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1, Introduction

Two theories are widely used to describe the inten-
sities observed in electron or X-ray diffraction by
crystals. The "kinematical theory" treats the crys-
tal as perturbation and is therefore valid only for
sufficiently small crystals. For larger crystals one
has to take ihto account the multiple scattering of
the incident wave. This problem, which is simplified
substantially by the periodicity of the crystal, has
been dealt with first by Darwin in 1914 [1)3. More
fundamentally the problem has been treated in a se-
ries of papers by Ewald in 1917 [2] and later on by
von Laue‘[Bj . These papers form the basis of the 50—
called "dynamical theory", which has been extended
further by Bethe [4] for the case of electron diffrac-

tion.

The dynamical theory for X-ray diffraction is summa-
rized in the books of von Laue [5] ; 2achariasen EGJ
and Janes [7J as well as in two more recent review
articles of Batterman and Cole [8] and James [9]. For
electron diffraction we refer to the books of von
Laue[le], Heidenreich [11] and Hirsch et al. [12].

In the last twenty years there has been a renewed
and steadily increasing interest in dynamical dif-
fraction of X-rays and electrons, which is due partly

to the availability of large, perfect crystals and to
the development of the electron microscope. New branches




have evoived,_such as low-energy-electron-diffrac-
tion (LEED), channelling of high.energy electrons
and positrons or dynamical scattering of Moessbauer-
guanta. Also the dynamical theory has made consi-
derable progress. For instance starting with the pa-
pers of Moliére [13] and Yoshicka [14], the theory
for the elastic or "coherent" wave could be suffi-
¢iently generalized to take into account the effects

of inelastic waves, thermal motion or statistical

defects.

In this report we review the conventional form of Ehe dynamical
theory, We will emphasise not so much the two beam case or special
wave fields or special applications of the theory, but present the
basic principles in a self-contained way, including some new methods
such as the band structure for complex wave vectors or the t-matrix
method. Moreover we parallelly develope the theory for electron-,
X-ray—- and neutron-diffraction and discuss the similarities and
differences. A condensed version of this report will be published

as the first part of a review article in SOLID STATE PHYSICS.

The second part of that review, being referred to as "Part II"

in this report, deals with the theory of the coherent wave and the
effects of inelastic waves, thefmal motion, and statistically distri-
buted defects, both for electron and X-ray diffraction.

Since this is a purely theoretical article, we will
not give any long list of tables of atomic form fac-
tors, wavelengths etc. Nevertheless we feel obliged
to give the reader, being not familiar with dynamical




diffraction, an idea of the order of magnitude of the
most important quantities. Therefore the following
table gives some typical values of the energy E, etc.
for the cases of neutron-, X-ray-, electron-, and
low-energy-electron-diffraction, being abreaviated by
the symbols n, X, e and LEED. The most important
gquantity for diffraction is the extinction length,
which is essentially the thickness of the crystal for
which the Kinematical theory breaks down, For neu-
trons and LEED, the extinction lengths differ by a
factor 105, meaning that the dynamical theory is ab-
solutely necessary for LEED, but that most experi-
ments with neutrons and X-rays are well described by
kinematical theory. For electrons and X-rays the ab-
sorption length‘ﬁ;,given in the fourth line, is rough-
ly a factor 10 larger than the extinction length.
Here neutrons are an exception, since they are prac-
tically not absorbed. The last quantityj%— is the ab-
sorption length for the case that a Bragg reflection
is excited (anomalous transmission). For X-rays the
absorption is then reduced by a factor %30, which is
known as the Bormann effect, whereas the absorption
of electrons is only slightly reduced.




n X e LEED
energy E 10 meV 10 kev 100 keVv 100 eV
wave o c o o
length ) l A 1A 0.05 A 1l A
extinction 5 ¢ 4 ¢ 2 3 0 e
lenath & 107 A 107 & 107-10" A 5 A

7 ext
absorption g o 5t 3 4 © o
1 107 A 107 A 107-10" A 10 A
length }l
< [al
L >10% & | 30.10° & | 3.-(10%-10%H4 10 A

BF
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2. Electrons in Periodic Potentials

In this section we will review the basic facts and
theorems about the bandkheory of electrons in ideal
crystals as far as they are important for diffraction.
For more details we refer to the literature. [15]

2. 1. The €Crystal Potential

The motion of the electron is described by the Schr&-
dingerequation for the wavefunction ¢=

(1) up = { r+V(r)} {)(r) E ¢(x)

where E is the energy and V(rx) the crystal potential.
In an infinite periodic crystal the potential V(r) is
periodic, too. Therefore we have for all lattice vec-
tors R: V(r) = V(r + R). Furthermore V(x) can be split
up into contributions from the different unit cells
of the crystal. Therefore we have

(2) V(r) =V(r + R =2 v(r -~ R)
R

where v(r), the potential of the Wigner-Seitz-cell, is
directly connected with the charge distribution. For a
primitive lattice we have:

[\ ]

2
(3) vz = -2+ (o 8L

§ar 5236 withgdr'g(r)=z
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The first term represents the attractive interaction with
the nucleus of chargenumber Z, the second one the repul-

sive interaction with the electron density ¢(r) in the
first cell (V, = volume of the unitcell). Because of
electric neutrality the volumelintegral of S(E) over one
unit cell is equal to Z.

V (r) can be expanded in a Fourier series.

() VD) =7 elh¥

Due to the periodicity of V(r) we have to sum only over
reciprocal lattice vectors h because only these vectors
fulfill the periodicity condition eibg-- 1 for all R.

By considering

SdE et -hz . § L,

(5) ﬁ
VC
we get for Vh
- 00
(6) Vy = %— S' -ihr V(r)dr = %— g' -ihr v(r)dr
= c V. ¢ 3

where we have used equ. (5) and transformed the sum
over the different unit cells inD anintegral over the
whole space. Substituting (3) into (6) we get finally

2
40 e 1
(7) V.l.l. = - Vo hT {2 - fﬁ) with
£, = §ar e BE o(r)
pe §areTE g

Here £, is the "atomic scattering factor for X-rays",
being smaller than or equal to f, = Z for all h, There-
fore all coefficients V, are negative. ¥or large h only
the first term, i.e. the interaction with the nucleus,
remains. For small E\Vh approaches a constant. By ex-
panding eib! in (7) in powers of h, the first and second
terms cancel ( 9(3:_) = 8 (-£)) and the third one gives,
assuming cubic symmetry or a radially symmetric charge




density

(8) V°=-2;rvzz < } with (r>=-—‘gd£r29(£)
c

As a simple analytic example we can calculate Vh for

a free H-atom. Here we have

1 _y 32 -E X
(2) 3(£)= € % ; vir) =-=ce 0;(1+—)
- aB r ag
2
. th
‘“ezaz 2 + (—2_)

(10) Vy = - —g—

=2

242
[oe (37
Whereas for small r the Coulomb attraction of the nu-
cleus dominates, the potential v(r) decreases exponen-
tially for large r.
For many elements the coefficients Vh ythe scattering
amplitudes for electrons)have been calculated numeri-

cally [12].
Due to the reality of V(r) we obtain from (6)

*
(11) v = Von

Furthermore if S is a symmetry operation of the lattice
then we have V(r) = V(Sr) and SR is again a lattice
vector. Therefore we get for V, , since r+h=(Sr}- (Sh)

(12) v, =V

For instance, if S is the inversion (Sr = -r), this means
together with (1l1)

*
(13) vy =V =V

The modifications for nonprimitive lattices are abvious.
In this case the potentials v(r) is a sum of the potentials

M

(r = R™) of the atoms M~ at the positions RF in the
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first cell, Therefore we have for V, instead of (7)

(14) v, = 4me 1 Z (Z,u - f}f‘) o~ibR

=

where fﬁ’ is the atomic scattering factor for X-rays of

the atoﬁ/&.

2.2. Blochwaves

The periodicity of the potential has important conse-
quences for the eigenfuhctions q? and for the allowed
eigenenergies. To see this we introduce the translation
operator TR (which shifts every function £(xr) by a vec-
tor R being a lattice vector in the following,
RP

(15) T, £(x) = £(r+R) with T =e~ L =2

-

Rp

Due to this representation T, Ccommutes with the kine-
tic energy. But because of the periodicity, TR also

commutes with V(r) and consequentlywith H.
{(16) TE V(rx) = v(r + R) 'I'_13 = V(x) 'J.‘E or['I'E ,H] =0

Therefore the eigenfunctions ¢ (r) of H can be choosen so
that they are simultaneously eigenfunctions of TR. By
denoting hk as the eigenvalues of the operator ﬁ, the

eigehvalues of TR are eiBE. Thus the simultaneous

ejigenfunction ¢ (r), indexed now by k, obeys the
equations

a7 1y (o = o1kE dln) and E (D) = B §, (0

Due to eihg-= 1 one obtains the same eigenvalue ej'l513
if one replaces k by k + h, Therefore the index k is




-g=—

only determined up to a reciprocal lattice vector and
only the “"reduced" value of k is important.For instance,
k can be restricted to the first Brillouin~zone.

By making an ansatz of the form

(18) ¢k(£) = oikL w (x)

one verifies directly by applying TR on ¢k that uk(E)

is a periodic function in r.

(19)  w (x) = uE(E + R)

Therefore ¢k(£) is essentially a plane wave .25

‘modulated by a periodic function u(r) and is called a
"Blochwave", whereas uk(E) is often refered to as

"Blochfunction".
Due to its periodicity uktg) can be expanded in plane
waves eib{ analogously to (4). Therefore we have for ¢k{£)

{20) ¢k(£) =§ ¢, (k) Lk + hx

The. coefficents Ch can be determined by introducing(20)
into theSchrddingerequation (1) . Considering the orthego-
nality of the different plane waves e‘“—lg (5), this re-
sults in an infinite system of linear homogeneous egqua-
tions for the C (k).

2
+ 2 -
(21) {EE - 3= (k + h) _} CE(E) = % v.l'.l.-ﬁ. ch' (k)

This system has only a solution, if its determinant
vanishes.

2
1 2
{EE 7w kB }gg.h' " Vh - n

(22) det -0
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For each k the determinant vanishes for an infinite num-
ber of energies EV(E) (v=1, 2, ...) being compatible
with k. They can, for instance, be ordered according

to their magnitude.
Ei(&)é LR éE\,(E) -éE (.]_(.)é PR

All the energies obtained for a given VY by varying k
in the first Brillouin-zone are called the v™ energy
band, If k varies in a certain direction, we may get
qualitatively the behaviour of E as a function of k
as shown in fig. 1. The energy E,,being lower than all
energies of the first band,is forbidden. For E = E,
we get just one k vector. Between the first and se-
cond band there is an energy gap so that Eq is not
allowed. For E = E4 we have a bandpverlap. We get as
solutions k~vectors belonging to different bands.

The orthonormalization condition for the Blocﬁwaves is
400

dr * ,

- ¢.}£l’vl (x) ¢]_'C.;V(£) = 8(_15 - k") (S\\)j\)l

(23) —x
(27)

o0
for all k and k' in the first Brillouidzone.We have
choosen the factor (27F )3 to get the same condition

as for plane waves.,

By introducing the ansatz (18) int0 (23) we get for the
BlochFunctions

1 *
24 v {5 I vy, Oy ) = 8 o
c ?

where we have taken into account that




~]]=

]
(25) . et - BIR _ ‘21” . 8 - k")
R

for kx,k' in 1. Br.zone,
Analogously we get for the coefficients ch(g,v ) using (5)

* 3 -
(26) Zh chts,v ) CE(EHH = {,“W,

H

The system of Blochwaves is also complete,

(27) ZS

yielding for the coefficients Ch

dk
5 )3 4)kp(r)1)kv(r)—-g‘(r-r)
T

* —
(28) % Cpr (ke ® ) €y (e, V) = 6\2:3'
The eguations (26) and (28) mean that the matrix
M eh(k ¥ ) is unitary'(H = M+). M represents
¥v,h

just the transformation from all the planes waves

ei(E *hr with the same reduced k-vector to the Bloch-

waves ¢k Vv with the same k, as can be seen from equation
’

(20) . -

An important quantity is the current density of a Bloch-

wave, being periodically in space because of the trans-
ro ti of

lation properties ¢£'9

. + * *
(29) 3y () = 357 { b @ dr by @ - 0 ‘&.v}

= :ik,,, (r + R)

Using the plane~wave-expansion (20) and averaging over a
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unit cell, we obtain for the average current density
by using equ. (5):

(30) j (r) _*
<15"’£>vc‘ﬁ 2 k+m |c|?
h =

Therefore the currents of the different plane waves add
incoherently. This result can be simplified further by
using the Schzoedingedequation (21) for the C . Multi-
plying (21) by C;VE,V ), summing over h and differentia-
ting with respect to hk, one gets

G kR -Reew fig)?
; k
2
+Z{<E_—&r%— k+mi)c, - Vh—h'ch'}%ac:
W - W -

|
o

. Z{(E _ (k + h) ) e ) Vh - E.cﬁj%'&kch, =

h

—

Obviously the second line vanishes and by considering
equ. (11) the third one, too. Further according to (26) we

have Zi IChl2 = 1 and so we get

1 QE, (k)
(32) (r)> -5 %

Therefore the current is always perpendicular to the
two dimensional surfaces E, (k) = constant, which are
called dispersion surfaces.

2.3. Complex k, E and Symmetries of E, (k)

Up to here we have tacitly assumed, that the eigen-
values k and E are real. However this has not necessarily
to be so, because the determinant (22) has formal solu-
tions alsofor complex k and E. For instance, the eigen-
solutions ¢k for complex k are damped waves, decreasing

in one direction and increasing in the opposite. But
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they are also eigenfunctions of TR and H as (17); the
only, but very impoxtant difference is that the scalar
product (23) diverges due to the exponential increase.

In an infinite ideal crystal and for stationary problems
such eigenfunctions for complex k and E are only of
pathological interest, since all the Blochfunctions for

real k and E form already a complete set (27). However
scattering of electrons by a finlte crystal produces
"damped" Blachwaves (with real E) quite naturally, as
will be seen in section 3. Furthermore for a finite crystal
there are no divergence difficulties for the scalar pro-
duct because the volume of integration is finite., Simjlary
by considering time dependent problems, e. g, initial value
problems, complex E's can occur as decay constants. There-
fore in the following we will allow E and k to have com-
plex values and will consider the symmetries of the
function E,(k) in the complex E,k space.

First we see from the determinant (22) after replacing k by
k+h" and then introducing h+h" and h'+h" as new summation
indices, that for k+h we have the same manifold of allowed

energies E Erress as for the Bloch vector k. Therefore

1'
we obtailn

(33) Ey(k) = Ep(k+h)

as long as k and k+h refer to the same band {(i.e. belong

to the same Riemann's sheet; see below)

Because the Blochwaves k and k + h also have the same

eigenvalue elEE for the translationjoperator TR ¢ they

can be choosen as periodic in k.

Further if S 1is a symmetry operation of the crystal,
then we have V(r) = V(Sr) and together with h also Sh
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is a reciprocal lattice vector. Using {(12) and by substituting
in (22) Sh and Sh' as new summation indices, we get the same mani-

fold of solutions E (-for the wave vectors k and Sk, so that

3 ==
(35) EY(E) Ey(S}_‘.)
if k and Sk belong to the same band., Therefore E has the same
symmetry as the potential.

Especially for the inversion this means:

(352) E (k) = E,(-k)

A special consequence of the inversion symmetry is that
for k = 0 we get

OE (k)

{35L) v

k=0

on the other hand, if there is a reflectioqsymmetry around
a plane, then we have for all k on this plane

OF (k)

(3SC)EtT-]£—-— =0

where n is perpendicular to the plane.

Further, since V(x) is a local potential, the matrix-
element of V(r) in the determinant depends only on the
difference h ~ h'. Because the first term in (22) 1is
symmetrical in h and h' one has

(36) E_(k) = Ey(-k)

independent of the existence of the inversion as a
symmetry operation, as one sees by interchanging h and h'
in (22).
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%
Due to the reality of V(r}) we obtained in (12) Vh = V_h

Therefore by forming the complex conjigate of the determinant

we must have

(37) E (k) = E¥(k*)

where E(K) and E*(E*) will refer to the same bahdly-mostly,
but not necessarily. This result is important for the sub-

sequent discussion.

Combining the symmetry relations (35), (36) and (37)
we have

- — _ I
(38) E?(E) = E\,(SE) = E\)( k) = E‘,(E )

From the following identities for the eigenvalues of
the translationoperator TR

*

{39) ei].SB = ei(SE) (SR) = ei(-.].{..) (-R) = (e-i.}E*B. )

we see that in the absence of degeneracies the corres-
ponding Blochwaves are equal apart from phasefactors,

/ *
(40) 4 @) = A-bgy (s = ’A'-:#_E'?(-;_) e Px,p (-2)

For gpecial choices of the phasefactors we refer to the
literature [157] .

So far we only considered pureljelastic scattering by the
potential V(xr) of section 2.1. However this is a poor
approach because inelastic effects often are very impor-
tant and cannot be neglected. In part II of this review
we will see that some of the effects of inelastic scat-
tering can be taken into account in a relatively simple
way by considering only the coherent wave., For this co-
herent wave inelastic effects lead to an apparent
absorption, which can be described by a socalled
"optical potential". However this "optical potential"
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is no longer such a simple potential as V(r) of section 2.1.,
as will be discussed in detail in part II. For instance,
it 1s a nonlocal potential, i. e. an integral operator

(41) U b = {ar' vz $tzh *)

Moreover, it es nonhermitian: U # U+. Most important,
however, is the fact that in an infinite crystal the
optical potential U is periodic.

(42) U(x,z') =U(x+R, r' + R

Therefore Bloch's theorem and the equation (15) - (22)
of section 2.2.remain valid. For instance, for the dis-
persion condition(22) we get for such a potential

+ b, .1£+E'“

2
(43)  det | E - o+ ?) Sppt - U

I~

with

dr'e—i(s +h)r .

g &8

=1
44 O b p k4 n T Vg -‘5 dz

] ]
. U(x,xr') l(k + h')r
The regions of integration for r and r' can also be inter-
changed due to the periocdicity of U,

Now we will discuss the symmetries of E ,(k} for the
optical potential U,First we note, that the periodicity
of E, (k) (33) and ¢k (r) (34) in k space remains

— _'\) - —_—

because this 1s a direct consequence of the periodicity
of the potential., Similarly the symmetry (35) due to
symmetry operations S does not change either., However,

*DIt is interesting to see, that a nonlocal potential U(r,r') can
:lw:yslbe represented by a local, but "velocity" dependent pe-
entia

i
vir,p) = gdg U(x,r +R) e¥ R'R

, i
Here p = % Br is the impulsoperator, and eV ER is the
translation operator for a translation R.
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the relations (36) and (37) will change.

According to (44) we get the following identities for
the matrixelements of U

1

fa) = +
(43} Uan, ket = U dignt,-k-h = (¥ k4nt k+h

where ﬁ is the transpose of U and U+ the hermitian adjoint.
Making the anologous substitutions as in (36) (37) we

get a relation connecting the band structure of the po-
tentials U, ﬁ and U+ B

| ) N
| 3 I [ I {,{U’f} o j
(46) XY (0 =270 (-0 = (8T 0"

A
For the special cases that U U or U = ut we get

symmetry relations for E ,(k)

(47a) E(-k) for U=
(470) E, (k) = EN(k*)  for U =ul
(47¢) E:(—Ef) for ut =T (U(E,E')real) *%)

These relations are in agreement with the special rela-

tions (36) (37) for local potential. For instance, equ.

(36) immediately follows from (47a) because a local po-
tential V(r) is always symmetric as can be seen by wri-

ting it in the nonlocal form V(E)SYE - r'). Similarly

equ. {37) follows from (47b) because a local, but her-

mitian potential is real. As is shown in part II, the optical
potential U(r,r') is symmetrical. Therefore the inversion sym-

metry Ey(k)=E (-k) is always valid.

The Bloch waves for complex k will in general be no more
orthogonal as (23), simply because these integrals

;E;A real potential U(r,r') is invariant with respect to time
inversion. Note however that the optical potential is not real.
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diverge for complex k. However, one can still give an
orthogonality relation for the eigenfunctions ¢ of U

and U+ for the same k-vectors by the following identity
+j '
U {u} +. fut}
( k*pl r B ¢k : ) (H ¢{*pl ¢k v
Wy, _ routh {ut} lu
G: v (_]E) (E P! (k )) ¢-}£”]P| 4 ¢-]£,%>

Due to (46) the scalar product has to vanish for

Y ¥ V', Therefore we get for the Blochfunction ukv(r)

(the exponential factors eiEE in (48) cancel each

(48) O

other so that there is no divergencel):
1 «uth, o oy,
(49) & S dr u (x)uy K (r) = g

1 |
¢ Vg k* , ¥ k, PJ9

This is a generalization of (24) for nonhermitian po-

tentials and complex k.Especially for hermitian poten-
tials but complex k we have

(50) %‘S dr Ypw ) e L2 = 8\”,

Thus one can see, that due to these orthogonality relations and due
to the divergence of the scalar product for different k and X' one
has to be somewhat careful by operating with "damped" Bloch-

waves. However, many relations and methods familiar from
"normal" Blochwaves can be used for damped ones as well.

2.4. Bandstructure for Complex k (one dimension).

f'or the scattering of electrons by a crystal, the energy

E is real, of course. For the representation of the
wave function in the crystal we therefore need only
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those Blochwaves which, wether oscillating or damped,
all have the same given energy E, as will be discussed
in section 3 in detail.

Moreover we consider only the scattering at crystals
being infinite in two directions (x and y) and limited
in the other (z}, i.e. we consider only the scattering
by a crystal f£illing the half space z > O or by a crys-
tal slab filling the space with O £ z £ t. For these
crystals the periodicity of the crystal potential in

X and y direction is not perturbed by the crystal sur-
faces because the potential in the vacuum V(x) = 0O
fulfills every periodicity condition. Therefore the
potential in the whole space has the x-y periodicity of
the crystal potential. Accordingly, the x-y components é
of the incident plane wave K = (é?le) are good guan-
tum numbers, meaning that all allowed Blochwaves in the
crystal must have the same reduced x-y-component g,
which is also real.

Therefore only the z-component k, of the Blochvector
k= (E;kz) can be complex and we are interested in the
band structure Ep(kz) as a complex function E of the
complex z-component k,, with -lix,y = ﬁ being given and
real. Egpecially we have to know those complex k.,
values being compatible with real energies E,(ky).
These k, values ly on lines in the two dimensional
k,~plane named "real lines" by Heine [16] . On his
work the following section is based.

First we want to discuss the one dimensional band struc-
ture. We start with the symmetry relations for E, (k)
which are for a local and real potential according to

(36) (37) (33) :

(51) E (k) = E (~k) = E*(k*) = E(k +n-2—-:)

forn=0,%1,%2,,,.
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»
One sees immediately that for k = k we have Evtk)

¥
= E\Jk), i.e. the real axis k = k¥ is a real line

E = E'. Moreover the lines k = n§'+ ik" with real k" can
be real lines, too, being perpendicular to the real

axis. For we get from (51)

X W =g (-nk
E (-nz - ik") = E (-ny + ik"

(52) E (nI + ik")
= E*(n’g + ik"

Therefore E is either real, if the energies on both sides

refer to the same band (Ev(n'ﬁ/a + ik")} = Eg-), or there

are two bands with comple§ conjugate energies (EYCn W/a + ik") =
Eyi (n7/a + ik")).

As will be shown later, these are already all the
real lines in the one dimensional case, namely the
real axis, the imaginary axis and the Brillouin-zone

W] =2

boundary k = t— + ik", Further we have on these lines

E (k) = E,(-k) = E,(k*). Therefore the whole band
structure is specularly symmetrical with respect to
the real and the imaginary axis.

The Schroedingerjequation in one dimension with a perio-
dic potential V(x) = V(x + a) is an ordinary second or-
der differential equation having two linear independent
solutions for each energy. From this it follows simply
that the function M(E) = cos ka is an entire function
of the complex variable E as has been shown by Kohn [17]
Hence the inverse E(/u,) of the entire function /u(E) is
an analytic function of/M.except where

dﬁVéE = 0. In the vicinity of such a point’#? we have

b L 2 - Lg; _ '
/LL ‘)}.“.'l" 5 /U* (E E ) or E E‘L +V/ll'; (/L{ /ll;.)
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As a function of k this means

(53) E=Eg+c Vi = k)

Therefore E is an analytilc function of k in the whole
k plane with the exception of the branch points kf.

Above we have seen that the real axis also is a real
line and that at the points k, = n% real lines leave

the real axis going into the complex plane. At what
points kg on the real axis can this occur generally? In
order to see this we expand E(k) and E{(k*) in the vici-

nity of ko.
(54)  E(k) = E(ky) + E' (ko)8k  + 3E" (ko) (k)2 + 0o
with &k = k = kg
E(k*) = E{kg) + E' (ko)dk* + 3E" (ko) (IK¥) % +...

Because for a real line we have E(k) = E(k*) and because

k should be complex we find

(55) E'(ko) =0 and 49k = 1§k" with real &k"

Therefore real lines can leave the real axls only at
extrema of E,(k) and only at right angles (Fig. 2).
Moreover such an extremum ko is a saddle point, i.e.
elther a maximum on the real axis ((Jk)zg, 0) and a
minimum on the perpendicular real line with

(Sk)z = -(5k")2 { 0 or vice versa.

e

In the one dimensional case we have extrema at the
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positions k, = O and kg =¢'T/a (or n'"'/a.) which follows

directly from E (k) = E (-k) and Ep(—;-r +k) = E L - k).
No other extrema can occur because this would automati-
cally lead to more than two linear independent solutions,
which is a contradiction. (Fig. 3) Moreover the real
lines, leaving thereal axis at k, = n% : are straight

lines, as has been shown by (52).

The behaviour of the real lines in the wvicinity of a
saddlepoint also can be studied by the following con-
tour integral around a contour T surrounding ko close
enough to include no branch point (Fig.2,l16]). By a
well known theorem we have

(56) I = Sdk Sl £00]= 2ns(z - 2

, T
where Z and P are the number of zeros and poles, res-
pectively, enclosed by the contour and eounted according
to their multiplicity. Putting £(k) = E(k) - E(k,)
we have due to the saddle point at kg 2 = 2 and P = O
and consequently

(57) I = 4%i = -{-lnIE(k)-E(koﬂ +iarg{E(k)vE(koﬁ:}
T

Here the bracket with the index 1" means the change of
the bracket by going around the contour. Because the ln
gives no contribution, the argument of E(k) - E(k,) in-
creases from O to 4w on going around the contour. There-
fore, there are four points k on the contour with

real E(k), namely the k values belonaing to

arg [E(x)~E (ko= ©,7,27 and 37 which are the crossing
points of the real lines with the contour‘t'(points

A, B, C,D in Fig2), From this simple theorem it fol-
lows directly that real lines cannot simply terminate.
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For we get the result I = 4ri for every closed contour

surrounding kg. For the same reason they cannot branch.
Moreover the energy varies monotonically along the real
line exept at the saddle points k,+ because every point

with g% = O has to be a crossing point of real lines (56).

Because the argument (56) (57) holds always as long the
contour ©© does not enclose a branch point kg, there are
only two possibilities for the real line in the complex
plane (line BD in Fig. 2). Either it reachkes a branch
point kP or it does not., If it reaches a branch point
then it behaves in the vicinity of k,‘L as (53), namely
the real line runs around the branch point into another
Riemann sheet of the complex k plane, from where it
will loop back to the real axis, running on the same
line in k-space, but on the other edge of the branch
cut in the next Riemann sheet. All along the energy va-
ries monotonically until the next saddle point kj on the
real axis in the next Riemann sheet is reached where the
line crosses the real line on the real axis.

On the other hand, if the real line encloses no branch
point, then the line has to run to infinity while the energy

always varies monotonically. However, then the k-value

gets extremely large !
l—iﬁ—liﬁ V(r) and the band structure can be calcu-

lated by neglecting V{r). But for free electrons we have

‘ 2 52
(58a) E(x) = (x + n2) 2o, 0o, 11, £2,.,.

Or with k = k' + ik" and - % L gL "'-ér-we obtain
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(58b) ;—‘; Bgk) = (k' + n-?-L-')z + 21k (k' + nlT)- ko2

and only get a real line for k' = 0 and n = 0. This is
the imaginary axis along which E decreases to -a for
increasing }k"|. Therefore the imaginary axis is the
only real line running to infinity, all other ones reach
a branch point and loop back to the real axis.

Therefore in the one dimensional case we can summarize
the result as follows. The whole band structure is
specularly symmetric to the real and the imaginary axis.
For large negative energies we have purely imaginary k
values (Fig. 4 and 5, point A). By moving along the ima-
ginary axis to k = O the energy increases to the lowest
values of the first band (point B). Then moving along
the real axis the energy, continuously increasing,
assumes all the values of the first allowed band until
one reaches the saddle point C at the Brillouin Zzone
boundary. Here the real line again enters the complex
plane and moves to the branch point kl' the energy in-
creasing to D. There the real line leaves the first Rie-
mann sheet and moves in the second one back from k, to
the real axis, where the energy reaches the bottom of
the second band (point E). From here on the energy assu-
mes all the values of the second allowed energy band,
whereas the real lines run to k = O in the second sheet
(F) . By going around the branch point k2 (G) we get
into the third Riemann sheet and to the third band on
the real axis (H), etc.
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2,5, Band Structure for Complex k (3 dimensions and vsvt)

For the three dimensional case many results of the one
dimensional band structure remain valid. First we want
to define the appropriate basis vectors of the lattice
for the scattering at a given crystal surface lying

in the xX-y plane. We choose the two shortest (non-pa-
rallel) translation véctors a; and a, in the crystal
surface. Then the total potential in the crystal and
in the vacuum is invariant under a surface translation

RE =na + n,a, . Further the third basis vector a,
-is perpendicular to both ay and a, and gives the shor-

test periodicity in z-direction. As an example we have
~plotted in Fig. 6 the basis vectors a, a, and 3y for
the {100) surface of a f.c.c, crystal., This is a non-
primitive description of a primitive lattice,with each
unit cell containing two atoms. Analogously 91 and 92
are the reciprocal lattice vectors of the surface

net, lying in the x-y plane, and 23 points in z-direc-
tion.

Then according to the last section the reduced x-y com-
ponent g:(in the surface mesh (b, , gzl)of the Blochvec-
tor k = (&, k,) is determined by the incident plane
wave and real. Assuming the surface plane to be a re-
flection plane, we have for the energy E{§, k;) as a
function of k; for a given real ﬁfthe following sym-
metries:

*
(59) E(kz) = E(-kz) = E (k) = E(kg + nal3->

Therefore the real axis k, = k;‘ is again a real line.
Further the whole bandptructure is specularly symmetri-
cal with respect to the real and the imaginary axis.
Blount[lB:] has shown that E(k;) is an analytic function
of k, everywhere in the complex plane with the exceptions
of branch points of the type (53), which are the only
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singularities. However, in disagreement to the one di-
mensional case extrema do not only occur at

k, =0 ort X ,
a

z
Analogously to (54) a real line can leave the real
axis only at saddle points k, and at right angles
(Fig. 2). However, these real lines have not necessa-
rily to be straight lines. They only are straight due
to the inversion symmetry for kg = O and

ko =¢ﬂ} Further the real lines cannot terminate

a. *
and canngt branch as can be shown by the Z-P-theorem
(56) (57). In principle they can cross, for instance
in ko on the real axis. But a crossing point for com-
plex k, would be highly accidental. For according to

OF

(56) we have R = 0 at a crossing point. As Herring
Z

[19] points out this would be vanishingly probable
because the slightest perturbation would destroy E being

real and e = 0 at the same point(exept for the crossing

Pk
points on the real axis, being a real line for symmetry
reasons). Therefore along the real lines the energy va-
ries monotonically, exept at the saddle points on the

real axis.

Again there are only two possibilities for a real line
leaving the real axis at a saddle point. Either it can en-
close a branch point of the type (53), enters there into a
new Riemann sheet and loops in this sheet back to an-
other saddle point on the real axis coming so to the
adjacent allowed energy band. Or it has to run to infi-
nity with monotonically varying energy. Because the

k, vector on these lines gets arbitrarily large, the
occurence of these lines can already be seen in the free
electrons approximation., For each reciprocal lattice
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vector h = (;ﬁ h,) with x-y component & we get
(60) E(ky) = (k + 0% = (F+2)7 + (ky + hy)?
42

= B+ )%+ 0y + 0%+ 20Kk + hY) - k32

where we need only the section of the parabola
(k, + hz)2 which falls into the "first Brillouinkone"
-X £ k! é-év— . We see thét for k'z = ~h, we get a

a3 Z 3
real line running to k; %0 ,i.e. we get a real line

for all reciprocal lattice vectors h with

—-‘% L hzé -g— +» Therefore in three dimensions we getcm2
3

real lines running to infinity contrary to the one di-
mensional case with one line only.

Qualitatively we have therefore a situation as shown
in Fig., 7. We start with the parabola of g = (ﬁl r ©

2
at the energy (ﬁzfjh) . The reversed parabola

(£Z+_£1)2 - k;z belonges to a real line running to in-

finity. If we add to this the parabolas belonging to

the reciprocal lattice vectors _ 27T
h = (f y N— )
=1l,n d1 a3

then we have a typical free electron bandstructure in
one dimension. However, we have a lot of other para-
bolas in three dimensions, for instance the one of

h = (4, , 0) and the sections of the parabolas
_2 ,o ._2

hon = (fb ’ nzw) which again look like another typi-

cal one dimensional bandstructure with an additional
real line going to infinity. Thus we had to gy-
perimpose an infinite number of one dimensional band~
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structures with one real "infinite" line each.

Now by switching on the potential V(r), the degeneracies
at the crossing of the different parabolas is removed
and the bands split up (Fig. 8). The extrema (saddle
points!) on the adjacent bands are connected by a loop
due to a real line going into the complex plane around
a branch point. Whereas the real lines for k' = 0 and

k' =i:% are straight lines for symmetry reasons, the

"additional" real lines inside the Brillouin 2zone are

not straight. Moreover one sees that for a given energy
one gets only a finite number of "allowed" Blochwaves
with real k (in Fig. 8 at most 4), but always an infinite
number of "damped" Blochwaves with complex k,. The whole
bandstructure is symmetrical with respect to the real

and imaginary axis.

Nonhermitian potentials: The basic assumptions for the
foregoing discussion of the bandstructure are the sym-
metry relations (51), (59), especially the equation
Esz) = E:Tk;) resulting in the real axis being a real
line. However the optical potential is in general a
nonhermitian potential, for which this symmetry relation
is not wvalid. Instead we have the relation (46), namely

E{[i} (k) =(E{U:5 (k";))* . Consequently the real lines for

the potential U and the ones for uT lie symmetrically

to each other with respect to the real axis, which is

no more a real line (Fig. 9.) (exept again for U = U*,

where both lines coincide on the real axis). There-

fore all the general predictions for the band structure

are no more valid. If however the optical potential is

only weakly nonhermitian, we can study its band structure by
means of perturbation theory,starting from a hermitian
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potential, as will be done in the following.

Splitting the potential U up into anhermitian part U’
and an antihermitian part iu"

+ -yt
(61) U = U'+ 10" with u'= B =u't; u's = =yt

we treat U"as a perturbation, The eigenfunctions 4)(:)
for hermitian potential U'are defined by -

(62)  (H +0) q:lﬁ"’\’, = E‘°’ (k) ¢‘°’

To obtain the Blochwave ¢k p () for the potential U
N

for a given energy E and a given x-y-component g of

k ={&,k;| we make the ansatz for ¢k,v :

(63) d’k,v(z) - ch' ]£°3.(r)
= vt

This is really an ansatz for the Blochfunction uk 9

in terms of the ulio‘)?'s, building a complete system for
real k (27,28).

Encouraged by the orthogonality (50), we assume also
completeness for complex k. Then We have for the co-
efficients C,

( . "
(64) (E:)}_]g) —E) Cv+1 % Uw,(y C9.= 0
with

o0
= i '
w.(k) '-Vc\j; drgdre " Uk, (x) »

(o)
Now in OF order we have E = E, (ko) with ko = (R kog);

in first order k = k, +§'k 1s determined by

(o) (o) - - "
(65) E'07 (hotSk) ~ E')7 (ky) = -1U",, (ko)
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Expanding up to linear terms in 91_{_ = (O,S‘kz) we get
U" yulko)
z = = FEAES
alEoz

(66) ok

and by using the plane wave expansion (20)

1 *

(67) Skz = - i‘ﬁ(\-ﬁ-}_{o—) £
dkoz

k3 |
.CE(-]EO’P)CI'I' “-‘o"”“u'h-g'

foy

?

where for a local potential U(r,r')=Wr) &§(r-x')
the coefficientstjh are given by ( 6). It is interesting

to see thai:gkz is a periodic function of k,. Further

for real k, in the allowed energy bandsSkz is purely
imaginary representing the absorption of the Blocl'*wave.
Moreover it is inversely proportional to the z-component
of the group velocity which is plausible from a classical

point of view. For %%— ® 0 equation (66) is no more va-
oz

lid and in (65) we have to take the guadratic terms in

€k, into account. Due to dispersion this leads to finite

values of Skz even at the extrema Qs/bk =0 (instead
zo

of ™ according to (66)).

. ot k) |12
(68) Sk, = 21 .S
2 1 O°E(kp)
2 k2,

Therefore ¥k,, being proportional to {U' at the extrema,
is especially large and the absorption is very effective
at these points. For the wave function we get in first
order:
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(69) ‘bI_C_,V(E) = oltkgflox {uka“&b!’(g +

(k)
vv''Zo (o)

+ E U ,(5_)}
E, (ko) -E (ko) =or¥

VY

iU"

where the most important term for real ko is the dam-

ping factor ei‘gkz z (§, imaginary).

Near the branching pointsk, where the energies of
different bands are equal one has to apply degenerate

perturbation theory. The results are somewhat lengthy and

will not be given here.

In Fig. 9 we have plotted the real lines for the nonher-
mitian potential U according to the present perturbation
theory., For simplicity we have choosen the linear case,
Further U=0 is assumed to be symmetric, as it is always the
case for the optical potential, leading to the inversion
symmetry (47a) in the complex kz—plane. The upper figure
shows E{?)(ko) in the expanded zone scheme, whereas the
lower shows the real lines in the different sheets. The real
lines of the potential UT {dahed lines) are obtained from the
real lines of U by reflkction at the real axis. Further the
crossing points disappeared, being very sensitive to the

perturbation (68).

2.6 The Two Beam Case [5-12]

For electron diffraction the calculations of the Bloch

waves and the band structures is simplified very much since the
energy is much larger than the potential. Therefore one can apply
perturbation theory. For V(r) = 0, i.e. in the free
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electron case, we get for the C 's (21)

2
2 2 - _ h" 2
(70) {K - (k+h) }CE =0 with E=2-K
For given energy and given k the expression in
brackets will in general not vanish for all h and
there are no allowed waves. However for certain k it

may happen that K2 = (5&&)2 for one h, say for h = 0O,
Then Ch = Sh o and the plane wave eihE is allowed.
L

For V $# O egquation (21) gives
2 2 _
(71) {Ko - (k+h) jch = ; Vh-l_m' CE'
(¥h)
_2m 2 _ L2 _2m o
with VE = ﬁ—.z VE and KO = K ~vg = ,]12 (E Vo)

Now if V(r) is small, we get by introducing the

plane wave ansatz Ch =Sh o on the right side of
-— -y

(71) for

(72) h =0: (Kg -k

14
I

) 2
KS - (k+h)

For small v, the denominator will normally be much

larger than Vi Therefore all "secondary waves" Ch

for h # O are small and we have only one strong beam

¢ = eig; with a élightly renormalized k-value,

However, if the condition K2 = (k+h)2 is fulfilled

not only for the "primary wave" h = 0, but also for
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other, secondary waves h %+ 0, then these waves may also
become strong and the perturbation theory (72)
breaks down. Graphically this condition means that
for certain h the vectors k+h lie on or near the
"Ewaldsphere" with radius K (Fig. 10). Because the
on% 2 xl 2
energies 5 k~ and 3o (k+h)” are nearly equal in these
cases, we have to apply degenerate perturbation theory
taking into account all strongly excited plane waves.
In this section we restrict ourselves to the two beam
case where only two plane waves k and k+h are strong.
For this we get from (71)

o2 2 _
(73) (K5 = k) Co = vy Cy

By setting the determinant equal to zero, we get the
dispersion equation

2 2 2 2

o = K MKg — (k+h)7) = v vy

(74) (x

The allowed k vectors for a given energy lie on a
dispersion surface consisting of two branches (Fig. 1il)

For v, = O it degenerates into two spheres with radius

h

Ko, one around the reciprocal lattice vector h and the
other around the origin. For i # O the spheres split

up at the intersecting line, where the Bragg condition

52 = (5+g)2 is fulfilled, and the outer branch 2 com-

pletely surrounds the inner branch 1. Exactly in the
Bragg condition we have for k = kg: Eﬁ = (EB+E)2.

Near the Bragg spot k, we get from (74) by setting

h

k = EB+8_]£ and neglecting 3*9 ana 4P order terms in Fl{:

(75)  4(kp S k) (kpyth)Sk) = vpov_y
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Neglecting the higher order terms in 55 for v, = 0

is equivalent to replacing the spheres in Fig, 11 by
the tangential planes in the point EB (Fig. 12). By
decomposing the vectors in (75) in § and Y components

we get with K, sin 6, = h/2
2

Vh
2

(76)  Sx2 - §x2 tggeB =
cCos ©

§ ’

O o —

4K B

In this approximation the dispersion surfaces are
hyperbolas, the asymptotes of which are the tangen-
tial planes of the spheres. The smallest separation
of the two branches is

| Vi |
KocoseB

(77) Ak =

_ 27 :
The distance dext = 5K ¢ over which the two Blochwaves

=t

on the opposite branches get a phase difference 2%, is
called the extinction length.

From the guadratic equation we get for the energy as a
function of k

(78) 2 E(0)-vy = k2 = 3 (KPrem)?) 2
n

L]

t %J(f—(m)z)z + 4lvh(2

showing that for Ez = (5+g)2 there is a band gap of

the width AE = 2|V, | . For k = (k,L,O,O)”_l_l_ we have plots

ted E(km) according to (78) in Fig. 13a. For an ener-
ay E1 below the band gap we get four k -values. For
this energy the dispersion surface 1is represented by
two nonintersecting spheres. This is shown in Fig. 13b,
where the four k-values ” to h are marked by points.




-35-

For the energy E2 in the bandgap the spheres have
opened up (Fig. 13c¢) giving only two k-values in Fig.
13a, whereas for the energy Ey above the bandgap we
get the dispersion surface of Fig 1l1l.

Introducing Kg from (78) into equation (73) we get
for the ratio

Cp, (k)
(79) = sign (v (W'.".Y1+W2 )
Co (k) =

with W= — - =

Here and in the following as well as in (78) the upper
sign refers to the inner branch 1, the lower to the
outer branch 2, By normalizing the C
(26) we have

h's according to

%2

(80) C, = = (1-7-

W
& e

V2

Ch=1’sign(v}_)-;—2_ (1: il )

Ul +W2

For|W|—> o, i.e. if the Bragg condition is not ful-
filled, we get for k vectors on the sphere around the

origin: C. =1, Ch O and on the sphere around h

o
Co = O and n =%+1 (Fig 11).

Exactly in the Bragg condition we have W = 0, The two
Blochaves §, (r) are in this case

I
(81) ¢(£) = %g elkr (1+eib£) =Y2 e

h
i(k+F)r .
2 .cos[%f;)
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h
i(k+ 7)x

| T h.r
(82) (x) = -2 ie sin (== )

For vh.< 0, which is always the case for electron
diffraction, the Blocﬂwave @I lies on the outer branch

and ¢I: on the inner one. This would be reversed for
> O (x-ray diffractionl). Characteristic for both

h'r
waves are the modulation functions cos{=5~) and
hex
sinL=%=). Therefore ¢I is always maximal at the ato-

mic positions on the reflecting planes and vanishes
in the middle between the planes (Fig. 14). Contrary,

¢I. has nodal planes at the reflecting planes and is
maximal between these planes. Whereas both waves have
the same energy, the wave on the outer branch has more
kinetic energy due to the fact that k and k+h are
larger than on the inner branch. This can also be seen
at the form of the wave function ¢I and @II. E.g. the

wave ¢Irbeing concéntrated at the atomic positions,

has a larger (but negative) potential energy than ¢II,
and consequently a larger kinetic energy.

It is noteworthy that the Bloch functions on the different
branches 1 and 2 of the dispersion surface, but for the

same parameter W, are orthogonal and further we
the fOllOWing relations (see also section 2.8)

1 2 1.2 A | 2 2

(83)  Cj €y +CpCy=0=C,Cp+Cy Ch
11 2 2 . _ 1.1 2 2

Co Co * €5 Co=1=0CpCp+CpCp
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According to (32) the average current is always per-
pendicular to the dispersion surface. In the two-beam
case it is given by

o (ne), -t 2 i gs)
C

In the vicinity of the Bragg condition the direction
of the current changes by an angle of 2 eB ; namely

from the direction k = ky on the sphere around the

origin to the direction k+h & k. +h on the sphere a-
round h (Fig. 12).

Exactly in the Bragg condition (W = 0O) the current is
parallel to the reflecting planes.

For an absorbing crystal, i.e. for a nonhermitian po-
tential, the k-vectors are complex (see section 2.5.).
It is clear already from Fig. 14 that the absorption
of the BlocHwaves ¢! and ¢*T must be vastly different
because the "absorption power" will be concentrated at
the atoms. We get a higher than normal absorption for

¢I and an anomalously low absorption for the sin-waves #II
representing the wm-called "anomalous transmission"
effect. Quantitatively we have from (67) by assuming a
local imaginary potential iU'(r) with coefficients

" — "
Ut =Uly

(85) {Jk, = -

[ stontogoy, e )
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Here, as in section 2.4., the z-axis is perpendicu-
1 9E

lar to the surface and e is the z-component of
A z

(84). In the symmetrical Laue-case the reflecting
planes are perpendicular to the surface, i.e.

h = (h,k,0) and we get for the absorption/u(W) = 2|Skz|
of the waves I and II:

(86) /f'”(m = h/uh
w2/ 2
2 Ull
with —-—-——-
/'Lo Jl‘ichos e /E Kcos O

where ,uois the normal absorption coefficient of a
plane wave. /.L(W) is plotted in Fig. 15. For |W{» 1,
i.e. outside the Bragg condition, we get the normal
absorption ji, whereas in the Bragg condition the ab-
sorption of wave II isﬂﬂ;=f%—/ph. If the absorption

1s concentrated at the centers of the atoms, then

Uy =lrh and the absorption for wave field II vanishes
This is plausible from Fig. 14 because the sin-function
vanishes at the positions of the centers of the atom.
By writing[VTE) analogously to the real potential (2)

as U"(r) =2 u“(r-R) and by expanding/lbh in powers of h,
R

we obtain for the anomalous absorption coefficientzyhh
assuming radial symmetry forll(r)

87y Al = Mooy E My 3 {?) n?

{ rA R ax

2
with r )=
&7 o'tz ax
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Accordingly A}&varies as gz and is proportional to

the an moment of the imaginary potential of the atoms.
However due to the large spatial extent of the outer

orbitals, this is not a good approximation in electron
diffraction , but X-ray diffraction only.

2, 7. Some Multiple Beam Cases

Multiple beam cases are very important in electron
diffraction due to the strong interactic.. and the small
wave length. However, unlike the two-beam case multi-

ple-beam cases can no longer be solved analytically.
For instance, to obtain the dispersion relation in

the three-beam case, one has to solve a cubic equation.
Nevertheless, some simple analytical results can be
given for special multiple-beam cases, from which a
number of properties can be derived.

First we will discuss qualitatively the effect of

the socalled systematic reflections EO,lilThese are
the secondary reflections 2h, 3h,... and -h, -2h,...
lying on the same line as the reciprocal lattice point
h corresponding to strong reflection (k+h) of the two-
beam case (Fig. 16). Because the radius K, of the Ewald
sphere 1s appreciably larger than h, the reciprocal
lattice points nh lie relatively close to the Ewald
sphere and are always excited to some extent. At least
qualitatively, their influence can be determined by
perturbation theory [4] .

Going back to the equation (71) for the Ch ; We assume

that in addition to the two strong beams k and k+h we
have a number of weak beams k+g with g # 0,h, for
which we get approximately
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(88) ¢, —————————-75 ( v Co v, _, C )

K2 - (k+g) g-h h
On the right side, we have neglected the coeffi-
cients Cg, of the other weak beams which are assu-

med to be small, Going back with this result into the
exact equations for Co and C, , we get the modified

two beam equations

2 B 2 _ B
(89) (x* = vg o -k ) Co=vg Gy
2 _ B 2) o . B
(K - VE,E = (k+h) ) C-11 = Vh,o Co

where the coefficients vﬁ hY * named Bethe potentials,
'—
are given by

Vi_e Ve
(90) VB, =v ., + ) —be 4
2.2 472 g(#¥o,h) Kg - (k+g)

It is seen that the reciprocal lattice pointsg lying

inside the Ewald sphere (Kg >-(E+g)2) give rise to a
repulsive potential correction wheras the outer ones
glve an attractive contribution.

Applying this to the systematic reflections
g =nh(n=2,3,...,~1,~-2,...) of a low order reflec-

- . B _ B
tion h, we get for vh = V'E : VE'E = V5,0 and
B B
vﬂ.o = vo’E . Further we replace k in (90) by the

vector EB satisfying the exact Bragg condition

k; = (5B+E)2 = Kg . Then we have
2 2 _ 1 h2 and 1vs
Ko - (5B+nh) = -n(n-1)h" and consequently:
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B = — L v - "V
(91) vﬁ,o vh h2 n; 5. 1) (n-1)h" ¥nh
' n{n-1)

With this we get for the branch seperation A}c:z’f/d

B
Vi -
0 1 ' 1 1
(92) Ak = Az = [lvl"'— V., V,+ZV v+...}
KocoseB KocoseB h h2 ( 2h "h'3"3h "h )

The first term in the bracket represents the two
beam expression (77). Therefore the extinction dis-
tance decreases due to the systematic reflectionS$,

We may also calculate the influence of the systema-
tic reflections upon the absorption. According to (67,86)
the absorption of a Blochwave k for a simple imaginary
potential iUlr) can be written as

(93) =1y Oy

From (88) we get for the systematic reflection nh
(n ¥ 0,1)

1
" n(n-1)h° (V‘“—‘ ‘o * Vin-1p “p )

e

(94} Cnh

For instance, we obtain for the absorption of the wave

field II (Fig. 14) exactly in the Bragg condition, by
taking into account only the linear therm in cnh

“Vh*V2h
0 BJu = gt G fay o ¢
+ (/ﬁll-/ush)‘ﬁ—-;h teeos
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Therefore the systematic reflections diminish the
anomalous transmission effect (v £ 0t),

Now we want to discuss situations, where for symmetry
reasons, we get more than two strong waves, A first
example is the three-beam case shown in Fig. 1l7a, for
which we get three strong waves k, k+h, and k+h'. In
Fig 17a we have taken |gl =]h'l . Moreover we assume

that Vi T Vpr T Voye Exactly in the Bragg condition
we have 52 = (E&Q)z = (§+g')2 and by substituting
Kg - &2 = x we get for this the matrix equation
(96) ( X -vh —vh'ﬂ'\ fC_11 )

-vh b 4 —vh . Co = 0

\ -_— -

Due to the symmetry of the problem we have one anti-
symmetrical solution with C, = O and Ch' = -Ch y

for which we get the x-value

a'——
(010 x* = -

Further we have two symmetrical solutions with

Cy = Cpr

, the x-values of which are

s 1 2 2!
(98) X253 {VB'E'i J(VE_E.) + 8v_}1 }:

Ch X
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We get an especially interesting case, if the re-
flection h-h' is forbidden {(vy_jv = 0). In this case

there is no direct coupling between the coefficient
Ch and Ch" Nevertheless by starting with a strong

plane wave k+h (instead of k as before) we get a
strong wave k+h', too, which is due to the indirect
coupling via the plane wave k. This effect has long
been known as "Umweganregung".

As a second example we discuss the symmetrical four-
beam case shown in Fig. 17b. The reciprocal lattice
vectors h and h' fam arectangle with h+h' and h'=h

as diagonals,Purther here we assume Vo = Von vl_‘.'ng'

and similarly VE+E. = VE'E'. The problem is simpli-

fied by considering that Fig. 17b is symmetrical with
respect to reflections on the plane going through the
~origin and the line S and on the plane through O and
S'. Therefore, if the Bragg conditions

52 = (5+g)2 = (E}E')z = (Efﬂ+ﬁ')zare exactly fulfilled,

the eigenfunctions can be chosen as similtanecus eigen-
functions to the reflections E and‘g'. For instance for
the reflection g_we have:

) . \ (
(99) (Co ) ( CE Co )
Cy Co cy
S = = 8°*
~ | Cpene Cp Cnen'|
“n’ “hn’ “n’
\ / \ / \ /
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where the eigenvalue s of S can have the values s =%1
only. Thus the four eigensolutions can be ordered ac-
cording to their eigenvalues s and s' for the reflec-~
tions 8 and S', namely (s,s') = (1,1),(1,-1),(-1,1)
and (-1,-1}. For instance, for the complete symmetri-
cal solution {1,1) we have

(100)  (1,1): Co=0€, =Cpy =Cppe = 3
and for x = Kg - Ez = Kg - (5}2)2=... we get
b4 =

YA ¥ Vhr * Vhane

The corresponding Blochwave has the form
h+h'
bt n,

i—‘2— h' r!'
¢é1’1)(£) = eikie "~ 2 cos —— . cos

2

in

(101)

It has two modulation factors of the type I shown

in Fig.iq and vanishes in the middle between the re-
flecting h and h' planes, being maximal on these planes.
Analogously we get for the other waves

1

(102)  (-1,1) : Cy=-C =Cp, ==Co, =3
= —C = =3

(-1,-1): C, = -C, = -C, ,= C =1

r L4 [e) h hl h+h| 2

Especially interesting is the totally antisymmetrical
wave (=1,-1) because it has two sin-modulation factors.
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b’
(-1,-1) _ _ikr 2 = h.r h'. x
(103) K (r) = e e sin =5= . sin S5—=

It vanishes on both reflecting planes h and h' and
even quadratically at the atomic positions on the
intersecting lines of these planes, Therefore this
Blochwave has an especially weak absorption, even

weaker than the wave ¢I of the two beam case. One gets:
(04) B e = f5 T M e

By expanding analogously to (87)/ﬁlinto powers of h,
even the quadratic terms in h vanish @2'+ﬁz= (_lyg')z)

and the expansion starts with h4 only. This is just
due to the fact that unlike to the two beam case the
wave field vanishes quadratically at the atomic po-
sitions.
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8 Orthogonality on the Dispersion Surface

In the inttroductory section 2.2 we have seen, that the Bloch

functions (ukf(E) for the same k-vector, but for different
bands ¥, i.e. energies Ew(k) , are orthogonal (equs. 2.24,26,28).
Now we show, that for a special, but very important case we also
get an orthogonality relation for Bloch functions u Ax) on

the different branches of the dispersion surface, i.e. for
different k's, but for the same energy.

*)

Let us first consider a simple situation, namely where all re-
flecting lattice vectors h ly in one plane. Of course, this is
always true for the 2 and 3 beam case, but also for the 4 beam
case of Fig, 17b and for the two-beam case with systematic re-
flections (Fig. 16). By writing k = {E, kz:? , Where F_: is the pa-
rallel component of k in the plane of the reciprocal lattice
vectors, we get from the Schrddinger equation

2,2 2 _
(105)  (K“-k,-(B+h) %) Cp " Zh:-vlz‘b.' =0

For a given normal component Eéthis represents an eigenvalue atblem

of the sort

_ w22 . — 2 _

h,h' “h :

*)

Note that for different k-values the Bloch waves ¢kv(£)=elgamwt)
are automatically orthogonal (equ. 23); however not the Bloch

functions uk$(£)!
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Since NQ,E' does not depend on k, and K, but only on the para-
llel component Eq the same is true for the eigenvalues a?(éb and
eigensolutions Ch(r). Thus the band structure for fixed §:con-

sists of parabolas

2 2
(107)  K° = k; +€,(8)

being shifted from the origine by the amount EV(EJ {Fig. 17¢).
Further all Bloch functions ukzP(E) on the same parabola are
identical for arbitrary kz, since the coefficients Ch(f) depend
on R and £, (R) only. In general, however, according to

equ. (2.24) all Bloch functions with the same value of 5=i:§, kz},
but with different band indices are orthogonal (e.g. the Bloch
functions belonging to the points B and C in Fig. 17¢). There-
fore we conclude, that any two Bloch functions lying on different
bands are orthogonal, too (e.g. B and D in Fig. 17c¢). Especially
this is also true for the Bloch functions Aand B, which belong

to the same energy EQQHKz. On the dispersion surface E = constant
these points ly on the different branches, so that their planar-
componentﬁZis the same. Fig. 17d shows the positions of A and

B on the two beam dispersion surface,

Therefore, if we only have reciprocal lattice vectors lying in
one plane, all Bloch functions with the same planar component E ,
but on the different branches of the dispersion surface, are

orthogonal and form a complete set.

(109} ZCI:(V‘)Ch(V)= va, , Z Ch,(v)ch(9)=ghh.
h = - Yy - - ==

Let us now consider the more general prcblem with arbitrary re-

ciprocal lattice vectors h,
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S ;
(110)  2— 2 (K®-(k+h) )ghh, nep { Cpr = O

hl
Since lv, 1<« K%, we write for k:
k = K+§k with  §k <K,
Here K can be thought as the wave vector in the vacuum (52=K2), and
& k describes the deviation of the dispersion surface from the free

electron dispersion surface. For a given direction n of $k={k n we
obtain by neglecting quadratic terms in $k

N

(11) (k)2 ¥ (kem) 2 + 2(k+h) -5k ¥ (k+h) 2 + 2K cos o *8k

\ _ K+h
with cos eh —15+E|

From (110) we get then an equation, Which determines the allowed
Sk-values for a given direction n=3k/Sk .

(112) Z My Cpo = Ak cos eh CE

h' - -
-1 2_ 2 _
with My, = 5% (X“- (k+h) )521_1. Vhop
—
By introducing modified coefficients Ch-V cos eh Ch , this can

be transformed in the eigenvalue equation

~ - “~

M. =$
(113) Ml,_ﬂ_l, cll. =2k CE

with M =l
== cos Gh-cos eh, —=
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For real potential V(r),M is a hermitian matrix (M+=M). Then ﬁ is

hermitian, too, 1f all cos eh>-o, all V cos e real, respectively.
Consequently the eigenvalues ék(f) are real and the Bloch waves are
undamped. Further the eigensolutions_ch(;) are orthogonal and form

a complete set,

ol 3 -~ "
(114) Zh Cp(p) Cpl) = Sy p Zx‘ Cpr () G =6y

Note, that this is not an orthogonality condition for the
Bloch functions qkr(g), since it refers to the modified coeffi-

clents 8£ = ycos eh-chf.

However, we obtain such an orthogonality condition for the Bloch
functions if all cos eh are equal, since then EL(T) and Ch(r) are
equal up to a normalisation constant. For instance, this is the case
for the example discussed before, where all h lying in one plane per-
pendicular to n. Then equation (114) reduces to (109). Further, and
more important, this is also the case for high energy electrons,
where K>h and cos 6 = cos e, -

Finally we discuss the case ﬁ#ﬁ* occuring if either M#Mf(v#v+) or if
cos @ <O for at least one h. Then the eigenvalues §k 7 are complex
and tHe Bloch waves are damped. Further theireigensolution E{MS(y)
are no longer orthogonal. However, one can show in analogy to (2.49)

that

~+|F ~
(115) hZEJ{MJ(B—') ’é{m(r) =5yt

where C{Mtf are the eigensolutions of ﬂ* with the eigenvalues

gx ().
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3, Diffraction of Electrons by Ideal Crystals

3.1. Wavefields in the Vacuum and in the Crystal

We consider now the scattering of an incident elec-
tron with impuls 4K by a finite crystal of volume
'glcrystal- For the total potential of the crystal
we choose the form

1 Lz

(1) Vir) = %n(ﬁ) VM(E) with snfg) = for r in
0 vacuum

cryst.

Here V_(x) is the periodic potential of an infinite
ideal crystal as it has been discussed in section 2.1.
The stepfunction sy(x) cuts off the potential V..(x)

at the crystal surface, so that V(r) = O in the vacuum.
With the ansatz (1) we have neglected deviations of the
crystal potential from the perfect periodicity in the
immediate vicinity of the crystal surface. However due
to the large extinction length such surface effects
cannot. be observed by diffraction (besides in LEED,
where approximation (1} is questionable).

In the vacuum we have V(r) = O. Therefore in the vacuum

the wavefunction 1#(5) has to be a sum of plane waves

eig-i'£ having the same energy as the incidént wave K.

On the other hand, in the crystal, where V(r) = V_(r),

the wavefunction has to be a sum of Blochwaves ¢k,(£)
=1

2.2
with the energy Eg(Ej) ='§§§— . Both results follow from
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the fact that plane waves are the eigenfunctions for

V(r) = 0 and Blochwaves are the eigenfunctions for
22
V(r) = Vylxr) and that the energy E ='h2§ is given

by the incident plane wave. Therefore we have

oiRr, ZRi e1Kix vacuum
i
(2) '\]/(5) = for r in the
L,Ei Py *kjfg) crystal
3 X
522 K, 2
with 5 = E = T = Ev(]_{_J) for all Kj and ]_{_J

How many and which Blochwaves Ej or plane waves K4,
respectively, are excited, depends very much on the
special form of the crystal. The case of a crystal

slab and a half crystal will be discussed in the next
sections. Knowing the waves k4 and Ky, the coefficients
Pj and R; have to be determined by the boundary con-
ditions for Y (x) on the crystal surface. Namely at the
surface qy(z) has to be continous and the same applies
to the current through the surface, because there are

no surface sources. If we call n(r) the normal to the
surface at the point r on the surface, then we have on

the whole surface:

It is important to see that in (2) we cannot restrict
ourselves to plane waves with real K;'s or Bloch waves
with real Ej
cuum, Or in an infinite crystal, respectively. Rather we
have to take complex K; and Ej into account, toco, re-
presenting waves evanescent from the surfaces.

's, as we always can in an infinite wva-




- 52 -

That the solution VNE) has -the form (2), can also be
studied at Born's integral eguation for'VTE).

() W(x) = ¥ 4 Sdg' Go (z-x") V(z") Wiz")

.
am iKIX 'l

3 1y = = d K =
with G5(x,r'") 22 LT an 11

Due to (1) V(r) can be replaced by V_(x) if the inte-

gration is restricted to the crystal volume'j%ryst

Therefore in the vacuum the wave function consists of
the incident wave and a sum of spherical waves with
the energy E, out-going from the crystal volume. For
r within S%ryst' equation (4) with the incident plane
wave K seems to contradict equation (2) which con-
tains only Blochwaves., However we have to realize that

2.2
each Blochwave with the energy E = ﬁiﬁ— and therefore

also the sum ygryst

= ?:Pj ¢Ej is a gsolution of the

homogeneous integral equation:

oF
(5) 1{/c_,,_,_“,st(_r) = gdg' Golz-r') V (r') %.Yst(;')
"

By comparing this with (4) we get

(6) 0 = ei~ISB - dr' G {(r-r') V (") "
v;Luﬁm o= = o = %:

ryst(E.)

Therefore we can see that the plane wave K is extinc-
ted in the crystal by fictive spherical waves outgoing
from the vacuum., This "extinction theorem" can also be
put into another form by using the Schroedinger equa-

tions for (r) and G (x-r').

cryst
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2
(7) (-’%—rﬁ UEZ +V, () - E )%ryst(_{) =0

2
(3207 -8 ) Gotr-z) = - fez-x)

From this we obtain after some simple calculations

(x') = 8(5-5') ‘{/

(8) Golz-x') v (z') cryst'= cryst

(r')

Finally we get by performing the volume integral in (4)
into a surface integral over the crystal surfacef :

2
ikr . H 0
(9) e =% + 3= gdg {Go(g:.-g ){QE. 1{/(5'))
g

!Vﬂg) vacuum
= in the
0 crystal
Accordingly in the vacuum the scattered wave

is a sum of spherical waves with energy E outgoing
from the surfaces, which in the crystal extinct the
incident wave.

Analogously to (1) we choose for the nonlocal opti-
cal potential U(r,r') a cut-off of the form:
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(10) U(z,r') = sg(r) so(r') U (x,r')

where U is the optical potential of an infinite crystal,
Unfortunately, the decomposition (2) ofﬂf in plane waves
and Blochwaves is no longer exact for a nonlocal poten-
tial. However, the range | xr-r'jy, over which U (r,r')

is unequal zero, is normally much smaller than an ex-
tinction length (besides in LEED). Therefore the an-
satz (2) 1is nevertheless a good approximation, espe-
cially because U is local anyway in a first approxima-
tion.

3.2, Scattering by a Crystal SlabT [21]

For a crystal slab, f£illing the space OL z £ d, the
potential (1) is given by

l >
(11) vir) = s8(2).s{d-2): V_(xr) with s(2) ={- for =z 0
0 ya

Therefore V(r) is periodic with respect to any surface
translation vector & in the x-y-plane, both in the
crystal and in the vacuum.

(12) V() = V(r+®D)
w N [~ N n
where 'a?i_- = {31;—, ?Q-;,O} =n; a;, tnya,
The vectorsa,;, ap, forming the unit mesh on the surface,
are shown for the (100) surface of a f.c.c¢. lattice in

Fig. 6 (see section 2,5.). Of course, equation (12)
holds only, because both surfaces z = O and z = 4 are
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parallel.

Due to (12) the eigensolution 1{/(_1_') can be chosen as
a Blochwave with respect to the x-y-coordinates,
where the plane Blochvector ﬁ is determined by the
x~y~component of the incident wave K = (E, K,).
Writing r as ¥ =(4#,2z) we have |

(13) ’\]VE(E,Z) = ei§Eu£ (4;z) with uE(E‘l-_ﬁ_{E;z) = u&,(_tj,z)

With the reciprocal lattice vectors § of the surface
net

(14) ;@:&E ={£-%:¥%:0} = m b, +myb, with Eiij = 2Tl§;_j

the Blochfunction uEa.nd the potential V(r) can there-
fore be expanded in  terms of plane "surface" waves

ei&?, where the coefficients f; and V} depend still

on z.

(15) %‘E.z) - I—g(z) Ay
~ % '

(16)  V(hz) = J v (z) et ¥
¥t

2 =2 § awe ¥ yina

S

(17)  with V
I 1 o 3,

Here Sy = a;» 8, 1s the surface of the unit mesh., By
introducing (15) and (16) into the Schroedinger equa-
tion we get a set of coupled equations determining

the z-dependence of l_}(z) (v& = :Triﬂ- Vf’) :
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(18) {(I)z + (K -(E+.£) } [o(2) = ng 8'(2) aa,(z)
Thus the remaining energy for the motion of

2
. gol 2 2
f}(z) in z-direction is 55(5 - (R+§) ) . For each } the
- K2

total energy o is therefore splitted up in the
X-y-enerqgy h 554 ) and the energy in z-direction,

Because (@#&)zgets arbitrarily large for sufficiently large
& , the remaining energy for the z-direction can be nega-
tive. These waves decay exponentially in the vacuum,

as can be seen below.

The equations (18) also can be written in integral
form by using the linear Green's function G (z-z').
Go{z=-2') fulfills the eqguation,

a9 (9,2 +x%) o2 = S

With the correct retardation it is given by:

iK1zl
o] 2
Th i Kg> O Ko“> O
{20) qJZ) = for
-%, z
E:-i-lio_ i #o > O K02=_R02< 0
iKz z

Considering, that we have an incldent wave e
for & = 0 only, we get the integral equations:
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ik, |z-2"|
i = et .

ZZ v (z) T,.(z")
§°¢' ¢
- 2
with Kg =YK -(ﬁ+&) S0, if Ky, “>0
2
= f K
or KE ia?,i,é{i)» 0, i ¢ {0
Now we can directly see the form of [,(z) in the va-
cuum, For z{ O we have|z-2'| {0 due to 0 &£ z' £ 4

according to (11). Therefore we get for z £ O

(22) T;(z) = S‘ eiKZz + R e-iKiz

s & §

o

d 1 — s
(23) with Ry = _1_85e+11<}z S v,_ .z Tz d2'
o

B2 v Y

' - iX,z | N iK,z
(24) Fé:(z) %'O e + Ty e ¢
N 1 d -iK z! r !
(25) with T, = o3=—$ e 2 v, itz lh(z) du
R * + §
§ |
Rk and %t are called reflection and transmission coeffi-

cients. Only for K?> 0, i.e. K2>-(£4£)2 we get an re-

flected plane wave_K;, (Q+& -Ky) and a transmitted
plane wave Kt = (k+i—+K ) respectively. The waves with

¥4

K .d(i#ﬁﬂ or K = iR, decrease exponentially into the
vacuum. Whereas we only can have a finite number of re-

flected or transmitted waves with §2>-(£ﬁ£)2, we always




have an infinite number of decaying waves correspon-
ding to the infinite number of § vectors with

k> K

In the kinematical theory one replaces T}a(z') in the
integral (21) by the incident wave (first Born appro-
ximation). This gives for Rg and %&

- ei (KZ+K%+g) d ) v

(26) Ry = D (1

g 2Kg(K,+K, +g) %9

(1 - ol(K;Kptg)d)
v

g 2Ky (K,~Kg+q) &9

27 T, =
(27) ?

: : 2 .
We have used the Fourierpxpansion (g = ngg ,n—OﬁJr”)

v, (z) = Zi e19%
. g

—

Ve,q'%

From (26) and (27) we can see that the kinematical
theory fails in two cases, First for Ky = 0O,

where a socalled "surface wave" K, = (&+£,0) moves pa-
rallel to the surface[22]. Second for the case of a
Bragg reflection K, * Ki+ g = 0, For this the intensity
of the wave K, = K + (4,9) is proportional to a® and
diverges for d=»m~. In the Laue case(Kz - Ky +g = O)
this is a transmitted wave, whereas in the Bragg case
(Kz + K +g-= O)it is a reflected wave. For high
energies 52 = v&'g equations (26) (27) show that we

get appreciable Intensity only if one or more of these

Bragg conditions are fulfilled However for LEED

(502% V_&,g) this is no more necessary and all waves

get more or less intensity.
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3.3, Scattering by a Crystal Slab II

Now we construct the wave field in the vacuum and in
the crystal by following equation (2). In the vacuum

we have scattered plane waves K. having the same ener-

gy as the incident wave K. Furtﬁer, due to the surface
periodicity of the total potential (12) the x-y-com-
ponent ﬁ' of K, only can be different from the x-y-
component Q'of the incident wave K by a reciprocal
lattice vector i—of the surface net (see also (15)).
Moreover we only have outgoing waves, meaning that for

real Ei the z-component K has to be positive for

iz
z> d and negative for z { 0. For complex Ky, = ik,
the waves have to decrease from the surface leading

to Riz>0 for z>d and Riz{o for z4{ 0. Thus for each

jrwe get two waves

% _
Ky = (g»%, 11{2.&)

\152—@3)23 o) for 52>(£+g)2

with K

z§

>0  for K%/ (£+ﬂ%)2

]
[
&

and Kzg 23 ’

5;, is allowed for z> 4, E-¥ for z { 0. A graphical
construction for the waves K. is shown in Fig. 18,

All K?{ vectors lie on the sphere of radius K. Four

=2

assumed that f‘lies in the plane of K and the surface

allowed real wave vectors K- ’ K are shown. We have

normal.. The vectors K K,,ee. and K ,... have purel
_320 _4} ___g P y

imaginary z-components.—The}efore the wave function
in the vacuum is, in agreement with the eguations
{22, 24) of the last section:
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(28) \-rfg) = oL ZR} eiEQ 4 for z4£ 0
? o
(29) WY(x) =JrT 1K} x £ d
W’E = s e =} = or z >

3

In the crystal only those Bloch waves Ei with

12x2

T are allowed. Moreover the x-y-compo-

nent of 51 has to be equal to E'up to a reciprocal
lattice vector § of the surface net. Because E, (k)

and the Bloch waves ¢k , are periodic in the reci-
LY

procal lattice, we can set k, = (E} k,;,)+ Therefore

the z-components k,_have to be determined from

2 2 iz
1K

EV(£} kz) = 5 . Fig 19 shows schematically the
band structure Ep(k ) as a function of k_ = k_' + ik "

z z 2z 2z

2.2

1K

For each energy E = 5 the intersection of Ev(kz)

with the plane E = const. give the allowed kz'Values.

From the symmetries (2.5%) it follows, that simulta-

neously with kz also -kz and k: is a solution. There is always an
infinitely large number of intersections with the
"reserved"parabolas giving infinitely many kz with

arbitrarily large kz“, of which only two are shown

in Fig. 19, Further we get a finite number of real kz

(two in Fig. 19}, With these Ej-vectors the wavefunction

for OLzLd is

(30) 1#(5) = %L Pj ¢Ej(£) = ;Z:, chg'g(Ej).

jrg:g

. eicg}i)g ollkzytg) 2
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Here we have expanded the Bloch waves into plane waves

ei(5+h)£ + and the reciprocal lattice vector h is

2r
as

written as h = ({,g) with g = n

>
Now according to (3) Y(r) and.ﬁg have to be contineous

at z = 0 and z = d., Therefore we get £rom (28) und (30)
for z = 0 by comparing the coefficients of the plane
1 (B+p)w

waves e

(31) éig_,,o * Ry = j% Ci"g(ﬁj) Py

and

k_.+g
z
2 éﬁo TR T ;%b __%;_ C&'g(kj) 73

Similarly we have for z = d

- i(kz-+g-Kz)d_
(33) T, ngci_'g(gj)e 3 P,

-

- k_.+g -
(30) T, = 2 -2Z1° ¢ (x.) etlkzitaKp)d
?. j.g Kz ‘g"g —J ]

ot

By adding (32) and (31) and by subtracting (34) from
(33) we get a set of equations for the coefficients Pj
alone, namely

g Z kz.+g+Kz
(35) z = 0 30 = el ——J—sz Cg'g(ﬁj) Pj

(36) p A

I

k_.+g-K _
ai0=2 2L _Zc, (k)ellkaytaKa)d, p
j'g KZ &Ig - J
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This is an infinite number of equations for the in-
finite number of unknown P%S.However are the Pj's
unique? To discuss this we consider the N-beam case
assuming that in the plane wave expansion of the
Blochwaves only N beams h = (f,g) are excited. In
this case the determinant (2.22.) is an algebraic
equation of the order 2N in kz, giving 2N solutions
kzj',j=1""'2N‘ Further, if all reciprocal lattice
vectors h have different x-y-components §, then (35)
and (36) are exactly 2N equations, too.-however if
some of the h-vectors only differ in the z-direction
by a reciprocal lattice vector gga, then we have
less than 2N equations. For instance, let us assume

that we have an infinite number of h-vectors, say

b" = (0, nY) with n=0,%1,£2,..., which all have the
3

same x-y-component ¢ =0O. Then Ey(k,) has a typical

one dimensional band structure as shown in Fig. 4.

Of course, the determinant (2,22) gives an infinite

number of kz-values for each energy, but only two of

them are non equivalent and lie in the first Brillouin

zone -E;-L k;( gL . Therefore we only have two linear
3 3

independent Bloch functions and two Pj's, which can
be determined from the two equations (35,36) for

i = 0., Similarly if we have two different { -vectors,
say §1 and gz' then we get the band structure as
shown in Fig, 8 and Fig. 19 which is essentially a
superposition of two one dimensional band structures.
Then for each energy we always get 4 non equivalent
k-values and the Pl...P4 can be determined from (35,
36) fori =5_1 and £=&z . Therefore in general for
n different.g-vectors we get 2n k -values with
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= L k'L L and the coefficients P
a, z as
determined by the 2n equations (35) and (36).

l....P2n can be

If we have a half crystal filling the half space
z >0, then the above treatment has to be modified.
Practically we also can treat a crystal slab as a
half crystal, if 4 is very much larger than an ab-
sorption length. In this case, practically no inten-

sity reaches the surface z = d and all T% vanish.

For z{ O the wavefield has the form (28) with the
reflected waves 5},. However, in the crystal we on-
ly can have outgoing waves, because in the absence of
the surface z = d no waves are incident from z = +w®,

Therefore only those kz are allowed, for which

(37) %%f >0 , if k, is real

or
(38) k" 2z 0 , if k, = k,' + ik, " is complex.
(37) means that the z-component of the group velo-
city is positive, whereas (38) forbids waves which in-
crease sxponentially for z- +# . Since together
with kz also -kz and ké“ are solutions of the dis-
persion relation, the conditions (37) and (38) are
fulfilled for exactly half the kz—values allowed
for the crystal slab. For if equation (37) holds for
a given kz, it does not hold for -kz. Similarly
equation (38) can only be fulfilled for either k, or
k;‘. Therefore we now have one half of the coceffi-
cients P, of the crystal slab, which can be uniquely
determined by the equations (35) alone. Then from

(31) we can get the reflection coefficients R}.
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3.4, Current Conservation [23]

A useful relation between the ccefficients Rﬁ, T+
and P&,can be obtained from the continuity equation.
By multiplying the time dependent Schroedinger equa-
tion for W(z,t) by WTE,t) and subtracting the ana-
logous equation for 1r?£,t),one has

9 9, [Yao|? +d . iao

=J% (Im V(£0-|H/(£,t)lz

where "Im" means imaginary part. The current j is gi-
ven by expression (2.29). For stationary problems j

and ﬂ¥{2 are independent of t and Ot vanishes. There-
fore we have for a real potential V(r) by decompo-
sing r into X-y-component Kk and z-component:

(40) DE- i =0="9.3, () + 9, 3,00
Here j, is the x-y-component of j. Due to the x-y-
periochity of v(r) (12)'the current of the "plane"
Bloch wave E (13) is periodic in the x-y-plane.

(41) j (x+R) = j(x)

By integrating (40) over a unit mesh 84 = (Elf 32)
of the surface, the tern gfiu:can be integrated by
parts and vanishes due to the periodicity (41).
Therefore the average over S  of the current in z-
direction is constant and independent of z. By cal-
culating this average for z {0 and z> d, we obtain
by using the ansatz (28,29)




_65...

—s
A ! 2 h <! 2
(42) i, O = m (Kz- %KzglRf‘ )= m z Kz%lTil 20

i
The 2? means a summation over the finite number of

&'s with real 5} only. All evanescent waves with

Kz& z%

Equation (42) expresses the conservation of the

do not give any contribution to the current.

current in z-direction. The incident intensity is
distributed between the reflected and transmitted beams
such that the current is conserved.

For the half crystal we can derive an equation as
(42) , too. Here, in the crystal, outgoing waves
(37,38) are allowed only. Further evanescent Bloch
waves give no contribution. This can be seen by
evaluating jz, which is independent of z, for

z-> + 0, Moreover we can average over the unit cell
Vc instead of S0 and use equation {(2.32) because jz
is constant anyway. Then one gets

—

£ "1 9 2
(43 3, = 3 (% Kpg IR )JZ-%{WTIPJ-! 20

iﬁbhn

In the case of absorption, V(r) is complex and the
current in z-direction is no longer conserved. In-
stead we get by integrating (40) over z from O to d
and averaging over So as before

(44)

=11

'h 2 2
Kz=% EKZ%( IRyt © +iTyl ) -

d
& Sarfed (mvw) ol

o
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The last term represents the intensity absorbed by
the crystal ( Im V(£)>'O). The current of the scat-

tered waves K is always less than the incident one.

For the case of the nonlocal potential U(r,r') the time
independent continuity equation is:

x)
(45) 9_{-1(5) = ¢ Sd_:_:_' (W;) uz,z) Yz - c.c.)
“R
Here the right-hand side does not vanish even for U=
Further instead of equation (44) we get by using the
periodicity of U and the cut-off (10):

ut,

. EK
R s LT
+ ;—o§ ay gdzdg-%; l}/’fg) [u(g.g')—u’f(g.g')) Vi)
[} o2

The absorption term vanishes for U = U+. Whereas for

U = Ul the current is not conserved locally (45), it
is conserved globally (46) as in the case of a local

and real potential.

3J.5. Symmetrical Laue-Case

Now we apply the results of the foregoing sections
to the case where only one Bragg reflection h is ex-
cited. Then the Bloch waves are well described by
the two beam approximation of section 2.6. Two dif-
ferent situations can occur. For a plane wave K in-
cident from z = -4 , the Bragg reflected wave K+h
either is scattered into the forward direction and
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penetrates the crystal (Laue case) or it is scatte-
red backwards (Bragg case). Both cases are illustra-~
ted in Fig. 20. Here we willl restrict ourselves to

the "symmetrical" Laue~case, for which the reflecting
planes are perpendicular to the surface and for

which h only has an x~-y-component h = (£,0)., In the
next section, the symmetrical Bragg-case will be trea-
ted, for which the reflecting planes are parallel to
the surface, Because a fairly large number of artic-
les exists about these cases, our presentation will be
relatively short. For more detalls, for instance inte-
grated intensities etc., as well as for the unsymme-
trical Laue- and Bragg-cases we refer to the litera-

ture [5—12]

In the symmetrical Laue case we have the following
plane waves in the wvacuum: in the region z > d the
transmitted wave K §°+ = (é}Kz) and the Bragg re-
flected wave 5;, (£+£,Kz§) and in the region z 40
the incident wave K, the surface reflected wave

K, = (&,-K,), and the wave Ky = (E}&;-Kzi) being the

surface reflected wave of EE’. These wEXe vectors =
are shown in Fig. 21. The vectors K = A0 and 50 = DO
lie on the sphere of radius K around O and have the
same X-y-component @} whereas 52,= Eﬁ and 5_ = EE
have the x-y-component {}i—and lie on the sphere around

i

H. In the crystal we get four Blochwaves Ej = (@}ka)

where ka are determined by the dispersion relation
2 g2 2 2 2 2y _ 2
U @28 kD) (k- @p k%) = vy

The dispersion surface as well as kyreeosky are shown
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in Fig. 21, Note that the radius K, = “Vq is lar-
ger than K for electrons. However the difference
KO-K
K

v
2

K2
electrons and is very much enhanced in Fig., 21. For
instance, for E = 100 keV and -V; = 10eV one gets

5 -165. Therefore the vectors K, k, and k, in Fig. 21

, is extremely small for high energy

e

-1
2

practically coincide.

In order to determine the Bloch wave coefficients

Pl""’P4’ we have to solve the equations (35) and

(36) , which are in our case

4 k. .
(48)  z=0: 1=.Z-—1-Z——z cJd p,

(49) z=d: O = 422 ¢ 3 oilkyaKz)d ?,
Z

4 . .
_ iz Tz 3 i(k.,-K,}d
O Z 2K C g e Jz —'z Pj

Near the Bragg condition the factor (ij+KZ)/§Kz

has the order of magnitude

-4 .
ij+KZ 1+O(10 ) j—l and 2
(50) —_— = for

2K, -4
o (10 7) j=3 and 4
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Therefore the coefficients P, and P, practically

do not enter into the equations (48). Moreover one
sees from the equations (49) containing the factors

2  that P, and P, themselves are of the order

zZ

of 1074

. Therefore the error in (48) by neglecting

P, and P, is of the order of 10'-8 only. The reflec-

3 4
tion coefficients R, are according to (31,32) given

by

-k, +K .
(51) Ry=2 3Ez 3 5
£ 4,9 2 $9 )

It can be seen, that Ro and R‘g‘are of the order of
10-4, too. Therefore in the vacuum we practically
have only the incident wave K and the transmitted
wave 5& , whereas in the crystal only the two Bloch

waves 51 and 52 are important. For P1 and P2 we get

the"simplified" boundary conditions:

(52 1 =¢ P+c§p

1 1

o A% 2

the solutions of which are very simple. The ChJ's

are given by (2,80). By comparing with (2.83) we
get:

(53) p. =C J j=1,2

From (33) we get then for the transmission-coeffi-
clents To and T+ :

-

(54) T

]

< (c 92 otlyzKa)d

o j=1

C 3 C j eifka-Kz)d
O

2
=] .%-

hage

J
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- kz2 we obtain from (47)

For the difference kzl

kzl - kzz = AKY 1+W2

where Ak and W are given by (2.77) and (2.79). Fur-
ther using (2.80) we get after some calculation

-Iz W 2{Akd‘f1+w2)
2

i 1
(55) T = + cos
° 14W° 14w
| 2 1 .2 Akd ﬂ1+w?
|, [ = — sin
§ 1+W t 2 )

From this one verifies that
(56) |T

which is in agreement with the current conservation
N A
(42) due to Rh ¥ 0 and Kz N Kz.

a ¢

-_

Exactly in the Bragg condition (W = 0O) we get

(57) - |T0,2 = cosz‘l—%{g
2,17 - a2 210

which represents the socalled "pendulum solution".
By varying the thickness the intensity oscillates
between the transmitted wave K and the reflected

wave K+h. The length for a complete oscillation is

- .2
the extinction length 4_ . = AKX (2.77), whose name

refers to the extinction of the primary

=4
wave K for 4 = 5 dext'
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From (53) and (2.80) we obtain for the wave field in
the crystal

(58) (\f(g) = ei-}SBE eiSE-‘f {cos ('%-]E 11+W2 z) +

+ 4 —1 (eiDE + W) sin(%— f1+W z) }

f1+wZ’
with k = k + S . §xle? = {S_E, 1%5 i/l-lW?}

and where Ak and W are given by (2.77) and 2.79).

Also at the wave field we can see the "pendulum so-
lution". Namely for W = O we get (EB = (ky+k,)/, )

(59) 1#(5) = et¥BL Gos QQ%EJ + 1 etlkpthiz sinvggz)

The plane waves EB and 5B+E have a depth dependent

amplitude. The whole wave field is schematically
shown in Fig. 22a, For [W{>» 1 we get the kinemati-
cal result, namely C e st

el A

_ _ikr i i (kgt+éR+h) r Ak Wl z
(60) W(r) = =% + T TBTRTRIE sin SEE

In this case the primary wave has the amplitude 1,
whereas the reflected wave being only weakly exci-
ted has a faster oscillating modulation factor.
(Fig. 22b). In an absorbing crystal, we have to con-
sider that the two Bloch waves k, and 52 are absor-
bed very differently as has been discussed in sec-
tion 2,.6. The Bloch wave of type II (Fig.l4) lying

for vh<10 on the inner branch of the dispersion sur-

face has an anomalously lovw absorption, whereas the
Bloch wave on the outer branch has a much stronger
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absorptiOn (Fig. 15). For very thick crystals only the wave

field ITI remains. Because the pendulum $olution is due to the
interference of the Bloch wave I and II, it is diminished for
thicker crystals and disappears totally for very large ones ! 5-12].

Finally wewant to discuss some aspects of the general Laue-case

with many beams. Here we can use successfully the orthogonality
relations for the Bloch functions on the dispersion surface
(section 2.8). By assuming, that all reciprocal lattice vectors
g;(i,g) have a different planar component ﬁ and give rise to
transmitted beams only, we obtain from (31), since all RﬁEO:

N

(61) 'gh,o = gpj CE”-Ej)

These equations for the coefficients Pj can directly been solved
by using the orthogonality relation (2.114}. First we have
§j=(Eqkzj)=§+{p,gkj} » i.e. the direction n in (2.114) coincides
with the z-axis. Since we consider transmitted beams only with
cos 6 ={K+h) D> 0, and if V(r) is real, we obtain from (2.114)

h™ K+h
further

| ®
¥ = 8
(62) %; CE(Ej') CE(Ej) cos O, 31,5

Then by multiplying (61) with C;(Ej,) cos eh and summing over h

we get the result

= ¥
(63) P, co(gj) cos 6

Under the same conditions the transmission coefficients Th of (33)

are given by

®

Note, that for j'=j the normalisation is quite different from the one
used normally (Z_ | Ch|2 = 1; equ. 2.26).
h g
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i&kjd

= »
(64) T, j Co(Ej) Ch (Ej) cos & e

It is interesting to see, that in this case the flux inciden ¢ on the
crystal is totally transmitted, since V(r) is real and there are no
reflected beams. Indeed we get from the current conservation (42)

- 5ol N )
(65) 320 = = Kz = % K >L cos eh \Thl2
h -_—

which can directly been verified by using (2.114) and (64).

If the potential is complex (V=V+), then we can use equation (2.115) to
get a similar relation for Th' Of course the current is then no longer

conserved.

3.6. Symmetrical Bragg Case

In the symmetrical Bragg case the reflecting planes
lie parallel to the surface and we have h = (0,~h)
as shown in Fig 23. For high energy electrons the
Bragg case only can be realized by nearly glanCing
incidence which is due to the small Bragg angles.
However this does not apply to LEED or to neutrons,
Here we will consider only the reflection at a

half crystal, whereas for the scattering at a slab
we refer to the literature [5-12] ‘

In the vacuum we have first the incident plane wa-
ve K = (g} Kz) being equal to A0 in Fig. 23. More-
over the vector DH is equal to A0 and represents no
new wave. All other allowed waves have to lie on one
of the two spheres with radius K and have the same
X-y-component E} Because Eﬁ-= 65, only one additio-
nal wave remains, namely the specularly reflected wave
K, = (R, -K,) = BH.

For the crystal we get four wave vectors kK, ,...,k,

all having the same x-y-component E and being marked by
the points 1,...,4 in Fig 23, However 53 and 54 '

being essentially equivalent to 52 and El ; respec-

tively, do not lie in the first Brillouin zone and
have to be omitted. Further only 51 has a positive group
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velocity (37) in z-direction, but not k,. Therefore
we get only one allowed Bloch wave for the half crys-
tal. For a slab both k, and k, are allowed leading to

oscillations in the reflected intensity as in the Laue
case.[24]

Let us have a closer look at the dispersion surface
in the vicinity of the Bragg spot EB' According to

{2,76) we have with the x- and z-coordinates as in
Fig. 23

2
2 2 2. _ |lvl
(66 Sk ~ Sk, tg“ey = 5 5

X
o cos GB

4K

For real Skx and Ekz this represents a hyperbola as

has already been discussed in section 2.6. However

{Vh|

2K coseB

the hyperbola, ?kz is complex. Setting Skz = iSk; ’

for ]Skxl { ; i.e. between the branches of

the dispersion surface in the{gkx ,Sk;} plane is an

N
n : n -
ellipse. The maximum value of Skz is §k -

representing the exponential attanuation of the wave
field in the crystal.

By enlarging the x-y-component E'of the incident wave
in Fig. 23 the Bloch vector 51 moves along the dis-

persion surface as indicated by arrows in Fig. 24,
For the case of no absorption it follows from the

current conservation (43) that |RO|2 = 1 as long as

ky

wave and one Bloch wave which carries no current.

is complex, because we only have one reflected
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The boundary conditions at the surface z = 0 are (31,
32)

(67} l +R_= (Co + Ch) P1

For high energies we have KZ'S kz = % . Therefore we

get inmediately

C
h 1
(68) R = == and P = —
(o] C0 1 C0

Near the Bragg reflections one has

C V. Vh
) K - (k+h) -2K cos @y 0k +hek,

By using (66) we get therefore

2 | 1 2
(70) lRo] =‘ —_—
Y Yy
ik 2K cos @, &k
with vy =2 % =2 B_x

Ak | Vi i

Here the + sign is valid on the outer branch of the
hyperbola and on the ellipse in Fig. 24 where the
- sign refers to the lnner branch. For |y| &1, i.e.
for Skx between the two branches of the hyperbola,

the reflection coefficient lR.ol2 = 1. As a function
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of y the reflection coefficient |R0|2 is shown in
Fig. 25a. It decreases rapidly for y >1.

In the case of absorption the result is elementary
but rather lengthy.Here we give only the results for

weak absorption and for

=+'-A-E —] i + 4 t—1 "
&kx 5 and Skx 0. By writing vy vo' +iv,"
and vy = vh' + ivh" one obtains for]vo"pglvo']and
" ry .
\vh l4th l.
V""'V"]

) - o h _ Ak
o) B
vll'

2 Q =
‘Rol =< 1 - 2 v;r for {k =0
V""I"V" i
- o h = - Ak
SRR IR

First we see, that at the edges of the two branches
the absorption is especially effective and |R0|2
decreases wWith the square root of the

perturbation. However the correction is different

on both branches, which is due to the different Bloch
waves on both branches. On the inner branch the Bloch
wave of type II avoids the atoms and is absorbed
weaker than Bloch wave I (Fig. 14). In Fig. 25b we

2 e !
have plotted ]ROI for v " = v," and for

11

v," - no_
‘ o‘/;h,}— 0,1 (full lines). Physically v,' = v, means

that the atoms are treated as points as far as ab-
sorption is concerned. Therefore the sin-wave of Fig.

14 cannot be absorbed and lRolz = 1 on the edge of the
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inner branch. For the case of a uniform absorption
(vh" = Q) the reflection is symmetrical with respect
to ka = O because then the absorption 1s the same

for both Bloch waves.(dashed lines in Fig. 25b).

All three curves in Fig. 24 can be obtained ex-
perimentally. E.g., for neutrons the absorption is
negligible and one gets for thick crystals the re-~
flection curve of Fig. 25a. In the X-~ray case the
photoelectric absorption 1s concentrated at the inner
shells resulting in a strong anomalous transmission
effect and in asymmetrical curves as in Fig, 25b.

For LEED the plasma losses give a uniform absorp-
tion and the reflection curve should be more or less sym-
metrical. However here the simple two-bean

approximation does not apply and the situation is
much more complicated.
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4. Single Scattering Matrices and Neutron Scattering

In diffraction experiments with low energy electrons
the energy is typically of the order of 50 eV and
therefore comparable with the mean potential Vo or
the potential of a single atom. Such low energies
give rise to many complications. One of these

is due to the fact that even the interaction with

an isolated atom can no longer be calculated by
Born's approximation but has to be treated exactly.
With respect to this, the situation is even worse
for thermal neutron scattering where the, extremely
short range, interaction with the nucleus is of the
order of several tens of MeV, compared with the
neutron enérgy of = 0,025 ev, Here the interaction
potential normally is replaced by Fermi's pseudo
potential [25]. However this procedure is restric-
ted to the first Born approximation. A dynamical the-
ory has to reconsider this problem as was done first
in LZGJ .In the first section we will show, that the
difficulty due to the strong single particle inter-
action can be overcome by the introduction of single

scattering matrices,

4.1, Multiple Scattering with Single Scattering
Matrices. [27]

We start with the Lippmann-Schwinger equation which
is the operator version of the integral equation (3.4.)

= | g = _l.__.
(1) w - 57 + GOV 1}( with GO E+it _HO

Here Y stands for the incident wave ((r) = eikL
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and GO(E'E') is the free Green's function (3.4).

Equation (1) also can be written in the form

(2) '\f/= g+ G, T

where the transition or scattering matrix T is gi-
ven by

_ 1 . 1 =

it

v + VGOT =V + TGOV

Considering the scattering by many centres, the po-
tential V is a sum of the single -centre contribu-
tions v (r).

(4) V() =2 v (r) =2 v(z-R") , if all centres
n n

are equal.

Now the scattering by the potential v alone can be
described by the single scattering matrix the

1
(5) tn = v T:E;v; =V, + Vh Go tn

For we get T = tos if only the centre n is pre-

sent (V = vh). In analogy to the incident wave in (2)

we introduce an "effective incident wave" ?n for
the atom n by writing

() Y'=Yn * % ta¥n
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By multiplying (6) with Vi and using (5) one gets

(7 vnl'r= n."fn

Introducing this into the Lippmann-Schwinger equation
(1) the wave function V¥ can be expressed in terms of
the effective fields ynv

(8) l'}/':kf*'Goz tmff”m

Moreover, by comparing this with the defining equation
(6) theEPn's have to be solutions of the coupled equa-
tions

() go=§+ Z G, by

Therefore the effective incident fieldépn for the centre
n consists of the incident plane wave g plus the scat-
tered waves GO tm.9n1= Go Vmir from the other centres

m$+ n, as is illustrated in Fig. 26, These equations

have the advantage of clearly separating the scattering
properties of the single centres, given by tm' from the
multiple scattering properties of the whole system. How-
ever we have paid for this by getting a system of coupled
equations (9) instead of the single equation(l).

For convenience we may also write (8) and (9) in the
r~representation. Considering that for equal centres

v{r) = v (E-Bn) and consequently tn(ErE') = t(£-5n,£'—5n)
we get

(86.) 4]‘/(5) = ei_IS;'_ + Sd£|d£uco(£_£l) Zt(E.ani_l_-"__R,n) ?n(-{u)
n
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and

(9a) Y (x) = o1¥E +gd£'d£" G, (x-x') »

m m

[ Z t(£'-B '£"-B‘_ ) (E")
m(+n) ‘LPm
From (8) or (8a) one can get a modified Born appro-
ximation by replacing the effectiv field.yh by the
incident field ¥.

(10) | ey o Go%tm Y

This approximation, known as pseudo-kinematical the©-
ry in LEED, goes over inktthe usual Born approximation

(kinematical theory) if t is replaced by v, _.
However (10) has the advantage that the single-

scattering process is treated exactly, whereas the
multiple scattering by different centres is still
neglected.

In an infinite crystal the eigenfunctions ¢(£) for
an energy E obeys the homogencous equation

(11) ¢ =6,V

Here one can as well replace G0 by the advanced
Green's function or by the principle value Green's

function, i.e.

1 1
(12) E:Izzﬁ; or P (E-H )

By choosing the eigenfunctions ¢ as Bloch waves, we
have




(13) ¢, (x+R™ = e ¢ (x)

Using (13)and the periodicity of V(r) =;Z: v(z-R"),
n

equation (11) can be written in the interesting form

5 ar' G(z,r') v(z') P (z')

(142) ¢, (x)
= \Y

[}
o7}
N

(14b) Gl(r,r') v(z') ¢E(£')

Here either the integration is restricted to one
lattice cell only (14a) or the integral only con-
tains the single potential v(r) (14b}. Further the
Green's function G, called complete Greenian by
Ziman [28], is

n
(15)  Glxr,r') =) Golr-r'+R™) o 1KE
n

It depends explicitly on k and not only on E as Ggqg
does. With respect to r, it has the same transla-

tion property (13) as ¢k .

By introducing the tnﬂmatrices by (5) and the effec-
tive fields ¥  as in (6) we may also write equation
(11) in the form

(16) =G DY t and =G. )t

¢ 0 4&-"n Yn SE o} miEn) m gﬁ
which is qguite analogous to the multiple scattering
equations {(8) and (9). Further one can see from (6)
or (16) that the quasi-periodicity (13) also leads
to a periodicity condition for the corresponding
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effective field Yot namely

ik

m
(17) (:?n+m (-£+Bm) =€ < E?n(E)

Therefore all effective waves gn can be reduced to
a single one, for instance {, . By doing this we

get from eguation (13) in the r-representation

(18) ¢(£) = Sd£ld£u G(E’E') t(£' 'En) 5)0(1:-:)

(19) E?O(-E) =Sd£'d£' G‘(E'E') t(£' '.‘E") ffo(.];“)

with

1l
[
(o)
In
{
H
5
(o
®
I
-
e
Pe

(20)  G'(x,r")

These equations can also be obtained directly from
(14b) by substituting v(r') {(zr') by t §..

4.2. Scattering by Muffin-Tin Potentials

Now we apply the multiple scattering equations of
the last section to a system of sphericaI%symmetrk ’
but non-overlapping potentials., Then the poten-

tial v(r) of a single centre is

vilel) 4

(21) v(r) = for r r
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In order to get no overlap between the potentials
of the different atoms, r has to be smaller than

an/; » Where 4, is the nearest neighbour distance.

Such potentials, known as "muffin-tin potentials",
have been used extensively for band structure calcu-

lations [29]

By substituting E'B.n ~» r and £'-B_m - r' etc., into (9a),

we get

(22) | \y (R™+r) = ej'I-SB-n"'j'ISE + Sdr'dr" Z G (r-r'+R"-R™) .
n= - ~ 7 m(¥n) o== = =

» t(r',x") Sh(5m+£")

The free Green's function G,, given by (3.4) satis-
fies the Schroedinger equation

Zm r T T 2m

2 2.2

= - §(z-r'+E"-E"

The same equation holds, if 9r is replaced by 64..

For r & r, { d—gn and r'éb& r, the source term in (23)
vanishes and G, satisfies the potential-free Schroe-
dinger equation in these regqions. The same applies to
the incident wave eiEE)of course. Then it follows
from (22) that 9n(39+5) satisfies the potential free

Schroedinger equation for r {r,, too. Therefore, by

expanding \p (R"+r) (or G, and eELy 4o spherical har-
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monics \;m( £/r) , the radial function RL(r) satis-
fies the equation:

192 £(é+1) 2 =
(24) {— = Or r + === =~ K .}Rf(r) =0

2
r

for r £ rg,

For given K there are two linearly independent solu-
tions namely the spherical Bessel functions je(Kr)

and nefKr) . They are elementary functions and be-
have as

(25) j{(x) =\‘-%:- JJ+1/2(x) - -:‘-{- sin(x--f’-Vz) for 1x|?71

V& ¢
- x~ for XK1
2£’+lrl(£+%)

(26) n{(x) =\‘%% 95-1/2(X) Al;%;r for x|« 1

Here J2+1/2 (x) is an ordinary Bessel function. The m,{x)

functions are singular in the origin and therefore
give no contribution. Thus the following expansion

for 95 is valid for r £ rgt

(27) \fn(5“+£) =Z iggIL‘ j (k) YL (15‘-)

Here the index L = (#,m) stands for the angular mo-
mentum index £ and for the magnetic index m. The

yg 's are unknown coefficients, and the spherical har-
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monics are orthonormalized.

(28) gdﬂ- YL.*(%-)TL (%) = SL,L- = J{,e' Sm,m'

Similarly we get a double expansion for Gy = Golx,r')
for r £r_ and r'&rx_ .

_er -
(29) G_(r-r'+R™-R™) = %—‘ Z €€ gn m
o== = = A° L, L,L

¢« JpRx) 3, (Kx') YL(%) Y: (':E—)

The corresponding expansion for e:LEE is [3Q]
*(K X
(30) o'BE = ZI; i€ 4 Y (?‘) 3 p(Kr) YL (£)

Further, due to the rotation invariance of v{r), the
scattering matrix t(r,r') depends only on r,r' and
the angle @ between r and r' . Therefore an expansion
of the form |

Y 2€+1 1
(31)  tr,z') = % 2 ¢ (r,x') 2, (cos @)

% t,(r,r’) YL L%}Y:L'%"'>

holds, where for the last line we have used the ad-
dition theorem for spherical harmonics[BO]. Now, we
introduce the expansions (27,29,30,31) in equation
(22) and obtain by using the orthogonality of the

WﬁL's:

]




n ,
(32) LS)E = olER, 4«Y*L%_)+ > GE:'I':, o2 SJII"‘,

Here T% is given by

o
(33) t? = S r'zdr'r"zdr" jg(Kr') tz(r',r") jE(Kr")‘
0

1 id]
=-ze £ gin S}

as can be shown by partial wave analysis, 6} is the

phase shift of the ﬁth partial wave. Thus we have
reduced the solution of the integral equation (22)

to the solution of the algebraic equations (32), This
was only possible because the single potentials do
not overlap what we have used explicitly in the ex-
pansions {27,29). The division into single centre
properties and properties of the whole system is
still apparent in (32). All the information ‘we need
about the single potential is contained in ¥, or

in the phase shifts 8}  whereas the coefficients

GE-E. are determined by the structure of the system
r

alone. Further, we should point out that by knowing
the coefficients gg and the effective fields  (x)

we simply can get the wave function'“’from (8a) .

The solution of the algebraic equations (32) for a
crystal slab or half crystal is still a formidable
problem because of the infinite number of atoms and
angular momenta involved., Of some help is here the
x-y-periodicity, which reduces all effective fields
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of the same atomic layer in the x-y-plane to a single
field for each layer. Namely, in analogy to (17) we

have for a "plane" translation ¥.

(39) . (¥ = L4 G, ()

Therefore the number of unknown}f? 's in (32) is the

product of the number of atomic layers times the num~
ber of angular momenta considered. An especially sim-
ple but also instructive problem is the case of a

monolayer of atoms scattering isotropically (L = 0).

For this we only have one constant, saysfg . The re-

sult, given in[?2,3ilﬁhows interesting resonances, which
are due to quasi-localized surface states, as well as
certain threshold effects connected with "surface waves".

For a real crystal one may either try to solve the
equations connecting the different monolayers. This
method, proposed by Beeby [32], has been successfully
used for LEED in [33] . Or one may try to solve the
equations for an infinite crystal, as will be shown
below. Then one has to match the allowed Bloch waves
and allowed plane waves at the crystal surfaces.

This method has been used in LEED, too [34].

To obtain the Bloch wave ¢k(£) (18) for an infinite
crystal we have to solve the equation (19) for the
effective fileld Yoo Again for muffin-tin potentials
-55(5) and the Green's function G'(x,r') satisfy for
r,r' L X the potential-and source-free Schroedinger
equation. Therefore we get expansions of the form
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(35) EPO(E) =% 12 501- jﬂ(Kr) YL (_-f—) for r L& r

-0 .
(36)  G'(x,r') = > i Gy 3,(Xp)5,, (Kx')
—_ - L'L' LLI Q l

n (—%—) YLT(::_—') for r,x' & r_

Introducing these relations into (19) and using the expansion
for t(r,r') (31),we get the homogeneous equations

(377 Yy, =%— G Yo Yo
They have only solutions, if the dispersion condi-

tion
P -—
(38)  det | G, T, .

is satisfied connecting the allowed k- and E-values.
This is the t-matrix version [35] of the Korringa-

Kohn-Rostoker-method (KKR-method) for band structure
calculation [36]. In practical cases the evaluation
of the "structure constants" GLL' represents most of

the work. They only depend on the structure of the
crystal and on the energy and Bloch vector, but not
on the potential. There exists a large number of
different expressions for‘GLL,  which can be eva-

luated from (20). However none of them is especially
simple and hence we refer to the original artic-

les [36] . For cubic lattices and for symmetry direc-
tions of k the coeffic dients have been calculated numerically,
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For the case of s-scattering only, the determinant

simply gives Goo 170 = 1. This case is essentially

equivalent to the treatment in the following section.

4,3, Diffraction of Neutrons

In this section we want to apply the multiple scat-
tering equations to the diffraction of neutrons by
an ldeal crystal. However let us first discuss the
scattering by a single nucleus. Because the wave

length (NIK) is very much larger than the radius X,

of the nucleus (f\"].o"13

For the evaluation of the scattering amplitude, we

cm), we only have s-scattering.

can set the energy E = 0. The case of higher ener-
gles is discussed later on. Then we get from the
Schroedinger equation for E = O:

(39) (’arz - v(r)) r Y(r) = 0

If v(r) =0 for r = r, » then ?«r) behaves as

a5

(40) \V(r) =1 - T or r V1r) = r-ag for r = X,

The real constant a, is the scattering length for E=0

which is connected with the cross section byy= 41ra02.
Graphically the scattering length can be obtained by

the intersection of straight line r-a_ with the r axis
(Fig. 27). For an attractive potential (v(r) < 0)

the curvature of r'¥ is according to (39 ) negative,
if rY is positive and vice versa., Further r4f va-
nishes at the origin. For a relatively weak, but
negative potential we may therefore get the curve
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of Fig. 27a, leading to a negative scattering

length. If the potential strength increases, then

a5 goes to -o¢ and the cross section diverges.

This is due to the fact that there exists a bound

state with zero energy in this case. Namely for
1%

a bound state with energy E = - —Sm the wave

function for r = rg is rY(r)w e-‘?er

a constant for £ = 0. But this is equivalent to the

condition a, -t & . By further increasing the

strength of the potential, we get a curve as shown

in Fig. 27b, resulting in & positive scattering length,

, which gives

Further - r Y(r) has now an extrema for r & rg
which is connected with the bound state of the po-
tential. By further increasing the potential, ag
will become negative again, etc. Whenever a,

goes to =w , a new bound state with energy E = O
is produced, and r“f(r) will have as many extrema
as there are bound states. On the other hand for
an repulsive potential the situation is quite dif-
ferent (Fig. 27c). Here ag is always positive and
smaller rg.

As an lllustrative example, we discuss the scattering

by a spherical potential well of depth - V, and ra-
dius r,. Here one gets

tgKorg

(41) a=r{l-——}’withK=
(o] o Koro o

2m
_v
h2 o)

Fig. 28 shows ay as a function of K,r, for an attrac-
tive potential (full lines) and for a repulsive po-
tential (dashed lines). Reasonable values for Vo and

r. are [37] :

Q
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1 -
Vo % 45 MeV, r_ X 1.45 A /3 10713cm, where A is the

atomic weight of the nucleus. For A &/ 100 we get
Kory % 10, Further from Fig. 28, we see that for
such large values of Korp the scattering length a,

will be more or less equal to Negative a, values

only occur in very small intervalls jﬂ(Koro)fU'ElE— .
v o

Therefore the chance t0 get a negative scattering

A 3%, The chances to get

length would be p ¥ 1
TK r
oo
especially large,\aol values are even smaller,

In the case of absorption, the potential v(r) is
complex and the scattering length for E = O becomes

complex, too: a, = aé + iag . However neutrons are

very weakly absorbed and normally

a 1]
‘ Eerlﬂﬁlo 5 . Even for such a strong absorber as
o

"

a

boron the ratio ’ao'{ is only 0.04.
o

So far we tacitly assumed that the nucleus has no
spin (S = 0). In this case the interaction does not
affect the spin of the neutron which therefore must
not be taken into account explicitly. However for
S¥O0 two relative orientations of the spin {¥of the
nucleus and spin S of the nucleus are possible,
namely Q’parallel or antliparallel to § giving a to-

tal spin of S + 1/2 or § - 1/2 respectively. The

interaction potential can be simply expressed by two
projection operators P and P_ which project a spin

function )(,(g’,g) on the subspaces S + l/2 and S - 1/2




_p 2 _ S+l+28i8 _ o 2 _ S-2¢g.8
(42) P = PB." = 7555l ¢ P7 P T oagd

Thus the potential, depending explicitly on ¢ and S,
can be written as

(43)  V(r;¥,8) = Vv, (r) P+ V_(r) P_

For each potential V_(r) and V_(r) we get a different

scattering length ao+ and ao_ SO0 that we can write

(44) a, = aj P, + a, P_

If we have no polarization, then the averages { (_’_"> =0
and.<§>== 0 , and we get for the socalled coherent
scattering length

coh _ _ §+1 + S -
(45)  ag™ = <ao> = 35+T % T 3591 2%

The average cross section is

6y { oY= am] Skt ah? + 2 D)2 |

h, 2 S(8+1) + -2
= 4T (a9 + 4w 2222 0 (3T - a0)
o) (2S+1)2 o) fo

The first term 1s the "coherent cross section", the

second one, depending only on the difference a: - a; '

the "incoherent cross section',




- 98 -

Multiple scattering: For the scattering of neutrons
the multiple scattering eguations can be simplified
essentially. Because the range r, of the potential is

very much smaller than both the wave length and the
lattice constant, in equation (8a) G_(x-r') and

9n(£") can be replaced by GO(E‘Bn) and g;(g?).

Then the single-scattering matrix t(r',xr") only en-
ters through the integral gdg'dg" t(x',x"). This
approximation is equivalent to replacing the t-matrix
by

2
(47) t(x,x") =d;—m 4Ta 8(2) g(_{')

Here a 1s the scattering length for the energy E.
With (47) we get from (8a )

iKr ej'Kl-E._Bl'\l
- 2 a ——lE_BnI EPn(_R_n)

48) WY =e
Therefore we only need the effective field yh at
the position R, of the nucleus No. n. Then
equation (9a) gives

- K 1| En"En]

These algebraic equations are quite analogous to
the equations (32) for muffin-tin potentials, How-
ever due to the S-scattering we only have one un-
known constant per nucleus, namely ﬁ’ntgn)_

The scattering length a for an energy E is in a
simple way connected with the scattering length a,
for E = 0, From (5) we have
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1

—— t
E+i%-Ho

(50) t=v +v

1 1 1
=th+V+V( - - — )t
ie HO E+ic Ho i€-H°

By taking the term v ieiH t to the left hand side
o

;, one gets

. 1
and dividing by 1-v iE-Ho

1 1
(51) t_to+to(E+it-Ho ie-Ho)t

with t = __-i_T_- v

(o]
l—v r—
it H0

Here to' being reallis the single-scattering matrix for zero

energy. In the r-representation equation (51) is

(52)  t{r,r') = t (x,x') +Sd5“d£"' t (x,x")

: TR 1
SIKIX" ="

-2m ]
. [ ) t !
(#%) TEET MR

Now if both t and t, have the form (47} with scat-
tering lengths a and a_ , we get from (52)

a
o)

(53) a= ao - iKaOa = m{;
Because [Ka | « 1 normally, a = a_. In principle,

however, a, can be arbitrarily large. Then a is

limited by % -
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By setting K = 1R , the scattering length diverges

for § = %—- , 1if ao> O. This indicates that for a0>0
o]

the potential v(r) has a bound state with the energy

2
E = -'gﬁ LE » which, for instance, wvanishes for
8
a,=» o7 .

Equation (47) represents the t-matrix for a poten-
tial of "zero range", i.e. in the limit Kro-> 0.
For a repulsive potential the scattering length a,
vanishes in this limit because always O L a L ry .
However for an attractive potential a finite value
of a, can always be obtained by adjusting the po-
tential depth, e.q. V0 in equation (41). Further we

have at most one bound state. All others have ener-

2
A 1
gies EN - °m ——2-r moving to -« for ro-> 0.
o

To determine the eigenfunctions for potentials of ze-
ro range in an infinite crystal, we introduce the an-
satz (47) for t in (18) and (19). Then the Bloch
wave ¢E is given by

x>
G(x,0) T 4va Y_(0)

(54) ¢ (1)

iK| r+Rp| s
2 Sy 5 ) g0

n

Here gb(o) only is a normalization constant. Equa-
tion (19} gives the dispersion condition connecting

1°K2

the allowed k values with the energy =5-— .
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—112 Ao e lKiBnl -ikR

{55) 1l =¢G'(0, 0) iffa = - e ~==n
n¥0 n'

The equations (54) and (55) can alsoc be written in
a different form with sums over the reciprocal lat-
tice. For instance by Fourier transformation we get
from (54)

L ] !
dK LS

In

—— ]

(213 Ke-K'2+1¢

(56a) P, (r) = 4wa §_ (0) j‘

. Y (LK'-K)En
n
i(k+h)r
(56b) = 22y (0) 2 &——=

h K- (k+h) ®

The sum in (56a) gives a O-function, if K' is equal
to k up to a reciprocal lattice vector h. Similarly
one gets from (55) by adding and subtracting the
term n = O:

dK" 3
= 41FS 3 3 - *2(‘%” 2. S(K'-k-h) '1>

(21) K“+ie-K" c h

(57)

-

The two terms in the bracket cannot be integrated
separately, because both diverge. For the first term,
being a discrete sum, the it in the denominator

is unnecessary, whereas the imaginary part of the se~
cond term is iK. With the expression (53) for a, the
imaginary term iK cancels on both sides and the re-
maining quantities are real. Substituting XK' = h+k'
the second integral can be written as a sum over h
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too with integrals dk' over the first Brillouin
zone. Thus we get

41rao 1

(58) 1= Ll
Ve h { K®=(k+h)

gl
- < k" L
(2M71 5.z, K- (k' +h)

The sum over h colverges because the integral cancels
the first term for large h. However the sum of the
first term or second term alone diverges. This is
directly connected with the difference between the
effective field and the wave function. According to

( 6 ) we have

iKr
(59)  ¢(x) =y () - aZ— i (0)

Therefore ¢(£) diverges as % for r<» O and similarly
for r> En' However the effective incident fieldrtfO

does not diverge for r -+ 0. The divergence of ¢(£)
can be seen in equ. (56b) too, where the sum over h
diverges for r = R . Therefore the convergence of
(58) is due to the subtraction of the term

% in (59) or the term n = 0 in (57,58). Practically,

however, the difference between §(xr) and { (x) is
important only in the immediate wvicinity of the nu-
cleus, but not everywhere else in the first unit cell.

In the one-beam case, i.e. if the Bragg condition
is not fulfilled, we get from (58 )




(60) 1 = 5=~ Or K° - —=2-k“=0

The other terms in (58) have the order of magnitude
4TTa
A

2 lf kﬁo(lo—s) and can be neglected. However

c K
this would not be possible for extremely large

a_ W O(I/K). For a, > O the refractive index n = %

o
2Ta

isn=1 - g { 1 leading to total reflection for
V K
C

nearly glancing incidence. On the other hand, for

aol( O and consequently K2 { k2 or n > 1 the neutron
can be bound by the crystal similarly to a band elec~
tron. However the binding energy is only of the or-

der of 10-7 eV. Nevertheless such bound states may

have some physical significance in temporarily cap-

turing neutrons [38]

If the Bragg condition is fulfilled for a number of
beams, say k, k+h; ,..., k+h , then we get from (58)

by neglecting the integral as before:
h
4?30 ~=I 3

Ve §0 K- (kth)?

(61) 1=

This can also be written 1n a more familiar form.

Namely from (56b) one gets for h = O,..., h :

h

Ta dva =n

v . Ef§$= v < > Che
c ¢ h'=0 =

4

2 2 _
(62) (K - (k+h) )CE—

where the last identity follows by using (61).
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This equation 1is identical with the basic equation

for electron diffraction, if all v, are replaced by

dra -
7 2 , Therefore one may derive (62) as well without any
c

t-matrix formalism simply by using Fermi's pseudo potential

2
(63) vi(x) =T ava, d(x)

F
By neglecting the integral in (58), the effective
field ¢ (r) and @(E) become equal. Physically this is
due to the fact that with a small number of beams
the difference (59) between Yolx) and ¢(£) » being
only important at the position of the nucleus,
cannot be resolved. Therefore, by restricting to
a few strongly excited beams, the Fermi potential
(63) can be used and the whole formalism of elec-
tron diffraction remains applicable, e.g. two beam
case, boundary conditions, etc. However in addition
to the assumption Of zero-range potentials (r_ <« y A )
used to derive the representation (47) for the
t-matrix or for the dispersion condition(58), we
have used the conditioniaol« A'dnn in order to
derive (62) or Fermi's pseudo potential(63). There-
fore deviations from (62) are expected for extremely

large ao's, for instance near resonances,
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5. Dynamical Diffraction of X-rays

.The theory for X-ray diffraction is quite analo-
gous to the theory for electron diffraction, ex-
cept that we have to consider a vector field in-
stead of a scalar field, Therefore we have to start
with Maxwell's equations replacing the Schroedinger

equation.

5.1. Fundamental equations for X-ray-diffraction

For simplicity we will treat the electrons of the
crystal classically. A more thorough quantum mecha-
nical treatment is given in part II. The fregquencies
of the motion of atomic electrons are of the order

W, va/a where v is the electron velocity and aj
B

is Bohr's radius. Because the X-ray wave length

is comparable to a these frequencies are small

B'
*
compared to the X-ray frequencyc)=2ﬂ§ y Since v c.’

Therefore the electrons may be treated as free,

Their motion due to an electric field E ~v e ¥t ig

described by
(1) mr =e E(r,t)

If we denote the space dependent density of elec-
trons by Q(E)f then the density of the charge cur-

rent is

*)In the scattering by heavier elements, this condition
may only be fulfilled for the outer electron shells,
but not for the inner ones. See part II for this case,

too.
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(2) i) =egm k=15 o) Ex,b)

Now we introduce this current into Maxwell's equati-
ons, which are

for harmonic time dependence ~ e 19t

(3) D£x§=i

o) [

H

(4) D£xg=-1

ale

v .
E+si=-1

it

$E=-i €D

Qie

Here the dielectric constant ¢ is given by

2
- 4re
(5) (r w) = ] - — (r)
£ (z, s

It follows directly from (3) and (4) that

(6) Qr.2=o='0

r

!

Further, one gets by eliminating H from (3) and (4)

(m xdxE= @D

Actually the deviation of & from 1 is very small for
X-rays. With the classical electron radius

e2 -1
re == = 2,82 10 cm one has
mc
4wre
(8) X(x) =E(r) -1 = -

o 27
(r) with= = K =
2 SE c )

o
For } ¥ 1 A we have [X| £10 4 for most elements.

Therefore E as a function of D is given by




D ¥ p=-XD

o=

(9) E =

Substituting this into (7) and using (6) we get
an equation for D alone.

(10) (’Orz + Kz)P_(E) =- 2 x Dr x (’K(E) D (_r_)) |

Sometimes, e.g. in order to derive the kinematical
theory, it es useful to write this equation as an

integral equation by using the Green's function (3.4)

. A 1Kr
Then for an incident wave D e == one has

. iK{xr-x'|
= p elKE i pe 221
(11) D(r) =D e + ?E X Dr X SdE T{r-x'|

v X{(z') D(z')

In an infinite crystal the electron density‘g(g)
has the periodicity of the lattice. Therefore, the
eigenfunctions can be chosen as Bloch waves and can
be expanded into plane waves analogously to (2.20)

(12) D (x) =2 p, et EWI yienp L) =0

& h = =

Since Q&- D = O the vectors D, are perpendicular to

k + h. Due to its periodicity X(r) can be written as
(compare (2.4, 2.6)):

(13)  X(r) =% x, ethE

with

4wr
x iy
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where fh is the atomic scattering factor for X-rays
(2.7). Introducing (12) and (13) in (10) we get by

comparing the coefficients of'ei(5+ﬂ)£ :

2 2 = - 2
aa) (k% - p?) Dy = ~tch) %"h—b’ 2n'[h]

with
(k+h) ((k+h) -+ Dy )
(13)  Bperyy™ Bpe” R
h'[P]) =h (k+h)
Due to D,.(k+h) = O the term on the right-hand side has

=h
to be perpendicular to k+h , which is indeed the
case, since Qh'[hj is the projection of D,: on the

plane perpendicular toc k+h. Due to the smallness

2

of X, , only the plane waves with K> % (k+h)° are

h
strongly excited. Therefore we can replace (k+h)2

on the right side of (14) by K.

e (x% - wm?) 2h = % *n-1'2n'[b]

These equations are very similar to the correspon-
ding equations (2.21, 2.71) for electrons or (4.62)
for neutrons. The main difference is that the D,'s

are vectors. Rh is the analogue to the potential

. 2m . dvag
coefflcientigz Vh (2.14) for electrons or to 7
= c

(4.62) for neutrons,
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For each plane wave k+h we can introduce two po-

larization wvectors gs (s = 1,2) being perpendi-

cular to k+h -

s _ s s' _
(17) ey (k#) =0 and e -ep = é"s's.

for s and s' = 1,2

With

= m

2
(18) D, = 3 Dpe
l]. = '}_1._

we get from (16) for the scalar components D: :

2 _ 2 5 _ s &' s'
19) (x* - kw®) o = é ¥p-n En'Sht Dp
1,

These are homogeneous egquations which have a solution
only if their determinant vanishes.

2 2 s s'|_
(20) detI(K (k+h) )J.\l}r..lf}' SS’S, R_T_l_-_l}_' Eg’eg' = 0
This gives us for a given k-vector the allowed frequen-
cies cK = wy(k) , which form bands, The Bloch waves
for different k's and v's are orthogonal, namely

dr' *
(21) - D, .,(r) D (r} = S(k-k') g J
\S (2“')3 —]i P2 '_KrP - - \?’\?

Quite analogously to (2.26) we have then for the

coefficients D, Dl'Sl respectively:

¥* , _ _ * g s
(22) %22(5,? ) 2_(1_':_,9) = 5\?)\,,— th D E(E'V')Dll(k'\’)
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Most of the other results of section 2. are wvalid
for X-rays, too. For instance, we have the symmetries:

(23)  Oylk) = Wylkth) = WSk = Wy(-k) = L (k¥)

if 8(_1_:_) has the following properties (in the same
sequence as (23) ): periodic (2.33), symmetrical
with respect to § (2.35), local(2,36), real (2.37).
Similarly the theorems about the real lines and the
behaviour for complex k are valid without change.

There are two simple cases where the vector equation
(16) reduces to two equal and decoupled egquation for

the components DS ;, thus leading to a scalar theory

for each component. First, in the wvacuum we have
'&F—h'= O and the two polarisations are degenerate.

Second, for very small wave lengths K2>> h2 , 1.e.

for very small Bragg angles, all wave vectors k+h,
k+h' of the strongly excited waves are approximate-
ly equal. Then in (16) Qh'[h]g Eh' or in (19)

]
gi. eﬁ, = 5;5, and we get the same egquation for the

polarisations s = 1 and s = 2,

Together with the dielectric field D(r) the electric
field E(r) and the magnetic field H(r) can be expan-
ded irto plane waves, too.

(24) E(r) =;Z E i(k+h)r . H = H
— — — e c----——‘I -
h

i(k+h)r
he® ~ 7

For the direction of Eh it follows from (6) and (4):
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(25) (kth)« H =0 and D = - =(kth)x H

Therefore H, is perpendicular on both k+h and D,
(Fig., 29) Furhter we get from (3) and (9) for Eh:

H = 4 = -
{26) Eh_ Z (k+h) x Eh and Eh 22 %’1-:1_1_2.2.

Therefore E. lies in the plane of k+h and D,. It

h.
nearly coincides with D, , since |%| A1 (Fig. 29),

5.2. Current, Boundary conditions, etc,

The density of the energy current is given by Poyn-—
ting's vector

(27) s =% ExH with real E and H

By using complex quantities, the average of S over

times “c»é is [5.39]
(28) 5% = & Re(E x B

Since [X}4¢ 1, we may as well replace E by D. For a
Blochwave Ek (_r_) , the current contains contributions

oscillating in space. However the average over a unit
cell is constant and given by:

S T S T T
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Now it can be shown analogously to (2,31),
that

K
(30) Z (k+h) IDhl X >h_| .b'
Together with the normalization (22) we get there-
fore

— D =
(31) 8 =8 I 2k B 0Kk

As in the case of electrons the current is there-
fore perpendicular to the dispersion surface

(,\)v(]-_:) = cK = constant.

For the diffraction of X-rays by a finite crystal, the
wave fields in the crystal and in the vacuum have
to be matched at the crystal surface. Since Or-g = 0,

the component of D(x) perpendicular to the surface

is continuous . Due to Dr X E = g H, the tangential

component of E is continuous, too. Furthexr, since

X(r) is very small, we may neglect the waves specu-
larly reflected from the surfaces. For the same reason
E and D are practivally equal. Therefore we can assu-

me that both components Dnormal and Dtang. are conti-

nuous.

Analogously to section 3.3. we can construct the
wave fields in the vacuum and in the crystal. For a
crystal siab we can have the plane waves

ko= (&l , 2K,y

} in the vacuum, so that

"




(32) D{r) = for =z

—

+
PP >4

A
Dji Kis the field vector of the incident wave, Ry
ang _';‘_5' are the field vectors of the reflected waves

—
-

Eﬂ’ and transmitted waves 1(_; . Since we neglect any

- = . +
true reflection from the surface, either 5% {Laue

case) or 5} (Bragg case) is a Bragg reflected wave
and the other one can be pnitted.In the crystal we
may have a number of Bloch waves _r_ka (r) with

.Iij = @:'kzj) and COQ(E'ij) = cK, However, since
%144 1, only outgoing waves have to be taken into

OIN
. = 1
account: e > 0 for real k:z or &ez>01for kz ]4:z + :Hez

complex.,

{33) D{(x Z for 0%z &d
= J —k
3 —J
The boundary condition for D to be continuous for z=0 and z=d
lead to similar equations as (3.31-36) from which

the coefficients Eg ' 2& and Pj can be determined.

Without absorption, the z-component of the energy
current 1 s independent of z, if averaged over the
time and the unit mesh S of tle surface (section
3, 4). This gives us an additional relation between

5 i’ and P » for instance for the crystal slab

(34) Z K, (l"i' '_'gflz)

or for the half crystal
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A
A2 <! 2 <1 K 2
(35)  K,|DJT = 2 Ky Ry 427 5 |7y
¥ 4 - J J
The sums g0 over real wave vectors Ei and Ej only.

a—

If no Bragg reflection is excited, we only have one
strong beam. For both polarisations the Bloch vector

is determined by

36) (k% - -k =0
The refractive index
27T
(37) n=X&;.2"¢¢
K 2 o
VcK

1s slightly smaller than 1, leading to total re-
flection for nearly glancing incidence.

If a Bragg reflection is excited, we have two strong
beams X and k+h . In this case a natural choice for

the polarisation vectors is (Fig. 30a):

S =1 (g"-polarisation) : eé = g; perpendicular to both

" kand k +h
. 2 2

S = 2 (T -polarisation) : &y 1 & in the plane of k
~ angd k+h

Then we have in addition to (17): el-e2 =0 = el-e2
20" Zh €n'%

2 2 _
and e, 8, = ©os 2 o, - Therefore the egquations for

the different polarisations¢and W are decoupled,
giving
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2 2 s _ s
(38) (K“-%-k°) Dj = .te_ll Pg Dp

2 2, S _
(R*~ &~ (k+h) ") D =¥ P

. _ _s__S |
where the polarisation factor P = e, e, is equal to

{ 1 s=1(0—)

{39) P for

2 (rm)

n
i}

cos 2 GB

For each polarisation the allowed k-vectors lie on
the dispersion surface described by

2 1o

(40)  (k2-k k%) (KP-p-(k+tm?) =P 2

Far away from the Bragg condition the di spersion sur-
faces for both polarisations are equal and represen-

ted by the spheres of radius VK -Jto around k = O

and k = h. Near the Bragg condition the degeneracy is
removed. For instance the smallest branch separation
is (2. 77):

P_Xp

21 s
(41) Ak_ = = =
s dext K cos &

B

The dispersion surfaces are qualitatively shown in
Fig. 30b. The larger spleres with radius K represent
the di spersion surface in the vacuum,

S
h
by replacing vy by PS "eh' For instanqe exactly in the

The coefficients D; and D- can be taken from (2.80)

Bragg condition we get for the (™—polarisation the




fields
0} .
(42) D () =gl LML (1 £ MBE
2
and for the Y -polarisation
¥ 1 ikr 2 ihr 2
(43) D (r) = — e 2= (el t e == e} )
7 "2

The upper sign refers to the inner branch and the
lower to the outer one, The (v-fields are identical

with the Bloch waves q)I and ¢II of Fig. 14. How-
ever for the T-polarisation we do not get pure sin-
or cos-waves, but always combinations of both, be-

2 2
cause e_ ¥ Ell .
The absorption of X-rays can be described pheno-
menologically by a complex dielectric constant or

by a complex density g(r) = g'(r) + ig"(r), resul-
ting in complex coefficients Ry = i&l!l +idp. Si-

milarly to (2.67)we get for the absorption of a
Bloch wave k the expression

(44) /«L =2 /‘n—y Dy(k) Dy, (k)

h,h’

Especially for the two-beam case we have

P
(45) S=/h F with W_= =2
M ° ?stE b s Pg iy
. o_
The minimal absorption is therefore A/A —/1.0 /{,4,-1_1
v_ oo , - -
for 0"-)but A}L = /“o cos 2 6 //(E for T -polari sa
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tion. Therefore only the ¥~wave shows a strong ano-
malous transmission effect, but not the T-wave.

Thi s is plausible from (42,43) because both ¥-waves
do not vanish at the atomic positions.

For multiple beam cases the different polarisation
will no longer be decoupled as in the two-beam case,
which complicates the problem. Multiple-beam cases
are interesting for X-ray-diffraction, because even
lower absorptions can be obtained than for the two-
beam case, as has been demonstrated by [40] . A
number of symmetrical multiple-cases has been trea-
ted in [41 ], including the cases of Fig. 17. For
instance, for the four-beam case of Fig. 17, the mi-
nimal absorption will be obtained for very amall waVe
lengths; for which the theory for X-rays goes over in
the scalar theory for electrons. Therefore the smal-
lest absorption is that of (2.104). The corresponding
wave field vani shes quadratically at the atomi¢ posi-
tions. Extensive treatmentsof the three beam case have
been given in [42].
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Bandstructure in one dimension. For each energy E there are two
lineaﬂﬂindependent solutions k and -k (full lines). Dashed lines,
giving four independent solutions, are impossible.
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Complex bandstructure in one dimension (k = k'+ik'"')
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Fig. 5a Real lines in first Riemann sheet (dashed).
( @ saddlepoints, X branchpoints)

Fig 5b k*Y

Fig. 5b Real lines in second Riemann sheet (dashed)
( ® saddlepoints, X branchpoints)
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Fig. 6 Choice of the basis vectors for a (100) surface of a
f.c.c. crystal. (31, 2, in crystal boundary;
2z perpendicular)
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Fig, 7 PFree electron bandstructure in three dimensions
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Fig. 8 Bandstructure in three dimensions
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Fig. 9 Real lines for nonhermitian potentials.
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Fig. 10 Ewaldsphere
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Fig-11

Fig, 11 Dispersion surface for two-beam case
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Fig. 12 Dizpersion surface near the Bragg spot kg




ig., 13a Bandstructure for the two-beam case ‘ E(k )
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Fig. 15 Absorption for Blochwave I snd II (for/(kh = 3/4JU0)




Fig. 16 BSystematic Reflections 2h, 3h, and -h, -2h
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Pig. 17ab Multiple~=beam cases
a) three beams k, k+h, k+h' (Jh| = lh'} )
b) four beams k, k+h, k+h', k+h+h' (b _|_ hY)
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Fig.17c
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Fig. ./¢cd Orthogonality of Bloch functions

¢) The Bloch functions A,C and D are identical
and orthogonal on B

d) The positions of A and B on the two-beam dis-
persion surface.
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Pig, 18 Plane waves K
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Fig, 19 Allowed kz-values for a given energy E
( © allowed kz's)
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Fig., 20 Incident wave K and reflected wave KX + h
for the Laue- and Bragg-case.
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Fig. 21 Dispersion surfsce in crystal and vacuum.
——0ispersion surface in crystal
dispersion surface in vacuum
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a) W= o exact Bragg condition
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FPig. 24 Variation of k in the Bragg case
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Fig. 28

Pig, 28 GScattering length a, for a potential well
(attractive potential —vo<o: full lines
repulsive pot&ntial -V, >0: dashed lines)
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Fig. 30a Direction of polarisation vectors

(g% = g% are normal to the plane of drawing)

Fig. 30b Dispersion surfaces for @ and W polarisation
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