitude 1,

whereas the reflected wave being only weakly exci­
ted has a faster oscillating modulation factor.
(Fig. 22b). In an absorbing crystal, we have to con­

sider that the two Bloch.waves ~l and ~2 are absor­
bed very differently as has been discussed in sec­

tion 2.6. The Bloch wave of type II (Fig.14) lying
for vh (0 on the inner branch of the dispersion sur-

face has an anomalously lew absorption, whereas the
Bloch wave on the outer branch has a much stronger
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absorption (Fig. 15). For very thick crystals only the wave

field II remains. Because the pendulum ~olution is due to the

interference of the Bloch wave I and II, it is diminished for

thicker crystals and disappears totally for very large ones [5-12].

Finally wewant to discuss some aspects of the general Laue-case

with many beams. Here we can use successfully the orthogonality

relations for the Bloch functions on the dispersion surface

(section 2.8). By assuming, that all reciprocal lattice vectors

g=(~,g) have a different planar component i and give rise to

tra;;smitted beams only, we obtain from (31), since all Rf=:'O:
s:

(61 ) = \" P. Ch(k.)Ly J _-J

These equations for the coefficients P. can directly been solved
J

by using the orthogonality relation (2.114). First we have

k.=(~,k .)=K+fO,&k. l , i.e. the direction n in (2.114) coincides
-J - ZJ - ~ J_f -
with the z-axis. Since we consider transmitted beams only with

cos e (~+h~ ) 0, and if V(_r) is real, we obtain from (2.114)
h K+h

further

(62 ) L
h

cos e
h

= £., .
J , J

Then by multiplying

we get the result

(61) with Ch*(k.,) cos e
h

and summing over h_ -J

(63) P.= C*(k.) cos e
J 0 -J 0

Under the same conditions the transmission coefficients T
h

of (33)

are given by

@
Note, that for j'=j the

- 2
used normally (2... I Ch \

h .

normalisation is

= I, equ , 2.26),

quite different from the one



(64)

- 73 -

= "\" C ~(k.) C
h

(k.)£,- 0 -J -J
J -

cos eo

It is interesting to see, that in this case the flux inciden c on the

crystal is totally transmitted, since VIE) is real and there are no

reflected beams. Indeed we get from the current conservation (42)

(65) = h K
m z

= 11 K
m

r cos
h

which can directly been verified by using (2.114) and (64).

If the potential is complex (V=Vt ) , then we can use equation (2.115) to

get a similar relation for Th• Of course the current is then no longer

conserved.

3.6. Symmetrical Bragg Case

In the symmetrical Bragg case the reflecting planes

lie parallel to the surface and we have £ = (O,-h)

as shown in Fig 23. For high energy electrons the

Bragg case only can be realized by nearly glanCing

incidence which is due to the small Bragg angles.
However this does not apply to LEED or to neutrons.

Here we will consider only the reflection at a

half crystal, whereas for the scattering at a slab

we refer to the Ld, tera ture [,5-12J

In the vacuum we have first the incident plane wa­

ve K = (K, K ) being equal to AO in Fig. 23. More-
- z

over the vector i5H is equal to AO and represents no

new wave. All other allowed waves have to lie on one

of the two spheres with radiUS K and have the same

l:' - --x-y-component~. Because BH = CO, only one additio-

nal wave remains, namely the specularly reflected wave

K- = (I'(, -K ) = BH.
-0 - z

For the crystal we get four wave vectors ~1 ""'~4

all haVing the same x-y-component g and being marked by

the points 1, ••• ,4 in Fig 23. However ~3 and ~4 '

being essentially eqUivalent to ~2 and ~1 ' respec­

tively, do not lie in the first Brillouin zone and

have to be omitted. Further only ~1 has a positive group
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velocity (37) in z-direction, but not ~2' Therefore
we get only one allowed Bloch wave for the half crys­

tal. For a slab both ~1 and ~2 are allowed leading to

oscillations in the reflected intensity as in the Laue

c:ase.[241

Let us have a closer look at the dispersion surface

in the vicinity of the Bragg spot ~B' According to

(2.76) we have with the x- and z-coordinates as in
Fig. 23

2
Sk2 _ bk2 2 IVhl

( 66) tg 8B =x z 2 24Ko cos 8B

For real6kx and h this represents a hyperbola asz
has already been discussed in section 2.6. However

IVh/
for jOkxl ( , i.e. between the branches of2K cos8B
the hyperbola, dk z is complex. Setting dk z = iSk~ ,

the dispersion surface in the Fkx ,[k~ ~ plane is an
I vh I

ellipse. The maximum value of dk~ is Sk~ax =~ ,

representing the exponential attanuation of the wave
field in the crystal.

By enlarging the x-y-component f of the incident wave
in Fig. 23 the Bloch vector ~l moves along the dis-

persion surface as indicated by arrows in Fig. 24.

For the case of no absorption it follows from the

current conservation (43) that IRol2 = 1 as long as
k

1
is complex, because we only have one reflected

wave and one Bloch wave which carries no current.
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The boundary conditions at the surface z = 0 are (31,

32)

1 - R
o

= (kKzz Co + k z-h C ) P
Kz h 1

For high energies we have Kz .~ kz ~ ~ • Therefore we

get immediately

(68 )

Near the Bragg reflections one has

Ch vh IV vh
(69) ~ =

(~+h)2
=

Co K2 - -2K cos aB Okx+h~z0 0

By using (66) we get therefore

IRol
2 1 2

(70) =
-y ±Vy2- l '

with = 2
.)kx =

2Ko cos aB 6kxy [>k Ivh I

Here the + sign is valid on the outer branch of the
hyperbola and on the ellipse in Fig. 24 where the

- sign refers to the inner branch. For IYI ~ 1, i.e.
for Skx between the two branches of the hyperbola,

the reflection coefficient IRo / 2 = 1. As a function
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2the reflection coefficient IRol is shown in

25a. It decreases rapidly for y :;. 1.

In the case of absorption the result is elementary

but rather leng.thy.Here we give only the results for

weak absorption and for

and Vh = Vh' + ivh" one obtains for/vo"I«lvo '! and

\ Vh"I~~I vh'I :

1 - 2

\ Ro l2 1 - 2 v0" I for 6k °= V'" =
h x

V
V lI+V II

-~1 - 2
o h

Okx- =vh
i 2

First we see, that at the edges of the two branches

the absorption is especially effective and IRol2
decreases with the square root of the

perturbation. However the correction is different

on both branches, which is due to the different Bloch

waves on both branches. On the inner branch the Bloch

wave of type II avoids the atoms and is absorbed

weaker than Bloch wave I (Fig. 14). In Fig. 25b we

have plotted \Ro 12 for vo" = vh" and for

\Vo"/vh,l= 0,1 (full lines). Physically -: = vh" means

that the atoms are treated as points as far as ab­

sorption is concerned. Therefore the sin-wave of Fig.

14 cannot be absorbed and IRol2 = 1 on the edge of the
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inner branch. For the case of a uniform absorption

(vh" = 0) the reflection is symmetrical with respect

to ~kx = 0 because then the absorption is the same

for both Bloch waves. (dashed lines in Fig. 25b).

All three curves in Fig. 24 can be obtained ex­

perimentally. E.g., for neutrons the absorption is

negligible and one gets for thick crystals the re­

flection curve of Fig. 25a. In the X-ray case the

photoelectric absorption is concentrated at the inner

shells resulting in a strong anomalous transmission

effect and in asymmetrical curves as in Fig. 25b.

For LEED the plasma losses give a uniform absorp-
tion and the reflection curve should be more or less sym­

metrical. However here the simple two-bemn

approximation does not apply and the situation is
much more complicated.
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4. Single Scattering Matrices and Neutron Scattering

In diffraction experiments with low energy electrons

the energy is typically of the order of 50 eV and

therefore comparable with the mean potential Vo or

the potential of a single atom. Such low energies
give rise to many complications. One of these

is due to the fact that even the interaction with

an isolated atom can no longer be calculated by

Born's approximation but has to be treated exactly.

With respect to this, the situation is even worse

for thermal neutron scattering where the, extremely

short range, interaction with the nucleus is ~f the
order of several tens of MeV, compared with the

neutron energy of ~ 0,025 ev. Here the interaction

potential normally is replaced by Fermi's pseudo

potential [25]. However this procedure is restric­

ted to the first Born approximation. A dynamical the­
ory ·has to reconsider this problem as was done first

in [26] .m the first section we will show, that the

difficulty due to the strong single particle inter­

action can be overcome by the introduction of single

scattering matrices.

4.1. Multiple .Scattering with Single Scattering

Matrices. [Z7J

We start with the Lippmann-Schwinger equation which

is the operator version of the integral equation (3.4.)

(1) with 1
E+i~ -Ho

iKrHere ~ stands for the incident wave ~(£) = e --
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and G (r,r') is the free Green's function (3.4).
0--

Equation (1) also can be written in the form

where the transition or scattering matrix T is gi­

ven by

+ ••••1
1-VGo

1
T = V 1-G

OV
=(3)

Considering the scattering by many centres, the po­

tential V is a sum of the single-eentre contribu­

tions v (r).
n -

(4) =2-
n

v (r)
n - =2-

n
are equal.

Now the scattering by the potential vn alone can be

described by the single scattering matrix tn'

(5)

For we get T = t n ' if only the centre n is pre­

sent (V = v ). In analogy to the incident wave in (2)n
we introduce an "effective incident'WAve" ~n for
the atom n by writing

(6) \l/=lD +G t (P
1 .:In 0 n In
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By multiplying (6) with vn and using (5) one gets

(7)

Introducing this into the Lippmann-Schwinger equation

(1) the wave function '\f' can be expressed in terms of

the effective fields ~m'

Moreover, by comparing this with the defining equation

(6) the~n's have to be solutions of the coupled equa­
tions

(9) (JJ = (JJ+ ~
In J m(+n)

Therefore the effective incident field ~n for the centre
n consists of the incident plane wave ~ plus the scat­

tered waves Go t m ';fm = Go vm'r from the other centres
m ~ n, as is illustrated in Fig. 26. These equations

have the advantage of clearly separating the scattering
properties of the single centres, given by t m, from the

multiple scattering properties of the whole system. How­
ever we have paid for this by getting a system of coupled

equations (9) instead of the single equation(l).

For convenience we may also write (8) and (9) in the

£-representation. Considering that for equal centres
v (r) = v (r-R ) and consequently t (r,r') = t(r-Rn,r'-Rn)
n- --n n-- ----

we get
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and

From (8) or (8a) one can get a modified Born appro­

ximation by replacing the effectiv field ~m by the
incident field !f.

This approximation, known as pseudo-kinematical theO­

ry in LEED, goes over in\the usual Born approximation
(kinematical theory) if t m is replaced by vm'
However (10) has the advantage that the Hingle~

scattering process is treated exactly, whereas the

multiple scattering by different centres is still

neglected.

In an infinite crystal the eigenfunctions ~(E) for

an energy E obeys the homogereous equation

(11) • = Go V +
Here one can as well replace Go by the advanced

Green's function or by the principle value Green's

function, Le.

(12 ) 1
E-i~ -Ho

or

By choosing the eigenfunctions. as Bloch waves, we

have
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Using (13) and the periodici ty of V(.!) = L. v (E.-!in)
J

n
equation (11) can be written in the interesting form

(14a)

(l4b)

tk (.!: ) = S dr' G(.!:..!:' ) V(.!:' ) ~k (.!:' )
Vc

+"11

= Jd.!:' G(E.,E.' ) v(E.' ) h (E.')
-(>0

Here either the integration is restricted to one

lattice cell only (14a) or the integral only con­

tains the single potential v(.!:) (14b). Further the
Green's function G, called complete Greenian by

Ziman [28] , is

(15 ) -ikRn
e --

It depends explicitly on ~ and not only on E as Go

does. With respect to .!:, it has the same transla­

tion property (13) as ~k •

By introducing the tn-matrices by (5) and the effec­

tive fields ~n as in (6) we may also write equation

(11) in the form

(16 )

which is quite analogous to the mUltiple scattering

equations (8) and (9). Further one can see from (6)

or (16) that the quasi-periodicity (13) also leads

to a periodicity condition for the corresponding
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effective field ~n ' namely

(17)
m ikRm

lfn+m (E+~ ) = e -- ~n (E)

Therefore all effective waves ~n can be reduced to

a single one, for instance ~o • By doing this we

get from equation (13) in the E-representation

with

(20) G'(r r')-'- G (r-r'+Rn)0 _

These equations can also be obtained directly from

(14b) by substituting v(E') ~(E') by t ~o'

4.2. Scattering by Muffin-Tin Potentials

Now we apply the multiple scattering equations of

the last section to a system of spherica~symmetric,

bu~ non· overlapping potentials. Then the poten-

tial veE) of a single centre is

(21 )

__ { vllEI)
veE)

o

for r

>
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In order to get no overlap between the potentials

of the different atoms, r s has to be smaller than

dnn!'2 ' where dnn is the nearest neighbour distance.

Such potentials, known as "muffin-tin potentials",

have been used extensively for band structure calcu­

ladons [29]

By substituting r_Rn -+- rand E'-g,m ~ E' etc., into (9a),

we get

(22)

The free Green's function Go' given by (3.4) satis­
fies the Schroedinger equation

The same equation holds, if Or is replaced by Vr , .
d nn

For r & r s " -2- and r' b r s the source term in (23)

vanishes and Go satisfies the potential-free Schroe­

dinger equation in these regions. The same applies to
iKrthe incident wave e --)of course. Then it follows

from (22) that ~n(Rn+£) satisfies the potential free

Schroedinger equation for r ~ r s' too. Therefore, by
n iKrexpanding ~n(g +E) (or Go and e --) i~o spherical har-
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monies 1;m( !jr) , the radial function R,,(r) satis­

fies the equation:

(24 ) o 2 r +
r

For given K there are two linearly independent solu­
tions namely the spherical Bessel functions je(Kr)

and nelKr) • They are elementary functions and be­

have as

(26) 1
IV -:e+T

x
for [x] <.( 1

Here Jt +l /
2

(x) is an ordinary Bessel function. The n(~)

functions are singular in the origin and therefore
give no contribution. Thus the following expansion

for ~n is valid for r & r s:

Here the index L = (#,m) stands for the angular mo­
mentum index ~ and for the magnetic index m. The

~~ 's are unknown coefficients, and the spherical har-
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monies are orthonormalized.

Similarly we get a double expansion for Go = Go(£,£')
fOr r ~ r s and r' b r s

(29) n m 2mG (r-r'+R -R ) = --2
0-- - - -I'\. L

L,L'

iKr r:;JThe corresponding expansion for e -- is 1.30J

(30) e i !Sr = "\ i.e 411" V*(!5. \ . (. ) V t t: J
~ 'L KJ J.e Kr 'LLr-

Further, due to the rotation invariance of v(r), the

scattering matrix t(£,£') depends only on r,r' and
the angle e between rand r' • Therefore an expansion
of the form

(31) t(r r')' 2.- U+l te(r,r') p~ (cos e)= 41t-'- e

= L- t.t(r,r' ) YL L~~Y:Cf.)
L

holds, where for the last line we have used the ad­
dition theorem for spherical harmonics [30}. Now, we
introduce the expansions (27,29,30,31) in equation

(22) and obtain by using the orthogonality of the

YL's:
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4 11'(; Ci )+ 2-
m(*n)

L'

Here ~e is given by

(33)
t>o

= S r,2 dr'r" 2dr" je(Kr') t.e(r' ,r") je(Kr")
o

=

as can be shown by partial wave analysis. ~ is the

phase shift of the tth partial wave. Thus we have

reduced the solution of the integral equation (22)

to the solution of the algebraic equations (32). This

was only possible because the single potentials do
not overlap what we have used explicitly in the ex­

pansions (27,29). The division into single centre

properties and properties of the whole system is

still apparent in (32). All the information 'we need

about the single potential is contained in ~e or

in the phase shifts he ' whereas the coefficients
n-mGL,L' are determined by the structure of the system

alone. Further, we should point out that by knowing

the coefficients ~~ and the effective fields Y'n (,E)

we simply can get the wave function l' from (8a).

The solution of the algebraic equations (32) for a

crystal slab or half crystal is still a formidable

problem because of the infinite number of atoms and

angular momenta involved. Of some help is here the

x-y-periodicity, which reduces all effeotive fields
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of the same atomic layer in the x-y-plane to a single
field for each layer. Namely, in analogy to (17) we

have for a "plane" translation'lfl.

( 34)

Therefore the number of unknown ~~ 's in (32) is the

product of the number of atomic layers times the num­
ber of angular momenta considered. An especially sim­
ple but also instructive problem is the case of a

monolayer of atoms scattering isotropically (L = 0).

For this we only have one constant, say~~ • The re-

suLt, given in [22 ,31J .shows interesting resonances, which

are. due to quasi-localized surface states, as well as
certain threshold effects connected with "surface waves".

For a real crystal one may either try to solve the
equations connecting the different monolayers. This

method, proposed by Beeby [32] , has been successfully

used for LEED in [33] • Or one may try to solve the
equations for an infinite crystal, as will be shown

below. Then one has to match the allowed Bloch waves
and allowed plane waves at the crystal surfaces.
This method has been used in LEED, too [34J.

To obtain the Bloch wave ~k(!) (18) for an infinite
crystal we have to solve the equation (19) for the

effective field ~o. Again for muffin-tin potentials

~(!) and the Green's function G' (!,!') satisfy for

r,r' ~ r s the potential-and source-free Schroedinger

equation. Therefore we get expansions of the form
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(35)

(36) G'(E,E') =2:
L,L'

Introducing

for t (E,E' )
these relations into (19) and using the expansion

(31),we get the homogeneous equations

( 37) LIJ - L
J L - L'

They have only solutions, if the dispersion condi­

tion

(38) det I GLL • 'Cp ' - ~,L,I = 0

is satisfied connecting the allowed ~- and E-values.

This is the t-matrix version [35J of the Korringa­
Kohn-Rostoker-method (KKR-method) for band structure

calculation [36J. In practical cases the evaluation
of the "structure constants" GLL, represents most of

the work. They only depend on the structure of the

crystal and on the energy and Bloch vector, but not

on the potential. There exists a large number of

different expressions for'G
L L

, , which can be eva-

luated from (20). However none of them is especially
simple and hence we refer to the original artic­

les [36J • For cubic lattices and for symmetry direc-
tions of k the coeffi~ents have been calculated numerically.
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of s-scattering only, the determinant

G 'it = 1 This case is essentially00 0 •

equivalent to the treatment in the following section.

4.3. Diffraction of Neutrons

In this section we want to apply the mUltiple scat­
tering equations to the diffraction of neutrons by
an ideal crystal. However let us first discuss the

scattering by a single nucleus. Because the wave
length (~IX) is very much larger than the radius r o

-13of the nucleus (wI0 cm), we only have s-scattering.
For the evaluation of the scattering amplitude, we
can set the energy E = O. The case of higher ener­
gies is discussed later on. Then we get from the

Schroedinger equation for E = 0:

(39) ('U/ - v(r») r Y(r) = 0

If v(r) = 0 for r ~ r o ' then r(r) behaves as

(40) or r If( r) = r-ao for r ::: r o

The real constant ao is the scattering lenqth for E=O
2which is connected wi th tre cross section by ll" = 41Tao •

Graphically c be scattering length can be obtained by

the intersection of straight line r-ao with the r axis
(Fig. 27). For an attractive potential (v(r) c 0)
the curvature of r'r is according to (39 ) negative,

if r'f' is positive and vice versa. Further r"'f va­
nishes at the origin. For a relatively weak, but

negative potential we may therefore get the curve
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of Fig. 27a, leading to a negative scattering

length. If the potential strength increases, then

ao goes to - ()IJ and the cross section diverges.

This is due to the fact that there exists a bound

state with zero energy in this case. Namely for

1'i2X 2
a bound state with energy E = - -zm- ' the wave

function for r ~ r o is r'V(r)1oJ e-if.r , which gives

a constant for Je = O. But this is equivalent to the

condition ao...:r ± ()Q. By further increasing the

strength of the potential, we get a curve as shown
in Fig. 27b, resulting in a positive scattering length.

Further' r "f'(r) has now an extrema for r !:: r o
which is connected with the bound state of the po­

tential. By further increasing th~ potential, ao

will become negative again, etc .t'7henever ao
goes to -"', a new bound state with energy E = 0

is produced, and r't(r) will have as many extrema

as there are bound states. On the other hand for

an repulsive potential the situation is quite dif­

ferent (Fig. 27c). Here ao is always positive and

smaller roo

As an illustrative example, we discuss

by a spherical potential well of depth
dius roo Here one gets

the scattering

- V and ra-o .

(41) } with

Fig. 28 shows ao as a function of Koro for an attrac­

tive potential (full lines) and for a repulsive po­

tential (dashed lines). Reasonable values for Vo and

r o are [37J :
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1/ -13Vo ~ 45 MeV, r o ~ 1.45 A 3 10 em, where A is the

atomic weight of the nucleus. For A ~ 100 we get

Koro ~ 10. Further from Fig. 28, we see that for

such large values of Koro the scattering length ao

will be more or less equal to roo Negative ao values

only occur in very small intervalls ~(Koro) A/ K1r •
I) 0

Therefore the chance to get a negative scattering

length would be p '11!11[K
1 r ~ 3%. The chances to get
o 0

especially large laol values are even smaller.

0.04.

• Even for such a strong absorber as

a "
ratio I~I is onlyao

boron the

In the case of absorption, the potential v(r) is

complex and the scattering length for E = 0 becomes

complex, too: ao = a~ + ia~ • However neutrons are

absorbed and normallyvery weakly

a "
I a°'/ iV lQ-

5

o

50 far we tacitly assumed that the nucleus has no

spin (5 = 0). In this case the interaction does not
affect the spin of the neutron which therefore must

not be taken into account explicitly. However for

8.0 two relative orientations of the spin !l:of the

nucleus and spin ~ of the nucleus are possible,

namely Q:' parallel or antiparallel to ~ giving a to-

1 1tal spin of 5 + /2 or S - /2 respectively. The

interaction potential can be simply expressed by two

projection operators P+ and P_ which project a spin

function fj(Q:"~) on the subspaces 5 + 1/2 and 5 - 1/2
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- ~'1 -

= 8+1+2.2:'5.
28+1 '

8-2!L' §.
= 28+1

Thus the potential, depending explicitly on ~ and 2'
can be written as

For each potential v+(r) and v_(r) we get a different

+scattering length ao and ao ,so that we can write

If we have no polarization, then the averages <~} = 0

and <21 = 0 , and we get for the socalled coherent
scattering length

(45) acoh =<aol
8+1 + + 8=28+1 ao 28+1 ao0

The average cross section is

(46) <~= t8+1 (a~)2 + 8 (a~) 2 5411" 28+1 28+1

+ 411" 8(8+1)
(28+1)2

The first term is the "coherent cross section", the
+second one, depending only on the difference ao - ao '

the "incoherent cross section".
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Multiple scattering: For the scattering of neutrons

the mUltiple scattering equations can be simplified

essentially. Because the range r o of the potential is

very much smaller than both the wave length and the

lattice constant, in equation (8a) Go(E-E') and

~n (E") can be replaced by Go(E-~n) and ~n (~n) •

Then the single-scattering matrix t(E' ,E") only en­

ters through the integral ~ dE' dE" t (E' ,E" ). This
approximation is equivalent to replacing the t-matrix

by

(47) 41ia

(48)

Here a is the scattering length for the energy E.

With (47) we get from (8a )

e iKIE-B.n'
IE-B.n I

Therefore we only need the effective field ~n at
the position R of the nucleus No. n. Then-n
equation (9a) gives

(49) -~
m(ofn)

These algebraic equations are quite analogous to

the equations (32) for muffin-tin potentials. How­

ever due to the s-scattering we only have one un­
known 'Constant per nucleus, namely ... (R)

J n -n .

The scattering length a for an energy E is in a

simple way connected with the scattering length ao
for E = O. From (5) we have
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t=v+v 1 t
E+1t-Ho

, one gets

By taking the tenn v 1
if -Ho

1
and dividing by I-v, H

l.f ­ o

t to the left hand side

(51)

with

t = to + t ( 1 - 1 .) to E+it -H o i~ -Ho

1

Here to' being realJis the single-scattering matrix for zero
energy. In the £-representation equation (51) is

(52) t (r,r") •
0--

iK I r"-r"'1

(
- 2m ) e - - -1

• ::-T=:~-ii 4. I.=. -.=. I
t(r"'r')- '-

Now if both t and to have the form (47) with scat­

tering lengths a and a o ' we get from (52)

(53)

Because I Kaol ({ 1 normally, a ~ ao' In principle,

however, a
o

can be arbitrarily large. Then a is

1
limi ted by K •
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By setting K = i~, the scattering length diverges
1for ~ = a
o

' if ao >O. This indicates that for ao >- 0

the potential vCr) has a bound state with the energy

-ti2 1E = - -- --, which, for instance, vanishes for
2m a~

ao ~ oa •

Equation (47) represents the t-matrix for a poten­

tial of "zero range", Le. in the limit Kro" O.

For a repulsive potential the scattering length ao
vanishes in this limit because always 0 b ao~ r o •
However for an attractive potential, a finite value
of ao can always be obtained by adjusting the po­
tential depth, e.g. Vo in equation (41). Further we

have at most one bound state. All others have ener-

-h2
gies E IV - 2m moving to - ()(] for r 0 ~ O.

To determine the eigenfunctions for potentials of ze~

ro range in an infinite crystal, we introduce the an­

satz (47) for t in (18) and (19). Then the Bloch

wave ~k is given by

(54)
~2

= G (,E,O) 2m 4Ta Ifo (0)

= -(~
eiKI,E+'&1

\,E+.!!nl
-ik1L )e -:.on ay>o(O)

Here PoCO) only is a normalization constant. Equa­
tion (19) gives the dispersion condition connecting

1'i2K2
the allowed ~ values with the energy ~
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-tl:21 = G'(O,O) 2m 4~a = -ikRe -"1\

The equations (54) and (55) can also be written in

a different form with sums over the reciprocal lat­

tice. For instance by Fourier transformation we get

from (54)

(56a) S
dK'

(211'")3

iK're--

(56b) L
h

i(k+h)r
e - --
K2_ (~+h) 2

The sum in (56a) gives a O-function, if!' is equal

to ~ up to a reciprocal lattice vector h. Similarly

one gets from (55) by adding and subtracting the

term n = 0:

(57)

The two terms in the bracket cannot be integrated

separately, because both diverge. For the first term,

being a discrete sum, the il in the denominator

is unnecessary, whereas the imaginary part of the se­

cond term is iK. With the expression (53) for a, the

imaginary term iK cancels on both sides and the re­

maining quantities are real. Substituting !' = h+~'

the second integral can be written as a sum over h
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too with integrals dk' over the first Brillouin

zone. Thus we get

(58)

V
c Sdk'3 -

( 211") I.B • Z •

The sum over h converges because the integral cancels

the first term for large h. However the sum of the

first term or second term alone diverges. This is

directly connected with the difference between the

effective field and the wave function. According to

( 6 ) we have

(59)

Therefore ~(!:) diverges as ~ for r"" 0 and similarly

for!:~ gn' However the effective incident field Yo
does not diverge for r 4 O. The divergence of ~(!:)

can be seen in equ. (56b) too, where the sum over h

diverges for _r = R • Therefore the convergence of-n
(58) is due to the subtraction of the term

~ in (59) or the term n = 0 in (57,58). Practically,
r

however, the difference between ~(!:) and Vo (!: ) is
important only in the immediate vicinity of the nu­

cleus, but not everywhere else in the first unit cell.

In the one-beam case, i.e. if the Bragg condition

is not fulfilled, we get from (58 )



- 100 -

(60) 1 or

terms in (58) have the order of magnitude

1 ~0(10-5) and can be neglected. However
~

this would no~ be possible for extremely large

ao IN- 0 (1;K)' For ao '> 0 the refractive index n = ~
21faois n ~ 1 - ---- ( 1 leading to total reflection for

- V K2
c

nearly glancing incidence. On the other hand, for

ao.( 0 and consequently K2 <. k 2 or n :> 1 the neutron

can be bound by the crystal similarly to a band elec­
tron. However the binding energy is only of the or-

der of 10- 7 eV. Nevertheless such bound states may

have some physical significance in temporarily cap­

turing neutrons [381

1

If the Bragg condition is fulfilled for a number of

beams, say~, ~+h1 , ••• , ~+~n ' then we get from (58)
by neglecting the integral as before:

4lra ~n
l=T.:L.

c h=O
(61)

This can also be written in a more familiar form.

Namely from (56b) one gets for h = 0, ••• , hn
..

( K 2 _ (!s+h) 2 ) C~
4trao 4Tao

hn
(62) ljJo)= z: Ch'= v;:Vc h'=O

where the last identity follows by using (61).
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This equation is identical with the basic equation
for electron diffraction, if all vh are replaced by
4~a --v-2 . Therefore one may derive (62) as well without any

c
t-roatrix formalism simply by using Fermi's pseudo potential

(63)

By neglecting the integral in (58), the effective
field ~o(!) and ~(!) become equal. Physically this is

due to the fact that with a small number of beams

the difference (59) between ~o(!) and ~(!) , being
only important at the position of the nucleus,
cannot be resolved. Therefore, by restricting to

a few strongly excited beams, the Fermi potential
(63) can be used and the whole formalism of elec­
tron diffraction remains applicable, e.g. two beam
case, boundary conditions, etc. However in,addition
to the assumption of zero··range potentials (ro « lI,dnn)
used to derive the representation (47) for the
t-matrix or for the dispersion condition(58), we

have used the conditionlaJ« /\,dnn in order to
derive (62) or Fermi's pseudo potential(63). There-

fore deviations from (62) are expected for extremely
large a 's for instance near resonances.o '
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5. Dynamical Diffraction of X~rays

The theory for X-ray diffraction is qui te analo­

gous to the theory for electron diffraction, ex­

cept that we have to consider a vector field in­

stead of a scalar field. Therefore we have to start

with Maxwell'.s equations replacing the Schroedinger

equation.

5.1. Fundamental equations for X-ray-diffraction

For simplicity we will treat the electrons of the

crystal classically. A more thorough quantum mecha­

nical treatment is given in part II. The frequencies

of the motion of atomic electrons are of the order

(,J ~ v / where vis the electron velocity and a Bo a B

is Bohr's radius. Because the X-ray wave length

is comparable to aB, these frequencies are small

c *Jcompared to the X-ray frequency u =2TlA" ' since v <<. c.

Trerefore the electrons may be treated as free.

Their motion due to an electric field E N e- i wt is

de scribed by

(1) mr = e ~<.!:.t)

If we denote the space dependent density of elec­

trons by g(!:), then the density of the charge cur­

rent is

,;r)In the scattering by heavier elements, thi. s condi tion

may only be fulfilled for the outer electron shells,

but not for the inner one s, See part II for this ca se,

too.
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(2)

Now we introduce this current into Maxwell's equati­

on-s, which are for harmonic time dependence N e-it.Jt

( 3) J x E
r

• (,J H= ~ -c -

(4) \) x H = -i ~ E + c4'1l" .J.' = -i ~ c E = -i ~ Dr - c - c c_ C -

Here the dielectric constant e is given by

(5)

It follows directly from (3) and (4) that

(6) ';).D=O='i)·H
r - r -

Further, one gets by eliminating H from (3) and (4)

(7) ~ x J x E = (~) 2 Dr,::- c-

Actually the deviation of E from 1 is very small for
X-rays. With the classical electron radius

r e = e
2

2 = 2,82 10-1 3 cm one has
mc

(8) = £(,::) -1 = with ~ = K = 2"
~

o
For A~ 1 A we have [x] l:: 10-4 for most elements.
Therefore § as a function of D is given by



(9) E ., .!.D
~-
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D - 'X,.'Q

Substituting this into (7) and using (6) we get

an equation for D alone.

Sometimes, e.g. in order to derive the kinematical

theory, it es useful to write this equation as an

integral equation by using the Green's function (3.4)
A iKrThen for an incident wave D e -- one has

" ei!Sf + Dr xiJ x Jd£'
iK \ r-r' I

(11) Q(£) D e --.,
41i \£-£ 'ir

In an infinite crystal the electron density 3(£)

has the periodicity of the lattice. Therefore, the

eigenfunctions can be chosen as Bloch waves and can

be expanded into plane waves analogously to (2.20)

(12 ) .,2=
h

wi th Qh • (~+h) ., 0

Since ';)r' D ., 0 the vectors Qh are perpendicular to

~ + h. Due to its periodicityX(£) can be written as

(compare (2. 4, 2. 6) ) :

with

-ihre -- g(.;) d£ .,
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where f h is the atomic scattering factor for X-rays

(2.7). Introducing (12) and (13) in (10) we get by

comparing the coefficients of ei(~+h)! :

( 14)

with

lK2 - (~+.h)2)!?h = (k~)2 ~ 1G. D
--~ ~--n-.h' -.hT.h]

(15 )
(~+h) ((~+1;) , Qh')

(~+h) 2

Due to Qh' (~+.h) = 0 the term on the right-hand side has

to be

case,

plane

perpendicular to k+h , which is indeed the

since Q.!?'[.hJ is the projection of !?.h' on the

perpendicular to ~+h. Due to the smallness

of X,h' only the plane waves with K2 ~ (~+.h)2 are

strongly excited. Therefore we can replace (k+h)2

on the right side of (14) by K2

wi th Jell- h' =

These equations are ver y simi lar to the correspon­

ding equations (2.21, 2.71) for electrons or (4.62)

for neutrons. The main difference is that the Qh's

are vectors. ~h is the analogue to the potential

~ hao
coefficient 2 Vh (2.14) for electrons or to V-

~ - c
(4.62) for neutrons,
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For each plane wave ~+.h we can introduce two po­

larization vectors ~~ (s = 1,2) being perpendi­

cular to ~"h .

(17) 6
~h . (~+h) = 0 and

6 6' ("\
~h' ~h = Os,s'

With

(18) D =-h

2
2::-
s=1

for s and s' = 1,2

we get from (16) for the scalar components D~ :

(
2 2) s ~ ,,' s s' s'

(19) K - (~+.h) Dh = L, ~h-h' ~h'~h' Dh ,
- .h,s ----

These are homogeneous equations which have a solution

only if their determinant vanishes.

This gives us for

cies cK = ~v(~) ,
for di fferent k I s

a given ~-vector the allowed frequen­

which form bands. The Bloch waves

and v's are orth:>gonal, namely

(21 ) j dr' "*
- 3 Qk' ,(!) Qk ,,(E) = ~(~-~') &~'J)

(2rr) _,'i' _,,,, J

Quite analogously to (2.26) we have then for the

coefficients Qh r D~ respectively:

(22)
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Most of the other results of section 2. are valid

for X-rays, too. For in stance, we have the s}'lllmetries:

if S(£) has the following propertie s (in the same
sequence as (23) ): periodic (2.33), symmetrical

with respect to S (2.35), local(2.36), real (2.37).

Similarly the theorems about the real lines and the

behaviour for complex ~ are valid without change.

There are two simple cases where the vector equation

(16) reduces to two equal and decoupled equation for

the components D~ , thus leading to a scalar theory

for each component. First, in the vacuum we have

~h-h'= 0 and the two polarisations are degenerate.

se~o~d, for very small wave lengths K2 » h2 , i.e.

for very small Bragg angles, all wave vectors ~+,h,

k+h' of the strongly excited wave s are approximate-..,
ly equal. Then in (16) Q,h'[,h]= Q,h' or in (19)

s 5' f'
~h' e,h' = asp' and we get the same equation for the

polarisations s = 1 and s = 2.

Together with the dielectric field Q(£) the electric

field ~(£) and the magnetic field ~(£) can be expan­
ded irl:o plane waves, too.

(24)

For the direction of ~h it follows from (6) and (4):
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and

Therefore

(Fig. 29)

!!h is perpendi cular on bothk+h and .Q
h

Furhter we get from (3) and (9) for §,h:

(26) 1
!!h = K (~+h)X §,h and E =D _0:::;-% D

-h -.h t "".!l-.h'-h'

Therefore §,h lie s in the plane of ~+h and .Qh' It

nearly coincides wi th .Qh ' since I""" -« 1 (Fig. 29).

5.2. Current, Boundary conditions, etc.

The density of the energy current is given by Poyn­

ting' s vector

(27) wi th real E and H

By using complex quantities, the average of S over

time s 'C '>'> ~ is [5, 39J

-t c *"'(28) S = a;r Re(§, x!! I

Since IX I -<.< 1, we may a s well replace §, by .Q. For a

Blochwave .Qk(l::), the current contains contributions

oscillating in space. However the average over a unit

cell is constant and given by:

(29 ) st,Vc c Re 2: -¥ = ~l; L.1.Qh I2
~= 811" !?h x !!h

h h - -

k+h k+h
N --with

~ = = --I~+.h I K
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Now it can be Shown analogously to (2.31),

that

(30) L
h

2 1 ()K
2 Ll 2(k_ +_h ) I _D hi D I= 2" 'J E h -b

Together with the normalization (22) we get there­

fore

(31) C

8ll"
1
2K

As in the case of electrons the current is there­

fore perpendicular to the di sper sion surface

Wi~) = cK = con stant.

For the diffraction of x-rays by a finite crystal, the

wave fields in the crystal and in the vacuum have

to be matched at the crystal surface. Since';) • D = 0,
r -

the component of E(£) perpendicular to the surface

is continuous • Due to) x E = i~ H, the tangential
r - c -

component of ~ is continuous, too. Further, since

X(r) is very small, we may neglect the waves specu­

lar ly reflected from the surface s, For the same reason

~ and E are practivally equal. Therefore we can assu­

me that both components Dno 1 and Dt are conti-- rma - ang.

nuous.

Analogously to section 3.3. we can construct the

wave fields in the vacuum and in the crystal. For a

crystal slab we can have the plane waves

!Sf= (!'+,i',±Kzg.) in the vacuum, so that
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(32) for z

~d

A

,Ql!S is the field vector of the incident wave, B.t
and !! are the field vectors of the reflected waves

+
!Sf- and transmi tted waves !Sf-' Since we neglect any

- +
true reflection from the surface, ei ther!Sf (Laue

i s a Bragg reflected wave

omi tted. In the cry stal we

wave s ,Q~j (!) with

= cK. However, since

case) or !S-i- (Bragg case)

and the other one can be

may have a nWllber of Bloch

~j = (!&',k z j) and CV,,<!,k z j)

I%\~~ 1, only outgoing waves have to be taken into
'OW

account: Vk
z

'::> 0 for real k z or lez > O. for k z = k~ + H€z

complex.

( 33) for o!: z ~d

The boundary condition for D to be continuous for z=O and z=d

lead to similar equations as (3.31-36) from w!'ich

too coefficients ~£: ' !t. and P j can be determined.

Witrout absorption, too z-component of the energy

current is independent of z , if averaged over too

time and the unit mesh So of tt.e surface (section

3.4). This gives us an additional relation between

R I , TLand P. , for instance for the cr ystal slab
-T -,. J- -

A 2 '<) I (,\. 2
(34) Kz \,QI = t KZf~ ~tl

or for the half crystal
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v ' 2 I 1~KZ

= L- KZLI~tl + J 2" 7JE'",""t s - J zJ

+The sums go over real wave vectors KI: and k. only.
-.!: -J

If no Bragg reflection is excited, we only have ~

strong beam. For both polarisations the Bloch vector

is determined by

(36)

The refracti ve index

(37) n = k N

K 1 -

is slightly smaller than 1, leading to total re­

flection for nearly glancing incidence.

If a Bragg reflection is exci ted, we have two strong

beams k and k+h • In this case a natural choice for- --
the polari sation vector s is (Fig. 30a) :

S, = 1 ( (]""-polari sa tion) . e 1 = £~ perpendicular to both.
0

k and k + h

S 2 (Y-polarisation) 2 £~ in the plane of k= £0 ,
and k-+h

addition to (17): e 1,e2 = 0 = e 1.e2
-0 -,h -,h -0

2 9
B

• Therefore the equations for

Then we have in

and e 2. e
h
2 = cos

-0 -

the different polarisations~and'll' are decoupled,

giving
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( 38)

s s
where the polari sation factor P = e ·eh is equal tos "'-0-_

( 1 s = 1 (01

(39) P -t fors

cos 2 eB s = 2 (1[")

For each polar! sation the allowed k-vectors lie on

the di spersion surface described by

(40) (K2_~_~2) (K 2-K -(k+h)2) = p
2 IJeh \2o -- s

Far away from the Bragg condi tion the di sper sion sur­

face s for both polari sation s are equal and repre sen-

ted by the spheres of radius VK2_-¥..~ around k = 0

and ~ = h. Near the Bragg condi tion the degeneracy is

removed. For instance the snallest branch separation

is (2. 77):

(41) 2r=;r- =
ext

The dispersion surface s are qualitatively shown in

Fig. 30b. The larger spheres with radius K represent

the di spersion surface in the vacuum.

The coefficients D~ and D~ can be taken from (2.80)

by replacing vh by Ps ~h. For instance exactly in the

Bragg condi tion we get for the q-'-polarisation the
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fields

(42 I

and for the 1l'-polari sation

(43) 1 ikr ( 2- e -- ef2 --0

ihr 2± e -- ~h )

T he upper sign refer s to the inner branch and the

lower to the outer one. The ~-fields are identical

wi th the Bloch wave s ~I and ~II of Fig. 14. How­

ever for the'l1'-polarisation we do not get pure sin­

or cos-waves, but always combinations of both, be-

cause ~~ + e;

The absorption of X-rays can be described pheno­

menologically by a complex dielectric constant or

by a complex densi ty g (!) =.s' (!) + i3" (El, re sul­

ting in complex coefficients dt h = ~h + i ~h' 8i-
- - -

milarly to (2.67)we get for the absorption of a

Bloch wave k the expression

Especially for the two-beam case we have

(45) with Ws =

0-
The minimal ab eorpta on is therefore 1J.f =/0 - IJ-E
for (J'-)but Af'Y= to - cos 2 eB'fh for°lr-polarisa-
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tion. Therefore only the ~-wave shows a strong ano­

malous transmi ssi.on effect, but not c be 1Y-wave.

Thi sis plausible from (42,43) because both "--wave s

do not vani sh at tre atomic posi tions.

For multiple beam cases the different polarisation

will no longer be decoupled as in the two-beam case,

which complicate s the problem. MUltiple-beam cases

are interesting for X-ray-diffraction, because even

lower ab sorption s can be obtained than for the two­

beam case, as ba s been demonstrated by [40J • A

number of symmetrical mUltiple-cases has been trea­

ted in [41 J, including the cases of Fig. 17. For

instance, for the four-beam case of Fig. 17, tre mi­

nimal absorption will be obtained for very snaIl waVe

lengths, for which the t baor y for X-rays goes over in

the scalar theory for electrons. Toorefore too smal­

lest absorption is that of (2.104). The corresponding

wave field van! sbe s quadratically at the atomic posi­

tions. Extensive t reacments of the three beam case have

been gi ven in [42].
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Fig •• /cd Orthogonality of Bloch functions

C) The Bloch functions A,e and D are identical
and orthogonal on B

d) The positions of A and B on the two-beam dis­
persion surface.
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• Bochvectors k1 , k2 , ~j' ~4 in the crystal
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