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1.2  Th. Brückel 

1.1 Introduction: Why scattering? 
 

In this chapter, we will start with a very gentle qualitative introduction entirely without 
formula to give you an idea what the course is all about. The details will follow in subsequent 
chapters.  

Imagine you leave this lecture hall, some mean looking guys dressed entirely in black follow, 
kidnap and take you to the medieval castle of Nideggen in the close-by Eifel mountains. 
There you are being thrown into a pitch dark dungeon. You cannot see anything, but you hear 
some noises. Are there rats? Are there other prisoners? Are there dragons? Luckily you 
remember that you have some matches in your pocket. You light a match, you can see 
everything around you and everything becomes clear to you… 

What I have just described is essentially like a scattering experiment: figuratively it sheds 
light into darkness and helps us understand the world around us. Let’s analyse what you did in 
the dungeon: first when you light the match, you start a source of radiation. Here the radiation 
is light. This light then gets scattered (reflected, transmitted) from the surrounding objects. In 
a scientific scattering experiment, we will call this object a “sample”. Back to the dungeon: 
some of this radiation gets scattered into your eye. Your eye serves as very special radiation 
detector: with its lens, it is able to even make an image of the objects on the retina, which in 
the language of a physicist would be called an “area position sensitive pixel detector”. This 
image contains lots of information: the colour of the backscattered light tells you something 
about the absorption of certain components of the light and therefore gives information about 
the material the light is scattered from. The position of the signal on the retina gives you 
information about the spatial arrangement of the objects around you. And finally the time 
dependence of the signal tells you that the monster is actually crawling towards you, ready to 
attack. All this information has to be treated and interpreted. This is done by our brain, an 
extremely powerful computer to analyse this wealth of data.  

This little example shows you the importance of scattering for our understanding of the world: 
nearly all information that we as individuals have about the world in which we live comes 
from light scattering and imaging through our eyes. It is only natural that scientists mimic this 
process of obtaining information in well controlled scattering experiments: they build a source 
of radiation, direct a beam of radiation towards a sample, detect the radiation scattered from a 
sample, i. e. convert the signal into an electronic signal, which they can then treat by means of 
computers. In most cases one wants an undisturbed image of the object under investigation 
and therefore chooses the radiation, so that it does not influence or modify the sample. 
Scattering is therefore a non-destructive and very gentle method, if the appropriate type of 
radiation is chosen for the experiment.  
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1.2 X-Ray Scattering in Condensed Matter Research 
 

What other requirements must the radiation fulfill to be useful for scattering experiments? In 
condensed matter science we want to go beyond our daily experience and understand the 
microscopic atomic structure of matter, i. e. we want to find out where the atoms are located 
inside our samples and also how they move. This cannot be done by light scattering. Why? 
Well in general light is scattered from the surface and does not penetrate enough into many 
materials, such as metals, for example. On the other hand, if it penetrates like in the case of 
glass it is normally just being transmitted except if we have a very bad glass with lots of 
inhomogeneities, but the main reason is actually that light has too long of the wavelength, see 
figure 1.1.  

 

 

Fig. 1: Electromagnetic spectrum; shown is the wavelength and frequency of 
electromagnetic waves, which have different names for different wavelength 
regions.  Also given are examples for objects with sizes comparable to the 
wavelength.  (from WIKIPEDIA) 

 

It is quite intuitive to understand that if we want to measure the distance between the atoms, 
we need a “ruler” of comparable lengths. Now the distance between atoms is in the order of 
0.1 nm = 10-10 m = 0.0000000001 m. Since the distance between atoms is such an important 
length scale in condensed matter science, it has been given its own unit: 0.1 nm = 1 Ångstrøm 
= 1 Å. If we compare the wavelength of light with this characteristic length scale, it is 4000 to 
7000 times longer and therefore not appropriate to measure distances on an atomic 
lengthscale. In the electromagnetic spectrum, x-rays have a well adapted wavelength of about  
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1 Å for studies on such a microscopic scale. They also have a large penetration power as 
everybody knows from the medical x-ray images.  

Classical physics describes electromagnetic radiation as propagation of electromagnetic 
waves. For a scattering experiment, we select waves of a certain wavelength and propagation 
direction, so-called plane waves, since all points on a plane in space have the same phase. If 
such a wave impinges on two point-like scattering centers (in a solid these could be atoms), 
spherical waves are being emitted from these scattering centers. This is nothing but Huygens 
principle for wave propagation. The emitted waves can superimpose and lead to either 
enhancement or cancellation of the signal in certain directions as depicted in figure 1.2.  

 

  

Fig. 2: Moiré pattern for concentric circles with equal distances representing a planar 
cut through spherical waves emitted from two scattering centers. The circles 
represent surfaces of constant phase relationship. Linear superposition of the 
waves gives enhancement or cancellation of the wave amplitudes along certain 
directions. This interference effect is mimicked by the depicted Moiré pattern. If 
the distance between the scattering centers is increased, the distance in the 
interference maxima decreases and vice versa: distances in the image created by 
scattering are inverse proportional – or reciprocal - to distances in the original 
objects which motivates the introduction of a reciprocal space to describe 
scattering events compared to the real space of the object under investigation.

 

As becomes clear from figure 1.2, scattering can be described as an interference phenomenon 
of the radiation waves. However, since de Broglie and Einstein, we know that quantum 
objects have a dual nature: the particle-wave-dualism. In the case of electromagnetic waves, 
the quanta carrying certain energy are called photons and in the detector, which registers the 
scattering pattern, we count single x-ray photons. This is characteristic for the quantum 
mechanical description: during propagation of radiation a wave picture is appropriate, while 
for the interaction with matter a particle is the description of choice. Wave and particle picture 
are connected by the fact that the magnitude square of the wave at a certain position in space  
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gives the probability density of finding the quantum particle at the corresponding position. 
Within this particle-wave-dualism it therefore becomes natural to use elementary particles as 
probes for scattering investigations of condensed matter systems. This was realised for the 
first time by Rutherford in 1909 in his famous experiment, where he directed a beam of �-
particles onto a gold foil and registered the transmitted and scattered particles. He found that 
many particles were backscattered and from the ratio between transmitted and backscattered 
�-particles he could conclude on the model of an atom, which is now generally accepted, 
namely consisting of a positively charged nucleus of size about 10 femtometer = 10 fm = 10 x 
10-15 m surrounded by a cloud of negatively charged electrons with an extension of about 1 Å 
= 10-10 m = 100000 fm, see figure 1.3.  

 

 

 

Fig. 3: Schematic model of an atom with the atomic nucleus consisting of neutrons and 
protons having a size of about 10 fm surrounded by electrons in a cloud of a size 
of about 1 Å.

 

The real breakthrough for structure studies of condensed matter systems came with the idea of 
Max von Laue to use x-rays as scattering probes. Wilhelm Conrad Röntgen discovered x-rays 
in 1895 and soon it was concluded that x-rays were electromagnetic waves. Arnold 
Sommerfeld suggested that the wavelength of x-rays was about 1 Å. At the time of Max von 
Laue, after the experiments of Rutherford, it was accepted that matter consisted of atoms but 
their periodic arrangement in crystals was maybe suggested by the regular facets of the 
crystals but could not be really proven by experiment. Max von Laue was a theoretician, who 
derived the famous Laue equation describing scattering from a regular three-dimensional 
periodic arrangement of scattering centers. He convinced the two experimentalists Friedrich 
and Knipping to perform an x-ray diffraction experiment. The result is shown in figure 1.4.  
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Fig. 4: Early x-ray diffraction diagrams recorded by a film from copper sulphite single 
crystals [1]. 

 

While the first transmission Laue photograph showed more or less just a fat plop, the quality 
of these images was soon refined and clear so-called Laue-spots could be identified. The 
impact of this discovery cannot be over-emphasized: it was the definite proof that solids 
consist of atoms, which are arranged in a regular three-dimensional periodic array and that x-
rays were scattered as electromagnetic waves from such an arrangement of atoms. It is 
therefore natural that Max von Laue received the Nobel prize in 1914 for this breakthrough 
discovery. However, the experimentalists Friedrich and Knipping were left empty-handed.  

Nearly everything we know today about the atomic structure of matter is based on this 
discovery which took place 100 years ago. Of course the techniques were significantly refined 
and nowadays x-ray diffraction is heavily being used to resolve complex structures of 
biological macromolecules in the field of protein crystallography. Such investigations need 
very intense and bright x-ray beams, which are provided from large accelerators, so-called 
synchrotron radiation sources. Many thousands of reflections are being recorded in a few 
seconds. As electromagnetic waves, x-rays are mainly scattered from the electronic charge 
distribution around the atoms and thus x-ray diffraction allows one to determine the electron 
density in solids.  

 

1.3 Impact of Scattering in other Fields of Science 
 

It should be pointed out that scattering is a much more general method in science, which is 
not only used by condensed matter scientists. The world’s largest accelerator is located close 
to Geneva at the border between Switzerland and France in the CERN research center. CERN 
stands for Centre Européenne pour la Recherche Nucléaire, i. e. the European organisation  
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for nuclear research. Many accelerators are located on the CERN site of which the LHC, the 
Large Hadron Collider, is the world’s largest and highest energy particles accelerator. The 
LHC lies in a tunnel 27 km in circumference as deep as 175 m beneath ground level. This 
huge accelerator serves nothing but a scattering experiment, where opposing particle beams e. 
g. protons at energy of 7 TeV collide in certain interaction points, which are surrounded by 
huge detectors built by large international collaborations. In inelastic scattering events, new 
particles can be created and the hope is that this huge investment helps us to address some of 
the most fundamental questions of physics advancing the understanding of the deepest laws of 
nature. At Research Centre Jülich we have a smaller version of such a particle accelerator, the 
so-called COSY synchrotron for Hadron physics. These large accelerators are needed to 
achieve high particles energies corresponding to short wavelengths, which allow one to study 
fine structures within nucleons. Large detectors are needed because at these scales no imaging 
is possible but if all scattered particles are being traced a reconstruction of the scattering event 
in the computer can take place. While at the LHC new particles are being created during deep 
inelastic scattering events, the connection to x-ray diffraction is more evident for the former 
HERA accelerator, which had been in operation at DESY in Hamburg until a few years ago. 
There, electrons were being scattered from protons in head-on collisions and the inner 
structure of the proton consisting of quarks and gluons could be resolved.  

 

1.4 Why Neutrons? 
 

Coming back to condensed matter science: if x-rays are so successful for structure 
determination, why do we need neutrons? Neutrons have some very specific properties which 
make them extremely useful for condensed matter studies:  

1. Neutrons are neutral particles. They are thus highly penetrating, can be used as non-
destructive probes and to study samples in severe environment such as cryomagnets or 
furnaces.  

2. The wavelengths of neutrons are similar to atomic spacings - just as is the case for x-
rays. Therefore they can provide structural information from the picometer to the 100 
μm range.  

3. The energies of thermal neutrons are similar to the energies of elementary excitations 
in solids. Therefore neutrons can determine molecular vibrations, lattice excitations 
and the dynamics of atomic motion.  

4. Neutrons interact with the nuclei in contrast to x-rays or electrons which interact with 
the electron cloud, see Figure 1.5. They are very sensitive to light atoms like 
hydrogen, which is difficult to detect by x-rays since hydrogen in bonds has often less 
than one surrounding electron. They can also distinguish between neighbouring 
elements in the periodic table like manganese, iron and chromium, for which x-rays 
are insensitive since these elements have nearly the same number of electrons. Also 
one can exploit isotopic substitution. A famous example is contrast variation in soft 
matter or biological macromolecules by replacing deuterium for hydrogen in certain 
molecules or functional groups. Similar to tinting in light microscopy, the location and  
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5. movement of these functional groups can then be observed on the background of the 
other molecules.  

6. Neutrons have a magnetic moment. This dipolar moment is due to the nuclear spin. 
Therefore neutrons can be used to study microscopic magnetic structures but also the 
magnetic excitations in solids, which have similar energies than the neutrons.  
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Fig. 5: Comparison of x-ray and neutron scattering from single atoms for a few 
elements of the periodic table.  The filled circles represent a measure of the total 
cross section, i,e, of the probability for scattering.  For x-rays, which are 
scattered from the electron cloud, this probability goes up with the number 
square of electrons.  Therefore Hydrogen is hardly visible for x-rays in the 
presence of heavier atoms.  The situation is quite different for neutrons, which 
are scattered from the atomic nucleus. Here the scattering varies not 
monotonically throughout the periodic table and is different for different 
isotopes of the same atom.  Blue and green circles distinguish scattering with 
and without 180° phase shift, respectively. 

 

Figure 1.6 shows the extreme range of applicability of neutrons for condensed matter studies 
based on these special properties. Different scattering techniques have to be used for different 
applications, as indicated in the figure. 

 



Introduction  1.9 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Huge range of length (left side) and time (right side) scales covered by research 
with neutrons. Also indicated is the corresponding neutron technique.

 

Due to the huge impact of neutron scattering for condensed matter studies, it is no surprise 
that the Nobel prize in physics was awarded to two of the pioneers of neutron diffraction and 
inelastic neutron scattering, which Clifford G. Shull and Bertram Brockhouse received in 
1994. The famous quote “neutrons tell us where atoms are and how they move” is due to 
Clifford Shull.  

If you got the impression so far that neutrons are the ideal and most universal probe for 
condensed matter studies on an atomic scale, you are right in principle.  However, as with 
everything in life, there are also some drawbacks. While neutrons are everywhere - without 
neutrons we would not exist - they are extremely difficult to produce as free particles not 
bound in nuclei. Free neutrons are produced by nuclear physics reactions, which require 
rather large and high-tech installations. Two main routes to produce free neutrons are being 
followed today:  

(1) Fission of the uranium 235 nuclei in a chain reaction; this process happens in research 
reactors.  

(2) Bombarding heavy nuclei with high energetic protons; the nuclei are “heated up” when a 
proton is absorbed and typically 20 - 30 neutrons are being evaporated. This process is 
called spallation and requires a spallation source with a proton accelerator and a heavy 
metal target station.  

 

Since installations to produce free neutrons are rather expensive to build and to operate, there 
exist only a few sources worldwide. JCNS is present in some of the world best sources as 
shown in figure 1.7.  
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Fig. 7: Major neutron research centres worldwide which have sources of appreciable 
flux and a broad instrumentation suite for condensed matter research.  JCNS is 
present at four of the leading sources worldwide: the neutron research reactor 
FRM II in Garching, Germany, the Institute Laue-Langevin ILL in Grenoble, 
France, the Spallation Neutron Source SNS in Oak Ridge, USA and the Chinese 
Advanced Research Reactor CARR close to Beijing, China. JCNS also has a 
leading involvement in the European Spallation Source project, Lund, Sweden. 

 

The fact that there are only a few sources worldwide implies that neutron scattering 
experiments have to be organised quite different from normal lab-based experiments. Users 
have to be trained in special schools (our JCNS school is one of them) and access to the 
experiments has to be organised (see below).  

Not only the neutron research centres are rare but also free neutrons by themselves are rare. In 
a high flux reactor the neutron flux i. e. the number of neutrons passing through a given area 
in a given time is in the order of 1015 neutrons/cm2·s. If one compares this value with particle 
fluxes in gases, the neutron density in high flux sources corresponds to high vacuum 
conditions of about 10-6 mbar pressure. The neutrons have to be transported from the source 
to the experimental areas, which can either be done by simple flight tubes or so called neutron 
guides.  These are evacuated tubes with glass walls (often covered with metal layers to 
increase the performance), where neutrons are transported by total reflection from the side, 
top, and bottom walls in a similar manner like light in glass fibers.  The neutron flux 
downstream at the scattering experiments is then even much lower than in the source itself 
and amounts to typically 106 - 108 neutrons/cm2·s. This means that long counting times have 
to be taken into account to achieve reasonable statistics in the neutron detector. Just for 
comparison: the flux of photons of a small Helium-Neon laser with a power of 1 mW (typical 
for a laser pointer) amounts to some 1015 photons/s in a beam area well below 1 mm2.  

 



Introduction  1.11 

 

 

However, it is not only the low flux that limits neutron scattering experiments, but also the 
fact that neutron sources are not very bright, i. e. neutron beams are rather large in the order of 
a few cm2 and therefore require in general rather large samples. Typical sample sizes are 
again in the order of a few cm2 and have masses of a few grams. However, this does not mean 
that we cannot study nanosized objects with neutrons as you will see in the subsequent 
lectures. However, for neutron scattering techniques, we have to have many of such objects 
and we will obtain ensemble averages.  

 

1.5 The Social Practice of Neutron Scattering 
 

The fact that neutron sources are rare leads to a particular social practice for neutron 
scattering: there are only a few major sources in Europe and worldwide and the operation of 
each one of these sources costs several million Euro per year. Therefore efforts have to be 
made to use the existing sources as efficient as possible. This means (i) continuous and 
reliable operation of the source during a large fraction of the year; (ii) many highly 
performing instruments, which can run in parallel, located around every source; (iii) 
professional instrument operation with highly qualified staff and a stringent risk management 
to keep the downtime of instruments and auxiliary equipment as low as possible; (iv) and 
access for as many scientists as possible.  

There is no commercial market for neutron scattering instruments. Therefore these 
instruments are being built by research centres, where usually one or a few staff scientists 
work closely with engineers and technicians to realise an instrument for a certain application 
of research with neutrons. These highly experienced scientists will then later-on operate the 
instruments located at a certain neutron source. The Jülich Centre for Neutron Science JCNS 
has such staff scientists located at the outstations at FRM II, ILL and SNS. However, neutron 
facilities are way too expensive to be operated just for a small number of scientists. Beamtime 
is offered to external users from universities, research organisations (such as Max-Planck or 
Fraunhofer in Germany) and industry. In order for these users to obtain access to a neutron 
scattering instrument, the user will obtain information from the internet on available 
instruments, contact the instrument scientist and discuss the planned experiments with the 
instrument scientist. Once a clear idea and strategy for an experiment has been worked out, 
the user will write a beamtime proposal where he describes in detail the scientific 
background, the goal of the planned experiment, the experimental strategy and the prior work. 
The facility issues a call for proposals in regular intervals, typically twice a year. The 
proposals received are distributed to members of an independent committee of international 
experts, which perform a peer review of the proposals and establish a ranking. Typically 
overload factors between 2 to 3 on the neutron instruments exist, i. e. 2 to 3 times the 
available beam time is being demanded by external users. Once the best experiments have 
been selected, the beamtime will be allocated through the facility, where the directors 
approves the ranking of the committee, the beamline scientist schedules the experiments on 
her or his instrument and the user office sends out the invitations to the external users. Many 
facilities will pay travel and lodging for 1 up to 2 users per experiment. It is now up to the 
user to prepare his experiment as well as possible. If the experiment fails because it was not 
well prepared, it will be very difficult to get more beamtime for the same scientific problem.  
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Typical experiments last between 1 day and up to 2 weeks. In this time lots of data will be 
collected which users take home and usually spend several weeks or months to treat the data 
and model it.  

A typical neutron scattering facility will run about 200 days a year with a few hundred visits 
of user from all over the world. This is also what makes research with neutrons so attractive to 
young scientists: early-on in their career they will learn to work in large international 
collaborations, get the opportunity to work on state-of-the-art high-tech equipment and learn 
to organise their research as efficient as possible. You have therefore chosen well to attend 
this laboratory course! 

 

After this simple introduction, you can now look forward to many interesting lectures, where 
more details will be explained and where you will learn the basic principles to enable you to 
perform neutron experiments. Have lots of fun and success working with this special gift of 
nature, the free neutron! 
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Exercises 
 

A E1.1  Multiple Choice 
 

� Electromagnetic radiation with a wavelength of 500 nm corresponds to: 

�  microwaves 

�  visible light 

�  ultraviolet 

�  X-rays 

 

� The typical distance between atoms in a solid amounts to: 

�  10 nm 

�  1 nm 

�  0.1 nm 

�  0.01 nm 

� An atomic nucleus has a typical size of: 

�  1 Å 

�  0.1 nm 

�  1 pm 

�  10 fm 

� The typical wavelength of thermal neutrons is: 

�  10 nm 

�  1 nm 

�  0.1 nm 

�  0.01 nm 

� Which type of radiation would you use to distinguish iron and manganese atoms in a 
given compound? 

�  X-rays 

�  neutrons 

�  electrons 

�  light 
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� Which type of radiation would you use to determine the charge density distribution in 
a solid? 

�  X-rays 

�  neutrons 

�  electrons 

�  light 

� How many neutrons per second impact on a sample with typical lateral dimensions of 
1x1 cm in a typical neutron scattering experiment? 

�  103 

�  107 

�  1012 

�  1016 

 

� Which type of radiation would you use to determine the charge density distribution in 
a solid? 

�  X-rays 

�  neutrons 

�  electrons 

�  light 
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B E1.2  Comprehension 
 

a. What is the difference between a scattering and an imaging experiment? When would 
you choose one over the other? 

 

b. Why does one observe Laue spots when a “white” beam of X-rays is scattered from a 
single crystal?  How about scattering from glass? 

 

c. Why are neutrons sensitive to the magnetic order in a crystal? 

 

d. Neutron scattering allows us to determine “where the atoms are and how the atoms 
move” in a condensed matter system. Other scattering probes include: light, x-rays, 
electrons, �-particles. Discuss qualitatively the strengths and weakness of these probes 
in comparison to neutron scattering.   

 
e. CO2 has a bad reputation as green-house gas in the atmosphere. Could it, however, be 

useful as a scattering probe to replace neutrons? (A high flux of CO2 molecules could 
e.g. be obtained by an expansion of pressurised CO2 gas from a gas bottle through a 
nozzle - a flux many orders of magnitude higher than the neutron fluxes used in 
neutron scattering experiments!)  
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C E1.3  Arithmetic Problem (optional): 
Huygens principle and coherence 

 

A plane wave of wavelength � is incident on a pair of identical scatterers, which are separated 
by a distance L perpendicular to the wave propagation, see figure:  

 

 

 
� L  

 

 

 

According to the Huygens principle, spherical waves will be emitted from the two scatterers. 
In certain directions, these waves interfere constructively, i.e. the two scattered waves are in 
phase.  

a) Calculate the angles �, where interference maxima occur in the far field limit.  

b) What happens to the interference maxima, if there is a broad distribution of wavelength in 
the incident wave, but the propagation direction remains well defined?  

c) What happens to the interference maxima, if the wavelength of the incident wave is well 
defined, but there are many waves of different directions impinging on our scatterers? 

d) How would you design an instrument to measure the distance L between the two 
scatterers, if light from a normal light bulb is being used as radiation? Which requirement 
does L have to fulfil in this case? 

e) According to b) and c) monochromatization and collimation are important to obtain well 
resolved interference pattern. The corresponding requirements for the radiation are called 
longitudinal (b) and transverse (c) coherence, respectively. Discuss qualitatively the 
relation between coherence and resolution, i.e. in our example the ability of the apparatus 
designed in d) to determine the distance L between the scatterers.  
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2.1 Introduction

Neutrons are an extremely versatile probe to investigate the fundamental properties of matter.
The possible applications range from fundamental questions (e.g. electrical dipole moment of
the neutron) over condensed matter physics and chemistry to material science and life sciences.
The reason for this is threefold:

• The neutron is electrically neutral: hence it can penetrate deeply into matter and prove
truly the bulk properties. If you use other massive particles to investigate the properties
of matter such as α particles or electrons, you probe usually only the regions close to the
surface. Even for x-ray, which is also considered as an bulk technique in general, you
penetrate only several hundreds of nm, if you use wavelength delivered by an laboratory
x-ray tube.

• The neutron interacts with the sample via nuclear forces: hence the interaction cross
section depends on the internal structure of the nuclei in your sample and not on the mass
or electric charge of the whole atom. Neutrons are sensitive more or less equally to heavy
and light atoms, making them an ideal probe for samples containing hydrogen, carbon or
oxygen next to any other heavier atom.

• The neutron has a large magnetic moment: hence it is extremely sensitive to the magnetic
properties of your sample. The magnetic field created by the sample scatters the neutron
and the analysis of the direction, into which the neutrons are scattered, and the number of
scattered neutrons provides the information about the magnetic structure, the size of the
magnetic moments and the coupling between different magnetic sites.

Neutrons are in particular useful, because their energy and wavelength corresponds very well
with the interatomic distances and the typical excitations in condensed matter problems. We
calculate the kinetic energy of a free neutron

Ekin = 1
2
mv2 (2.1)

= p2

2m
(2.2)

= h2

2mλ2 , (2.3)

using the de Broglie relation, that expresses the wavelength of a quantum mechanical particle
with momentum p:

λ =
h

|p| (2.4)

If we insert the natural constants, we get

E(λ) = 81.805 meVÅ2 ×λ−2 (2.5)
v(λ) = 3956 ms−1Å ×λ−1 (2.6)

In other words, if we provide neutrons with a wavelength 0.8 < λ < 20 Å suitable for
resolving interatomic distances in condensed matter, these neutrons are also ideally suited to
study the dynamics in the energy range 0.001 < E < 100 meV.
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Apparently the properties of the neutrons make them a attractive probe for a wide variety of
applications. In the reminder of the lecture I will try to answer the question, what the providers
of neutrons, e.g. JCNS, FRM II, ILL, SNS..., can do to make their users happy. Therefore we
first need do understand, what users want. We consider an generic neutron spectrometer, that
allows to measure transfer of energy and momentum between neutron and the sample, see Fig.
2.1. How this is done, you will learn in the other lectures of the course and mainly during the
practical part. The signal you get finally at the detector of your instrument can be expressed in

Sample 

Analyzer 

Detector 

Monochromator 
Primary 

spectrometer 

Secondary 
spectrometer 

   Beam from           
a neutron source              

Fig. 2.1: Generic layout of a neu-
tron spectrometer

the following way:

Idet = I0εprεsecεdetσsampleVsample + background (2.7)

I0 is the incident neutron flux, εx denotes the efficiencies of the primary and the secondary
spectrometer and the detector, σsample, Vsample is the cross section and the Volume of the sample,
respectively. If you have an interesting scientific question that has not been answered yet,
usually the both the cross section and volume are small. Hence to get good data, you need
first an efficient instrument with a good signal to noise ratio, which detects ideally all and only
the neutrons scattered by the sample. Second you need a low background that allows you to
distinguish also tiny signals. And last but not least you need an intense source of neutrons, that
brings a lot of useful neutrons to the instrument.

2.2 How do we get free neutrons?

The free neutron has a mean lifetime of about 900 s, hence it is necessary to produce the free
neutrons as you run your experiment. While most nuclei are constituted to more then 50 %
by neutrons, nuclear forces confine them and hence it is rather difficult to set neutrons free.
Nowadays free neutron for scientific applications are released by nuclear reactions mainly in
fission reactors or in spallation sources. Both routes require large scale facilities, that operate the
source and provide state-of-art instrumentation. One example for the nuclear research reactor
is the FRM II, where you will perform the practical part of the Laboratory Course. The most
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powerful spallation source is the SNS installed at the Oak Ridge National Laboratory in the
USA. The neutron as a free particle was discovered by James Chadwick in 1932, when he
investigated the radiation from Beryllium illuminated with α particles. Finally he described the
ongoing reaction as

4
2α +9

4 Be →12
6 C +1

0 n. (2.8)

The uncharged particle in this equation was called neutron. The flux of free neutrons released
by the reaction was about 100 n cm−2s−1. Such a small number would prevent any scattering
experiment.

2.2.1 Nuclear fission reactors

With the development of nuclear fission reactors in the 1940ies the situation changed. Using
the fission reaction

235U +1
0 n → fission fragments + 2.52×1

0 n+ 180MeV (2.9)

the first experimental reactors released about 107 n cm−2s−1. Beside the investigation of the
nuclear reaction, such a flux enabled the first scattering experiments with neutrons. In the
following the thermal neutron flux increased dramatically until it saturated in the mid fifties.
The still most powerful research reactor at the ILL became critical in 1974. The modern FRM
II reactor has 0.5 × the flux of the ILL, but the thermal reactor power is lower by a factor 0.33
due to special core design. Furthermore, the flux of cold neutrons (see Sec. 2.3) is more or
less the same. In the nuclear fission reaction eq. (2.9) a slow neutron is captured by an 235U

Fig. 2.2: Left) Schematic presentation of the fission process of 235U. Right) Controlled chain
reaction in the nuclear reactor. Control rods reduce the number of slow neutrons to the amount
just as necessary for the selfsustaining chain reaction. By the proper adjustment of the control
rods position, the reaction may remains critical only with the inclusion of the delayed by a few
seconds neutrons.

nucleus, which then splits into two fragments releasing 2 or 3 prompt neutrons, which carry an
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energy of 1.29 MeV. Each of this instantaneously (within 10 ns) emitted neutrons can fission
another nuclei so that each of them will emit another 2 to 3 neutrons. The process is called
chain reaction If the mass of the fissile material is larger than the so called critical mass MC

the number of neutron will increase exponentially, leading to an uncontrollable reaction. If the
mass of the fissile material is smaller than MC the number of neutrons will decrease over time
and the nuclear chain reaction stops. If you want to sustain the nuclear reaction for a long time
it is necessary to control the neutron flux such that the number of neutrons that drive the chain
reaction remains constant. The control of the reactor is possible, if the nuclear reaction is not
only triggered by the prompt neutrons. The fission fragments are also highly excited nuclei
and relax to their ground state by the emission of neutrons among other nuclear reactions.
Concerning only the prompt neutrons, the reactor is operated below its critical mass MC , but
the delayed neutrons, which are comprised by the prompt neutrons, which are moderated in
the cooling medium and the secondary neutrons from the fission fragments, sustain the chain
reaction. The number of delayed neutrons is controlled by rods of neutron absorbing material
(usually Boron), which can be inserted in the reactor core. Beside the control rods, which are
used to steer the reactor, additional rods exist to fully stop the flux of neutrons and shut down
the reactor.

With the development of the nuclear research reactors the thermal neutrons flux increased
rapidly until it reached a flux Φ = 1015 n/cm2/s at the end of the 1960ties. An increase in
neutron flux goes simultaneously with an increase in the thermal power of the reactor. How-
ever, the installations for extracting the neutrons suffers strongly by heat and radiation damage.
Therefore the development of more powerful research reactors has stopped with the design of
ILL reactor. The modern FRM II reactor has a very compact reactor core, which provides half
of the thermal neutron flux using only one third of reactor power as compared to the ILL.

2.2.2 Spallation neutron source

Fig. 2.3: Schematic presentation of the spallation reaction

As an alternative to nuclear fission reactors neutrons can be released from the nucleus via spal-
lation reactions, see Fig. 2.3. Here, high energy protons are accelerated onto a target made of a
neutron rich material. Due to the large energy, the de Broglie wavelength

λ =

√
h2

2mE
(2.10)

is so short, that the protons interacts with the single nucleons instead of the nucleus as a whole.
The kicked nucleon may either leave the nucleus leading to an inter-nuclear cascade or may
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be scattered by other nucleons leading to an intra-nuclear cascade. However, as a result of
stage 1 of the spallation process, the nucleus is in a highly excited state. In stage 2 this energy
is released by evaporation of a whole particle zoo, including neutrons. The neutron yield per
spallation event depends on the target material. For typical materials 20-50 neutrons are released
per spallation event. The deposited heat depends on the target material, too, and is on the order
of 20 to 50 MeV/10n.

Concerning safety, the spallation source can never run out of control as no chain reaction is
running. Neutrons are only produced, as long as the protons are accelerated onto the target.
Even better, this feature can be used to impose a precise time structure on the neutron spectrum.
The spallation process happens on a time scale of 10−15 s. Therefore the length of the proton
pulse determines the length of the neutron pulse. If one measures the time of flight of a neutron
from the source to the detector at your instrument, the neutron velocity can be determined, as the
flight path is also known. You will learn more about time-of-flight spectroscopy and diffraction
in the remaining lectures. Among the spallation source on distinguishes so called long pulse

a)

b)

Fig. 2.4: Schematic of a long pulse and a short pulse spallation source.

spallation sources (LPSS) and short pulse spallation sources. Using a linear accelerator a proton
bunch with a width of several ms can be tailored. If the neutron pulse should be shorter, the
protons have to be compressed. This is done by feeding the protons from the Linear accelerator
into a synchrotron. The next bunch is then feed in, when the former one has revolved once,
to make a denser proton bunch. Using the compressor, the 1μs duration pulses. While the
latter type provides a higher peak flux, i. e., more neutrons in a short time intervall, the former
type yields a significantly higher average neutron flux, in particular in the energy range that
is typically used for diffraction experiments. Therefore certain experiments are better of at
a SPSS, while the LPSS provides a more versatile spectrum and clearly is superior for ’slow’
neutrons. The most powerful existing spallation source, the 1 MW SNS at Oak Ridge is a SPSS,
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while the planned ESS in Lund, Sweden, will be a LPSS with 5 MW power.

2.2.3 Comparison of reactor and spallation sources

Comparing the different sources, we have to consider a number of features:

Neutron Flux Nowadays reactor source still provide the highest average neutron flux. This
flux is still higher as the flux at the 1.4 MW SPSS. The 5 MW spallation source wil
actually reach a similar average flux. However, for most experiments it is necessary, to
select only a narrow range in energy or wavelength, respectively. At a pulsed source
this can be done natively using time-of-flight monochromatization. Then not the average
flux, but the peak flux, i. e., the flux during the proton pulse, counts. In that case, the
monochromatic intensity at the spallation source can be higher.

Safety While the fissile material inside the reactor core of a research reactor is only a small
fraction of the amount in a nuclear power plant, there is still a nuclear chain reaction
ongoing, which in principle can run out of control. The spallation reaction is not possible
without the operation of the accelerator and is therefore inherently safe.
As both source use nuclear reactions and create high energy particles, they both produce
radioactive waste, which must be treated or stored after the operation of the facility. In
case of the spallation source the waste has generally shorter life times.

Stability In fact, the operation of a proton accelerator is quite delicate. As already mentioned
this makes the source very safe. On the other hand, sometimes it may also happen, that the
proton beam is not available for quite some time during your allocated beam time. The
neutron reactor runs usually very stable without interruption. Additionally the neutron
flux is more stable at the reactor making it easier to compare individual measurements.

Technical feasibility The source neutron flux at a reactor could be increased only by an in-
crease of the thermal power. There have been attempts to build a more powerful reactor
in the US in the nineties, which has been abandoned for economical reasons. The heat
removal from the core becomes extremely complex and also the radiation damage to the
installations necessary for the extraction of the neutron is a severe issue. Therefore is
unlikely, that higher power research reactors will be realized. At a spallation source the
deposited heat For the SPSS exist similar arguments. The intense proton beam implants
a large amount of heat in a very short time interval. Again the major problem is the
removal of this heat. There seem to be a technological limit also for the short pulse spal-
lation sources to increase their power far beyond the present state. For the long pulse
spallation sources, the situation seems to be slightly relaxed. Since the heat is implanted
during a longer time interval, the heat removal is facilitated. The 5 MW of power for the
ESS could possibly increased up to 10 MW. There exist even estimates, that one could
design a long pulse spallation target running at 20 MW. However, these are plans for the
very far future, as already the ESS will be operational in the 2020ies only.

So far I have not considered the nuclear fusion reaction as a source for neutrons. Techno-
logically this could be a technique at least as far in the future as a 20 MW spallation source.
However, as seen from table 2.1 the deposited heat makes this reaction also a candidate for the
over next generation of neutron sources.
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Reaction Energy (GeV) Neutron yield Deposited heat (MeV)
per event per event per neutron

(T,d) fusion 1 3
235U fission 1 180
Pb spallation 1 20 23
238U spallation 1 40 50

Table 2.1: Comparison of neutron producing reactions

2.3 How do we make free neutrons useful?

The neutrons as the are released from the nucleus have energies in the MeV range corresponding
to a wavelength according to eq. (2.10) λ ≈ 10−5 Å. The energies we are interested in solid
state physics, chemistry or biology rather range from the μeV range for relaxation phenomena
to the eV range for the bonding of the valence electrons in molecules. One my also compare
the energy scale to the corresponding temperatures via

Etherm = kBT. (2.11)

From here we see that 1 meV is equivalent to a temperature of 11.6 K or vice versa 300 K are
equivalent to 25.6 meV.

The distances we want to resolve in a neutron scattering experiment are on a atomic or molecular
length scale and range from 1 Å to 1μm and therefore the neutrons should have comparable
wavelength to have an appropriate resolution. If we use again the expression for the de Broglie
wavelength eq. (2.10), we find that a neutron with an energy E = 25.6 meV has a wavelength
λ = 1.8 Å, fulfilling both requirements simultaneously. This is also the reason, why neutron
scattering is so versatile for studies of the dynamics of crystalline materials, because all atoms
in a crystal show coherent motions due to their arrangement and bonding.

How can the neutrons now slowed down to the energies we are interested in? The best way is,
if they collide elastically with other partners of much lower energy and spread this energy in a
large volume ( don’t forget, that 1 MeV= 1.6× 10−13 J). The energy loss per collision depends
on the mass of the colliding partners: The highest energy transfer is achieved, if the mass of
both partners is equal. Therefore 1H or 2H are the best partners, making water an ideal choice
for the moderator. Since protons like to react with neutrons, the moderator often contains heavy
water, i.e. D2O, which has a smaller absorption cross section. For the FRM II the reactor core is
surrounded by the heavy water tank. The outer area of the water tank is filled with light water,
hence the flux of neutrons hitting the biological shielding outside the tank is already reduced.

Typically it takes several μs to moderate the neutron to the temperature of the surrounding water.
This process is therefore called thermalization. Within this time the neutron travel away from
the reactor core, where they are produced. On the other hand, there is a finite probability for
the absorption of a neutron, if the flight path inside the water is too long. The maximum of the
thermal neutron flux density is displaced from the reactor core with the fuel element by 10 to
15 cm, as shown in Fig. 2.5 a).

For an experiment it is now of main interest to collect as many useful neutrons from the reactor,
but not to get the fast neutrons or the Γ radiation that are created in the nuclear reactions into the
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a) b)

Fig. 2.5: a) Radial distribution of the thermal neutron flux density in the reactor vessel. The
green line indicates the distribution, where the full thermalization is reached, the blue line
indicates that the absorption decreases the neutron flux. b) Schematic of the reactor vessel
of the FRM II showing the reactor core and the beam tubes extracting the neutrons to the
experiments. The reactor tank with internal diameter approx. 5m is filled with light water (1).
In the centre of the arrangement the reactor core is situated. The experimental installations as
horizontal beam tubes (2), a cold (3) and a hot (4) neutron source are arranged in the heavy
water tank (5) around the fuel element (6).

experimental area. Therefore the beam tubes, as indicated in Fig. 2.5 b) don’t face the reactor
core , but tangentially look onto the maximum of the thermal flux distribution.

In the end of the thermalization process the neutrons are in thermal equilibrium with the sur-
rounding medium. The energy distribution takes the form of the Maxwellian distribution:

Φ(E) =
2
√
E√

πk3TM

exp− E

kbTM

(2.12)

The neutrons are commonly classified for certain energy and wavelength ranges according to
the position of the maximum of the Maxwell distribution for a given moderator temperature
TM :

Energy range(meV) Wavelength range (Å)
Ultra cold E < 0.0005 λ > 400

Very cold 0.0005 < E < 0.005 40 < λ < 400

Cold 0.05 < E < 5 4 < λ < 40

Thermal 5 < E < 100 0.9 < λ < 4

Hot 100 < E < 1000 0.3 < λ < 0.9

To access the respective energy range the moderator should again effectively moderate the neu-
trons but also be transparent for the neutrons. A liquid hydrogen vessel fulfills the requirements
for cold neutrons. A more effective but also more difficult technique employs solid methan
as a moderator. A carbon block heated to a temperature above 1000 K is used in reactors to
provide an intense source of hot neutrons. In Fig. 2.6 the spectra for the different modera-
tor temperatures show clearly, that the maximum is shifted towards shorter wavelength, when
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Fig. 2.6: Neutron wave-
length distribution for dif-
ferent moderator tempera-
tures.Cold spectrum, T =
50 K, dot dashed line, ther-
mal spectrum, T = 300
K, solid line, hot spectrum,
T = 1000 K, dashed line.

the temperature is increased. In a spallation source usually a different route is used to yield
an intense beam of hot neutrons: The moderator is made thin enough to not fully moderate
the neutrons. Therefore epithermal neutrons still exist in the energy distribution of the source.
The time structure of the source might then be used to discriminate the eventually increased
background.

2.4 How do we bring the neutrons to the experiment?

The angular distribution of the thermal flux distribution at the end of the thermalization process
is fully isotropic. To calculate the flux at the exit of a beam tube approximately one has to divide
the thermal flux at the maximum by the surface area of the sphere with the respective radius, in
the case of the FRM II 2.5 m, see Fig. 2.5 b). Already at this distance the flux is reduced already
by 6 orders of magnitude. If the distance required to build an actual instrument is added, the
flux is lowered by 8 orders of magnitude.

To overcome this problem, neutron guides are used. These consist of 4 neutron mirrors, en-
closing the flight path of a neutron. The principle of the neutron guide is similar to light wave
guides: External total reflections prevents the neutrons from leaving the guide and they are
transported to the end of the guide. In the case of the light wave guide, the fibre has a larger
index of refraction than the surrounding air, giving rise to typical critical angles θC ≈ 45◦. For
the neutron guide, the vacuum inside has a larger index of refraction and the critical angle is
given by

θC = λ

√
2ρbc
π

(2.13)

with the particle density ρ and the coherent scattering length bc. The element with the largest
critical angle is Nickel and for the element the critical angle can simply be approximated θC =

0.1◦Å
−1. If we install such a neutron guide behind a beam tube, all neutrons, that impinge on

the Ni surface under a shallower angle than the critical angle, will be guided to the instrument.
If we calculate for λ = 5 Å neutrons we loose only 4 orders of magnitude independent of
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c)

Fig. 2.7: a) Schematic of a light wave guide. External total reflection occurs, because the
fibre is optically denser than the air. b) Schematic of a neutron guide. Total reflection occurs,
because the index of refraction of the mirror coating is smaller than 1. c) Picture of a super
mirror neutron guide, taken from www.swissneutronics.ch.

the distance from the reactor core. Hence such a neutron guide can be used to provide more
space for instruments by going further away from the reactor. Nowadays so called supermirrors
consisting of thin layers of e.g. Ni and Ti increase the critical angle of Ni by a factor up to
7. In that case it becomes possible to build neutron guides not only for cold neutrons but also
for thermal neutrons. Furthermore complex focusing optics can be realized by neutron guides
to increase the number of useful neutrons at the spectrometer and simultaneously keep the
background low

At least as important as gaining space is the fact, that the direct sight from the instrument
onto the reactor core can be omitted. Fast neutrons and Γ radiation is leaving through the
holes for the neutron beamlines. They go mainly in a straight line from where they have been
created, because their scattering cross section is very small. These particles contribute mainly
to the radiation background around the instruments. They can of course also contribute to the
background in your detector. The particles are kept away from users and detectors by massive
shielding, containing a lot of concrete (for fast neutrons) or lead (for Γ radiation). If such
a neutron guide is bend with a large radius, the direct line of sight hits the wall of the neutron
guide and the background of the instrument can be further suppressed. Of course your shielding
must then be strongest in the direct line of sight.

2.5 How do we detect neutrons?

On of the strongest advantages of the neutrons is their neutrality. It allows to probe deeply into
matter. On the other hand, this makes the detection of the neutrons difficult, as it penetrates
large volumes of matter without interaction. Luckily there exists a hand full of isotopes that
have a large absorption cross section for thermal or cold neutrons, such as 3He 10B, Gd or 235U.
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The nuclear reactions create charged particles, which can be analyzed by interaction with the
electric fields. Since the absorption cross section in the thermal to cold energy range increases
more or less linearly with the wavelength, the detection of cold neutrons is more effective than
the absorption of thermal neutrons

One type of detector is the gas proportional counter filled either with 3He gas or gaseous 10BF3.
The absorption process releases a certain number of photons, which create secondary electrons
by Compton scattering or the photo effect, or high energetic charged particles. The particles
are accelerated onto the cathode or anode according to their charge and the resulting current
can be related to the neutron absorption event. A refinement of the apparatus allows also the
localization of the absorption event yielding a position sensitive detector. Features of the gas
proportional counter are a high detection probability, which can be tuned by the filling pressure,
and a low sensitivity to Γ radiation. Disadvantages are a limited count rate before the detector
saturates and a position sensitivity > 1 cm.

A szintillation detector provides a much higher spatial resolution. Here the neutron absorption at
a neutron absorber embedded in the solid szintillation material yields Γ photons that are detected
by the photo electric effect. This detectors provides a higher spatial and timing resolution but
has also a larger Γ sensitivity.

2.6 The take home messages

Today, intense neutron beams are available a nuclear research reactors and spallation sources.
Reactors deliver a very stable continuous beam, while spallation sources provide a very high
peak flux that can be effectively used by time-of-flight methods.

Neutrons are extremely useful for condensed matter research, if the wavelength and kinetic
energy match the length scale and energy scale of e.g. magnetic compounds, polymers or
biological samples. These is realized by moderating the fast neutrons released in the nuclear
reaction in a volume containing a lot light elements, e.g. water for thermal neutrons, liquid
hydrogen or solid methan for cold neutrons or heated graphite for hot neutrons.

Neutron guides are used to transport neutrons with only small losses quite far away from the
actual neutron source. This gives more space for instruments, improves the background condi-
tions and may even be used to tailor the neutron beam properties using complex optics similar
to light optics.
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Exercises

E2.1 How are neutrons characterized?*

Write down the kinetic energy of a free neutron as a function of its momentum!
What is the velocity in ms−1 and energy in meV of neutrons with a wavelength λ = 1, 1.8, 5 Å,
respectively?

mn = 1.675× 10−27kg
h = 6.626× 10−34Js
e = 1.602× 10−19As

E2.2 How many neutrons are produced?**

Calculate the neutron flux density of a 20 MW reactor, assuming that the flux maximum is
displaced 10 cm from a point-like reactor core! What would be the flux density of a hypothetical
spallation source with the same thermal power?

E2.3 How do the neutrons come to your experiment?

Why is the neutron flux reduced, when you build the diffractometer/spectrometer at larger dis-
tance without a neutron transport system? When is it advantageous to have the instrument
close to the neutron source? What reasons can you imagine to separate the instrument from the
neutron source?
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3.2  G. Heger 

3.1 Introduction 
 
The term “crystal” comes from the Greek 	
��
�����565which was first used as description of 
ice and later on - more general - of transparent minerals with regular morphology (regular 
crystal faces and edges). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.1:  Example: rock crystal – quartz (SiO2), mineral from the Gotthard-Massif.  

 
Matter is usually classified into three states: gaseous – liquid – solid. Crystals are 
representatives of the solid state. Crystalline solids are thermodynamically stable in 
contrast to glasses and are characterised by a regular three-dimensional periodic 
arrangement of atoms (ions, molecules) in space.  

 

3.2 Crystal lattices 
 
The three-dimensional periodicity of crystals can be represented by the so-called crystal 
lattice. The repeat unit in form of a parallelepiped - known as the unit cell – is defined by 3 
non-linear basis vectors a1, a2, and a3, whose directions form the reference axes X, Y, and Z of 
the corresponding right-handed crystallographic coordination system. The 6 lattice parameters 
are given as the lengths of the basis vectors a = !a1!, b = !a2!, c = !a3! and the angles 
between the basis vectors: angle (a1,a2) = 7, angle (a2,a3) = 8, angle (a3,a1) = �. The faces of 
the unit cell are named as face (a1,a2) = C, face (a2,a3) = A, face (a3,a1) = B. 

If the vertices of all repeat units (unit cells) are replaced by points, there results the crystal 
lattice in the form of a point lattice. Each lattice point is given by a vector a = ua1+va2+wa3, 
with u, v, w being integers. As a symmetry operation of parallel displacement, a – also known 
as translation vector – maps the atomic arrangement of the crystal (crystal structure) onto 
itself. 
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Fig. 3.2:  Notation for a unit cell and a point lattice. 
 

A lattice point is named “uvw”, according to the coefficients (integers) of the translation 
vector a = ua1+va2+wa3 from the origin to the lattice point. A lattice direction - given by the 
symbol [uvw] - is defined by the direction of the corresponding translation vector. 

A plane passing through three lattice points is known as a lattice plane. Since all lattice 
points are equivalent (by translation symmetry) there will be infinitely many parallel planes 
passing through all the other points of the lattice. Such a set of equally spaced planes is 
known as a set of lattice planes. If the first plane from the origin of a set of lattice planes 
makes intercepts a/h, b/k, c/l on the X, Y, Z axes, respectively, where h, k, l are integers, then 
the Miller indices of this set of lattice planes are (hkl), the three factors h, k, l being enclosed 
in parentheses. 

The equation of lattice planes can be written in intercept form as 

(hx/a) + (ky/b) + (lz/c) = n, (3.1)

where n is an integer. If n = 0 the lattice plane passes through the origin; if n = 1 the plane  
makes  intercepts  a/h,  b/k,  c/l  on  the  X,  Y,  Z  axes  respectively; if  n = 2  the intercepts 
are 2a/h, 2b/k, 2c/l; and so on.  

The line of intersection of any two non-parallel lattice planes is a row of lattice-points 
common to both planes. This lattice point row defines a lattice direction [uvw] which is 
known as zone axis. All lattice planes intersecting in a common lattice-point row are said to 
lie in the same zone. The condition for lattice planes to be parallel to a lattice vector a = 
ua1+va2+wa3 is the zone equation  

uh + vk + wl = 0 (3.2)

The zone axis symbol [uvw] for the zone containing the two planes (h1k1l1) and (h2k2l2) is 
obtained by solving the simultaneous equations uh1 + vk1 + wl1 = 0 and uh2 + vk2 + wl2 = 0, 

[uvw] = [k1l2-k2l1, l1h2-l2h1, h1k2-h2k1] (3.3)
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3.3 Crystallographic coordinate systems 
 
The description of a crystal structure consists first of the choice of a unit cell as smallest 
repeat unit of the crystal with its basis vectors. In this way a crystal-specific coordinate 
system is defined which is used to localize all the atoms in the unit cell. Whereas in physics 
and chemistry usually Cartesian coordinate systems are used, in crystallography quite 
different systems are applied. The conventional crystallographic coordinate systems are based 
on the symmetry of the crystals. In three dimensions there exist 7 different crystal systems 
and hence 7 crystallographic coordinate systems: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The choice of the origin of the coordinate system is free in principle, but for convenience it is 
usually chosen in a centre of symmetry (inversion centre), if present, otherwise in a point of 
high site symmetry of the space group. 

In order to complete the symmetry conventions of the coordinate systems it is necessary to 
add to the 7 so-called primitive unit cells of the crystal systems (primitive lattice types with 
only one lattice point per unit cell) 7 centred unit cells with two, three or four lattice points 
per unit cell (centred lattice types). These centred unit cells are consequently two, three or 
four times larger than the smallest repeat units of the crystals. The resulting 14 Bravais 
lattice types with their centring conditions are collected in figure 3.3. 

a = b = c; 8=�=7=90° four triads  –  3 or 3   
( space diagonals of cube) 

cubic 

a = b � c; 8=�=90°, 7=120° one hexad  –  6 or 6  ( Z) hexagonal 

a = b � c; 8=�=90°, 7=120° one triad  –  3 or 3  ( Z) 
trigonal 

(hexagonal cell) 

a = b � c; 8=�=7=90° one tetrad  –  4 or 4  ( Z) tetragonal 

a � b � c; 8=�=7=90° three mutually perpendicular diads 
–  2 or m ( X, Y and Z) orthorhombic 

a � b � c; 8=7=90°, �>90°  one diad  –  2 or m ( Y)  monoclinic 
(unique axis b) 

a � b � c; 8 � � � 7 1 or 1  triclinic 

conventional unit cell minimum symmetry system name 
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Fig. 3.3:  The 14 Bravais lattices consisting of the 7 primitive lattices P for the 7 crystal  

systems with only one lattice point per unit cell + the 7 centred (multiple) lattices A, 
B, C, I, R and F with 2, 3 and 4 lattice points per unit cell.  

 

triclinic P monoclinic P 
monoclinic axis c

monoclinic A 
(0,0,0 + 0, ½, ½) 

orthorhombic P 

orthorhombic I 
(0,0,0 + ½, ½, ½) 

orthorhombic C 
(0,0,0 + ½, ½,0) 

orthorhombic F 
(0,0,0 + ½, ½,0 

½,0, ½ + 0, ½, ½) 

tetragonal P 

 

tetragonal I hexagonal P hexagonal/ 
rhombohedral R 

cubic P 

cubic I cubic F 
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A set of lattice planes (hkl) is separated by a characteristic interplanar spacing d(hkl). 
According to the different crystallographic coordinate systems these d(hkl) values are 
calculated in a specific manner: 

For the cubic lattice (a = b = c, 8 = � = 7 = 90°), ex. NaCl 

� �
1

2 2 2 2( )d hkl a h k l
�

� � " "  (3.4)

For the hexagonal lattice (a = b, c, 8 = � = 90°, 7 = 120°), ex. Graphite 
1

2 2 2 2

2 2

4( )
3

h k hk ld hkl
a c

�
� �" "

� "� �
� �

 (3.5)

For the tetragonal lattice (a = b, c, 8 = � = 7 = 90°) 
1

2 2 2 2

2 2( ) h k ld hkl
a c

�
� �"

� "� �
� �

 (3.6)

For the orthorhombic lattice (a, b, c, 8 = � = 7 = 90°) 
1

2 2 2 2

2 2 2( ) h k ld hkl
a b c

�
� �

� " "� �
� �

 (3.7)

For the monoclinic lattice (a, b, c, 8 = 7 = 90°, � > 90°) 
1

2 2 2 2

2 2 2 2 2 2

2 cos( )
sin sin sin
h k l hl �d hkl

a � b c � ac �

�
� �

� " " �� �
� �

 (3.8)

For the triclinic lattice (a, b, c, 8, �, 7), the most general case, 

� �

� � � � � �

1
2 2 2 2

1
2 2 2 2

2 2 2
2 2 2

2 2 2

( ) 1 cos cos cos 2cos cos cos

sin sin sin

2 2 2cos cos cos cos cos cos

d hkl � � � � �

h k l� � �
a b c

kl lh hkc � c � c �
bc ca ab

�

� 7 8

�

� � � � " � �

� �
" "� �

� �
� �" � � " � � " � �� �
� �

 (3.9)
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3.4 Crystallographic symmetry operations and 
 symmetry elements 

 

The symmetry operations of a crystal are isometric transformations or motions, i.e. 
mappings which preserve distances and, hence, also angles and volumes. An object and its 
transformed object superpose in a perfect manner, they are indistinguishable. 

The simplest crystallographic symmetry operation is the translation, which is a parallel 
displacement of the crystal by a translation vector a (see chapt. 3.2). There is no fixed point, 
the entire lattice is shifted and therefore, theoretically, the crystal lattice is considered to be 
infinite. 

Crystallographic rotations n around an axis by an angle 9 = 360°/n (n-fold rotations) and 
rotoinversions (combination of rotations and inversions):n are called point symmetry 
operations because they leave at least one point of space invariant (at least one fixed point). 
An important fact of crystallographic symmetry is the restriction of the rotation angles by the 
three-dimensional crystal lattice to 9 = 360° (n = 1), 180° (n = 2), 120° (n = 3), 90° (n = 4), 
60° (n = 6). Only for these crystallographic rotations the space can be covered completely 
without gaps and overlaps. The rotoinversion:n =:1 is an inversion in a point,:n =:2 � m 
(mirror) describes a reflection across a plane. 

The combination of n-fold rotations with m/n�a translation components (m < n)  to the 
rotation axis leads to the so-called screw rotations nm, e.g. 21, 32, 42, 65. These symmetry 
operations have no fixed points.  

The combination of a reflection through a plane (glide plane) with translation components 
(glide vectors) of a1/2, a2/2, a3/2, (a1+a2)/2, …  to this plane are known as glide reflections 
a, b, c, n, …, d. Again no fixed points exist for these symmetry operations. 

In addition to the symmetry operations which represent isometric motions of an object, 
symmetry can also be described in (static) geometrical terms by symmetry elements. They 
form the geometrical locus, oriented in space, on which a symmetry operation is performed 
(line for a rotation, plane for a reflection, and point for an inversion) together with a 
description of this operation. Symmetry elements are mirror planes, glide planes, rotation 
axes, screw axes, rotoinversion axes and inversion centres. The geometrical descriptions of 
the crystallographic symmetry operations are illustrated in Figs. 3.4-3.6.  

A symmetry operation transforms a point X with coordinates x, y, z (according to a position 
vector X = xa1 + ya2 + za3) into a symmetrically equivalent point X’ with coordinates x’, y’, 
z’ mathematically by the linear equations  

x’ = W11x + W12y + W13z + w1 

y’ = W21x + W22y + W23z + w2 

z’ = W31x + W32y + W33z + w3 

(3.10)

or, in matrix notation:  
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Fig. 3.4:  Rotations: n=1 (identity), n=2 (rotation angle 180°), n=3 (120°), n=4 (90°),  n=6 
(60°).  
Rotoinversions::1 (inversion),:2 � m (reflection), :3 = 3 +:1,:4,:6 = 3/m.  

 

  

 

 

 

1 
5 

2 

3 

4 
6 

 

inversion

Point symmetry operations 

rotations  

1=identity

2-fold = 180°-rotation
2-fold rotation combined 

with inversion = reflection 
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Fig. 3.5:  Screw rotations nm: combination of rotations n and translation components m/n�a  
to the rotation axis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
Fig. 3.6:  Examples of reflections and glide reflections.  

 

a 

120° 

1/3; 

31 = 3 + 1/3 ;

+ 42, 43 and 65

60° 

4/6; 

a

64 = 6 + 4/6 ; 

2/6; 

a
60° 

62 = 6 + 2/6 ; 

 

a 
m 

reflection: mirror plane m < image plane (plane of the paper) 

a

a/2 

glide reflection: glide plane a < with glide vector a/2 

a 
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� ;  X’ = W=X + w = (W, w)=X (3.11)

The (3>3) matrix W is the rotation part and the (3>1) column matrix w the translation part of 
the symmetry operation. The two parts W and w can be assembled into an augmented (4>4) 
matrix W according to 
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1
z
y
x

1000
wWWW
wWWW
wWWW

1
z'
y'
x'

3333231

2232221

1131211

�  = W=X (3.12)

Since every symmetry transformation is a “rigid-body” motion, the determinant of all 
matrices W and W is det W = det W = ? 1 (+ 1: preservation of handedness; - 1: change of 
handedness of object). 

The sequence of two symmetry operations (successive application) is given by the product of 
their matrices W1 and W2: 

W3 = W1=W2 (3.13)

whereby W3 is again a symmetry operation.  

 

 

3.5 Crystallographic point groups and space groups 
 

The symmetry of a crystal and of its crystal structure can be described by mathematical group 
theory. The symmetry operations are the group elements of a crystallographic group G and the 
combination of group elements is the successive execution of symmetry operations. All 
possible combinations of crystallographic point-symmetry operations in three-dimensional 
space lead to exactly 32 crystallographic point groups (� crystal classes) which all are of finite 
order (the maximum order is 48 for the cubic crystal class m3m ). For the different crystal 
systems they are represented by stereographic projections in figure 3.7. There are two types of 
group symbols in use: for each crystal class the corresponding Schoenflies symbol is given at 
the bottom left and the Hermann-Mauguin (international) symbol at the bottom right. A 
maximum of 3 independent main symmetry directions (“Blickrichtungen”) is sufficient to 
describe the complete symmetry of a crystal. These Blickrichtungen are specifically defined 
for the 7 crystal systems (Hermann-Mauguin symbols). As an example the Blickrichtungen of 
the cubic system are shown in figure 3.8.  
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Fig. 3.7:  The 32 crystallographic point groups (crystal classes) in three-dimensional space 
represented by their stereographic projections. The group symbols are given 
according to Schoenflies (bottom left) and to Hermann-Mauguin (bottom right).  
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Fig. 3.8: Symmetry directions (“Blickrichtungen”) of the cubic lattice (a=b=c, 8���7�90°). 
Along [100]: 4/m, along [111]::3, along [110]: 2/m.  

 

The point-group symmetries determine the anisotropic (macroscopic) physical properties of 
crystals, i. e. mechanical, electrical, optical and thermal properties. By diffraction methods 
normally only the 11 centrosymmetric Laue classes can be determined: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[100] [111] [110] 
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z z 

y 
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2/m 3  = m 3  
4/m 3 2/m = m 3 m 

cubic 

6/m 
6/m 2/m 2/m = 6/m m m hexagonal 

3  
3 2/m = 3 m 

trigonal 

4/m 
4/m 2/m 2/m = 4/m m m tetragonal 

2/m 2/m 2/m = m m m orthorhombic 

1 2/m 1 = 2/m monoclinic 

1triclinic 

Laue class crystal system 
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In three dimensions all possible combinations of the point symmetries of the 32 
crystallographic point groups with the lattice translations of the 14 Bravais lattices lead to 
exactly 230 space groups, all of infinite order. As already mentioned, there result new 
symmetry operations: screw rotations and glide reflections. The conventional graphical 
symbols for the symmetry elements according to the International Tables for Crystallography 
Vol. A (ITA, 2002 [1]) are shown in figure 3.9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.9:  Conventional graphical symbols for symmetry elements: 
  - symmetry axes: (a) perpendicular, (b) parallel, and (c) inclined to the image   

plane; 
 - symmetry planes: (d) perpendicular and (e) parallel to the image plane.  

 

In the International Tables for Crystallography Vol. A [1] all space groups are described in 
detail with their Hermann-Mauguin symbols and corresponding crystal classes, the relative 
locations and orientations of the symmetry elements with respect to a chosen origin and the 
crystal-specific basis vectors, a listing of the general and all special positions (with their 
symmetrically equivalent points) and the related reflection conditions. 

 

 

 

 

 



3.14  G. Heger 

3.6 Example of the crystal structure description of 
 YBa2Cu3O7-4 using the ITA 

 

The crystal structure determination with atomic resolution is achieved by diffraction 
experiments with X-rays, electron or neutron radiation. As an example, the results of a 
structure analysis by neutron diffraction on a single crystal of the ceramic high-TC 
superconductor YBa2Cu3O7-4 with TC = 92 K are presented. The atomic arrangement of the 
orthorhombic structure, space group Pmmm, and the temperature-dependent electrical 
resistivity is shown in figure 3.10. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.10: Crystal structure (unit cell) of YBa2Cu3O7-4 with the CuOx-polyhedra (left) and the 
electrical resistivity as a function of temperature  and < to the [001] direction 
(right).  

 

Information from ITA on the relative locations and orientations of the symmetry elements 
(symmetry operations 1, 2z, 2y, 2x,:1, mz, my, mx) of the orthorhombic space group Pmmm, 
together with the choice of the origin (in an inversion centre), is shown in figure 3.11. The 
general position (site symmetry 1) of multiplicity 8 and all special positions with their site 
symmetries are listed in figure 3.12. There are no special reflection conditions for this space 
group. 

 

 

 

, 

TC 
YBa2Cu3O7-54 
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Fig. 3.11: Description of the orthorhombic space group Pmmm in ITA (2002).  
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Fig. 3.12: General and special positions (coordinates of all symmetrically  equivalent 

positions) of space group Pmmm with their site symmetries  and multiplicities as 
well as reflection conditions. The special positions  of the YBa2Cu3O7-4 
structure are indicated by frames.  

 

 

 

 

YBa2Cu3O7-54
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The atomic parameters of the structure refinement of YBa2Cu3O6..96 at room temperature [2] 
are given in the following Table: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 ½ 0 2/m 2/m 2/m 1 O4/O2- 

0.37631(2) 0 ½ m m 2 2 O3/O2- 

0.37831(2) ½ 0 m m 2 2 O2/O2- 

0.15863(5) 0 0 m m 2 2 O1/O2- 

0.18420(6) ½ ½ m m 2 2 Ba/Ba2+ 

½ ½ ½ 2/m 2/m 2/m 1 Y/Y3+ 

0.35513(4) 0 0 m m 2 2 Cu2/Cu2+ 

0 0 0 2/m 2/m 2/m 1 Cu1/Cu2+ 

z y x site symmetry multiplicity atom/ion 

Atomic positions of YBa2Cu3O6.96 
orthorhombic, space group type P 2/m 2/m 2/m 

a = 3.858 Å, b = 3.846 Å, c = 11.680 Å (at room temperature) 
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Exercises 
 

Exercise 3.1    Crystal lattice 

A projection of an orthorhombic lattice on the lattice plane (001) is given in the following 
figure (this means a projection parallel to the a3-axis). The dots represents the lattice points 
(not atoms) according to the translation symmetry of a crystal with the general translation 
vector a = ua1+va2+wa3 (a1, a2, and a3 are the basis vectors of the unit cell and u, v, w being 
integers). 
Please indicate in the figure 

a)  the lattice points uvw = 030, -120, 1-20, and 450, 

b) the lattice directions [uvw] = [100], [210], and [-2-10], 

c) and the traces of the lattice planes (hkl) = (100), (300), (210), (-210), and (140). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

a1

a2 
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d) Which conditions of the crystallographic coordinate system must be fulfilled  

 • for [100] < (100), 

 • for [110] < (110), 

 • for [111] < (111). 

Please give the conditions for the lattice parameters (a1 = �a1�, a2 = �a2�, a3 = �a3�, and 8, �, 
7). Indicate for each case the possible corresponding crystal systems. 

e) Which is the zone axis for the lattice planes (110), (111), and (001) in the cubic system? 
 
 
 
Exercise 3.2    Space group symmetry 
 
La2MnO4 crystallizes in the so-called T-phase with the space group I4/mmm. The lattice 
parameters are a1 = 3.787 and a3 = 13.154 Å. The atoms occupy the following positions in the 
asymmetric unit (given by the xj, yj, and zj coordinates according to the positional vector of 
the atom j rj = xja1+yja2+zja3):  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mn:  0, 0, 0 

La: 0, 0, 0.356 

O(1): 0, 0.5, 0 

O(2):  0, 0, 0.174 

 

Unit cell of La2MnO4. 

 a1 

a2 

a3 
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a) Indicate the crystal system and the Bravais lattice type of La2MnO4. How many 
formula units are in one unit cell? 

   
b) Plot in the given projection on (001), i. e. on the (a1, a2)-plane, for the marked 

manganese in 0, 0, 0 the positions of the nearest neighbour oxygen-atoms and indicate 
their z-parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) Determine the coordination number and coordination geometry of Mn by the 
surrounding O-atoms.  
 

d) Please draw the symmetry elements (rotation axes and mirror planes), which you can 
identify.  
Is there an inversion centre 1  at the Mn position?  
Which is the site symmetry (one of the 32 crystallographic point groups) of the Mn 
position? Give the Hermann-Mauguin symbol according to the Blickrichtungen of the 
tetragonal crystal system. 

a1 

a2 
Mn 
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4.1 Introduction 
Each scattering experiment performed with any type of radiation - regardless of whether 
it involves massive particles like neutrons and electrons or electromagnetic waves like 
x-rays or visible light - has a total of four attributes which altogether characterize the 
type of the scattering experiment as well as the information that can be obtained from 
such an experiment. These attributes and their characteristics are:  

Elastic scattering, which involves the conservation of the energy of the particle or 
quantum during the scattering process, inelastic scattering, corresponding to a loss or 
gain of particle or quantum  energy during the scattering event, coherent scattering 
which involves the interference of waves (recall that, according to the particle-wave 
dualism first stated by de Broglie (1924), each particle may also be described by wave 
which can interfere with other particle waves) and finally incoherent scattering which is 
scattering without interference. 

 
Fig. 4.1:  Scattering function S(Q,@) of a general scattering experiment (Q: scattering 

vector, @: frequency), its different contributions and information that can be 
obtained from them. 

 

This chapter will deal mostly with neutron diffraction which is, in the above 
nomenclature of a general scattering experiment, equivalent to elastic coherent 
scattering of neutrons.   

Most of the readers of this chapter will be more or less familiar with x-ray diffraction 
from crystals, which has been demonstrated for the first time by Laue in 1912 and, since 
then, has developed into the most powerful method for obtaining structural information 
on crystalline materials. Diffraction - in sharp contrast to imaging techniques like 
optical or electron microscopy - has no principal limitation as to the spatial resolution, 
expressed in units of the wavelength of the radiation used for diffraction or imaging: 
While the resolution of imaging is limited to half the wavelength (recall the Abbe 
diffraction limit) diffraction can yield useful information, for instance, on bond 
distances between atoms on a length scale that is by two to three orders of magnitude 
smaller than the wavelength. On the other hand, diffraction, other than imaging, 
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requires 3-dimensional periodicity that is underlying the concept of the crystalline state 
(see chapter 3, symmetry in crystals). 

This chapter will discuss the basics and peculiarities of neutron diffraction from either 
single- or polycrystalline matter. We will start by discussing scattering of neutrons from 
individual atoms, then turn to the geometry of diffraction from crystals, treat the subject 
of diffraction intensities and end with a discussion of a few experimental issues 
connected to the instruments which will be used in the practical part of the course. 
Examples of applications of these methods will be given in chapter 8 “structural 
analysis”. The subject of magnetic neutron diffraction and scattering will be discussed 
separately in chapter 7. 

 

4.2 Neutron waves & neutron scattering 
The three major probes for investigating condensed matter are photons, electrons and 
neutrons. While photons are the (massless) quanta of electromagnetic radiation (e.g. x-
rays, including synchrotron radiation, but also visible light, gamma-rays etc.) electrons 
and neutrons are massive particles. Owing to the wave-particle-duality, a central 
concept of quantum mechanics that states that all particles exhibit both wave- and 
particle-properties, the formal description of a scattering experiment does not differ for 
these different probes. However, the relation between energy and wavelength of the 
probes and also the mechanisms by which they interact with matter are vastly different.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.2:  Comparison of the three probes - neutrons, electrons and photons - in a 

double logarithmic energy-wavelength diagram. Added to the figure are the 
typical size of objects to be studied and the energy of thermal neutrons. 

As the horizontal line at a wavelength of 1 Å shows, neutrons of this wavelength have 
an energy as low as about 80 meV, while 1 Å electrons correspond to about 150 eV and  
1 Å photons (x-rays) have energies in excess of 12 keV. All three types of radiation 
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with this wavelength are well suited for scattering experiments on objects like atoms, 
molecules and crystals. The investigation (by scattering) of larger objects like colloids 
(in the 100 nm size range) requires, correspondingly, much lower energy probes like, 
for instance, photons in the ultraviolet range (about 12 eV). 
 

The scattering process 

source

sample

2�

detector

„plane wave“

'Q k k� �

k

'k

„plane wave“

source

sample

2�

detector

„plane wave“

'Q k k� �

k

'k

„plane wave“

 
 

Fig. 4.3:  Sketch of the scattering process with the incoming wave characterized by 
wavevector k, diffracted wave by k' and the sample by scattering vector Q, 
assumed: plane waves, (Fraunhofer approximation, source-sample and 
sample-detector distances much larger than sample size), also assumed: 
monochromatic radiation (single wavelength) 

 
In the case of elastic scattering (diffraction) we have 

  2' 'k k k k �
B

� � � �                                                                                 (4.1) 

k is also called the wave number of the neutron and is conserved during scattering 
because the neutron energy and therefore the wavelength does not change. 
 
The so-called scattering vector is defined by 
  'Q k k� �                                                                                                (4.2) 
 
The units of k, k’ and Q are Å-1. 
 
�Q represents the momentum transfer during scattering, since according to de Broglie, 
the momentum of the particle corresponding to the wave with wave vector k is given by 
p=�k. The magnitude of the scattering vector can be calculated from wavelength B and 
scattering angle 2� as follows 

  2 2 4' 2 'cos 2 sinQ Q k k kk Q �� �
B

� � " � C �                                           (4.3) 

A scattering experiment comprises the measurement of the intensity distribution as a 
function of the scattering vector I(Q). The scattered intensity is proportional to the so-
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called cross section, where the proportionality factors arise from the detailed geometry 
of the experiment. For a definition of the scattering cross section see Figure 4.4.  
 

 
 
 

Fig. 4.4:  Geometry used for the definition of the scattering cross section. 
 
This is in close analogy to the absorption cross section derived in chapter 2. 

Let us drop, for a moment, the assumption of strictly elastic scattering and treat the 
universal case of a general scattering experiment (will be needed in other chapters):   
If n' particles are scattered per second into the solid angle d. seen by the detector under 
the scattering angle 2� and into the energy interval between E' and E' + dE', then we 
can define the so-called double differential cross section by:  

  
2 '

' '
d n

d dE jd dE
D

�
. .

                                                                                        (4.4) 

Here j refers to the incident beam flux in terms of particles per area and time. If we are 
not interested in the change of the energy of the radiation during the scattering process, 
or if our detector is not able to resolve this energy change, then we will describe the 
angular dependence by the so-called differential cross section: 

  
2

0

d d dE 'd d dE '

�
D D�
. .�             (4.5) 

Finally the so-called total scattering cross section gives us a measure for the total 
scattering probability independent of changes in energy and scattering angle:  

  
4

0

d d
d

� DD � .
.�             (4.6) 

 
All the information about the scattering matter is contained in the (double differential) 
scattering cross section. This includes positions and possible motions of scatterers in the 
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sample volume. Note that in most diffraction experiments (with x-rays in particular, but 
also with electrons and neutrons), the actual measurement is energy-integrated because 
the detectors used are energy-insensitive. Consequently, the inelastic scattering also 
contributes to the measured intensity, but it is usually much weaker than the purely 
elastic scattering. Neutron scattering, however, offers the unique opportunity to set a 
very narrow energy window and study purely elastic scattering as well as inelastic 
scattering at arbitrary energies.  
If we go back to elastic scattering the information on the positions of the scatterers is 
contained in the differential cross section /d dD . . The relationship between scattered 
intensity and the structure of the sample is particularly simple in the so-called Born 
approximation, which is often also referred to as kinematic scattering approximation. In 
this case, refraction of the beam entering and leaving the sample, multiple scattering 
events and the extinction of the primary beam due to scattering within the sample are 
being neglected. According to Figure 4.5, the phase difference between a wave scattered 
at the origin of the coordinate system and at position r is given by 

  
� �

2 '
AB CD

k r k r Q r�
B

�
EF � � � � � � � �                                                        (4.7) 

 

no refraction vsno attenuation
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Fig. 4.5:  Elastic scattering from a non-periodic object, illustrating the phase difference 

between a beam scattered at the origin of the coordinate system (A) and a 
beam scattered at the position r. Additional caption: underlying assumptions of 
the kinematic scattering approximation.  

 
The scattered amplitude at position r is proportional to the scattering density �s(r) at this 
position. �s depends on the type of radiation used and the interaction of this radiation 
with the sample. In fact, �s is directly proportional to the interaction potential, as will be 
shown in the next paragraph. Assuming a laterally coherent beam, the total scattering 
amplitude is given by a coherent superposition of the scattering from all points within 
the sample, i. e. by the integral 
  � � 3

0
S

iQ r

V

A A r e d rs�
�� � ��                                                                                (4.8) 

Here A0 denotes the amplitude of the incident wave field. (4.8) demonstrates that the 
scattered amplitude is connected with the scattering density �s(r) by a simple Fourier 
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transform. Knowledge of the scattering amplitude for all scattering vectors Q allows us 
to determine via a Fourier transform the scattering density uniquely. This is the 
complete information on the sample, which can be obtained by the scattering 
experiment. Unfortunately, nature is not so simple. On one hand, there is the technical 
problem that one is unable to determine the scattering cross section for all values of 
momentum transfer �Q. The more fundamental problem, however, is that normally the 
amplitude of the scattered wave is not measurable. Instead only the scattered intensity  
  2~I A                                                                                                         (4.9) 
can be determined. Therefore the phase information is lost and the simple reconstruction 
of the scattering density via a reverse Fourier transform is no longer possible. This is the 
so-called phase problem of scattering. There are ways to overcome the phase problem, 
either experimentally, e. g. by use of reference waves (holography) or by using a priori 
information about the scattering density function (like positiveness or peakedness) 
which is the basis of the so called direct methods of structure determination that is very 
frequently used in x-ray crystallography. The question, which information we can ob-
tain from a conventional scattering experiment despite the phase problem will be 
addressed below. 
 
Which wavelength do we have to choose to obtain the required real space resolution? 
For information on a length scale L, a phase difference of about Q�L � 2 � has to be 
achieved. Otherwise k' and k will not differ significantly (see eqn. (4.7)). According to 
(4.3) Q � 2�/B for typical scattering angles (2� ~ 60°). Combining these two estimates, 
we end up with the requirement that the wavelength B has to be on the order of the real 
space length scale L under investigation. To give an example: with the wavelength in 
the order of 0.1 nm, atomic resolution can be achieved in a scattering experiment. 
 
Coherence 
 
In the above derivation, we assumed plane waves as initial and final states. For a real 
scattering experiment, this is an unphysical assumption. In the incident beam, a wave 
packet is produced by collimation (defining the direction of the beam) and 
monochromatization (defining the wavelength of the incident beam). Neither the 
direction k̂ , nor the wavelength B have discrete values but rather have a distribution of 
non-vanishing width about their respective mean values. This wave packet can be 
described as a superposition of plane waves. As a consequence, the diffraction pattern 
will be a superposition of patterns for different incident wavevectors k and the question 
arises, which information is lost due to these non-ideal conditions. This instrumental 
resolution is intimately connected with the coherence of the beam. Coherence is 
needed, so that the interference pattern is not significantly destroyed. Coherence 
requires a phase relationship between the different components of the beam. Two types 
of coherence can be distinguished: 
 
 
 
Temporal or longitudinal coherence due to a wavelength spread: 
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A measure for the longitudinal coherence is given by the length, on which two 
components of the beam with largest wavelength difference (B and B+EB) become fully 
out of phase. 

According to the following figure, this is the case for � �||
1
2

l n nB B B� �� � � � " E� �
� �

.  

 
 
 
 
 
 
 
 
 
Fig. 4.6:  Sketch illustrating the longitudinal coherence due to a wavelength spread.  
 
From this, we obtain the longitudinal coherence length ||l  as  

  
2

|| 2l B
B�

E
                                                                                              (4.10) 

 
Transverse coherence due to source extension: 
Due to the extension of the source (transverse beam size), the phase relation is 
destroyed for large source size or large divergence. According to the following figure, a 

first minimum occurs for sin
2

d dB � �� � � � .  

 
 
 
 
 
 
 
 
 
Fig. 4.7:  Sketch illustrating the transverse coherence due to source extension and beam 

divergence.  
 
From this, we obtain the transversal coherence length l<  as  

  2l B
�< � E

                                                                                                 (4.11) 

Here E� is the divergence of the beam. Note that l<  can be different along different 
spatial directions: in many instruments, the vertical and horizontal collimations are 
different.  
Together, the longitudinal and the two transversal coherence lengths (in two directions 
perpendicular to the beam propagation) define a coherence volume. This is a measure 
for a volume within the sample, in which the amplitudes of all scattered waves 
superimpose to produce an interference pattern. Normally, the coherence volume is 
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significantly smaller than the sample size, typically a few 100 Å for neutron scattering, 
up to μm for synchrotron radiation. Scattering between different coherence volumes 
within the sample is no longer coherent, i. e. instead of the amplitudes the intensities of 
the contributions to the scattering pattern have to be summed up. This limits the real 
space resolution of a scattering experiment to the extension of the coherence volume. 
 
Neutron scattering from atomic nuclei 
 
Neutrons interact with the nuclei of the atoms by potential scattering as well as with the 
magnetic moment of unpaired electrons in the electron shells of the atoms. Here we 
focus on the so-called nuclear scattering contribution. As the wavelength of thermal 
neutrons (approx. 10-10 m) is much larger than the diameter of the atomic nucleus (10-14 
...10-15 m), the atom is essentially a point scatterer. As the construction of Fig. 4.5 and 
equation (4.7) shows, this means that the length of the vector r (now a vector within the 
nucleus) is very small compared to the wavelength of the neutron and therefore the 
phase difference of waves from different parts of the nucleus is essentially zero. This is 
in sharp contrast to x-ray diffraction, where the scattering occurs from the electron 
cloud and the size of the scatterer and the wavelength of the radiation are similar. This 
results in the well-known formfactor falloff of the scattered intensity with increasing 
scattering angle. The same holds true for the magnetic formfactor for thermal neutrons. 
Magnetic neutron scattering will be the subject of chapter 7. For neutron scattering from 
the atomic nuclei, the formfactor is a constant. This is one big advantage of neutrons 
over x-rays because there is still an appreciable amount of scattered intensity even at 
very high scattering angles, where an x-ray experiment will yield hardly any useful 
information. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.8:  Form-factor of Cr [1]. On the Å length scale of the thermal neutron 

wavelength, the nucleus is point-like, therefore, nuclear scattering is 
independent of the scattering angle. For x-rays and magnetic neutron 
scattering, the form factor falls off with increasing scattering angle. For more 
details on magnetic neutron scattering see chapter 7.  

 
The interaction that governs nuclear neutron scattering (essentially potential scattering) 
is the strong nuclear force. Note that, despite the fact that the strong interaction of high 
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energy physics is responsible for the scattering of the neutron with the nucleus, the 
scattering probability is very small due to the small nuclear radius. 
The quantity that describes the interaction between neutrons and matter is the scattering 
length b, it is usually expressed in units of a Fermi (1 fm = 10-15 m). Another frequently 
used quantity is the total cross section of a given nucleus 24 bD ��  corresponding to 
the surface area of a sphere with radius b. D is usually expressed in barns, 1 barn = 10-24 
cm2. A simple description of potential scattering predicts the smooth increase of the 
scattering length with increasing atomic weight depicted in Figure 4.9 by the dashed 
line. Obviously, this description is rather crude as resonance effects play an important 
role and, consequently, there are pronounced deviations from this line. As the interac-
tion potential depends on the details of the nuclear structure, scattering lengths b can be 
very much different for different isotopes of the same element and also for different 
nuclear spin states (see chapter 7). In fact, neutron nuclear scattering lengths are still 
very hard to calculate (in contrast to x-ray scattering where the scattering power of any 
atom can be calculated to a very high precision) illustrating our still quite limited 
knowledge of the nuclear structure of atoms as opposed to the very well understood 
electronic structure of atoms. Consequently, the tabulated values of b which can be 
found in [2] or at http://www.ncnr.nist.gov/resources/n-lengths/ are experimentally 
measured quantities, not calculated ones. The scattering length is mostly positive but 
can also adopt negative values, this negative sign corresponds to a phase shift of � (or 
180°) during the scattering process. The fact that different isotopes of the same element 
have different scatterings lengths also gives rise to the appearance of so-called 
incoherent scattering (see below). 

 
Fig. 4.9:  Scattering length as a function of atomic weight throughout the periodic table 

(from Research, London 7 (1954), 257). Note the two different curves for x-
rays at low- and high scattering angles, illustrating the formfactor falloff that 
is typical for x-rays but doesn’t exist for nuclear neutron scattering. 

 
In Figure 4.10, the scattering cross sections for x-rays and neutrons are compared. Note 
that the x-ray scattering cross sections are in general a factor of 10 larger as compared 
to the neutron scattering cross sections. This means that the signal for 
x-ray scattering is stronger for the same incident flux and sample size. For x-rays, the 
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cross section depends on the number of electrons and thus varies in a monotonic fashion 
throughout the periodic table. Clearly it will be difficult to determine hydrogen 
positions with x-rays in the presence of heavy elements such as metal ions. Moreover, 
there is a very weak contrast between neighboring elements as can be seen for the 
transition metals Mn, Fe and Ni in Figure 4.10. However, this contrast can be enhanced 
by anomalous scattering, if the photon energy is tuned close to the absorption edge of an 
element. For neutrons the cross section depends on the details of the nuclear structure 
and thus varies in a non-systematic fashion throughout the periodic table. As an 
example, there is a very high contrast between Mn and Fe. With neutrons, the hydrogen 
atom is clearly visible even in the presence of such heavy elements as Uranium. 
Moreover there is a strong contrast between the two Hydrogen isotopes H and D. This 
fact can be exploited for soft condensed matter investigations by selective deuteration of 
certain molecules or functional groups. This will vary the contrast within the sample.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.10: Comparison of the (coherent) scattering cross-sections 	 for x-rays and 

neutrons for a selection of elements. The area of the colored circles repre-
sent the scattering cross section, where in the case of x-rays a scale factor 
10 has to be applied. For neutrons, the blue and green circles distinguish 
the cases where the scattering occurs with or without a phase shift of �. For 
1H and 28Ni, scattering cross sections for certain isotopes are given in 
addition to the averaged values for the natural abundances. 

 
 
Coherent and incoherent scattering 
 
As mentioned above, the scattering length b is different for different isotopes of a given 
element and also for different nuclear spin states. This gives rise to an additional 
contribution to the total intensity, the incoherent scattering. In this chapter, we will 
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focus on isotope-incoherence and leave the detailed discussion of spin-incoherence for 
other chapters. 
 
Figure 4.11 shows a 2-D model crystal with atoms of two isotopes of the same element 
with two different scattering lengths bi sitting on fixed positions Ri in a crystal lattice.  
As stated above, the scattering amplitude is obtained from a Fourier transform:  
  � � ��

�

i

RQi
i

iebQA                                                                                      (4.12) 

When we calculate the scattering cross section, we have to take into account that the 
different isotopes are distributed randomly over all sites. Therefore, we have to average 
over the random distribution of the scattering length in the sample:  

  � � � � 2 *~ ji iQ RiQ R
i j

i j

d Q A Q b e b e
d
D ��� �
. � �                                             (4.13) 

As isotopes of the same element are chemically undistinguishable, the distribution of 
the scattering lengths bi and bj on the different sites is completely uncorrelated. This 
implies that for i � j, the expectation value of the product equals to the product of the 
expectation values. Only for i = j a correlation occurs, which gives an additional term 
describing the mean quadratic deviation from the average:  

  � �!(
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           (4.14) 

The line for i = j results from the identity:  

  � � 222222 bbbbbbbb ��"���                                            (4.15)  

Therefore, we can write the cross section in the following form:  
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                                                   (4.16)  

The scattering cross section is a sum of two terms. Only the first term contains the phase 
factors eiQ�R, which result from the coherent superposition of the scattering from pairs of 
scatterers. This term takes into account interference effects and is therefore named 
coherent scattering. The scattering length averaged over the isotope- and nuclear spin- 
distribution enters this term. This is in complete analogy to the “isotope insensitive” x-
ray-diffraction. The second term in (4.16) does not contain any phase information and is 
proportional to the number N of atoms (and not to N2). This term is not due to the 
interference of scattering from different atoms and it has no direct counterpart in x-ray 
scattering. As we can see from (4.14) (line i = j), this term corresponds to the scattering 
from single atoms, which subsequently superimpose in an incoherent manner (adding 
intensities, not amplitudes!). This is the reason for the intensity being proportional to the 
number N of atoms. Therefore the second term is called incoherent scattering.  
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Fig. 4.11: Upper panel: Sketch of the scattering process from a 2-D lattice of N 

chemically identical atoms with two isotopes (small dotted circles and large 
hatched circles). The area of the circle represents the scattering cross 
section of the single isotope. Middle panel: The incident wave is scattered 
coherently only from the average structure. This gives rise to Bragg peaks in 
certain directions. Lower panel: Additionally, an isotropic background 
(incoherent scattering) is observed, which is proportional to the number N of 
atoms and to the mean quadratic deviation from the average scattering 
length.  

 
The most prominent example for isotope incoherence is elementary nickel. The 
scattering lengths of the nickel isotopes are listed together with their natural abundance 
in Table 4.1 [2]. The differences in the scattering lengths for the various nickel isotopes 
are enormous. Some isotopes even have negative scattering lengths. This is due to 
resonant bound states, as compared to the usual potential scattering. 
 

Isotope Natural Abundance Nuclear Spin Scattering Length [fm] 
58Ni 68.27 % 0 14.4(1) 
60Ni 26.10 % 0 2.8(1) 
61Ni 1.13 % 3/2 7.60(6) 
62Ni 3.59 % 0 -8.7(2) 
64Ni 0.91 % 0 -0.37(7) 
Ni   10.3(1) 

 
Tab. 4.1: The scattering lengths of the nickel isotopes and the resulting scattering 

length of natural 28Ni [2], see also fig. 4.9.  
 
Neglecting the less abundant isotopes 61Ni and 64Ni, the average scattering length is 
calculated as:  
  � �G H fmfmb 2.107.804.08.226.04.1468.0 ���"�"��  (4.17) 
which gives the total coherent cross section of:  
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  24 bcoherent �D �C ))3(3.13:(1.13 barnexactbarn�  (4.18) 
The incoherent scattering cross section per nickel atoms is calculated from the mean 
quadratic deviation:  

  � � � � � �2 2 2 24 0.68 14.4 10.2 0.26 2.8 10.2 0.04 8.7 10.2

5.1 ( :5.2(4) )

Isotope
incoherent fm

barn exact barn

D � 	 
� � � " � � " � � �� �
�

   (4.19) 

Values in parentheses are the exact values taking into account the isotopes 61Ni and 64Ni 
and the nuclear spin incoherent scattering (see chapter 7). From (4.18) and (4.19), we 
learn that the incoherent scattering cross section in nickel amounts to more than one 
third of the coherent scattering cross section.  
 
The most prominent example for nuclear spin incoherent scattering is elementary 
hydrogen. The nucleus of the hydrogen atom, the proton, has the nuclear spin I = ½. 
The total nuclear spin of the system H + n can therefore adopt two values: J = 0 and J = 
1. Each state has its own scattering length: b- for the singlet state (J = 0) and b+ for the 
triplet state (J = 1).  
 

Total Spin Scattering Length Abundance 
J = 0 b- = - 47.5 fm 

4
1  

J = 1 b+ = 10.85 fm 
4
3  

 <b> = - 3.739(1) fm  
 
Tab. 4.2: Scattering lengths for hydrogen [2].  
 
As in the case of isotope incoherence, the average scattering length can be calculated:  

  � � � � fmfmb 74.385.10
4
35.47

4
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����
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	 �"��  (4.20) 

This corresponds to a coherent scattering cross section of about � 1.76 barn [2]:  
  barnbcoherent )10(7568.124 ��C �D  (4.21) 
The nuclear spin incoherent part is again given by the mean quadratic deviation from 
the average:  

  � � � � 2274.385.10
4
3274.35.47

4
14 fmspinnuclear

incoherent ��




�
	 """�� �D barn2.80�  

 
            (exact value: 80.26(6) barn) (4.22) 
 
Comparing (4.21) and (4.22), it is immediately clear that hydrogen scatters mainly 
incoherently. As a result, we observe a large background for all samples containing 
hydrogen. We should avoid all hydrogen containing glue for fixing our samples to a 
sample stick. Finally, we note that deuterium with nuclear spin I = 1 has a much more 
favorable ratio between coherent and incoherent scattering:  
  barnbarn D

inc
D
coh )3(05.2;)7(592.5 .. �� DD  
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The coherent scattering lengths of hydrogen (-3.74 fm) and deuterium (6.67 fm) are 
significantly different. This can be used for contrast variation by isotope substitution in 
all samples containing hydrogen, i. e. in biological samples or soft condensed matter 
samples, see the corresponding chapters.  
 
A further important element, which shows strong nuclear incoherent scattering, is 
vanadium. Natural vanadium consists to 99,75 % of the isotope 51V with nuclear spin 
7/2. By chance, the ratio between the scattering lengths b+ and b- of this isotope are 
approximately equal to the reciprocal ratio of the abundances. Therefore, the coherent 
scattering cross section is very small and the incoherent cross section dominates [2]: 
  barnbarn V

incoh
V
coh )6(08.5;)12(01838.0 �� DD  

For this reason, Bragg scattering of vanadium is difficult to observe above the large 
incoherent background. On the other hand, this fact can be turned into an advantage: By 
using vanadium metal, one can make sample containers which are practically invisible 
for (coherent) neutron scattering: They produce almost no reflections but rather a 
diffuse background (since incoherent scattering is isotropic) which usually doesn’t 
cause severe problems in diffraction experiments. 
 

4.3 Diffraction geometry 
For purely elastic scattering, the scattering function S(Q,@) reduces to the special case 
without energy transfer (E0 = E1 and �I   = E0 – E1 = 0) and equal length of the wave 
vectors of the incident and scattered beams (!k0! = !k1!). S(Q,@ = 0) and the scattering 
intensity then only depends on the scattering vector Q = k0 - k1. The coherent elastic 
neutron scattering (�  neutron diffraction) yields information on the positions 
(distribution) of the atomic nuclei and the arrangement of the localised magnetic spins 
in crystalline solids, the pair correlation function of liquids and glasses, and the 
conformation of polymer chains. 

Figure 4.12 shows a sketch of a general diffraction experiment. More specifically, it is a 
typical setup of a constant wavelength, angular dispersive diffraction experiment. There 
are other methods to perform a diffraction experiment (e.g. time of flight- (TOF-), 
Laue-, energy-dispersive diffractometers etc.) but these are outside the scope of this 
introductory lecture.  

For constant wavelength diffraction, the energy (wavelength) and direction 
(collimation) of the incident neutron beam needs to be adjusted. For that purpose, the 
diffractometer is equipped with a crystal monochromator to select a particular 
wavelength band (B ? EBJB) out of the “white” beam. Collimators are used to define the 
beam direction and divergence pretty much as is done in x-ray diffraction. 

In the case of a crystalline sample, the diffraction geometry is most conveniently 
described by the concepts of the reciprocal lattice and the Ewald construction which are 
both well-known from x-ray-diffraction. 
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Fig. 4.12: Schematic representation of a constant wavelength diffractometer. 
 
Reciprocal lattice 
The characteristic feature of the crystalline state (see chapter 3) is its periodic order, 
which may be represented by a (translation) lattice. In the 3D case, three basis vectors 
a1, a2, a3 define a parallelepiped, called unit cell. Each lattice node of the crystal lattice 
can be addressed by a general lattice vector 

   a = u a1 + v a2 + w a3.        (4.23) 

which results from a linear combination of the basis vectors with coefficients u, v, and w 
(positive or negative integers, including 0).  

The position of atom j in the unit cell is given by the vector  

 rj = xj a1 + yj a2 + zj a3.        (4.24) 

The coefficients xj, yj, and zj are called atomic coordinates (0Kxj<1; 0Kyj<1; 0Kzj<1). 

For an ideal crystal and an infinite lattice with the basis vectors a1, a2, a3 there is only 
diffraction intensity I(;) at the vectors 

 ; = h ;1 + k ;2 + l ;3.        (4.25) 

of the reciprocal lattice. h,k,l are the integer Miller indices and;1, ;2, ;3 are the basis 
vectors of the reciprocal lattice, satisfying the two conditions 

 ;1�a1 = ;2�a2 = ;3�a3 = 1 and ;1�a2 = ;1�a3 = ;2�a1 = ... = 0, 

or in terms of the Kronecker symbol with i, j and k = 1, 2, 3 

 4ij = 0 for i � j and 4ij = 1 for i = j with 4ij = ;I � ;j.    (4.26) 
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The basis vectors of the reciprocal lattice can be calculated from those of the unit cell in 
real space 

 ;i = (aj >ak)/Vc,         (4.27) 

where > means the cross product, and Vc = a1�(a2>a3) is the volume of the unit cell. 

In solid state physics,  

 Q = 2� ;           (4.28) 

is used instead of ;   

Here is a compilation of some properties of the reciprocal lattice: 

L Each reciprocal lattice vector is perpendicular to two real space vectors: ;I < aj and ak 
(for i � j, k) 

L The lengths of the reciprocal lattice vectors are M;iM = 1/Vc�MajM�MakM�sinN(aj,ak). 

L Each point hkl in the reciprocal lattice refers to a set of planes (hkl) in real space. 

L The direction of the reciprocal lattice vector ; is normal to the (hkl) planes and its 
length is reciprocal to the interplanar spacing dhkl:  M;M = 1/dhkl. 

L Duality principle: The reciprocal lattice of the reciprocal lattice is the direct lattice. 

Performing a diffraction experiment on a single crystal actually means doing a Fourier 
transform of the 3D-periodic crystal (see chapter on symmetry in crystals) followed by 
forming the square of the resulting (complex) amplitude function. The Fourier 
transform of the (infinite) crystal lattice is essentially the reciprocal lattice derived 
above and yields directly the positions of the reflections in space (directions of the 
diffracted beams). The atomic arrangement within the unit cell determines the reflection 
intensities which may be envisaged as a weight attached to the nodes of the reciprocal 
lattice.  

Doing a (single crystal) diffraction experiment therefore corresponds to measuring the 
positions and weights of the reciprocal lattice points. Their position yields information 
on the lattice parameters and the orientation of the crystal on the diffractometer while 
the weights (the reflection intensities) allow reconstructing the atomic positions within 
the unit cell.  

Ewald construction 
The concept of the reciprocal space also provides a handy tool to express geometrically 
the condition for Bragg scattering in the so-called Ewald construction. In this way the 
different diffraction methods can be discussed. 

We consider the reciprocal lattice of a crystal and choose its origin 000. In Fig. 4.13 the 
wave vector k0 (defined in the crystallographers’ convention with Mk0M = 1/B) of the 
incident beam is marked with its end at 000 and its origin P. We now draw a sphere of 
radius Mk0M = 1/B around P passing through 000. Now, if any point hkl of the reciprocal 
lattice lies on the surface of this “Ewald sphere”, then the diffraction condition for the 
(hkl) set of lattice planes is fulfilled: The wave vector of the diffracted beam k (with its 
origin also at P) for the set of planes (hkl), is of the same length as k0 (MkM = Mk0M) and the 
resulting vector diagram satisfies k = k0 + ;. Introducing the scattering angle 2� (and 
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hence the Bragg angle �hkl), we can deduce immediately from 2MkM�sin� = M;;M the Bragg 
equation 2dhkl�sin�hkl = B.      

 
Fig. 4.13: Ewald construction in reciprocal space, showing the diffraction 

condition for reflection (hkl). 
 

In the case of single crystal diffraction a rotation of the crystal and therefore also of the 
corresponding reciprocal lattice (which is rigidly attached to the crystal) is often used to 
set the diffraction conditions for the measurement of intensities I(;). 

If M;;M > 2/B (then dhkl < B/2) the reflection hkl cannot be observed. This condition defines 
the so called limiting sphere, with center at 000 and radius 2/B: only the points of the 
reciprocal lattice inside the limiting sphere can be rotated into diffraction positions. 
Vice versa if B > 2dmax, where dmax is the largest interplanar spacing of the unit cell, then 
the diameter of the Ewald sphere is smaller than M;;Mmin. Under these conditions no node 
of the reciprocal lattice can intercept the Ewald sphere. That is the reason why 
diffraction of visible light (wavelength O 5000 Å) can never be obtained from crystals. 
Bmin determines the amount of information available from a diffraction experiment. In 
ideal conditions Bmin should be short enough to measure all points of the reciprocal 
lattice with significant diffraction intensities. 

For a real crystal of limited perfection and size the infinitely sharp diffraction peaks 
(delta functions) evolve into broadened reflections. One reason can be the local 
variation of the orientation of the crystal lattice (mosaic spread) implying some angular 
splitting of the vector ;. A spread of interplanar spacings Ed/d, which may be caused by 
some inhomogeneities in the chemical composition of the sample, gives rise to a 
variation of its magnitude M;;M. The ideal diffraction geometry on the other hand also 
needs to be modified: In a real experiment the primary beam has a non-vanishing 
divergence and wavelength spread. The detector aperture is also finite. A gain of 
intensity, which can be accomplished by increasing the angular divergence and 
wavelengths bandwidth, has to be paid for by some worsening of the resolution function 
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(see below) and hence by a limitation of the ability to separate different Bragg 
reflections. 

All of these influences can be studied by the Ewald construction. The influence of a 
horizontal beam divergence on the experimental conditions for a measurement of 
Bragg-intensities of a single crystal is illustrated in Fig. 4.14 where strictly 
monochromatic radiation (only one wavelength B with EBJB = 0) is assumed. To collect 
the complete intensity contained in the spread out reflection, a so-called @-scan, where 
the crystal is rotated around the sample axis perpendicular to the diffraction plane, may 
be used. The summation over the whole reflection profile yields the so-called integral 
diffraction intensities. 

 
Fig. 4.14: Ewald-construction: Influence of the horizontal beam divergence on the 

experimental conditions for the measurement of Bragg-intensities. 
 

Finally, the geometry of powder diffraction experiments can also be discussed in terms 
of the Ewald-construction: 

 
Fig. 4.15: Ewald construction for a powder diffraction experiment. 
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An ideal polycrystalline sample is characterised by a very large number of arbitrarily 
oriented small crystallites. Therefore, the reciprocal lattice point hkl is smeared out on a 
sphere and the 3D-information contained in vector ; is reduced to only 1D-information 
contained in M;;M. In Figure 4.15 the corresponding sphere with radius M;;M = 1/dhkl is drawn 
around the origin of the reciprocal lattice at 0,0,0. For each Bragg-reflection the circle 
of intersection of the “reciprocal lattice sphere” with the Ewald-sphere yields a 
diffraction cone. These cones are recorded on a point or position sensitive detector. And 
the resulting information is plotted as a intensity vs. diffraction angle (or Q) diagram. 
All reflections with equal interplanar spacing dhkl are perfectly superimposed and cannot 
be separated experimentally. 

 
 
Fig. 4.16: Sketch of a powder diffraction experiment, diffraction cones are recorded 
          on a 2D- or 1D- detector (reproduced from [3]). 
 

4.4 Diffraction intensities 
As stated in chapter 4.2, a scattering experiment is equivalent to performing a Fourier 
transform of the scattering object (eqn. 4.8) followed by taking the square of the 
resulting complex amplitude (eqn. 4.9). The latter step is very simply due to the fact, 
that our detectors can measure the magnitude (the absolute value) of a diffracted wave 
but are completely insensitive to its phase. This results in an intrinsic loss of 
information and poses the so-called “phase problem of crystallography”. There are 
methods to reconstruct the missing phase information from the measured magnitudes 
and from a-priori information about the scattering object (e.g. the so-called direct 
methods of structure determination), but these methods are again outside the scope of 
this lecture. The first step of a diffraction experiment - the Fourier transform - needs 
some further elaboration: In a diffraction (elastic, coherent scattering) experiment we 
can safely ignore time as a variable and concentrate only on the spatial Fourier 
transform of the scattering object (here: the crystal). For those who are not particularly 
familiar with the Fourier transform, figure 4.17 shows a very simple one-dimensional 
analogue. The transformation from A to E (labelled FT, ||) corresponds to the diffraction 
experiment: Fourier-transform (harmonic analysis) plus calculation of the absolute 
value. If we could also retrieve the phases �, the inverse Fourier transform (labelled FT-

1, �) would lead directly to the structure of the scattering object A (harmonic synthesis).  
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Fig. 4.17: 1D illustration of the Fourier transform, A: scattering object: 1D-density 

function, assumed: periodic in 1D, B-D: decomposition of A into 3 
harmonic (co-)sine waves, F: synthesis of A (red curve) via summation of B-
D with the correct phases, E: “diffractogramm” of A: Fourier transform, 
only the magnitudes of waves in B to D are plotted, figures taken from[4]. 

 

Without the phase information, we need an approximate model of the crystal structure 
and a formula to calculate diffraction intensities from the model. In the kinematical 
approximation (see above) we use the so called structure factor formula for that purpose 
(see below). The model is then iteratively improved to give an optimum match between 
observed and calculated intensities. This is referred to as the structure refinement. 

Structure factor and Bragg intensities 
In the kinematical approximation, which assumes that the magnitude of the incident 
wave amplitude is the same at all points in the specimen (this implies a small sample 
size, weak scattering intensities, no multiple diffraction and negligible absorption), the 
diffracted intensity is proportional to the square of the amplitude of the scattered wave 
for each individual reflection; it can be regarded as a weight ascribed to the reciprocal-
lattice nodes (see eqn. 4.25). 

 I(;)   |F(;)|2.          (4.29) 

The structure factor F(;) is the Fourier transform of the scattering density within the 
unit cell. For a 3D-periodic scattering density function composed of discrete atoms (the 
crystal), the integral in (4.8) describing the Fourier transform in its most general form, 
simplifies to a sum over all atoms j in the unit cell The structure factor F(;) contains the 
complete structural information, including the atomic coordinates rj = xj a1 + yj a2 + zj 
a3 (see eqn. 4.24), site occupations and the thermal vibrations contained in Tj. 
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 F(;) = ·exp[2�i(;·rj)]·Tj(;) = |F(;)|·exp[i9(;)].     (4.30) 

In the case of nuclear scattering of neutrons the structure factor has the dimension of a 
length, as has the scattering length bj(;) = bj = const. of nucleus j. Tj(;) is the Debye-
Waller factor which takes into account dynamical and static displacements of the 
nucleus j from its average position rj in the unit cell. With the fractional coordinates xj, 
yj and zj, the scalar product in the exponential function can be written as 

 ; � rj = hxj + kyj +lzj        (4.31) 

In a diffraction experiment normally only relative Bragg intensities are measured. A 
scale factor SCALE takes into account all parameters which are constant for a given set 
of diffraction intensities. Additional corrections have to be applied, which are a function 
of the scattering angle. For nuclear neutron diffraction from single crystals the 
integrated relative intensities are given by 

  I(;) = SCALE � L � A � E � |F(;)|2        (4.32) 

The Lorentz factor L is instrument specific. The absorption correction A depends on the 
geometry and linear absorption coefficient of the sample and the extinction coefficient 
E takes into account a possible violation of the assumed conditions for the application 
of the kinematical diffraction theory. 

Information on the crystal system, the Bravais lattice type and the basis vectors a1, a2, 
a3 of the unit cell (lattice parameters a, b, c, 86 �, 7) may be directly deduced from the 
reciprocal lattice. The |F(;)|2 values associated as weights to the nodes of the reciprocal 
lattice give the diffraction symbol and hence valuable information on the space-group 
symmetry (see chapter 3). Here, systematic absences (zero structure factors) can be used 
to determine non-primitive Bravais lattices or detect the presence of non-symmorphic 
symmetry operations (symmetry operations with translation components).  

As an example, consider a body centered cubic lattice with atoms at 0,0,0 and ½,½,½. 
Using eqn. 4.31 and dropping the Debye-Waller factor for the moment, eqn. 4.30 may 
be rewritten as:  

 F(hkl) = ·exp[2�i(hxj + kyj +lzj)]·Tj(;) = |F(;)|·exp[i9(;)].    (4.33) 

For a centrosymmetric structure, F is a real quantity (instead of complex), the 
exponentials in (4.33) reduce to cosines and the phase factor assumes only the values + 
or -. For this simple structure, index j just runs over the two equivalent atoms with 
scattering length b within the unit cell. Thus we get:  

             (4.34) 

The first term cos(0) = 1 and we therefore have: 

             (4.35) 

If h+k+l is even, the cosine term is +1, otherwise it is -1. 

Reflections with h+k+l=2n+1 are therefore systematically absent.  

G H )])(cos[1()2/2/2/(2cos)( lkhblkhbbhklF """��""�"� ��
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These statements apply equally well to x-ray and neutron diffraction and to powder as 
well as to single crystal diffraction data. 
 
In the case of a powder sample, orientational averaging leads to a reduction of the 
dimensionality of the intensity information from 3D to 1D: Diffraction intensity I is 
recorded as a function | ;  | = 1/dhkl  or, by making use of Bragg’s law, of sin(�)/B or just 
as a function of 2�. For powders, two additional corrections (M and P in eqn. 4.36) need 
to be applied in order to convert between the measured intensities I and the squared 
structure factor magnitudes F2: 

  I(|; |) = SCALE � L � A � E � M � P � |F(|; |)|2      (4.36) 

M is the multiplicity of the individual reflections and takes into account how many 
symmetrically equivalent sets of lattice planes correspond to a given hkl. In the cubic 
crystal system, for instance, M111=8 (octahedron) while M100=6 (cube). P is the so-
called preferred orientation parameter which corrects the intensities for deviations from 
the assumption of randomly oriented crystals in the powder sample. 

4.5 Diffractometers 
Single Crystal Neutron Diffractometry 
 

 
Fig. 4.18:  Principle components of a constant wavelength single crystal 

diffractometer. 
 
Monochromator and collimator 
For constant wavelength diffraction, the energy (wavelength) and direction 
(collimation) of the incident neutron beam needs to be adjusted. For that purpose, the 
diffractometer is equipped with a crystal monochromator to select a particular 
wavelength band (B ? EBJB) out of the “white” beam according to the Bragg condition 
for its scattering plane (hkl) 

 2dhkl�sin�hkl = B,         (4.37) 

Detector 

Monochromator 

Detector 

Hot source 
Collimator 
 
 
 
 
 
Collimator 
 
Eulerian 
cradle 
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with the interplanar spacing dhkl and the monochromator scattering angle 2�hkl = 2�M. 
The width of the wavelengths band EBJB, which is important for the Q-resolution, 
depends on the divergences of the beam before and after the monochromator 
(collimations 81 and 82), on the mosaic spread of the monochromator crystal EM, and 
on the monochromator angle 2�M. In order to increase the intensity of the 
monochromatic beam at the sample position the monochromator crystal is often bent in 
vertical direction perpendicular to the diffraction plane of the experiment. In this way 
the vertical beam divergence is increased leading to a loss of resolution in reciprocal 
space. The diffracted intensity from the sample is measured as a function of the 
scattering angle 2� and the sample orientation (especially in case of a single crystal). 2� 
is again defined by collimators. As there is no analysis of the energy of the  
scattered beam behind the sample, the energy resolution EE/E of such a 2-axes 
diffractometer is not well defined (typically of the order of some %). In addition to the 
dominant elastic scattering also quasi-elastic and some inelastic scattering contributions 
are collected by the detector.  

Neutron filters and the problem of �/2 contamination 
Unfortunately, the monochromator crystals not only “reflect” the desired wavelength � 
by diffraction from the set of lattice planes (hkl) but also the higher orders of �/2 or �/3 
etc. from 2h,2k,2l or 3h,3k,3l to the same diffraction angle:   

sin�=�/dhkl = (�/2)/d2h 2k 2l  = (�/3)/d3h 3k 3l     (4.38)  

The only requirement is, that the higher order reflection (2h,2k,2l) or (3h,3k,3l) has a 
reasonably large structure factor (see chapter 4). Higher order contamination causes 
measurable reflection intensities at “forbidden” reflection positions and in addition to 
that can modify intensities at allowed positions. Thus it can very much affect the correct 
determination of the unit cell as well of the symmetry (from systematically absent 
reflections). The solution to this problem is to minimize the �/2 contamination by using 
filters which suppress the higher orders stronger than the desired wavelength. One such 
type of filters uses resonance absorption effects - completely analogous to the 
suppression of the K� line in x-ray diffractometers. Another way to attenuate short 
wavelengths is to use the scattering from materials like beryllium or graphite. These 
filters use the fact that there is no Bragg diffraction if B > 2dmax, where dmax is the 
largest interplanar spacing of the unit cell. As we have shown above, for such long 
wavelengths the Ewald sphere is too small to be touched by any reciprocal lattice point. 
Below this critical wavelength, the neutron beam is attenuated by diffraction and this 
can be used to suppress higher order reflections very effectively. Frequently used 
materials are polycrystalline beryllium and graphite. Due to their unit cell dimensions, 
they are particularly suitable for experiments with cold neutrons because they block 
wavelengths smaller than about 3.5 A and 6 A respectively.  

 
Resolution function: 
An important characteristic of any diffractometer is its angular resolution. Fig. 4.19 
shows (on the right) the resolution function (reflection half width as a function of 
scattering angle) for the four circle single crystal neutron diffractometer HEiDi at FRM 
II shown on the left. The resolution depends on a number of factors, among them the 
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collimation, the monochromator type and quality, the 2� and (hkl) of the reflection used 
for monochromatization etc. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.19: Left: Experimental setup of the four circle single crystal diffractometer 

HEiDi at FRM II. Right: Resolution function of HEiDi for different 
collimations, monochromator: Cu (220), 2
Mono = 40° � � = 0.873 Å. 

 
Powder Neutron Diffractometry: 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4.20: Left: Typical setup of a (constant wavelength) powder neutron 

diffractometer with position sensitive detector (PSD). Right: Neutron 
powder diffractometer SPODI at FRM II  

 
Neutron Rietveld analysis: 
The conversion from 3D- to 1D-intensity data caused by the averaging over all 
crystallite orientations in a powder sample severely restricts the informative value of 
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powder neutron (or x-ray) diffraction experiments and makes the resolution function of 
the instrument even more important than in the single crystal case. Even with optimized 
resolution, the severe overlap of reflections on the 2�-axis often prohibits the extraction 
of reliable integrated intensities from the experiment. Instead, the Rietveld method, also 
referred to as full pattern refinement, is used to refine a given structural model against 
powder diffraction data. The method, which is widely used in powder x-ray diffraction, 
has actually been invented by Hugo Rietveld in 1966 for the structural analysis from 
powder neutron data. Full pattern refinement means that along with the structural 
parameters (atomic coordinates, thermal displacements, site occupations) which are also 
optimized in a single crystal structure refinement, additional parameters like the shape 
and width of the reflection profiles and their 2�-dependence, background parameters, 
lattice parameters etc. need to be refined.  

 
Fig. 4.21: Results of a Rietveld refinement at the magnetic phase transition of 

CoGeO3 [5], red: measured intensity, black: calculated from model, blue: 
difference, green: tick-marks at allowed reflection positions. The figure 
shows the low-angle part of two diffractograms measured at SPODI at 
35K and 30K. Note the strong magnetic reflection appearing below the 
magnetic ordering transition (in the inset).   
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Exercises 
 

E4.1  Types of Scattering Experiments 
Discuss/define the following terms:  

A. Elastic scattering, B. Inelastic scattering, C. Coherent scattering, D. Incoherent scattering 

What is the major source of incoherent elastic scattering that is specific to neutrons? 
 

E4.2  Energy and Wavelength 
Give orders of magnitudes for the energy [eV] and the wavelength [Å] of the following types 
of radiation which are being used for diffraction experiments: 
 
A. Thermal neutrons, B. x-ray photons, C. Electrons 
 

E4.3  Scattering Length 
Discuss the terms (units, similarities, differences): 
A. Elastic scattering length, B. Elastic scattering cross section,  
C. Atomic form factor (for x-rays)  
 

E4.4  The Phase Problem 
Describe, in simple terms, the “phase problem of crystallography” 

A. Formulate the diffraction experiment in terms of the Fourier transform with subsequent 
squaring of the modulus of the Fourier coefficients 

B. Discuss in how far these operations may be inverted.  

C. Describe qualitatively how the phase problem is solved.  
  

E4.5  Ewald Construction 
Sketch the Ewald-construction for a single crystal experiment. 

What is this geometric construction useful for? 

 

E4.6  Intensity Corrections 
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The experimental Bragg-reflection intensity I(;) and the squared modulus of the calculated 
structure factor |F(;)|2 (from the structure factor formula) are proportional to each other.  
A number of corrections have to be made to get from I(;) to |F(;)|2 or vice versa. 
 
A. Recall (from your experience with x-rays) and discuss the physical origin of these intensity 
corrections: 
 
SCALE: Scalefactor; L: Lorentz factor; A:  Absorption correction, E: Extinction correction. 
For powder methods also: M: Multiplicity, P: Preferred orientation. 
 
B. Discuss the relative importance of these factors for neutrons and x-rays. 
 
C. The polarisation correction, which is important in x-ray scattering, is missing in the 
neutron case: Discuss this fact in terms of the different physical meaning of “polarization” for 
x-rays and neutrons. 
 

E4.7  Fourier Transform 
A. Define the terms “Fourier-analysis” and “Fourier-synthesis” in the context of a diffraction 
experiment (formula and description) 
 
B. What is the purpose of calculating a Fourier synthesis in crystallography? 
 

E4.8  Filtering 
A. How does a beryllium filter work? What is it used for? 

B. Discuss why filters are also used in laboratory x-ray diffraction. 

 
E4.9  Systematic absences 
Calculate (from the structure factor formula) the systematic absences of reflections for an 
orthorhombic C-centered lattice. 
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5.2 H. Frielinghaus

5.1 Introduction

Small angle neutron scattering aims at length scales ranging from nanometers to microme-

ters [1, 2]. This is the typical mesoscale where often atomistic properties can be neglected

but structurally systems self-organize, i.e. self-assemble. The structural information about the

mesoscale is therefore indispensible for the understanding of the macroscopic behavior. Funda-

mental concepts of many materials are verified by small angle neutron scattering which supports

the finding of new materials for the future. Especially for formulations with many substances,

the individual role of each of them is often unclear. The use of theoretical models helps to

understand the mechanism of additives. Using these concepts, the system behavior for remote

parameter ranges can be predicted which overcomes tedious trial and error concepts.

The simplest molecules which leave the atomistic scale are chain like. Model polymers chem-

ically string identical monomers linearly. These macromolecules have a lot of internal degrees

of freedom which practically leads to the formation of coils. Studying the structure of these

coils is a typical application for small angle neutron scattering. In this way, the coil size can be

related to the monomer structure. The high entropy of polymers is responsible for rubber elas-

ticity. The deformation of polymers under stress is an important question of nowadays research.

The often used solid filler particles complicate the physical behavior of the polymers and not

all details are finally understood. The larger particles strengthen the mechanical behavior, but

there are also nanoparticles which cause the opposite behavior.

Proteins are important building blocks of biological systems. Often, they are characterized as

crystals by x-ray scattering. These structures are roughly corresponding to the natural state, but

often specific properties cannot be explained completely. It is known that the aqueous envi-

ronment changes the structure of proteins. The parallel structural characterization of dissolved

proteins in water is a typical application for small angle neutron scattering. Another point of

criticism is the dynamics of proteins. While the crystalline structures are rather rigid and do not

reflect the highly dynamical properties, the dissolved proteins include such effects. In combina-

tion with neutron spin echo spectroscopy aiming at the dynamics explicitly the fluctuations of

protein shapes are also explained on the basis of small angle neutron scattering experiments. All

these details explain the function of proteins in their natural environment of biological systems.

When molecules include groups which tend to separate often microdomains are formed. While

macroscopic phase separation is inhibited the self-organization of the molecules leads to highly

ordered structures. Examples are liquid crystals – more generally one speaks of liquid crys-

talline order. The microdomains are again of nanometer size and are well characterized by

small angle neutron scattering. Aligned single crystals and ‘powder’ samples are also of inter-

est. Important questions range from optical to mechanical properties.

Membranes represent the field of surface science. In biology, many questions arise about the

function of cell membranes. The major molecules are lipids with a hydrophilic head and a hy-

drophobic tail. These molecules form bilayers with the hydrophobic moiety in the middle. The

bilayer has a thickness of a few nanometers and, thus, fits perfectly to small angle neutron scat-

tering. On larger scales the membranes form closed vesicles or membrane stacks for example.

Biologically embedded proteins and smaller molecules such as cholesterol enrich the behavior

of the simple membranes. While these examples are rather biologically motivated, surfactant

molecules resemble the lipids, but are often used as soaps and detergents. A microemulsion
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dissolves oil and water macroscopically by adding certain amounts surfactant. Microscopically,

oil and water stay demixed and form microdomains which ideally suit the length scales of a

neutron small angle scattering experiment. Certain polymers as additives allow for increasing

the surfactant efficiency dramatically. This application is environmentally friendly and saves

resources.

So small angle neutron scattering experiments connect fundamental physics with chemical and

biological aspects and finally lead to industrial applications. May the reader find enlightening

ideas for new applications of small angle neutron scattering.

5.2 Survey about the SANS technique

At the research reactor FRM 2 in Garching, the neutron radiation is used for experiments. In

many cases, materials are examined in terms of structure and dynamics. The word neutron radi-

ation already contains the wave-particle duality, which can be treated theoretically in quantum

mechanics. By neutron we mean a corpuscle usually necessary for the construction of heav-

ier nuclei. The particle properties of the neutron become visible when classical trajectories

are describing the movement. The equivalent of light is obtained in geometrical optics, where

light rays are described by simple lines, and are eventually refracted at interfaces. However,

for neutrons the often neglected gravity becomes important. A neutron at a (DeBroglie) wave-

length of 7Å (= 7 × 10−10m) has a velocity of v = h/(mnλ) = 565m/s. Over a distance

of 20m this neutron is therefore falling by 6.1mm. Thus, the design of neutron instruments is

oriented to straight lines with small gravity corrections. Only very slow neutrons show signifi-

cant effects of gravitation, such as the experiment of H. Meier-Leibnitz described at the subway

station ‘Garching Forschungszentrum’. The wave properties of neutrons emerge when there is

an interaction with materials and the structural size is similar to the neutron wavelength. For

the neutron wavelength 7Å these are about 5 atomic distances of carbon. For a Small Angle

Neutron Scattering (SANS) experiment we will see that the typical structural sizes investigated

are in the range of 20 to 3000Å. The coherence of the neutron must, therefore, be sufficient to

examine these structural dimensions. Classically, this consideration will be discussed in terms

of resolution (see below). The scattering process appears only due to the wave properties of the

neutron.

A scattering experiment is divided into three parts. First, the neutrons are prepared with regard

to wavelength and beam alignment. The intensity in neutron experiments is much lower than in

experiments with laser radiation or x-rays at the synchrotron. Therefore, an entire wavelength

band is used, and the divergence of the beam is limited only as much as necessary. The prepared

beam penetrates the sample, and is (partly) scattered. For every neutron scattering experiment

elastic and inelastic scattering processes occur. The typical length scales of small angle scatter-

ing focus on the nanometer (up to micrometer). The corresponding movements of such large

volumes are slow and the scattering processes are called quasi elastic in this Q-range. For sim-

plicity, we assume elastic scattering processes as the idealized condition. So, there is virtually

no energy transferred to the neutron. However, the direction changes in the scattering process.

The mean wave vector of the prepared beam ki (with |ki| = 2π/λ) is deflected according to

the scattering process to the final wave vector kf . The scattered neutrons are detected with an

area detector. The experimental information is the measured intensity as a function of the solid
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Fig. 5.1: Scheme of a small angle neutron scattering instrument. The neutrons pass from the left

to the right. The incident beam is monochromated and collimated before it hits the sample. Non-

scattered neutrons are absorbed by the beam stop in the center of the detector. The scattered

neutron intensity is detected as a function of the scattering angle 2θ.

angle Ω. This solid angle is defined relatively to an ideally small sample and for large detector

distances.

In practice, the classical small-angle neutron scattering apparatus including the source looks

like this: In the reactor a nuclear chain reaction takes place. A uranium nucleus 235U captures

a free neutron, and fission to smaller nuclei takes place. Additionally, 2.5 neutrons (on aver-

age) are released, which are slowed down to thermal energy by the moderator. One part of the

neutrons keeps the chain reaction going, while the remaining part can be used for neutron ex-

periments. The cold source is another moderator, which cools the neutrons to about 30K. Here,

materials with light nuclei (deuterium at FRM 2) are used to facilitate the thermalization. The

cold neutrons can easily be transported to the instruments by neutron guides. Rectangular glass

tubes are used with a special mirror inside. The neutron velocity selector works mechanically

(Fig. 5.1 shows scheme). A rotating cylinder with tilted lamellae allows only neutrons with a

certain speed to pass (Fig. 5.2). The wavelengths distribution is ideally triangular with a rela-

tive half-width of ±5% or ±10%. The collimation determines the divergence of the beam. The

entrance aperture and the sample aperture have a distance LC , and restrict the divergence of the

beam. The sample is placed directly behind the sample aperture (Fig. 5.3). Many unscattered

neutrons leave the sample and will be blocked by an absorber at the front of the detector. Only

the scattered neutrons are detected by the detector at a distance LD. The sensitive detector de-

tects about 93% of the scattered neutrons, but the huge primary beam cannot be handled, and,

therefore, is absorbed by an absorber. In the instruments KWS-1 and KWS-2, the beam stop

contains a small counter to measure the unscattered neutrons in parallel. The classic small-angle

neutron scattering apparatus is also known as pinhole camera, because the entrance aperture is

imaged to the detector by the sample aperture. The sample aperture may be opened further if

focusing elements maintain (or improve) the quality of the image of the entrance aperture. By

focusing elements the intensity of the experiment may be increased on the expense of needing

large samples. Focusing elements can be either curved mirrors or neutron lenses made of MgF2.

Both machines KWS-1 & KWS-2 have neutron lenses, but for this lab course they will not be

used.
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5.2.1 The scattering vector Q

In this section, the scattering vector Q is described with its experimental uncertainty. The

scattering process is schematically shown in Fig. 5.4, in real space and momentum space. In real

space the beam hits the sample with a distribution of velocities (magnitude and direction). The

neutron speed is connected to the wavelength, whose distribution is depending on the velocity

selector. The directional distribution is defined by the collimation. After the scattering process,

the direction of the neutron is changed, but the principal inaccuracy remains the same. The

scattering angle 2θ is the azimuth angle. The remaining polar angle is not discussed further

here. For samples with no preferred direction, the scattering is isotropic and, thus, does not

depend on the polar angle. In reciprocal space, the neutrons are defined by the wave vector

k. The main direction of the incident beam is defined as the z-direction, and the modulus is

determined by the wavelength, so |ki| = 2π/λ. Again, k is distributed due to the selector and

the collimation inaccuracies. The wave vector of the (quasi) elastic scattering process has the

same modulus, but differs in direction, namely by the angle 2θ. The difference between both

wave vectors is given by the following value:

Q =
4π

λ
sin θ (5.1)

For isotropic scattering samples, the measured intensity depends only on the absolute value of

the scattering vector Q = |Q|. For small angles, the common approximation of small angle

(neutron) scattering is valid:

Q =
2π

λ
· 2θ (5.2)

The typical Q-range of a small angle scattering instrument thus follows from the geometry. The

detector distances LD vary in the range from 1m to 20m. The area detector is active between

ØD = 2cm and 35cm from the center. The angle 2θ is approximated by the ratio ØD/LD and

the wavelength λ varies between 4.5 and 20Å (typically 7Å). For the instruments KWS-1 and

KWS-2, a typical Q-range from 10−3 to 0.6Å−1 is obtained.

The Q-vector describes which length scales � are observed, following the rule � = 2π/Q. If

a Bragg peak is observed, the lattice parameters can be taken directly from the position of the

peak. If the scattering shows a sudden change at a certain Q-value, we obtain the length scale

of the structural differences. There are characteristic scattering behaviors that can be described

by so called scattering laws that are simple power laws Qα with different exponents α.

5.2.2 The Fourier transformation in the Born approximation

This section deals with the physical explanation for the appearance of the Fourier transforma-

tion in the Born approximation. In simple words, in a scattering experiment one observes the

intensity as the quadrature of the Fourier amplitudes of the sample structure. This is consider-

ably different from microscopy where a direct image of the sample structure is obtained. So the

central question is: Where does the Fourier transformation come from?
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Fig. 5.2: The neutron velocity se-

lector of the small angle scatter-

ing instrument KWS-3 at the re-

search reactor Garching FRM-2.

This selector was especially man-

ufactured for larger wavelengths

(above 7Å).

Fig. 5.3: View on the sample position of the small

angle scattering instrument KWS-1 at the research

reactor Garching FRM-2. The neutrons come from

the left through the collimation and sample aperture

(latter indicated). A sample changer allows for run-

ning 27 samples (partially colored solutions) in one

batch file. The silicon window to the detector tube is

seen behind.

Fig. 5.4: Above: the neutron speed and its distribution in real space, before and after the

scattering process. Bottom: The same image expressed by wave vectors (reciprocal space). The

scattering vector is the difference between the outgoing and incoming wave vector.
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Fig. 5.5: The principle of a pin-hole camera transferred to the pin-hole SANS instrument. Top:

The pin-hole camera depicts the original image (here consisting of three numbers). For sim-

plicity, the three points are represented by three rays which meet in the pin-hole, and divide

afterwards. On the screen, a real space image is obtained (upside down). Bottom: The pin-hole

SANS instrument consists of an entrance aperture which is depicted on the detector through the

pin-hole (same principle as above). The sample leads to scattering. The scattered beams are

shown in green.

The classical SANS instruments are also called pin-hole instruments. Historically, pin-hole

cameras were discovered as the first cameras. They allowed to picture real sceneries on blank

screens – maybe at different size, but the image resembled the original picture. The components

of this imaging process are depicted in Fig. 5.5. Let’s assume the following takes place with

only one wavelength of light. The original image is then a monochromatic picture of the three

numbers 1, 2 and 3. The corresponding rays meet in the pin-hole, and divide afterwards. On

the screen, the picture is obtained as a real-space image, just appearing upside down. From

experience we know that the screen may be placed at different distances resulting in different

sizes of the image. The restriction of the three beams through the pin-hole holds for the right

space behind the pin-hole. In front of the pin-hole the light propagates also in other directions

– it is just absorbed by the wall with the pin-hole.

So far, we would think that nothing special has happened during this process of reproduction.

But what did happen to the light in the tiny pin-hole? We should assume that the size of the pin-

hole is considerably larger than the wavelength. Here, the different rays of the original image

interfere and inside the pin-hole a wave field is formed. The momentum along the optical z-axis

indicates the propagation direction, and is not very interesting (because is nearly constant for

all considered rays). The momenta in the x-y-plane are much smaller and indicate a direction.

They originate from the original picture and remain constant during the whole process. Before

and after the pin-hole the rays are separated and the directions are connected to a real-space

image. In the pin-hole itself the waves interfere and the wave field looks more complicated.

The information about the original scenery is conserved through all the stages. That means that
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also the wave field inside the pin-hole is directly connected to the original picture.

From quantum mechanics (and optics), we know that the vector of momentum is connected

to a wave vector. This relation describes how the waves inside the pin-hole are connected

to a spectrum of momenta. In classical quantum mechanics (for neutrons), a simple Fourier

transformation describes how a wave field in real space (pin-hole state) is connected with a wave

field in momentum space (separated beams). In principle, the interpretation is reversible. For

electromagnetic fields (for x-rays), the concept has to be transferred to particles without mass.

Overall, this experiment describes how the different states appear, and how they are related.

The free propagation of a wave field inside a small volume (pin-hole) leads to a separation of

different rays accordingly to their momentum.

Now we exchange the original image by a single source (see yellow spot in lower part of Fig.

5.5). This source is still depicted on the image plate (or detector). If we insert a sample at

the position of the pin-hole, the wave field starts to interact with the sample. In a simplified

way we can say that a small fraction of the wave field takes the real space structure of the

sample while the major fraction passes the sample without interaction. This small fraction

of the wave field resulting from the interaction propagates freely towards the image plate and

generates a scattering pattern. As we have learned, the momenta present in the small fraction of

the wave field give rise to the separation of single rays. So the real space image of the sample

leads to a Fourier transformed image on the detector. This is the explanation, how the Fourier

transformation appears in a scattering experiment – so this is a simplified motivation for the

Born approximation. A similar result was found by Fraunhofer for the diffraction of light at

small apertures. Here, the aperture is impressed to the wave field (at the pin-hole), and the far

field is connected to the Fourier transformation of the aperture shape.

Later, we will see that the size of wave field packages at the pin-hole is given by the coherence

volume. The scattering appears independently from such small sub-volumes and is a simple

superposition.

5.2.3 Remarks on focusing instruments

We have described the resolution function of the pin-hole SANS instrument very well. This

design comes to its limits if very large structures (of ∼ μm) need to be resolved. Usually

focusing instruments take over because they provide higher intensities at higher resolutions.

Focusing instruments have the same motivation as photo cameras. When the pin-hole camera

does not provide proper intensities any more, focusing elements – such as lenses – allow for

opening the apertures. Then the resolution is good while the intensity increases to a multiple

of its original value. For focusing SANS instruments this means that the sample sizes must be

increased accordingly to the lens or mirror size.

There are two possible ways for focusing elements: Neutron lenses are often made of MgF2.

Large arrays of lenses take an overall length of nearly one meter. This is due to the low refractive

index of the material for neutrons. A disadvantage of the lenses is the dispersion relation which

leads to strong chromatic aberrations. So it is hardly possible to focus the full wavelength band

of classical neutron velocity selectors on the detector. Other ways like magnetic neutron lenses

have to deal with similar problems.
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Fig. 5.6: How a Fourier transformation is obtained with refractive lenses. The real space

structure in the focus of the lens is transferred to differently directed beams. The focusing lens

is concave since for neutrons the refractive index is smaller than 1.

The focusing mirror does not show chromatic aberration. So this focusing element provides the

highest possible resolution at highest intensities. The small angle scattering instrument KWS-

3 is a unique instrument which uses this technique. The mirror technique was motivated by

satellite mirrors. The roughness needs to stay below a few Ångström over large areas.

Practically the entrance aperture may be closed to a few millimeters while the sample aperture

takes a few square centimeters accordingly to the mirror size. This setup images the entrance

aperture on the detector. So, the primary beam profile has sharp edges in comparison to the

triangular shapes of the pin-hole camera. This narrower distribution of intensity means that the

beam stop might be slightly smaller than for a similar pin-hole instrument and so the focusing

instrument improves the intensity-resolution problem by a rough factor of two.

For a symmetric set-up (collimation and detector distance equal, i.e. LC = LD) the focusing

optic is in the middle at the sample position. The focus f is half the collimation distance, i.e.

f = 1
2
LC = 1

2
LD. Now the places where exact Fourier transforms are obtained (from the

entrance aperture and from the sample structure) do not agree anymore. The sample is still

considered as a small volume and from there the waves propagate freely to the detector, and the

already known relation between sample structure and scattering image holds.

For focusing elements, the places of Fourier transformations differ (see Fig. 5.6). The original

structure is placed in the focus, and the resulting distinctive rays are obtained at the other side

of the lens in the far field. So for focusing SAS instruments, the places of appearing Fourier

transformations for the entrance aperture and the sample structure differ.

The historical development of cameras can be seen in parallel. The first cameras were pin-hole

cameras, but when lenses could be manufactured lens cameras replaced the old ones. The direct

advantage was the better light yield being proportional to the lens size. Another effect appeared:

The new camera had a depth of focus – so only certain objects were depicted sharply, which was

welcomed in the art of photography. The focusing SAS instrument depicts only the entrance

aperture, and the focusing is not a difficult task. The higher intensity or the better resolution are

the welcomed properties of the focusing SAS instrument.
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5.2.4 Measurement of the macroscopic cross section

In this section, the macroscopic scattering cross section is connected to the experimentally mea-

sured intensity. The experimental intensity is dependent on the instrument at hand, while the

macroscopic scattering cross section describes the sample properties independent of instrumen-

tal details. The absolute calibration allows to compare experimental data between different

measurements. In theory, the intensity and the cross section are connected by:

ΔI

ΔΩ
(Q) = I0 · A · Tr · t · dΣ

dΩ
(Q) (5.3)

The intensity ΔI for one detector channel is measured as a function of the scattering angle.

Each detector channel covers the solid angle ΔΩ. The experimental intensity is proportional

to: (a) the intensity at the sample position I0 (in units of neutrons per second per area), (b) of

the irradiated area A, (c) the transmission of the sample (the relative portion of non-scattered

neutrons), (d) of the sample thickness t, and (e) the macroscopic scattering cross section dΣ/dΩ.

In most practical cases, the primary intensity cannot be detected by the same detector. By a

calibration measurement of a substance with known scattering strength the primary intensity

is measured indirectly. At KWS-1 and KWS-2 we often use plexiglass, which scatters only

incoherently (due to the hydrogen content). The two measurements under the same conditions

will be put in relation, which thereby eliminates the identical terms. One writes:

ΔI(Q)
ΔΩ

∣∣∣
sample

ΔI(Q)
ΔΩ

∣∣∣
plexi

=
I0 · A · Tr,sample · tsample

I0 · A · Tr,plexi · tplexi ·
dΣ(Q)
dΩ

∣∣∣
sample

dΣ(Q)
dΩ

∣∣∣
plexi

(5.4)

The macroscopic scattering cross section of the plexiglass measurement does not depend on

the scattering vector. The measured intensity of the plexiglass is also a measure of the detector

efficiency, as different channels can have different efficiency. The plexiglass specific terms are

merged to μplexi = Tr,plexi · tplexi · (dΣ/dΩ)plexi. So, finally the macroscopic scattering cross-

section reads:

dΣ(Q)

dΩ

∣∣∣∣
sample

=
μplexi

Tr,sample · tsample

ΔI(Q)|sample

ΔI(Q)|plexi
·
(
LD,sample

LD,plexi

)2

(5.5)

Essentially, formula 5.5 follows directly from equation 5.4. The last factor results from the solid

angles of the two measurements, which in principle can be done at different detector distances

LD. Plexiglass is an incoherent scatterer, and therefore can be measured at smaller detector

distances to obtain an increased intensity. Nonetheless, the collimation setting must be the

same as for the sample measurement.

5.2.5 Incoherent background

The macroscopic cross section usually has two contributions: the coherent and incoherent scat-

tering. For small angle neutron scattering the incoherent scattering is mostly Q-independent

and does not contain important information:
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dΣ

dΩ
(Q)

∣∣∣∣
total

=
dΣ

dΩ
(Q)

∣∣∣∣
coh

+
dΣ

dΩ

∣∣∣∣
incoh

(5.6)

We therefore tend to subtract the incoherent scattering. It is well determined at large Q when

the coherent scattering becomes small. The origin of the incoherent scattering is the spin-

dependent scattering length. Especially for hydrogen 1H the neutron spin and the nuclear spin

form a singlet or triplet state with different scattering lengths. The average scattering length

of these two states contributes to the coherent scattering. The variance of the scattering length

gives rise to the incoherent scattering. Here, each of the nuclei appears as an independent point

scatterer which in reciprocal space means a Q-independent scattering signal. The dependence

of the scattering on the neutron spin means that neutron spin polarization and analysis yields

another method to determine the incoherent scattering independently from the coherent signal.

5.2.6 Resolution

The simple derivatives of equation 5.2 support a very simple view on the resolution of a small

angle neutron scattering experiment. We obtain:

(
ΔQ

Q

)2

=

(
Δλ

λ

)2

+

(
2Δθ

2θ

)2

(5.7)

The uncertainty about the Q-vector is a sum about the uncertainty of the wavelength and the

angular distribution. Both uncertainties result from the beam preparation, namely from the

monochromatization and the collimation. The neutron velocity selector selects a wavelength

band of either ±5% or ±10%. The collimation consists of an entrance aperture with a diameter

dC and a sample aperture of a diameter dS . The distance between them is LC .

One property of eq. 5.7 is the changing importance of the two contributions at small and large

Q. At small Q the wavelength spread is nearly negligible and the small terms Q and θ dominate

the resolution. This also means that the width of the primary beam is exactly the width of the

resolution function. More exactly, the primary beam profile describes the resolution function

at small Q. Usually, the experimentalist is able to change the resolution at small Q. At large

Q the resolution function is dominated by the wavelength uncertainty. So the experimentalist

wants to reduce it – if possible – for certain applications. This contribution is also an important

issue for time-of-flight SANS instruments at spallation sources. The wavelength uncertainty is

determined by the pulse length of the source and cannot be reduced without intensity loss.

A more practical view on the resolution function includes the geometrical contributions ex-

plicitely [3]. One obtains:

(
σQ

Q

)2

=
1

8 ln 2

((
Δλ

λ

)2

+

(
1

2θ

)2

·
[(

dC
LC

)2

+ d2S

(
1

LC

+
1

LD

)2

+

(
dD
LD

)2
])

(5.8)

Now the wavelength spread is described by Δλ being the full width at the half maximum. The

geometrical terms have contributions from the aperture sizes dC and dS and the spatial detector
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resolution dD. The collimation length LC and detector distance LD are usually identical such

that all geometric resolution contributions are evenly large (dC = 2dS then). This ideal setup

maximizes the intensity with respect to a desired resolution.

The resolution function profile is another topic of the correction calculations. A simple approach

assumes Gaussian profiles for all contributions, and finally the overall relations read:

dΣ(Q̄)

dΩ

∣∣∣∣
meas

=

∞∫
0

dQ R(Q− Q̄) · dΣ(Q)

dΩ

∣∣∣∣
theo

(5.9)

R(Q− Q̄) =
1√
2πσQ

exp

(
−1

2

(Q− Q̄)2

σ2
Q

)
(5.10)

The theoretical macroscopic cross section is often described by a model function which is fit-

ted to the experimental data. In this case the computer program only does a convolution of

the model function with the resolution function R(ΔQ). Alternatively, there are methods to

deconvolute the experimental data without modeling the scattering at first hand.

The here described resolution function is given as a Gaussian. This is true for relatively narrow

distributions. The reason for using a Gaussian function although the original distributions of λ
and θ are often triangular is: The central limit theorem can be applied to this problem because

we have seen from eq. 5.8 that there are four contributions to the resolution function, and the

radial averaging itself also smears the exact resolution function further out. Thus, the initial

more detailed properties of the individual distributions do not matter anymore. Equations 5.9

and 5.10 are a good approximation for many practical cases.

We now want to describe the connection between the resolution function and the coherence of

the neutron beam at the sample position. From optics we know about the transverse coherence

length:

�coh,transv =
λLC

2dC
is similar to ΔQ−1

θ =
λLC

πdC
(5.11)

It can be compared well with the geometric resolution contribution that arises from the entrance

aperture only. Small differences in the prefactors we can safely neglect. For the longitudinal

coherence length we obtain:

�coh,long =
1

4
λ

(
Δλ

λ

)−1

is similar to Δk−1 =
1

2π
λ

(
Δλ

λ

)−1

(5.12)

This coherence length can be well compared to the wavevector uncertainty of the incoming

beam. If we look back on Figure 5.4 we see that the coherence volume exactly describes the

uncertainty of the incoming wave vector. The two contributions are perpendicular which sup-

ports the vectorial (independent) addition of the contributions in eq. 5.8 for instance. The co-

herence volume describes the size of the independent wave packages which allow for wave-like

properties such as the scattering process. So the coherence volume describes the maximum size
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Fig. 5.7: The coherence volume is usually much smaller than the sample volume (left). So the

overall scattering appears as an incoherent superposition of the scattering from many coher-

ence volumes (right).

of structure that is observable by SANS. If larger structures need to be detected the resolution

must be increased.

The understanding how the small coherence volume covers the whole sample volume is given

in the following (see also Fig. 5.7). Usually the coherence volume is rather small and is many

times smaller than the irradiated sample volume. So many independent coherence volumes

cover the whole sample. Then, the overall scattering intensity occurs as an independent sum

from the scattering intensities of all coherence volumes. This is called incoherent superposition.

5.3 The theory of the macroscopic cross section

We have seen that the SANS instrument aims at the macroscopic cross section which is a func-

tion of the scattering vector Q. In many examples of isotropic samples and orientationally

averaged samples (powder samples) the macroscopic cross section depends on the modulus

|Q| ≡ Q only. This measured function has to be connected to important structural parameters

of the sample. For this purpose model functions are developed. The shape of the model func-

tion in comparison with the measurement already allows to distinguish the validity of the model.

After extracting a few parameters with this method, deeper theories – like thermodynamics –

allow to get deeper insight about the behavior of the sample. Usually, other parameters – like

concentration, temperature, electric and magnetic fields, ... – are varied experimentally to verify

the underlying concepts at hand. The purpose of this section is to give some ideas about model

functions.

When the Born approximation was developed several facts and assumptions came along. The

scattering amplitudes of the outgoing waves are derived as perturbations of the incoming plane

wave. The matrix elements of the interaction potential with these two wave fields as vectors

describe the desired amplitudes. The interaction potential can be simplified for neutrons and the

nuclei of the sample by the Fermi pseudo potential. This expresses the smallness of the nuclei

(∼1fm) in comparison to the neutron wavelength (∼Å). For the macroscopic cross section we
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immediately obtain a sum over all nuclei:

dΣ

dΩ
(Q) =

1

V

∣∣∣∣∣∑
j

bj exp(iQ · rj)
∣∣∣∣∣
2

(5.13)

This expression is normalized to the sample volume V because the second factor usually is pro-

portional to the sample size. This simply means: The more sample we put in the beam the more

intensity we obtain. The second factor is the square of the amplitude because we measure inten-

sities. While for electromagnetic fields at low frequencies one can distinguish amplitudes and

phases (without relying on the intensity) the neutrons are quantum mechanical particles where

experimentally such details are hardly accessible. For light (and neutrons) for instance holo-

graphic methods still remain. The single amplitude is a sum over each nucleus j with its typical

scattering length bj and a phase described by the exponential. The square of the scattering

length b2j describes a probability of a scattering event taking place for an isolated nucleus. The

phase arises between different elementary scattering events of the nuclei for the large distances

of the detector. In principle, the scattering length can be negative (for hydrogen for instance)

which indicates an attractive interaction with a phase π. Complex scattering lengths indicate

absorption. The quadrature of the amplitude can be reorganized:

dΣ

dΩ
(Q) =

1

V

∑
j,k

bjbk exp
(
iQ(rj − rk)

)
(5.14)

Here we find then self-terms with identical indices j and k without any phase and cross terms

with phases arising from distances between different nuclei. Here it becomes obvious that only

relative positions of the nuclei matter which is a result of the quadrature. The overall phase of

the sample does not matter because of the modulus in eq. 5.13. We will use this expression for

the polymer scattering.

Apart from this detailed expression a simplified view is allowed for small angle scattering ex-

periments. Firstly, we know that the wavelength is typically 7Å which is much larger than

the atom-atom distance of ca. 1.5Å. Secondly, the SANS experiment aims at structures at the

nanoscale. So the scattering vector aims at much larger distances compared to the atomistic

distances (i.e. 2πQ−1 � 1Å). This allows for exchanging sums by integrals as follows:

∑
j

bj · · · −→
∫
V

d3r ρ(r) · · · (5.15)

Such methods are already known for classical mechanics, but reappear all over physics. The

meaning is explained by the sketch of Figure 5.8. The polymer polyethylene oxide (PEO)

contains many different nuclei of different species (hydrogen, carbon and oxide). However, the

SANS method does not distinguish the exact places of the nuclei. The polymer appears rather

like a homogenous worm. Inside, the worm has a constant scattering length density which

reads:

ρmol =
1

Vmol

∑
j∈{mol}

bj (5.16)
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Fig. 5.8: The concept of the scattering length density. On the left the atomic structure of a

polyethylene oxide polymer (PEO) is depicted. For small angle scattering the wavelength is

much larger than the atomic distance. So for SANS the polymer appears like a worm with a

constant scattering length density inside.

So, for each molecule we consider all nuclei and normalize by the overall molecule volume. Of

course different materials have different scattering length densities ρ. The initial equation 5.13

reads then:

dΣ

dΩ
(Q) =

1

V

∣∣∣∣∣∣
∫
V

d3r ρ(r) exp(iQr)

∣∣∣∣∣∣
2

(5.17)

=
1

V

∣∣∣F [ρ(r)]
∣∣∣2 =

1

V

∣∣∣ρ(Q)
∣∣∣2 (5.18)

The single amplitude is now interpreted as a Fourier transformation of the scattering length

density ρ(r) which we simply indicate by ρ(Q). The amplitude simply is defined by:

ρ(Q) =

∫
V

d3r ρ(r) exp(iQr) (5.19)

Again, equation 5.17 loses the phase information due to the modulus. While we focused on the

scattering experiment so far, another view on this function will provide us with further insight.

We define the correlation Γ as follows:

Γ(Q) =
1

V

∣∣∣ρ(Q)
∣∣∣2 =

1

V
ρ∗(Q)ρ(Q) =

1

V
ρ(−Q)ρ(Q) (5.20)

The modulus is usually calculated via the complex conjugate ρ∗(Q) which in turn can be ob-

tained by changing the sign of the argument Q. Now the correlation function is a simple product

of two Fourier transformed functions. They can be interpreted on the basis of a convolution in

real space:

Γ(r) =
1

V
ρ(r)⊗ ρ(r) =

1

V

∫
V

d3r′ ρ(r+ r′) · ρ(r′) (5.21)

The underlying correlation function Γ(r) arises from the convolution of the real space scattering

length density with itself. The mathematical proof is carried out in Appendix A. For imagining
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Fig. 5.9: On the left the meaning of the convolution is depicted. Two identical shapes are

displaced by a vector r. The convolution volume is the common volume (dark grey). This

consideration leads for three-dimensional spheres to the linear correlation function Γ(r) shown

on the right.

the convolution assume you have two foils with the same pattern printed on. The vector r
describes the relative displacement of the two foils. Then you calculate the product of the two

patterns and integrate over V . For patterns of limited size it becomes clear that the function turns

to ‘zero’ at a finite distance r. For simple compact patterns the function monotonically decays.

The example of spheres is depicted in Fig. 5.9. In the left the meaning of the convolution

is indicated. The darkest area in the center is the considered volume of the convolution for

the vector r. In three dimensions this consideration leads to the correlation function (see also

Appendix A and references [4, 5]):

Γ(r) = φspheres ·Δρ2 ·
{

1− 3
2
|r|/(2R) + 1

2
|r|3/(2R)3 for |r| ≤ 2R

0 for |r| > 2R

}
+ 〈ρ〉2 (5.22)

The concentration φspheres accounts for many independent, but diluted spheres. The value Δρ
is the scattering length density difference between the sphere and the surrounding matrix (i.e.

solvent). The constant 〈ρ〉2 is the average scattering length density of the overall volume. Apart

from these simple rationalizations we can formally calculate the limits for small and large dis-

tances r:

Γ(r → 0) = 〈ρ2〉 Γ(r → ∞) = 〈ρ〉2 (5.23)

At this stage the reasons for the limits are based on mathematics. The brackets 〈· · · 〉 indi-

cate an averaging of a locally defined function ρ2(r), ρ(r) over the whole volume. For small

distances the averaging over squares of the scattering length density usually leads to higher val-

ues compared to the average being squared afterwards. So the correlation function often is a

monotonically decaying function. A very simple realization is given by:

Γ(r) =
〈(

ρ− 〈ρ〉)2〉 exp (−|r|/ξ)+ 〈ρ〉2 (5.24)
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The shape of the decay is usually described by an exponential decay and can be motivated

further in detail [1]. The first addend is proportional to the fluctuations of the scattering length

density. This finding already indicates that scattering experiments are sensitive to fluctuations.

The correlation length ξ indicates over which distance the correlations are lost. The current

picture does not allow for a complete decay (in comparison to the single sphere which finds

Γ(r) = 0 for r > 2R). This means that the current discussion treats scattering length density

fluctuations which fill the full 3-dimensional space. The Fourier transformation of eq. 5.24

leads to the following expression:

Γ(Q) ∝
〈(

ρ− 〈ρ〉)2〉 ξ3

1 + ξ2Q2
(5.25)

The scattering intensity in this case is proportional to the scattering length density fluctuations,

to the coherence volume ξ3 and the Q-dependent Lorentz peak. The latter has to be interpreted

as a kind of expansion. So different details of the decaying correlation function (eq. 5.24)

might lead to differently decaying scattering functions. The current Lorentz function is typical

for Ornstein-Zernicke correlation functions. Further discussions of the correlation function are

given in Appendix A.

For the fluctuations of the scattering length density we would like to consider a two phase sys-

tem, i.e. the whole space is taken by either component 1 or 2. The concentration of phase 1

is φ1, and the scattering length density is ρ1 (correspondingly ρ2 is defined). For the average

scattering lenght density we clearly obtain 〈ρ〉 = φ1ρ1 + (1 − φ1)ρ2. For the scattering length

density fluctuations we obtain similarly 〈(ρ − 〈ρ〉)2〉 = φ1(1 − φ1)(ρ1 − ρ2)
2. The latter re-

sult describes the concentration fluctuations of the two phase system and the scattering length

density contrast. For the following considerations the contrast will reappear in many examples.

5.3.1 Spherical colloidal particles

In this section we will derive the scattering of diluted spherical particles in a solvent. These

particles are often called colloids, and can be of inorganic material while the solvent is either

water or organic solvent. Later in the manuscript interactions will be taken into account.

One important property of Fourier transformations is that constant contributions will lead to

sharp delta peaks at Q = 0. This contribution is not observable in the practical scattering

experiment. The theoretically sharp delta peak might have a finite width which is connected

to the overall sample size, but centimeter dimensions are much higher compared to the largest

sizes observed by the scattering experiment (∼μm). So formally we can elevate the scattering

density level by any number −ρref :

ρ(r) −→ ρ(r)− ρref leads to ρ(Q) −→ ρ(Q)− 2πρrefδ(Q) (5.26)

The resulting delta peaks can simply be neglected. For a spherical particle we then arrive at the

simple scattering length density profile:

ρsingle(r) =

{
Δρ for |r| ≤ R

0 for |r| > R
(5.27)
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Inside the sphere the value is constant because we assume homogenous particles. The reference

scattering length density is given by the solvent. This function will then be Fourier transformed

accordingly:

ρsingle(Q) =

2π∫
0

dφ

π∫
0

dϑ sinϑ

R∫
0

dr r2 Δρ exp
(
i|Q| · |r| cos(ϑ)) (5.28)

= 2π Δρ

R∫
0

dr r2
[

1

iQr
exp
(
iQrX

)]X=+1

X=−1

(5.29)

= 4π Δρ

R∫
0

dr r2
sin(Qr)

Qr
(5.30)

= Δρ
4π

3
R3

(
3
sin(QR)−QR cos(QR)

(QR)3

)
(5.31)

In the first line 5.28 we introduce spherical coordinates with the vector Q determining the z-

axis for the real space. The vector product Qr then leads to the cosine term. In line 5.29 the

azimutal integral is simply 2π, and the variable X = cosϑ is introduced. Finally, in line 5.30

the kernel integral for spherically symmetric scattering length density distributions is obtained.

For homogenous spheres we obtain the final result of eq. 5.31. Putting this result together for

the macroscopic cross section (eq. 5.18) we obtain:

dΣ

dΩ
(Q) =

N

V
·
∣∣∣ρsingle(Q)

∣∣∣2 = (Δρ)2 φspheres Vsphere F (Q) (5.32)

F (Q) =

(
3
sin(QR)−QR cos(QR)

(QR)3

)2

(5.33)

We considered N independent spheres in our volume V , and thus obtained the concentration

of spheres φspheres. Furthermore, we defined the form factor F (Q), which describes the Q-

dependent term for independent spheres (or the considered shapes in general). The function is

shown in Figure 5.10. The first zero of the form factor is found at Q = 4.493/R. This relation

again makes clear why the reciprocal space (Q-space) is called reciprocal. We know the limit

for small scattering angles is F (Q→ 0) = 1 − 1
5
Q2R2. So the form factor is normalized to 1,

and the initial dependence on Q2 indicates the size of the sphere. For large scattering angles the

form factor is oscillating. Usually the instrument cannot resolve the quickest oscillations and

an average intensity is observed. The asymptotic behavior would read F (Q→∞) = 9
2
(QR)−4.

The obtained power law Q−4 is called Porod law and holds for any kind of bodies with sharp

interfaces. So, sharp interfaces are interpreted as fractals with d = 2 dimensions, and the

corresponding exponent is 6− d. The general appearance of the Porod formula reads then:

dΣ

dΩ
(Q) = P ·Q−4 (5.34)
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Fig. 5.10: The form factor of a homoge-

nous sphere in a double logarithmic plot.

Fig. 5.11: Experimental scattering curve

of spherical SiO2 colloids in the deuter-

ated solvent DMF [6]. The resolution

function (eq. 5.9) is included in the fit (red

line).

The amplitude of the Porod scattering P tells about the surface per volume and reads P =
2π(Δρ)2Stot/Vtot. Apart from the contrast, it measures the total surface Stot per total vol-

ume Vtot. For our shperes, the Porod constant becomes P = 2π(Δρ)24πR2/(4πR3/(3φ)) =
6πφ1(Δρ)2/R. The surface to volume ratio is smaller the larger the individual radius R is.

The remaining scaling with the concentration φ1 and the contrast (Δρ)2 arises still from the

prefactor which we discussed in context with eq. 5.32.

When comparing the theoretical description of the spherical form factor with measurements one

finds a good agreement (Fig. 5.11). Many fringes are seen, but after the third or fourth peak the

function does not indicate any oscillation any more. Furthermore, the sharp minima are washed

out. All of this is a consequence of the resolution function (eq. 5.9) which has been taken into

account for the fitted curve. For many other examples one also needs to take the polydispersity

into account. The synthesis of colloids usually produces a whole distribution of different radii.

In our example the polydispersity is very low which is the desired case. Polydispersity acts in

a similar way compared to the resolution function. The sharp minima are washed out. While

the resolution appears as a distribution of different Q-values measured at a certain point the

polydispersity integrates over several radii.

Another general scattering law for isolated (dilute) colloids is found for small scattering angles.

The general appearance of the Guinier scattering law is:

dΣ

dΩ
(Q→0) =

dΣ

dΩ
(0) · exp

(
−1

3
Q2R2

g

)
(5.35)

When comparing the scattering law of a sphere and the Guinier formula we obtain Rg =
√

3
5
R.

The radius of gyration Rg can be interpreted as a momentum of inertia normalized to the total

mass and specifies the typical size of the colloid of any shape. The Guinier formula can be seen
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as an expansion at small scattering angles of the logarithm of the macroscopic cross section

truncated after the Q2 term. Further details are discussed in Appendix B.

Another general appearance for independent colloids shall be discussed now using equation

5.32. The macroscopic cross section is determined by several important factors: The contrast

between the colloid and the solvent given by Δρ2, the concentration of the colloids, the volume

of a single colloid, and the form factor. Especially for small Q the latter factor turns to 1, and

the first three factors dominate. When knowing two factors from chemical considerations, the

third factor can be determined experimentally using small angle neutron scattering.

When comparing this expression for isolated colloids with the Ornstein-Zernicke result we see

in parallel: The contrast stays for both kinds of interpretations. The particle volume corresponds

to the correlation volume (i.e. V ∼ ξ3). The concentration of the correlation volumes comes

close to 1 (i.e. φ ∼ 1). Finally, F is a measure for the correlations inside the correlation volume.

So, for independent colloids the correlation volume must fully cover the single particle but two

neighbored particles are found in distinct correlation volumes. Finally, the overall experimental

correlation length is limited by the sample and the radiation coherence. So, for the transversal

correlation length one would obtain ξ−2
eff,transv = ξ−2 + �−2

coh,transv.

5.3.2 Contrast variation

For neutron scattering the method contrast variation opens a wide field of possible experiments.

For soft matter research the most important labelling approach is the exchange of hydrogen
1H by deuterium 2H. Since in a single experiment the phase information is lost completely

the contrast variation experiment retrieves this information partially. Relative positions of two

components are obtained by this method.

The scattering length density of the overall sample is now understood to originate from each

component individually. So the specific ρj(r) takes the value of the scattering length density of

component j when the location points to component j and is zero otherwise. We would then

obtain the following:

ρ(Q) =

∫
V

d3r

(
n∑

j=1

ρj(r)

)
exp(iQr) (5.36)

n specifies the number of components. The assumption of incompressibility means that on

every place there is one component present, and so all individual functions ρj(r) fill the full

space. Furthermore, we would like to define component 1 being the reference component, i.e.

ρref = ρ1 (see eq. 5.26). This means that on each place we have a Δρj(r) function similar to

eq. 5.22. Then, we arrive at:

ρ(Q) =
n∑

j=2

Δρj1(Q) (5.37)

The macroscopic cross section is a quadrature of the scattering length density ρ(Q), and so we

arrive at:
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Fig. 5.12: Scheme of scattering functions

for the cross terms within the microemul-

sion. There are the film-polymer scatter-

ing SFP, the oil-film scattering SOF, and

the oil-polymer scattering SOP. The real

space correlation function means a con-

volution of two structures.

Fig. 5.13: A measurement of the film-

polymer scattering for a bicontinuous

microemulsion with a symmetric am-

phiphilic polymer. The solid line is de-

scribed by a polymer anchored in the

film. The two blocks are mushroom-like

in the domains. At low Q the overall do-

main structure (or size) limits the ideal-

ized model picture.

dΣ

dΩ
(Q) =

1

V
·

n∑
j,k=2

Δρ∗j1(Q) ·Δρk1(Q) (5.38)

=
n∑

j,k=2

(Δρj1Δρk1) · Sjk(Q) (5.39)

=
n∑

j=2

(Δρj1)
2 · Sjj(Q) + 2

∑
2<j<k≤n

(Δρj1Δρk1) · 
 Sjk(Q) (5.40)

In line 5.39 the scattering function Sjk(Q) is defined. By this the contrasts are separated from

the Q-dependent scattering functions. Finally, in line 5.40 the diagonal and off-diagonal terms

are collected. There are n−1 diagonal terms, and 1
2
(n−1)(n−2) off-diagonal terms. Formally,

these 1
2
n(n − 1) considerably different terms are rearranged (the combinations {j, k} are now

simply numbered by j), and a number of s different measurements with different contrasts are

considered.

dΣ

dΩ
(Q)

∣∣∣∣
s

=
∑
j

(Δρ ·Δρ)sj · Sj(Q) (5.41)
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In order to reduce the noise of the result, the number of measurements s exceeds the number

of independent scattering functions considerably. The system then becomes over-determined

when solving for the scattering functions. Formally one can nonetheless write:

Sj(Q) =
∑
s

(Δρ ·Δρ)−1
sj · dΣ

dΩ
(Q)

∣∣∣∣
s

(5.42)

The formal inverse matrix (Δρ ·Δρ)−1
sj is obtained by the singular value decomposition method.

It describes the closest solution of the experiments in context of the finally determined scattering

functions.

An example case is discussed for a bicontinuous microemulsion with an amphiphilic polymer

[7]. The microemulsion consists of oil and water domains which have a sponge structure. So the

water domains host the oil and vice versa. The surfactant film covers the surface between the oil

and water domains. The symmetric amphiphilic polymer position and function was not clear

beforehand. From phase diagram measurements it was observed that the polymer increases

the efficiency of the surfactant dramatically. Much less surfactant is needed to solubilize equal

amounts of oil and water. Fig. 5.12 discusses the meaning of the cross terms of the scattering

functions. Especially the film-polymer scattering is highly interesting to reveal the polymer

role inside the microemulsion (see Fig. 5.13). By the modeling it was clearly observed that the

amphiphilic polymer is anchored in the membrane and the two blocks describe a mushroom

inside the oil and water domains. So basically, the polymer is a macro-surfactant. The effect of

the polymer on thermodynamics and the microscopic picture is discussed in chapter 5.3.5.

5.3.3 Scattering of a polymer

In this section we derive the scattering of a single (isolated) polymer coil. This model is the

basis for many more complicated models of polymers in solution, polymeric micelles, polymer

melts, diblock and multiblock copolymers and so on. So the understanding of these concepts is

rather important for scattering experiments on any kind of polymer systems.

This example starts apart from many other calculations from point-like monomers (see eq. 5.14).

These monomers are found along a random walk with an average step width of �K . We try

to argue for non-ideal chain segments, but finally will arrive at an expression for rather ideal

polymers. For the scattering function we obtain (definition of S(Q) in eq. 5.39-5.41):

S(Q) ∝ 1

N

N∑
j,k=0

〈
exp (iQ · (Rj −Rk))

〉
(5.43)

∝ 1

N

N∑
j,k=0

exp
〈−1

2
(Q · (Rj −Rk))

2〉
(5.44)

∝ 1

N

N∑
j,k=0

exp
〈−1

6
Q2 · (Rj −Rk)

2
〉

(5.45)
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At this stage we use statistical arguments (i.e. statistical physics). The first rearrangement of

terms (line 5.44) moves the ensemble average of the monomer positions (and distances ΔRjk)

from the outside of the exponential to the inside. This is an elementary step which is true

for polymers. The underlying idea is that the distance ΔRjk arises from a sum of |j − k|
bond vectors which all have the same statistics. So each sub-chain with the indices jk is only

distinguished by its number of bond vectors inside. The single bond vector bj has a statistical

average of 〈bj〉 = 0 because there is no preferred orientation. The next higher moment is the

second moment 〈b2
j〉 = �2K . This describes that each bond vector does a finite step with an

average length of �K . For the sub-chain we then find an average size 〈ΔR2
jk〉 = |j − k|�2K . The

reason is that in the quadrature of the sub-chain only the diagonal terms contribute because two

distinct bond vectors show no (or weak) correlations.

Back to the ensemble average: The original exponential can be seen as a Taylor expansion

with all powers of the argument iQΔRjk. The odd powers do not contribute with similar

arguments than for the single bond vector 〈bj〉 = 0. Thus, the quadratic term is the leading term.

The reason why the higher order terms can be arranged that they finally fit to the exponential

expression given in line 5.44 is the weak correlations of two distinct bond vectors. The next line

5.45 basically expresses the orientational average of the sub-chain vector ΔRjk with respect to

the Q-vector in three dimensions.

This derivation can be even simpler understood on the basis of a Gaussian chain. Then every

bond vector follows a Gaussian distribution (with a center of zero bond length). Then the

ensemble average has the concrete meaning 〈· · · 〉 = ∫ · · · exp (− 3
2
ΔR2

jk/(|j−k|�2K)
)
d3ΔRjk.

This distribution immediately explains the rearrangement of line 5.44. The principal argument

is the central limit theorem: When embracing several segments as an effective segment any

kind of distribution converges to yield a Gaussian distribution. This idea came from Kuhn who

formed the term Kuhn segment. While elementary bonds still may have correlations at the

stage of the Kuhn segment all correlations are lost, and the chain really behaves ideal. This is

the reason why the Kuhn segment length �K was already used in the above equations.

In the following we now use the average length of sub-chains (be it Kuhn segments or not),

and replace the sums by integrals which is a good approximation for long chains with a large

number of segments N .

S(Q) ∝ 1

N

N∫
0

dj

N∫
0

dk exp
(−1

6
Q2 · |j − k| · �2K

)
(5.46)

= N · fD(Q2R2
g) (5.47)

fD(x) = 2
x2 (exp(−x)− 1 + x) (5.48)

In this integral one has to consider the symmetry of the modulus. The result is basically the

Debye function which describes the polymer scattering well from length scales of the overall

coil down to length scales where the polymer becomes locally rigid (see Fig. 5.14). The covalent

bonds of a carbon chain effectively contribute to a certain rigidity which will not be treated here.

The radius of gyration describes the overall dimension of the chain and is Rg =
√
N/6 �K . The

limits of the polymer scattering are found to be:
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Fig. 5.14: The theoretical Debye function

describes the polymer scattering of in-

dependent polymers without interaction.

The two plots show the function on a lin-

ear and double logarithmic scale.

Fig. 5.15: Scattering of a h/d-PDMS

polymer blend. The linear scale shows

different compositions of hydrogenous

polymer (from bottom to top: 0.05, 0.94,

0.27, 0.65) while the double logarithmic

plot shows the 0.65 sample only [8].

S(Q) ∝ N(1− 1
3
Q2R2

g) for small Q (5.49)

∝ N · 2/(Q2R2
g) for large Q (5.50)

The line 5.49 describes the conventional Guinier scattering of the overall polymer (compare

eq. 5.35). The second line 5.50 describes a power law. At these length scales the sub-chains of

different lengths are self-similar and so they reveal a fractal behavior. The prefactor is connected

to the magnitude R2
g/N which is the effective segment size. From this magnitude one can

calculate back to the local rigidity which is responsible for the effective segments.

When we want to compare experiments with this theory the best examples are obtained from

polymer blends (Fig. 5.15). One could come to the conclusion that diluted polymer solutions

must provide the ideal conditions for such an experiment but practically the interactions of the

solvent molecules with the monomers lead to a deviating behavior: The good solvent condi-

tions lead to energetic violations of monomer-monomer contacts and so the polymer swells and

displays a different fractal behavior. The high Q power law in good solvents comes close to

Q−1.7. The Flory theory was the first attempt to describe this behavior while many refinements

find small corrections. The theoretically most precise Flory exponent is ν = 0.588 which is the

reciprocal value of the given exponent 1.7 above.

So polymer blends are often better examples for weakly interacting chains. This finding is sup-

ported by the low entropy of mixing which enforces small interactions. The discussed example

of Fig. 5.15 [8] considers the isotopic mixture of hydrogenous and deuterated polydimethyl-

siloxane (PDMS). This practically leads to one of the lowest possible interactions even though

they are not completely zero. The theoretical concept of the random phase approximation is

able to deal with interactions and describes phase diagrams and the scattering in this way. At



Nanostructures investigated by SANS 5.25

Fig. 5.16: Typical scattering of a ho-

mopolymer blend with interactions.

The sample is a polybutadiene(1,4) /

polystyrene blend at 104◦C and 500bar [9].

Fig. 5.17: Typical scattering of a diblock

copolymer blend with interactions [10].

The poly-ethylene-propylene–poly-

dymethylsiloxane is heated to 170◦C

(1bar).

high temperatures the polymers usually mix well, and the scattering comes closer to the weakly

interacting case. Closer to the demixing temperature at lower temperatures the scattering inten-

sity increases dramatically. This indicates strong composition fluctuations. The system loses

the tendency to form a homogenous mixture and so local enrichments of species A or B are

possible. While the random phase approximation is a mean field concept which describes weak

fluctuations there are other concepts for strong fluctuations close to the phase boundary: The

3-dimensional Ising model – known for ferromagnets – describes the strong fluctuations of the

two component polymer system.

The example of an interacting homopolymer blend is shown in Fig. 5.16. The general aspects

are kept from non-interacting polymers (compare Fig. 5.15). The scattering curve has a max-

imum at Q = 0, and is decaying to large Q where a power law of Q−2 for ideal chains is

observed. The maximal intensity is connected to the reciprocal susceptibility which describes

the tendency of spontaneous thermal fluctuations to decay. High intensities mean low suscep-

tibilies and strong fluctuations – the vice versa arguments are valid. The width of this curve is

connected to the correlation length ξ. At low interactions it is tightly connected to the single

coil size, i.e. Rg. With strong fluctuations close to the phase boundary the correlation length

tends to diverge, which measures the typical sizes of the thermally fluctuating enrichments.

A diblock copolymer is a linear chain with two different monomer species. The first part is

pure A and the latter pure B. The typical scattering of a diblock copolymer blend is shown in

Fig. 5.17. At small Q the ideal scattering increases with Q2 accordingly to the ‘correlation

hole’. The chemistry of the molecule does not allow for enrichments of A or B on large length

scales. A continuously growing volume would only allow for enrichments on the surface – this

explains finally the exponent in the scattering law. The experimental finite intensities relate to

imperfections of the molecules. The chain length ratio f is distributed, and finally allows for

enrichments on large length scales.
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The dominating fluctuations are found at a finite Q∗. This expresses that the coil allows for

separations of A and B predominantly on the length scale of the overall coil. Close to the

phase boundary and especially below (where the polymer undergoes a micro phase separation)

the coils are stretched. The peak at finite Q∗ also expresses that the fluctuations tend to form

alternating enrichments. From a center it would look like a decaying order of A-B-A-B-... The

width of the peak is again connected to the correlation length ξ ∼ ΔQ−1 which describes the

length of this decaying order. At high Q, again a Q−2 law is observed describing the sub-chains

being ideal chains. On these length scales homopolymer blends and diblock copolymers do not

differ.

The whole understanding of phase boundaries and fluctuations is important for applications.

Many daily life plastic products consist of polymer blends since the final product should have

combined properties of two different polymers. Therefore, polymer granulates are mixed at

high temperatures under shear in an extruder. The final shape is given by a metal form where

the polymer also cools down. This process involves a certain temperature history which covers

the one-phase and two-phase regions. Therefore, the final product consists of many domains

with almost pure polymers. The domain size and shape are very important for the final product.

So the process has to be tailored in the right way to yield the specified domain structure. This

tailoring is supported by a detailed knowledge of the phase boundaries and fluctuation behav-

ior. Advanced polymer products also combine homopolymers and diblock copolymers for an

even more precise and reproducible domain size/shape tailoring [11, 12]. The diblock copoly-

mer is mainly placed at the domain interfaces, and, therefore, influences the domain properties

precisely.

5.3.4 The structure factor

In this section we develop the ideas about the structure factor – an additional factor for the

scattering formula (eq. 5.32) – which describes the effect of interactions between the colloids

or particles. We start from a rather simple interaction for colloids. It simply takes into account

that the particles cannot intersect. This interaction is called excluded volume interaction. Then

the general case will be discussed briefly and conceptually.

We start from the scattering length density for two spheres with different origins R1 and R2. In

this case the formula reads:

Δρ(Q) = Δρ · Vsphere ·
(
exp(iQR1) + exp(iQR2)

) ·K(Q,R) (5.51)

K(Q,R) = 3 · sin(QR)−QR cos(QR)

(QR)3
(5.52)

The main difference arises from the phases of the two origins of the two colloids. Otherwise the

result is known from eq. 5.31. For the macroscopic cross section we rearrange the amplitudes

in the following way:
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dΣ

dΩ
(Q) = (Δρ)2 · 2Vsphere

Vtot

· Vsphere ·
∣∣ exp(iQR1)

∣∣2 ·〈1

2

∣∣1 + exp(iQΔR)
∣∣2〉

ΔR

·K2(Q,R)

(5.53)

There are factors for the contrast, the concentration, the single particle volume, one phase factor

which results in 1, one factor for the relative phases, and the form factor. In comparison to eq.

5.32 all factors are known except for the factor about the relative phases. The brackets describe

an ensemble average known from statistical physics. We have to consider all possible relative

positions ΔR. This is done in the following:

S(Q) =

〈
1

2

∣∣1 + exp(iQΔR)
∣∣2〉

ΔR

=
〈
1 + cos(QΔR)

〉
ΔR

(5.54)

=
1

Vtot

(
Vtot + 2πδ(Q)− 4π

3
(2R)3K(Q, 2R)

)
(5.55)

The main result is found in line 5.55 which is obtained from the ensemble average. The prefactor

arises from the normalization. The constant term arises from integrating over the whole volume.

To be more precise the vector R has to omit a volume of a sphere with the radius 2R, because

this is the minimum distance of the two centers. For the integral of the constant contribution

we neglect this small difference. For the integral over the cosine function we have to do a trick

which is called the Babinet principle: The really allowed volume is the sum of the full volume

minus the sphere with the radius 2R. The cosine function integrated over the full volume is

again a delta function, and the subtracted term is the Fourier transformation of a sphere, i.e.

K(Q, 2R). We obtain the same result for the cosine-Fourier transformation and the complex

Fourier transformation because the volume is centro-symmetric. The Babinet principle actually

uses the inversion of the volume and states for squares of amplitudes, i.e. intensities, exactly

the same result as for the original structure. For the structure factor we have to keep in mind:

It arises from a single Fourier transformation and is not squared. The final result in brief is

(neglecting the delta function again):

S(Q) = 1− φ2R ·K(Q, 2R) (5.56)

dΣ

dΩ
(Q) = (Δρ)2 · φsphere · Vsphere · S(Q) ·K2(Q,R) (5.57)

So we obtain the well known factors for the macroscopic cross section – now with a structure

factor. The form and structure factor are compared in Fig. 5.18. The reduced intensity at small

scattering vectors due to the structure factor appears for repulsive interactions and means that

the possible fluctuations of the particles are reduced because they have less freedom. The first

maximum indicates a preferred distance between the colloids. Such a maximum becomes more

pronounced with higher concentrations. Note that for this example the maximum appears at a Q
where the form factor already has a downturn. There are many examples in the literature where

the form factor is still relatively close to 1 and then the structure factor is exposed very clearly.
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Fig. 5.18: The structure factor S(Q) on top of the form factor F (Q) = K2(Q). Note that the

structure factor is smaller than 1 for small Q. This indicates a repulsive interaction. The first

maximum of the structure factor expresses a certain tendency for preferred distances. Of course

it only appears for rather strong concentrations.

So far we have derived the excluded volume structure factor for very dilute systems. The method

of Ornstein-Zernicke allows for a simple refinement by describing higher order correlations on

the basis of the simple pair correlation. Then – in the simplest way – one would obtain the

following expression:

S2(Q) =
(
1 + φ2R ·K(Q, 2R)

)−1
(5.58)

A more rigorous treatment of the Ornstein-Zernicke formalism results in the Perkus-Yevick

structure factor [13] which is the best known approximation for hard spheres. On the basis of

this structure factor as the dominating term small corrections for additional interactions can be

included [14]. For colloidal systems this is the strategy of choice.

Nonetheless, we would like to understand the structure factor more generally. From equation

5.54 we have seen that the phases of two centers have to be considered. The ensemble average

finally took the distribution of possible distance vectors ΔR into account. So we can understand

the structure factor on the basis of a pair correlation function for the centers of the particles.

S(Q) = 1 + φ

∫
V

d3r
(
g(r)− 1

)
exp(iQr) (5.59)

The function g(r) is the pair correlation function and describes the probabilities for certain

distance vectors r, and the exponential function accounts for the phases. Again, for centro-

symmetric g(r) there is no difference between a cosine and a complex Fourier transformation.

The subtraction of the constant 1 accounts for delta peak contributions which we also obtained
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Fig. 5.19: The relation between the interaction potential V (r), the pair correlation function

g(r) in real space, and the structure factor S(Q).

in line 5.55. The added term 1 we also obtained in the beginning (line 5.54). It arises from the

self correlation of the particle with itself. For the pair distribution function we now can write:

g(r2 − r1) =
P (r1, r2)

P (r1) · P (r2)
, and φ = P (r1) (5.60)

and can be obtained theoretically with methods from statistical physics. It describes the proba-

bility for finding two particles at a distance r2−r1. A rather elementary example is discussed in

Fig. 5.19 starting from an interaction potential V (r). It has a repulsive short range interaction, a

weak minimum at a distance rnn, and a quickly decaying tail to long distances. The distance rnn
indicates the preferred distance of nearest neighbors. The pair correlation function then shows

an inhibited range at short distances – similar to an excluded volume interaction. The follow-

ing peak at rnn indicates a preferred nearest neighbor distance. The following oscillations for

larger distances indicate more remote preferred places. The limit of g(r) at large distances is

1 indicating the average concentration of particles. For the structure factor we obtain a rather

strong suppression at small Q. This means that the repulsive interactions lead effectively to a

more homogenous distribution of particles. The peak of the structure factor at Q = 2π/rnn in-

dicates the preferred distance of the nearest neighbors. Strong oscillations at higher Q indicate

a narrow distribution of the actual neighbor distances. The limit at high Q is again 1, and arises

from the self correlation of identical particles. This example describes a liquid-like behavior

which has historically been developed for liquids. In soft matter research this concept applies

for many systems ranging from colloids, over micelles to star-polymers. While the liquid-like

structure describes a near order, a perfect crystal would lead to a different behavior: The corre-

lation function g(r) would contain a lattice of separated delta peaks. The structure factor would
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describe the reciprocal lattice with the well known Bragg peaks. In soft matter research there

exist many examples with liquid crystalline order. Very often they display a finite size of crys-

talline domains – so there is a grain structure – and the real state takes an intermediate stage

between the perfect crystalline and liquid-like order.

5.3.5 Microemulsions

In this section we will follow a very successful way of deriving the scattering formula for

bicontinuous microemulsions (see Fig. 5.20). Bicontinuous microemulsions consist of equal

amounts of oil and water. A certain amount of surfactant is needed to solubilize all components,

and a one phase system is obtained. The domain structure of the oil is a continuous sponge

structure which hosts the water and vice versa. The surfactant forms a film at the surface

between the oil and water domains.

The starting point is a thermodynamic model for such kind of system. The Landau approach

takes mesoscopic sub-volumes and assumes that the internal degrees of freedom are integrated

out, and there is a small number of order parameters describing the state of the sub-volume

very accurately. For microemulsions we stay with a single (scalar) order parameter φ(r) which

takes the values −1 for oil, 0 for surfactant, and +1 for water. Now the order parameter can

still be treated like a continuous function since the physical effects take place on larger length

scales than the sub-volume size. The (free) energy of the overall volume is now expressed as

a function of the order parameter. One still cannot be perfectly accurat, so an expansion with

respect to the order parameter is used. The expansion for microemulsions looks like:

F0

(
φ(r)

)
=

∫
d3r
[
c(∇2φ)2 + g0(∇φ)2 + ω2φ

2
]

(5.61)

This expansion does not only contain the order parameter itself, but there are derivatives in-

cluded. These appear since this expression of the free energy is a functional expansion. Certain

orders (especially the odd orders) of the order parameter and its derivatives have been ruled out

due to the symmetry of the system. One important symmetry is the restriction to equal amounts

of oil and water. Another facilitating property is that the functional form only considers local

contributions in the functional form. For this free energy expression one can apply statistical

physics methods and derive a scattering function (done in Appendix C). In comparison with

the real space correlation function one can identify two important parameters: the correlation

length ξ and the wavevector of the domain spacing k = 2π/d. The obtained scattering function

looks like:

dΣ

dΩ
(Q)

∣∣∣∣
TS

= (Δρoil−water)
2 8πφoilφwater/ξ

(k2 + ξ−2)2 − 2(k2 − ξ−2)Q2 +Q4
(5.62)

This function is also known as the Teubner-Strey formula [15]. While the applied concept

approaches the reality as a long wavelength description, there are details missing. The described

domains have rather plain walls while in reality the domain walls also fluctuate quite heavily.

An empirical approach for the scattering function for the full Q-range is the following:



Nanostructures investigated by SANS 5.31

Fig. 5.20: A real space picture of the

bicontinuous microemulsion according to

computer simulations [16]. Actually the

surfactant film is shown with the surface

color being red for oil facing surface and

yellow for water facing surface.

Fig. 5.21: The macroscopic cross sec-

tion of a bicontinuous microemulsion.

The peak indicates an alternating do-

main structure with the spacing d. The

peak width is connected to the correla-

tion length ξ. The grey line is the sim-

ple Teubner-Strey fitting while the red line

corresponds to eq. 5.63.

dΣ

dΩ
(Q) =

[
dΣ

dΩ
(Q)

∣∣∣∣
TS

+
G erf12(1.06 ·QRg/

√
6)

1.5 ·Q4R4
g

]
· exp (−σ2Q2

)
(5.63)

The error function erf(x) in the overall context describes a peak with a Porod behavior at large

Q. This additional Porod term accounts for the larger surface of the fluctuating membranes.

The final Gaussian factor describes a roughness of the surfactant film and often is not that

clearly observed due to the high incoherent background. An example fit of this function to

scattering data is discussed in Fig. 5.21. The pure Teubner-Strey function clearly shows a

downturn at higher Q and the real Porod scattering is not well described. Only the additional

Porod scattering allows for a realistic estimation of the averge surface of the domain structure.

From the structural parameters k = 2π/d and ξ one can make connections to the microscopic

parameters of the microemulsion. The Gaussian random field theory describes the thermody-

namics of a microemulsion by using a wave field that places the surfactant film at the zero

surfaces of the field. The theory makes a connection of the structural parameters to the bending

rigidity:

κ

kBT
=

5
√
3

64
· kξ (5.64)

The bending rigidity κ is an elastic modulus of the surfactant membrane. The overall underlying

concept only relies on the elastic properties of the membrane to describe the thermodynamics
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Fig. 5.22: The sample position of the

SAXS instrument ID2 at the ESRF, Greno-

ble, France. The photons propagate from

the right to the left. The collimation guides

on the left and the detector tank window on

top of the cone on the left give an impres-

sion about the small beam size (being typi-

cally 1×1mm2).

Fig. 5.23: The complex dispersion curve for

gold (Au) at the L3 edge [17]. The overall

effective electron number f = f0+ f ′+if ′′

replaces the conventional electron number

Z = f0 in equation 5.65. On the x-axis

the energies of the x-rays is shown, with

indications for the experimentally selected

three energies (black, red, blue). In this

way, equal steps for the contrast variation

are achieved.

of bicontinuous microemulsions. For symmetric amphiphilic polymers it was found that the

bending rigidity increases [7]. The reason is that the mushroom conformation (obtained by the

contrast variation measurements from chapter 5.3.2) exerts a pressure on the membrane. This

makes the membrane stiffer which in turn allows to form larger domains with a better surface to

volume ratio. So the much lower demand for surfactant is explained on the basis of small angle

neutron scattering experiments.

5.4 Small angle x-ray scattering

While a detailed comparison between SANS and SAXS is given below, the most important

properties of the small angle x-ray scattering technique shall be discussed here. The x-ray

sources can be x-ray tubes (invented by Röntgen, keyword Bremsstrahlung) and modern syn-

chrotrons. The latter ones guide fast electrons on undulators which act as laser-like sources for

x-rays with fixed wavelength, high brilliance and low divergence. This simply means that the

collimation of the beam often yields narrow beams, and the irradiated sample areas are con-

siderably smaller (often smaller than ca. 1×1mm2). A view on the sample position is given

in Fig. 5.22 (compare Fig. 5.3). One directly has the impression that all windows are tiny and

adjustments must be made more carefully.

The conceptual understanding of the scattering theory still holds for SAXS. For the simplest

understanding of the contrast conditions in a SAXS experiment, it is sufficient to count the

electron numbers for each atom. The resulting scattering length density reads then (compare

eq. 5.16):
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ρmol =
re
Vmol

∑
j∈{mol}

Zj (5.65)

The classical electron radius is re = e2/(4πε0mec
2) = 2.82fm. The electron number of each

atom j is Zj . This means that chemically different substances have a contrast, but for similar

substances (often for organic materials) it can be rather weak. Heavier atoms against light

materials are much easier to detect. Finally, the density of similar materials is also important.

Especially for organic materials (soft matter research), the high intensity of the source still

allows for collecting scattering data. Many experiments base on these simple modifications

with respect to SANS, and so the fundamental understanding of SAXS experiments does not

need any further explanation.

For completeness, we briefly discuss the scattering length density for light scattering. Here the

polarizability plays an important role. Without going into details, the final contrast is expressed

by the refractive index increment dn/dc:

ρmol =
2πn

λ2
· dn

dcmol
(5.66)

The refractive index increment dn/dc finally has to be determined separately experimentally

when the absolute intensity is of interest. The concentration cmol is given in units volume per

volume (for the specific substance in the solvent). The wavelength of the used light is λ.

5.4.1 Contrast variation using anomalous small angle x-ray scattering

While for contrast variation SANS experiments the simple exchange of hydrogen 1H by deu-

terium 2H ≡ D allowed for changing the contrast without modifying the chemical behavior, in

contrast variation SAXS experiments the applied trick is considerably different: The chemistry

is mainly dominated by the electron or proton number Z and isotope exchange would not make

any difference. The electron shells on the other hand have resonances with considerable disper-

sion curves. An example is shown in Fig. 5.23 with the real part f ′ (called dispersion) and the

imaginary part f ′′ (called absorption). The overall effective electron number f = f0 + f ′ + if ′′

replaces the conventional electron number Z = f0 in equation 5.65. Below the resonance en-

ergy the considered L3 shell appears only softer and effectively less electrons appear for f .

Above the resonance energy single electrons can be scattered out from the host atom (Compton

effect). This is directly seen in the sudden change of the absorption. Furthermore, the actual

dependence of the dispersion is influenced by backscattering of the free electrons to the host

atom (not shown in Fig. 5.65). This effect finally is the reason that the complex dispersion

curve can only theoretically be well approximated below the resonance (or really far above).

For this approximation it is sufficient to consider isolated host atoms.

For best experimental results the f -values have to be equally distributed. Thus, the energies are

selected narrower close to the resonance (see Fig. 5.65). The investigated sample consisted of

core-shell gold-silver nanoparticles in soda-lime silicate glass (details in reference [17]). By

the contrast variation measurement one wanted to see the whole particles in the glass matrix,

but also the core-shell structure of the individual particles. Especially, the latter one would
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be obtained from such an experiment. First results of this experiment are shown in Fig. 5.24.

The most important result from this experiment is that the original scattering curves at first

hand do not differ considerably. The core-shell structure results from tiny differences of the

measurements. For contrast variation SANS experiments the contrasts can be selected close to

zero contrast for most of the components which means that tiniest amounts of additives can be

highlighted and the intensities between different contrasts may vary by factors of 100 to 1000.

So for contrast variation SAXS measurements the statistics have to be considerably better which

in turn comes with the higher intensities.

Another example was evaluated to a deeper stage [18]. Here, the polyelectrolyte polyacrylate

(PA) with Sr2+ counterions was dissolved in water. The idea behind was that the polymer is

dissolved well in the solvent. The charges of the polymer and the ions lead to a certain swelling

of the coil (exact fractal dimensions ν not discussed here). The counterions form a certain cloud

around the chain – the structure of which is the final aim of the investigation. The principles of

contrast variation measurements leads to the following equation (compare eq. 5.41):

dΣ

dΩ
= (ΔρSr−H2O)

2 ·SSr−Sr + (ΔρPA−H2O)
2 ·SPA−PA + ΔρSr−H2OΔρPA−H2O ·SSr−PA (5.67)

The overall scattering is compared with two contributions in Fig. 5.25. The scattering func-

tions of the cross term SSr−PA and the pure ion scattering SSr−Sr have been compared on the

same scale, and so the contrasts are included in Fig. 5.25. Basically, all three functions de-

scribe a polymer coil in solvent – the different contrasts do not show fundamental differences.

Nonetheless, a particular feature of the ion scattering was highlighted by this experiment: At

Q ≈ 0.11nm−1 is a small maximum which is connected to the interpretation of effective charge

beads along the chains. The charge clouds obviously can be divided into separated beads. The

emphasis of the observed maximum correlates with the number of beads: For small numbers it

is invisible, and becomes more pronounced with higher numbers. The authors finally find that

the number of 5 beads is suitable for the description of the scattering curves: An upper limit

is also given by the high Q scattering where the 5 chain segments appear as independent sub-

coils. This example beautifully displays that the method of contrast variation can be transferred

to SAXS experiments. Difficulties of small contrast changes have been overcome by the good

statistics due to much higher intensities.

5.4.2 Comparison of SANS and SAXS

We have seen that many parallels exist between the two experimental methods SANS and

SAXS. The theoretical concepts are the same. Even the contrast variation method as a highly

difficult and tedious task could be applied for both probes. In the following, we will highlight

differences that have been discussed so far, and others that are just mentioned now.

The high flux reactors are at the technical limit of highest neutron fluxes. For SANS instruments

maximal fluxes of ca. 2×108 neutrons/s/cm2 have been reached at the sample position. Typical

sample sizes are of 1×1cm2. For coherent scattering fractions of ca. 10% this results in maximal

count rates of 107Hz, while practically most of the count rates stay below 106Hz. For long

collimations, the experimentalists deal often with 10 to 50Hz. The resolution for these count
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Fig. 5.24: Absolute calibrated scatter-

ing curves of different core-shell Ag/Au

nanoparticles in soda-lime silicate glass

[17]. The implantation sequence has been

changed for the three samples. Note that

the three scattering curves for the selected

energies (colors correspond to Fig. 5.23) do

only slightly differ due to the small changes

of the contrast.

Fig. 5.25: Further evaluated scattering

functions of a different system [18]: A poly-

electrolyte with Sr2+ counterions in aque-

ous solution. The top curve (black) indi-

cates the overall scattering. The middle

curve (blue) displays the polymer-ion cross

terms being sensitive for relative positions.

The bottom curve (red) depicts the pure ion

scattering.

rates has been relaxed. Wavelength spreads of either ±5% or ±10% are widely accepted, and

the collimation contributes equally, such that a typical resolution of ΔQ/Q of 7 to 14% is

reached. For many soft matter applications this is more than adequate. If one thinks of liquid

crystalline order, much higher resolution would be desired which one would like to overcome

by choppers in combination with time-of-flight analysis. A resolution of ca. 1% would be a

reasonable expectation. The continuous sources are highly stable which is desired for a reliable

absolute calibration.

The spallation sources deliver either continuous beams or the most advanced ones aim at pulsed

beams. Repetition rates range from ca. 14 to 60Hz. The intensity that is usable for SANS

instruments could reach up to 20 times higher yields (as planned for the ESS in Lund), i.e. up to

4×109 neutrons/s/cm2. Surely, detectors for count rates of 10 to 100 MHz have to be developed.

The new SANS instruments will make use of the time-of-flight technique for resolving the

different wavelengths to a high degree. Of course other problems with such a broad wavelength

band have to be overcome – but this topic would lead too far.

The synchrotron sources reach much higher photon yields which often makes the experiments

technically comfortable but for the scientist at work highly stressful. The undulators provide
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laser-like qualities of the radiation which explains many favorable properties. Some num-

bers for the SAXS beam line ID2 at the ESRF shall be reported. The usable flux of 5×1015

photons/s/mm2 (note the smaller area) is provided which results for a typical sample area of ca.

1×0.02mm2 in 1014 photons/s. In some respect the smallness of the beam urges to think about

the representativeness of a single shot experiment. At some synchrotron sources the beam is not

highly stable which makes absolute calibration and background subtraction difficult. The same

problem also occurs for the pulsed neutron sources where parts of the calibration procedure

become highly difficult.

For classical SANS experiments one can make some statements: The absolute calibration is

practically done for all experiments and does not take much effort – it is technically simple. Be-

tween different instruments in the world the discrepancies of different calibrations results often

in errors of 10% and less. Part of the differences are different calibration standards, but also

different concepts for transmission measurements and many details of the technical realization.

The nuclear scattering is a result of the fm small nuclei and results in easily interpretable scat-

tering data for even large angles – for point-like scatterers no corrections have to be made. In

this way all soft matter and biological researchers avoid difficult corrections. Magnetic struc-

tures can be explored by neutrons due to its magnetic moment. Magnetic scattering is about

to be implemented to a few SANS instruments. Ideally, four channels are experimentally mea-

sured (I++, I+−,I−+, and I−−) by varying the polarization of the incident beam (up/down) and

of the analyzer. Nowadays, the 3He technique allows for covering relatively large exit angles

at high polarization efficiencies. But also early magnetic studies have been possible with sim-

pler setups and reduced information. The unsystematic dependence of the scattering length

often opens good conditions for a reasonable contrast for many experiments. If the natural iso-

topes do not provide enough contrast pure isotopes might overcome the problem. The contrast

variation experiments have been presented for the SANS technique. By a simple exchange of

hydrogen by deuterium, soft matter samples can be prepared for complicated contrast variation

experiments. One advantage is the accessibility of the zero contrast for most of the components

which allows for highlighting smallest amounts of additives. The high demand for deuterated

chemicals makes them cheap caused by the huge number of NMR scientists. The low absorp-

tion of neutrons for many materials allows for studying reasonably thick samples (1 to 5mm

and beyond). Especially, for contrast variation experiments often larger optical path lengths

are preferred. The choice for window materials and sample containers is simple in many cases.

Neutron scattering is a non-destructive method. Espeically biological samples can be recovered.

Contrarily we observe for the SAXS technique: The demand for absolute calibration in SAXS

experiments is growing. Initial technical problems are overcome and suitable calibration stan-

dards have been found. The interpretation of scattering data at larger angles might be more

complicated due to the structure of the electron shells. For small angle scattering the possible

corrections are often negligible. Magnetic structures are observable by the circular magnetic

dichroism [19] but do not count to the standard problems addressed by SAXS. The high con-

trast of heavy atoms often makes light atoms invisible. For soft matter samples the balanced use

of light atoms results in low contrast but, technically, the brilliant sources overcome any inten-

sity problem. The ASAXS technique is done close to resonances of single electron shells and

opens the opportunity for contrast variation measurements. The achieved small differences in

the contrast still allow for tedious measurements because the statistics are often extremely good

– only stable experimental conditions have to be provided. The absorption of x-rays makes the

choice of sample containers and windows more complicated. The absorbed radiation destroys
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the sample in principle. Short experimental times are thus favorable.

To summarize, the method of small angle neutron scattering is good-natured and allows to

tackle many difficult tasks. The small angle x-ray scattering technique is more often applied

due to the availability. Many problems have been solved (or will be solved) and will turn to

standard techniques. So, in many cases the competition between the methods is kept high for

the future. Today, practically, the methods are complementary and support each other for the

complete structural analysis.

5.5 Summary

We have seen that small angle neutron scattering is a powerful tool to characterize nanostruc-

tures. Examples included colloidal dispersions and microemulsions. The structural parameters

are connected to thermodynamics and therefore the behavior is understood microscopically.

In many cases, small angle x-ray scattering can obtain the same results. Nonetheless, x-ray

samples need to be thinner due to the low transmission, amd radiation damage has to be taken

into account. The powerful method of contrast variation is restricted to heavier atoms, and is,

therefore, barely used in soft matter research.

Transmission electron microscopy (TEM) measures the structures in real space, and is as such

much easier to understand. Nowadays microscopes provide a spatial resolution of nanome-

ters and better. Nonetheless, usually surfaces or thin layers are characterized and the volume

properties need to be extrapolated. For statistics about polydispersity single particles need to

be counted while the scattering experiment averages over macroscopic volumes. The sample

preparation for TEM does not always produce reliable conditions and results.

The beauty of small angle neutron scattering has convinced in many applications ranging from

basic research to applied sciences. The heavy demand for SANS is documented by the large

over-booking factors at all neutron facilities. So, even in future we have to expect exciting

results obtained by this method.
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Appendices

A Further details about the correlation function

In this appendix we consider further details about the correlation function Γ. The first interesting

property is the convolution theorem. In equation 5.21 it was stated that the correlation function

in real space is a convolution while in reciprocal space the correlation function is a product (eq.

5.20). We simply calculate the Fourier transformation of Γ(r):

Γ(Q) = F [Γ(r)] (5.68)

=
1

V

∫
V

d3r

∫
V

d3r′ ρ(r+ r′) · ρ(r′) · exp(iQr) (5.69)

=
1

V

∫
V

d3r

∫
V

d3r′ ρ(r+ r′) · ρ(r′) · exp(−iQr′) exp(iQ(r′ + r)) (5.70)

=
1

V

∫
V

d3u ρ(u) exp(−iQu)

∫
V

d3u′ ρ(u′) exp(iQu′) (5.71)

=
1

V
ρ∗(Q)ρ(Q) with u = r′, u′ = r′ + r (5.72)

In line 5.70 we split the exponential according to the two arguments of the scattering length

density. These variables are finally used for the integration. For extremely large volumes V
the integration limits do not really matter and stay unchanged – otherwise surface effects would

play a role. Finally we arrive at the already known product of the scattering amplitudes.

The overlap of two displaced spheres has a lens shape and is calculated as a spherical segment

being proportional to the solid angle minus a cone. So the lens has the following volume:

Vlens =
4π

3
R3 · 2 ·

⎛
⎝ 1

4π

2π∫
0

dφ

α∫
0

dϑ sinϑ − 1

4
cosα sin2 α

⎞
⎠ (5.73)

=
4π

3
R3

(
1− 3

2

r

2R
+

1

2

( r

2R

)3)
with cosα =

r

2R
(5.74)

The displacement is given by r and the radius of the sphere is R. The result is finally used in

equation 5.22.

The next topic aims at the real space correlation function with the model exponential decay in

one dimension (eq. 5.24). We simply consider the variable z. The Fourier transformation is

done in the following explicitly:
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Γ(Qz) =

∞∫
−∞

dz
(〈(

ρ− 〈ρ〉)2〉 exp (−|z|/ξ)+ 〈ρ〉2
)
exp(iQzz) (5.75)

=
〈(

ρ− 〈ρ〉)2〉 · 2ξ

1 + ξ2Q2
z

+ 2π〈ρ〉2δ(Qz) (5.76)

We obtain a product of the scattering length density fluctuations, a size of the correlation ‘vol-

ume’, and a Lorentz function which is typical for Ornstein-Zernicke correlation functions. A

second addend appears due to the Q-independent term 〈ρ〉2. Constants Forier-transform to delta

functions which are infinitely sharp peaks at Q = 0. In the scattering experiment they are not

observable. The same calculation can be done in three dimensions (with similar results):

Γ(Q) =
〈(

ρ− 〈ρ〉)2〉 · ∫
V

d3r exp
(−|r|/ξ) exp(iQr) + · · · (5.77)

=
〈(

ρ− 〈ρ〉)2〉 · 2π∫
0

dφ

π∫
0

dϑ sinϑ

∞∫
0

dr r2 exp
(−r/ξ

)sin(Qr)

Qr
(5.78)

=
〈(

ρ− 〈ρ〉)2〉 · 4π · 2ξ3

(1 + ξ2Q2)2
(5.79)

This functional form appears for polymer gels on large length scales. The density of the polymer

network tends to fluctuations which are described by eq. 5.79. To make the looking of eq. 5.79

more similar to the Lorentz function the denominator is seen as a Taylor expansion which will

be truncated after the Q2 term. Then the Q-dependent term is Γ(Q) ∼ (1 + 2ξ2Q2)−1. Finally,

we can state that the functional form of eq. 5.25 is ‘always’ obtained.

B Guinier Scattering

The crucial calculation of the Guinier scattering is done by a Taylor expansion of the logarithm

of the macroscopic cross section for small scattering vectors Q. Due to symmetry considerations

there are no linear terms, and the dominating term of the Q-dependence is calculated to be:

R2
g = −1

2
· ∂2

∂Q2
ln
(
ρ(Q)ρ(−Q)

)∣∣∣∣
Q=0

(5.80)

= −1

2
· ∂

∂Q

2
(ρ(Q)
∫
d3r ρ(r)(−ir) exp(−iQr)

)
ρ(Q)ρ(−Q)

∣∣∣∣∣
Q=0

(5.81)
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= −
ρ(Q)
∫
d3r ρ(r)(−r2) exp(−iQr)

ρ(Q)ρ(−Q)

∣∣∣∣
Q=0

−

∫
d3r ρ(r)(ir) exp(iQr)

∫
d3r ρ(r)(−ir) exp(−iQr)

ρ(Q)ρ(−Q)

∣∣∣∣
Q=0

+ 0 (5.82)

= 〈r2〉 − 〈r〉2 (5.83)

=
〈(

r− 〈r〉)2〉 (5.84)

The first line 5.80 contains the definition of the Taylor coefficient. Then, the derivatives are

calculated consequently. Finally, we arrive at terms containing the first and second momenta.

The last line 5.84 rearranges the momenta in the sense of a variance. So the radius of gyration

is the second moment of the scattering length density distribution with the center of ‘gravity’

being at the origin. We used the momenta in the following sense:

〈r〉 =

∫
d3r rρ(r)

/∫
d3r ρ(r) (5.85)

〈r2〉 =

∫
d3r r2ρ(r)

/∫
d3r ρ(r) (5.86)

So far we assumed an isotropic scattering length density distribution. In general, for oriented

anisotropic particles, the Guinier scattering law would read:

dΣ

dΩ
(Q→0) =

dΣ

dΩ
(0) · exp

(
−Q2

x

〈(
x− 〈x〉)2〉−Q2

y

〈(
y − 〈y〉)2〉−Q2

z

〈(
z − 〈z〉)2〉)

(5.87)

Here, we assumed a diagonal tensor of second moment. This expression allows for different

widths of scattering patterns for the different directions. In reciprocal space large dimensions

appear small and vice versa. Furthermore, we see that Rg is defined as the sum over all second

momenta, and so in the isotropic case a factor 1
3

appears in the original formula 5.35.

C Details about Scattering of Microemulsions

The first step for the derivation of the scattering formula for microemulsions takes place on the

level of the free energy (and the order parameter). The overall free energy is an integral over

the whole volume, and contains only second order of the order parameter. So the derivatives

in expression 5.61 can be understood as an operator acting on the order parameter, and the

overall free energy is a matrix element of this operator – like in quantum mechanics. The wave

functions can now be tranferred to the momentum space, i.e. the reciprocal space:

F0

(
φ(k)

)
=

∫
d3k φ∗(k)

[
ck4 + g0k

2 + ω2

]
φ(k) (5.88)
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Now the order parameter appears with its Fourier amplitudes φ(k) and the operator becomes a

simple polynomial as a wavevector k. So the operator takes a diagonal form, because different

states are not mixed anymore. The macroscopic cross section for the scattering vector Q is

simply the expected value of the corresponding Fourier amplitude φ(Q). The statistical physics

simply consider all possible Fourier amplitudes:

dΣ

dΩ
(Q) ∝

∫
dnφ(k) φ∗(Q)φ(Q) exp

(
− 1

kBT
F0

(
φ(k)

))
∫
dnφ(k) exp

(
− 1

kBT
F0

(
φ(k)

)) (5.89)

= −kBT
∂

∂ω2

ln

∫
d2φ(Q) exp

(
− 1

kBT
F0

(
φ(Q)

))
(5.90)

= −kBT
∂

∂ω2
ln

⎛
⎝ 1√

1
kBT

(cQ4 + g0Q2 + ω2)

⎞
⎠2

(5.91)

=
kBT

cQ4 + g0Q2 + ω2

∝ Γ(Q) (5.92)

In line 5.90 the considered space of Fourier amplitudes has been reduced to the single important

one. There are only two amplitudes left, which can be understood as the real and imaginary part

of the complex amplitude. So the residual integral is 2-dimensional. The integral is Gaussian,

and the result is known well. In line 5.91 the important dependencies are kept and all constant

factors cancel out. The final result is the scattering function which is basically the recipro-

cal operator of line 5.88. This derivation is an explicit example of the fluctuation dissipation

theorem.

To interpret the meaning of the scattering function the real space correlation function is calcu-

lated. While before the absolute value of the scattering intensity stayed rather undefined, in this

representation absolute values have a meaning:

Γ(r) =
〈(

ρ− 〈ρ〉)2〉 · exp (−|r|/ξ) · sin(kr)
kr

+ 〈ρ〉2 (5.93)

Furthermore the coefficients get a meaning: There is a correlation length ξ describing the decay

of the correlations with the distance r. The oscillating term describes the alternating appearance

of oil and water domains. The domain spacing d is connected to the wavevector k = 2π/d. The

connection to the original coefficients is given by:

k =

[
1

2

√
ω2

c
− 1

4

g0
c

] 1
2

and ξ =

[
1

2

√
ω2

c
+

1

4

g0
c

]− 1
2

(5.94)

So the overall scattering formula takes the expression given in eq. 5.62. This example shows

clearly that the real space correlation function supports the interpretation of scattering formulas

obtained from a Landau approach with coefficients that are hard to connect to microscopic

descriptions.
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Exercises

E5.1 Fraunhofer far field for grating

We consider a grating with a macroscopic area 1×1cm2, and a mesoscopic periodicity of a =
100Å = 10nm. The edges of the grating should be soft. The transmission function is assumed

to be: T (x) = (1 + cos(2π
a
x))/2.

To which terms can the transmission function be divided?

� a) 1
2

� b) 1
3

� c) 1
4

1
2
exp(iq1x) with

� a) q1 =
2π
a

� b) q1 =
4π
a

� c) q1 =
π
2a

1
2
exp(iq2x) with

� a) q2 = −2π
a

� b) q2 = −4π
a

� c) q2 = − π
2a

To which kind of pattern do the three terms contribute?

� a) flat background � b) primary beam � c) no contribution

� a) slowly decaying function in the center of the pattern with a width of q1
� b) many peaks at q1, 2q1, 3q1, 4q1, ...

� c) single peak at q1

� a) slowly decaying function in the center of the pattern with a width of q2
� b) many peaks at q2, 2q2, 3q2, 4q2, ...

� c) single peak at q2

In the y-direction the grating does not show any structure.

To which kind of modulation does this correspond?

� a) constant � b) exp(iq1x) � c) exp(iq2x)

What does this mean for the structure of the pattern on the detector?

� a) slowly decaying function in the center with a width of q1
� b) sharp contours accordingly to the primary beam

� c) infinitely smeared out patterns in the y-direction
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E5.2 The Pin-Hole Camera

The condition for the pinhole geometry is that the solid angle of the pin-hole observed from the

position of the detector is equal or smaller than the solid angle of the object, here: the entrance

aperture. Assume a symmetric SANS instrument with equal distances between the entrance

aperture and the pin-hole (and sample), and between the pin-hole and the detector.

What is the ratio of the entrance aperture and the pin-hole dimensions?

� a) 2 � b) 3 � c) 4

What is the ratio of the areas?

� a) 2 � b) 3 � c) 4

Assume that the eye operated as a pin-hole camera. The sizes may be for the aperture 1mm, for

the retina distance 2cm, and for the object 1km.

What would be the minimal object size that could be resolved at this distance?

� a) 10m � b) 50m � c) 200m

Why do we see better?

� a) aperture smaller � b) eye contains lens � c) we do not see better

E5.3 Understanding of the Manuscript

The correlation function for a microemulsion is given in real space by eq. 5.93 and in reciprocal

space by eq. 5.62. They describe an oscillating structure with the wavevector k and a correlation

length ξ. A simpler correlation function is already obtained by equations 5.24 (real space) and

5.79 (reciprocal space, exact formula). Here, only a decaying correlation function is assumed

in real space.

Which value does the k-vector of the first case take to obtain identical results?

� a) k = ∞ � b) k = ξ−1
� c) k = 0

In the structure factor of spherical colloids, the double radius 2R occurs for the simplest ap-

proximation in the effective concentration and the Q-dependent term K(Q, 2R) (see eq. 5.56).

Why does the double radius occur in this description?

� a) Here, only two colloids are considered. For three colloids 3R would appear.

� b) The closest distance of two colloids is 2R.

� c) The square of the amplitude arising in the intensity causes effectively a factor 2.

The Porod behaviour (see eq. 5.34) and the high-Q limit of a polymer (see eq. 5.50) are simple

power laws Qα with α being −4 and −2 in the first and second case.

What do these power laws indicate?

� a) The exponent indicates how sharp the effective particle is defined at its surface.

� b) The dimensionality (3 for sphere, 1 for polymer) plus 1 directly determines α.

� c) Self-similarity. The structure looks on different length scales identical.
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E5.4 Contrast Variation Experiment on Micelles

The three symbols �, ◦, and � indicate the characteristic small angle scattering of spheri-

cal polymer micelles under different important contrast conditions. There are three conditions

called: shell contrast, core contrast and zero average contrast. The shell contrast highlights

the shell of the micelle (being hydrogenated) while the rest is deuterated. The core contrast

highlights the core of the micelle (being hydrogenated) while the rest is deuterated. For the zero

average contrast the average contrast of the deuterated core and the hydrogenated shell matches

with the solvent.

Which condition can be connected to which symbol (or curve)?

� a) �-shell ◦-core �-zero � b) ◦-shell �-core �-zero � c) �-shell �-core ◦-zero

Why?

E5.5 Spherical Form Factor

In microemulsions the topology of spherical droplets is quite frequent. We would like to assume

a deuterated oil droplet of radius R surrounded by the protonated surfactant film and normal

water (H2O). For simplicity, the oil is assumed to be homogenous with a scattering length

density ρ, and the surrounding materials are assumed to have an average zero scattering length

density (which is nearly true). So the amplitude ρ(Q) is calculated by the Fourier transform

of a homogenous sphere. The macroscopic scattering cross section is normalized to the overall

volume.

Calculate the three dimensional Fourier transformation of a solid sphere. Use spherical coordi-

nates, and integrate in the order φ, ϑ, r. What is the simplicity of the integral over φ? How can

the integral over ϑ be simplified (what is the variable X)? What does the kernel of the integral

mean before the integration over r is performed? How would the integral be generalized for

a scattering length density profile ρ(r) with spherical symmetry? What is the meaning of the

term sin(Qr)/(Qr)?
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The formulas 5.28 to 5.33 already show the solution of the problem. Nonetheless, the student

should be motivated to rationalize each step of the derivation. The highly motivated student

might also derive the sphere scattering from eq. 5.22.

I thank my family and all my colleagues for supporting this .
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6.1 Introduction 
Macromolecules are an integral part of Soft and Living Matter. In Living Matter, 
macromolecule-based functional systems are built from molecular units consisting of 
only a few different building blocks: amino acids are assembled into proteins, which in 
turn function individually, or cooperatively in nano- and micro-machines. The secret of 
success is the intrinsic hierarchical structuring over a large range of length scales. In 
Soft Matter, synthetic macromolecules are of much simpler structure. Nevertheless, 
there is a vast variety of material properties that can be realized with synthetic 
macromolecules. Theoretical concepts have been developed, and are essential for the 
rational design of soft materials, that are of paramount importance in a multitude of 
technical applications. 

Synthetic polymers have crucially changed daily life since its development in the 
1930ies. Modern polymers can be divided into two major classes (i) commodity 
polymers for daily life use which are produced in millions of tons per year and (ii) 
specialty polymers for high-performance applications which are niche products but 
highly profitable [1]. Typical commodity polymers are polyolefines like polyethylene 
(PE) or polypropylene (PP) used for packaging, films etc. Examples for specialty 
polymers are polydimethylsiloxane (PDMS) derivatives used in dental implants. 

Currently, both classes of polymers in use are based on petrochemical feedstock, thus 
considered not “carbon-neutral” and “environment-friendly”. Due to changing global 
conditions and growing concerns about the mounting disposal problems, research on 
sustainable commodity polymers has been intensified during the last decade, both on the 
level of fundamental research and applied science [2]. To find the required balance 
between material properties and bioavailability/-degradability is the key for establishing 
sustainable polymers on a large scale industrial level and therefore a major challenge of 
future polymer science. 

The development of new biomimetic specialty polymers is another major challenge. 
Biopolymers, like spider silk, are high-performance materials with material properties 
superior to any synthetic polymer. To transfer these properties to artificial biomimetic 
polymers, one has to fully understand, on the molecular level, the structure-property-
relationships and enzymatic synthesis processes in living organisms. 

In this lecture some recent applications of neutron scattering methods to characterize 
quantitatively on a microscopic length scale structure and interactions of synthetic 
macromolecules and its hierarchical structuring are given. A more comprehensive 
overview is found e.g. in [3]. 

6.2 Polymers in dilute solution 
6.2.1 Linear polymers 
A linear polymer is a sequence of molecular repetition units, the monomers, 
continuously linked by covalent bonds. The degree of polymerisation, Dp, i.e. the 
number of monomers constituting the polymer, the (weight average) molecular weight, 
Mw=Dp Mm, with Mm the molecular weight of the monomer, and the radius of gyration, 

, are the most important structural parameters of a polymer. On a coarse 
grained level, structural details arising from the explicit chemical composition of the 

�
wg MR ~
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polymer like bond lengths and angles can be neglected and what remains is the so called 
scaling relation given above that links molecular weight to size and which is generally 
valid for all polymers [4]. The numerical value of the scaling exponent � depends on the 
strength of interactions. In the so called �-state, when monomer-monomer interactions 
are as strong as monomer solvent interactions, the polymer structure can be described 
by a random walk, therefore Gaussian chain statistics are valid and �=1/2, see Chapter 
5.3.3. When monomer solvent interactions are stronger than monomer-monomer 
interactions, so called excluded volume forces are effective, the polymer chain is 
“swollen” and �=3/5. 

Here one has to emphasize that synthetic polymers, unlike biopolymers, always have an 
intrinsic polydispersity, i.e. there is a distribution of molecular weights. The 
polydispersity is given usually in terms of Mw/Mn, with Mn the number average 
molecular weight. Its precise number depends on the polymerisation reaction by which 
the polymer was synthesized. For a (theoretical) monodisperse polymer Mw/Mn=1 holds, 
the most monodisperse synthetic polymers with Mw/Mn=1.02 can be synthesized by 
“living” anionic polymerisation, classical polycondensation yields Mw/Mn =2, radical 
polymerisation can even result in extremely broad distributions, Mw/Mn >10. 

Although in technical applications polymers are mostly used as bulk materials, polymer 
characterisation is usually performed in (dilute) solution. Historically, light scattering 
was the method of choice to characterise synthetic polymers [5], but nowadays size 
exclusion chromatography (SEC), also called gel permeation chromatography (GPC), is 
the standard technique to characterize routinely polymers [6]. 

Neutron scattering, due do its limited accessibility and high experimental costs, usually 
is found in basic academic research, but here it played a crucial role in confirming 
fundamental theoretical concepts of polymers [3]. 

As explained in detail in Chapter 5.3.4 the measured intensity I(Q)=P(Q) S(Q) is in first 
approximation a product of particle form factor P(Q) given by the intramolecular 
structure, i.e. the particle shape, and structure factor S(Q) given by the intermolecular 
structure arising due to particle-particle interactions. To characterize properly the 
intramolecular form factor P(Q) one has therefore to investigate a concentration series 
in the dilute regime and extrapolate finally to infinite dilution. The form factor of a 
Gaussian chain (Debeye function) has been derived in Chapter 5.3.3. 

Particle-particle interactions as seen in S(Q) are weak in the dilute regime, but still 
effective, so that one can apply the virial expansion. 

�""�� 00 22/1)0(/ AVQI w  (6.1)

Here 05 is the polymer volume fraction and dMV ww � is the molecular volume and d 
the polymer density in [g/cm3]. The value of the second virial coefficient A2 directly 
reflects particle-particle interactions, i.e. a positive A2 is found for repulsive interactions 
(good solvent), a negative one for attractive interactions (marginal/bad solvent) and 
finally A2=0 characterizes no interactions (�-solvent). Without any data fitting this 
distinction can easily be made by plotting the intensity data I(Q) of a concentration 
series normalized to the corresponding volume fractions I(Q)/ 0 (Since scattering arises 
due to an exchange of a volume element of solvent by a volume element of polymer 
with different scattering contrast, the natural concentration unit for any scattering 
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experiment should be volume fraction 0). This is schematically shown in Figure 6.1. If 
no particle-particle interactions are present all data for all Q-vectors exactly fall on top 
of each other. 
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Fig. 6.1: Calculated scattering intensities in absolute units I(Q) (left) and normalized to 

polymer volume fraction I(Q)/50 (right) for solutions of a linear polymer at 
different volume fractions given in percent, see legends, assuming a virial 
ansatz for particle interactions. From top to bottom: No interactions A2=0 (� 
solvent, repulsive interactions A2>0 good solvent, attractive interactions A2<0 
marginal or bad solvent). 

 

Irrespective what kind of interactions are present this also holds for high Q-vectors, 
since high Q-vectors mean small length scales and the local (intramolecular) structure is 
not affected by particle-particle interaction (S(Q)=1). In contrary, at low Q-vectors there 
are crucial differences between the individual concentrations in this representation. For 
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repulsive interactions the forward scattering is reduced by S(Q) therefore the lowest 
concentration shows the highest normalized intensity. For attractive interactions, on the 
other hand, the forward scattering is increased by S(Q), therefore the lowest 
concentration shows the lowest normalized intensity. This sequence can be easily 
understood, because attractive interactions finally result in clustering of the individual 
particles. 

For more details about synthesis and characterisation of macromolecules the interested 
reader is referred to standard textbooks e.g. [7][8]. 

6.2.2 Branched polymers 
Branching crucially influences the mechanical properties of polymers therefore 
characterisation and control of branching reactions during polymerisation processes are 
of vital interest not only for polymer industry to tune semi-empirically material 
properties, but also for fundamental research to derive a proper quantitative structure 
property relationship. 

The simplest branched polymer is a regular star polymer, where f arms, each of same 
molecular weight Mw,arm , are emanating from a microscopic central branch point, the 
star core. Experimentally, such regular star polymers are nowadays most precisely 
realized by using chlorosilane dendrimers as branch points. The arms forming the star 
corona or shell are grafted to the dendrimer core by “living” anionic polymerisation [9]. 
The precise control of the dendrimer generation is reflected in the precise functionality 
of the final star polymer so that functionalities as high as f=128 can be achieved. 
However, with increasing functionality there is a polydispersity in functionality since 
the last arms are extremely difficult to graft since they have to diffuse through the 
already very crowded star polymer corona to react at the star core [10]. 

a) b)

c)

Fig. 6.2:Schematic illustration of different polymer architectures: a) linear 
homopolymer, b) linear block copolymer, c) regular mikto-arm star polymer 
(f=4), d) regular star polymer(f=8), and e) comb polymer. 

 

The form factor of a regular star polymer with Gaussian chain statistics has been 
derived by Benoit already in 1953 [11]. 

e)

d)
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The overall size of the star polymer Rg,star is related to the size of the individual arm by 

armgstarg R
f

fR ,,
)23( �

� . 

There is no rigorous analytical formula for a star polymer with swollen chain statistics, 
but experimental data for star polymers in a good solvent can be nicely described either 
by the Dozier function [12] or the approach derived by Beaucage [13]. His equation can 
be viewed as a "universal form factor" for an arbitrary mass fractal that can also be 
applied to many other polymeric systems: 

P

g Q
BRQGQP ��

�

�
��
�

�
"��� P

1)3/exp()( 22

 
(6.3)

with Q* = Q/[erf(QkRg/ 6 )]3. Here erf is the error function and G and B are 
amplitudes, which for mass fractals can be related to each other by  
(polymeric constraint). P is the fractal dimension of the internal substructure, k an 
empirical constant found to be � 1.06 and � is the Gamma function. The fractal 
dimension is related to the scaling exponent by P=1/�. The Beaucage expression can be 
nicely extended to describe hierarchically structures over multiple levels i 

 where Pi(Q) are given by Equation (6.3). 

)(/ PRPGB P
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Fig. 6.3: shows form factors obtained for polybutadiene (PB) star polymers with 
varying functionality f but same Rg�50nm in d-cis-decalin.  
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Fig. 6.3: SANS intensity I(Q) normalized by volume fraction 055for regular 

polybutadiene star polymers with varying functionality f but same radius of 
gyration Rg
50nm. The asymptotic power law observed at high scattering 
vectors I~Q-5/3 clearly indicates excluded volume interactions relevant in a 
good solvent , i.e. swollen chain statistics; figure taken from [14]. 
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At low Q-vectors, Q � 8×10�3 Å�1, data could be modelled using the Benoit form factor, 
Equation (6.2) for a Gaussian star, which gives the explicit dependence on functionality 
f. For describing the complete data sets we used the Beaucage form factor, Equation 
(6.3), which describes also the observed power law at high Q-vectors. One should note 
that this power law extends over more than one order of magnitude in Q and starts at the 
same Q-value of � 8×10�3 Å�1 for all f due to the same Rg. The observed power law 
slope of I(Q) ~ Q�5/3 reflects the good solvent quality of cis-decaline for polybutadiene 
and decreases slightly with increasing f , indicating increasing arm stretching due to the 
increasing monomer density in the star corona. 

The effect of branching becomes easily visible by using a so called Kratky 
representation, I(Q) Q2 vs. Q. Whereas a linear polymer with Gaussian chain statistics 
reaches monotonically an asymptotic plateau, any branched structure shows a 
maximum. For the here discussed regular star polymer the height quantitatively depends 
on the arm number or functionality f, see Fig. 6.4: 
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Fig. 6.4: Kratky representation I(Q) Q2 vs. Q for same data as in Fig. 6.3. The 

increasing peak height with increasing functionality f due to branching 
becomes clearly visible as well as the discrepancy between experimental data 
(symbols) and Beaucage function used to model the data. The fact that no 
asymptotic plateau is observed results from the excluded volume interactions 
relevant in a good solvent, i.e. swollen chain statistics. 

 
6.2.3 In-situ experiments during polymerisation 
For understanding and controlling any chemical reaction a detailed understanding of 
reaction mechanism, type and role of intermediate species as well as reaction kinetics 
are prerequisite. How the microscopic structure of a growing polymer chain is evolving 
in the different steps of polymerisation reactions has to be resolved by non-invasive, 
real-time measurements. The ideal tool is small angle neutron scattering (SANS), since 
the microscopic structure of polymer-based materials can be resolved on a micrometer-
to- nanometer-level by modern neutron scattering techniques. In addition, contrast 
variation, i.e. H/D exchange, can even “stain” certain parts of the polymers giving 
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access to unprecedented structural information. So neutron scattering is a unique and 
outstanding technique to investigate polymerising systems in real-time, in particular 
since new, more powerful neutron sources became available worldwide (FRM-2, SNS, 
J-PARC). But for a complete description of the polymerisation process additional 
information in terms of reaction kinetics etc. are prerequisite. Thus, in-situ SANS 
experiments have to be supported by complementary methods like NMR, SEC, UV/VIS 
and IR spectroscopy, favourably also in real-time mode. 
Recently we investigated reaction mechanism and kinetics of different polymerisation 
techniques like “living” anionic polymerisation [15] or post-metallocene catalyzed 
olefin polymerisation [16] by such an in-situ multi technique approach. Fig. 6.5: shows 
time resolved SANS intensities I(Q) in absolute units obtained during the 
polymerisation of 1-octene by a pyridylamidohafnium catalyst in toluene at 20°C. 
Experiments have been performed using the KWS-1 instruments at the former FRJ-2 
reactor in Jülich which allowed a temporal resolution of about several minutes.  
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Fig. 6.5:Time resolved SANS intensities I(Q) in absolute units obtained during the 

polymerisation of 1-octene by a pyridylamidohafnium catalyst in toluene at 
20°C; figure taken from [16]. 

Whereas the monomer solution shows a Q-independent intensity over the whole 
accessible SANS Q-range typical for small molecules (“incoherent scatterers”), after 4 
minutes a polymer is already formed and the Q-dependence of the intensity can be 
described by a Beaucage form factor, Equation (6.3). With ongoing polymerisation, 
increasing polymerisation time t the general shape of I(Q) does not change any further, 
only the forward scattering I(Q=0) is increasing due to the increasing molecular weight 
and concentration of the growing polymer chain. Finally, the polymerisation is almost 
finished after half an hour as can be seen by comparison with the terminated polymer. A 
detailed quantitative analysis of I(Q,t) reveals that during this type of polymerisation 
reaction no aggregation phenomena of the growing polymer chain are relevant. Similar 
experiments at high flux sources allow today temporal resolutions smaller than 1 second 
if experiments are repetitively performed using a stopped flow mixer. 
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6.3 Block copolymer Micelles 
When amphiphilic block copolymers are dissolved in a selective solvent, i.e. a solvent 
which is good for one block but a precipitant for the other, they spontaneously self-
assemble into supramolecular aggregates known as micelles, in which the insoluble 
block forms the inner part or core, whereas the soluble block forms a solvent-rich shell 
or corona. The general behaviour of block copolymers in selective solvents has been 
subject of copious theoretical and experimental studies during the past decades. They 
are reviewed in several books [17] [18] and review articles [19][20] related to this topic. 
Extensive studies demonstrated that the micellar morphology can be tuned (going from 
spheres, cylinders, worms and vesicles) by varying the block-copolymer molecular 
weight, the chemical nature and the ratio of the blocks. One of the most extensively 
studied block-copolymers is poly(butadiene-ethylene oxide) (PB-PEO). As a function of 
the hydrophilic block length (in term of PEO weight fraction wPEO) spherical micelles 
(wPEO >0.6), worm-like micelles, WLM (0.47 KwPEO K 0.59) or bilayers (wPEO <0.47) 
are formed. Different theoretical studies contributed to define the scaling laws for the 
parameters of equilibrium structures. Among them, a quantitative theory defining the 
thermodynamic stability of different morphologies in selective solvents has been 
recently developed [21]. The theory expresses the free energy contributions of the core, 
the corona and the interface as a function of the blocks structural parameters and the 
interfacial tension between the solvent and the insoluble block for different micellar 
morphologies. Solvent selectivity can be more easily tuned than the above mentioned 
parameters (molecular weight, block ratio etc) and moreover in a continuous way by 
varying the solvent composition. Therefore solvent composition is a very natural and 
easy parameter to control the micellar structures. The change in the morphology of the 
self-assembled structures can be attributed to a change of solvent selectivity, which 
influences the different energy contributions responsible for the morphology: core-chain 
stretching, corona-chain repulsion and interfacial tension between the core and the 
solution.  
The interest is to relate changes on the smallest relevant length scale, i.e. diameter and 
aggregation number per unit length, density profile in the corona, to changes in the 
macroscopic structure, i.e. the contour and persistence length of wormlike micelles and 
the transition from wormlike-to-spherical micelles etc. This molecular level 
understanding can help to elucidate the mechanisms involved in non equilibrium 
conditions. Besides, it is expected that these quantities have a pronounced effect on the 
rheological behavior of the systems, and as such solvent composition could be used to 
tune the flow properties of micellar solutions. 
 
6.3.1 Form factor 
Figure 6.6 (left) shows the partial form factor normalized to volume fraction �, P(Q)/�, 
in shell and core contrast for micelles formed by a symmetric amphiphilic block 
copolymer poly(ethylene-alt-propylene)–poly(ethylene oxide), h-PEP4-dh-PEO4 (the 
numbers denote the block molecular weight in kg/mol) [22]. Already, a qualitative 
discussion of the data reveals important features of the micellar architecture. First, the 
forward scatterings, I (Q = 0), in the two contrasts are the same. This is expected for 
micelles formed by a symmetric diblock copolymer in shell and core contrast (we 
should note that the two blocks have the same molar volume Vw) and is in this sense a 
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proof of the applied contrast conditions. This means that the scattering profiles shown in 
figure 2 are directly reflecting pure shell and core properties. Second, both scattering 
profiles show well defined maxima and minima, up to 4 in core contrast, which arise 
from sharp interfaces typical for a monodisperse, compact particle. Also shown is 
Porod’s law I  Q�4, which describes the limiting envelope of all form factor 
oscillations. (We should note that one has to consider that these oscillations are already 
smeared by the instrumental resolution function, so the data shown offer even more 
confirmation of the strong segregation between the core and corona and the low 
polydispersity of the micelles.) We should emphasize that in core contrast no blob 
scattering is visible [22]. This also corroborates the compact PEP core. A quantitative 
analysis in terms of a core–shell model gave the following micellar parameters: 
aggregation number P = 1600, core radius Rcore = 145 Å and shell radius Rm = 280 Å 
with a polydispersity of �5%. The solvent fraction in the swollen shell is �solv = 60%. 
Figure 6.6 (right) shows the corresponding partial form factor data, P(Q)/�, in shell and 
core contrast for an asymmetric h-PEP1-dh-PEO20. The differences compared to figure 
6.6. (left) are obvious: the difference in forward scattering of the two contrasts is 
reflecting the asymmetry of the block copolymer. Moreover, no maxima or minima are 
visible (also not at high Q in core contrast) and the power law observed in shell contrast 
has a slope of only I  Q�5/3, which is typical for a polymer chain in a good solvent and 
arises from the swelling of the PEO in the shell (blob scattering). A quantitative analysis 
gives the following micellar parameters: aggregation number P = 130, core radius Rcore 
= 34 Å and shell radius Rm = 260 Å. 
 

  
Fig. 6.6:Form factors of block copolymer micelles with varying architecture in core 

(red) and shell contrast(blue). Left symmetric PEP4-PEO;right asymmetric 
PEP1-PEO20, the numbers denote the block molecular weight in kg/mole. 
Figure taken from [22]. 

 
6.3.2 Micellar exchange dynamics 
Polymeric micelles are macromolecular analogues of well-known low-molecular 
surfactant micelles. As a consequence of random stochastic forces, the constituting 
chains will continuously exchange between the micelles. From the theory of Halperin 
and Alexander (HA), this exchange kinetics is expected to be dominated by a simple 
expulsion or insertion mechanism where single chains (unimers) are required to 
overcome a defined potential barrier [23]. Higher order kinetics including fusion and 
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fission is not expected to take place since these mechanisms are neither favored 
energetically nor entropically [24]. Experimentally, relatively few studies have been 
devoted to the exchange kinetics of polymeric micelles in equilibrium. This is most 
likely related to the associated experimental difficulties. Recently, we used a newly 
developed time resolved small angle neutron scattering (TR-SANS) technique [25]. 
This technique is perfectly suited for determination of exchange kinetics in equilibrium 
as, unlike other techniques; virtually no chemical or physical perturbations are imposed 
on the system. The labeling is restricted to a simple hydrogen/deuterium (H=D) 
substitution using fully hydrogenated (h) and fully deuterated (d) polymers with 
identical molar volumes and compositions. By mixing the corresponding H- and D-type 
micelles in a solvent with a scattering length corresponding to the average between the 
two, the kinetics can be determined. The average excess fraction of labeled chains 
residing inside the micelles is then simply proportional to the square root of the excess 
SANS intensity. The corresponding correlation function is given by 

 was measured from a reference sample where the 
polymers have been completely randomized and I(t=0) from the scattering of the 
reservoirs at low concentrations. 
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Fig. 6.7:Left: Schematic illustration of the TR-SANS technique to follow micellar 
exchange kinetics. Right: Corresponding time-resolved SANS data forPEP1-
PEO20 micelles in H2O/DMF 7:3 showing slow exchange (5min, 2h @ 50°C). 

6.3.3 Structure factor 
How the structure factor S(Q) can be derived from the pair correlation function g(r) by 
liquid state theory has been shown in Chapter 5.3.4. g(r) finally results from the 
effective pair potential V(r), which describes the direct interactions between the solute 
only, after eliminating the rapidly moving degrees of freedom of the solvent molecules.  
We recently showed that micelles formed by the amphiphilic block copolymer 
poly(ethylene-alt-propylene)– poly(ethylene oxide) (PEP–PEO) provide an interesting 
system to conveniently tune the ‘softness’ in terms of particle interactions 
(intermolecular softness) and the deformability of the individual particle (intramolecular 
softness). This is achieved by changing the ratio between hydrophobic and hydrophilic 
blocks from symmetric (1:1, Hard Sphere-like) to very asymmetric (1:20, star-like). 
One must emphasize that to approach the star-like regime is not a trivial task. 
Figure 6.6 compares the effective interaction potential for soft colloids to those of the 
limiting cases Gaussian Chain, i.e. no interactions, and Hard Spheres, i.e. infinite 
strength of the potential at contact. The explicit form of V(r) for star polymers, the 
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limiting ultra-soft colloids, was derived by Likos et al. [26] and is explained in detail in 
Appendix 6.1. 

  
Fig. 6.8:Different effective interaction potentials. The one for star polymers, i.e. soft 

colloids, is in-between the two limits Gaussian Chain (left) and Hard Spheres 
(right). 

Figure 6.9 shows the corresponding experimental structure factors S(Q) for Hard Sphere 
and Soft interactions and its comparison with theoretical predictions. 
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Fig. 6.9:Experimental structure factor S(Q) of block copolymer micelles with varying 
architecture obtained by SANS in core contrast (symbols) and the theoretical 
description (lines) resulting from the corresponding interaction potentials: 
Symmetric PEP4-PEO4 / Hard Sphere potential left, asymmetric PEP1-
PEO20/ ultra soft potential right, see text and [22]. 

 

6.4 Soft Colloids 
Soft colloids in general, e.g. polymer-coated silica particles, block copolymer micelles, 
star polymers etc., are hybrids between (linear) polymer chains and (hard sphere) 
colloids. Due to this hybrid nature, soft colloids macroscopically show interesting 
(phase) behaviour resulting from its unique microscopic structure. The combination of 
polymer-like properties, i.e. the formation of (transient) geometric constraints due to 
overlapping polymeric coronas and direct colloidal interactions due to the (hard) core in 
particular affects flow properties and nonequilibrium behaviour of soft colloids. 
Therefore soft colloids are frequently used in many technical applications (paints, 
shampoos, motor oils, polymer nano-composites etc.). 

More recently, the interest of colloid scientists in fundamental science has shifted 
towards the study of soft particles, among which star polymers have emerged as a 
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model system for a wide class of soft spheres. For a star polymer, softness can be 
controlled by varying its number of arms (or functionality f), allowing to bridge the gap 
between linear polymer Gaussian chains (f = 2) and Hard Spheres (f =�). Therefore, star 
polymers feature tuneable softness, which is responsible for the observation of 
anomalous structural behaviour and for the formation of several crystal structures [28]. 
Hence, mixtures of soft particles offer an even higher versatility with respect to their 
hard counterparts, both in terms of structural and rheological properties and of effective 
interactions. Recently, we confirmed experimentally by combining SANS and rheology 
the theoretical phase diagram of soft colloids [29] and mixtures of soft colloids with 
linear polymers [29]. As experimental realization again the previously described PEP-
PEO star-like micelles have been used. Figure 6.10 shows the phase diagram in the 
functionality vs. packing fraction representation. We have to point out that quantitative 
agreement starting from experimental parameters is achieved without any adjustable 
parameter. For this the determination of the interaction length � by SANS in core 
contrast was inevitable. 

 
 
Fig. 6.10: Phase diagram of ultra soft colloids (symbols experiment: �  fluid, �  bcc 

�  amorphous solid;, lines theory). Figure taken from. 

0.0 0.2 0.4

40

60

80

100

120

glass
fcc

bcc

f

S

fluid



6.14  J. Stellbrink 

Appendices 
 

A6.1 The ultra-soft potential (Likos-Potential) 
The effective potential V(r)/kbT between star polymers as a function of functionality f 
and interaction length D was derived by by Likos et al. [26]. The interaction length D is 
the distance between two star centres when the outermost blob overlaps. For larger 
distances two stars interact via a screened Yukawa-type potential whereas at distances 
smaller than D5when there is overlap of the star coronas, the potential has an ultra-soft 
logarithmic form. 

� � � � G H � �

� � � � � �!
!
(

!!
&

$

K��




�
	 ""�

2��"

�
�

�

DD

DDDD

rfrf

r)(rfrff

Tk
rV

b 123

123

21ln18
5

2exp2118
5

)(  (6.4)

 

All numerical factors have been chosen in such a way that the potential as wells as its 
first derivative are smooth at crossover. Figure 6.11 shows the Likos-potential for 
different functionalities. At  the Hard Sphere potential is recovered. ��f
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Fig. 6.11: Effective potential V(r)/kbT between star polymers with varying 

functionality f. 
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Exercises 
E6.1  Contrast or no contrast? 
Due to synthetic (and financial) limitations only protonated material is available for a SANS 
experiment, for both polymer (poly(ethylene propylene), PEP, and solvent dimethyl-
formamide, DMF. 

a) Calculate the contrast factor 
AN

2�E . 

b) What is the necessary molecular weight Mw to achieve a signal-to-background ratio of 5 at 
Q=0 for a given polymer volume fraction 0p =0.01? (Remember: Also the incoherent 
scattering contributes to the background and there is an empirical “rule of thumb” that the 
experimental incoherent scattering is twice the theoretical value due to inelastic and multiple 
scattering!) 

c) At which Q-value the signal vanishes in the background? 

(Assuming good-solvent conditions with a prefactor 0.01 [nm] for the Rg-Mw-relation and 
assuming the Guinier approximation for P(Q)) 

d) For which combination of molecular weight and volume fraction 0p the experiment could 
be performed in the dilute regime, i.e. 0p�0.10*? 

Given are sum formulae and densities 

h-PEP = C5H10, dPEP=0.84g/cm3 

h-DMF = C3H7NO, dPEO=0.95g/cm3 

and coherent and incoherent scattering lengths bcoh and binc in units [cm]: 

C: bcoh =6.65E-13, binc = 0 

H: bcoh =-3.74E-13, binc = 2.53E-12 

D: bcoh =6.67E-13, binc = 4.04E-13 

O: bcoh =5.80E-13, binc = 0 

N: bcoh =9.36E-13, binc = 0 

 

E6.2  Contrast factors for Micelles 
In aqueous solution, the diblock copolymer poly(ethylene propylene-block-ethylene oxide), 
PEP-PEO, forms spherical micelles, with PEP the non-soluble and PEO the soluble block. 
Using SANS combined with contrast variation the micellar structure should be investigated. 
To prepare the corresponding samples the following parameters have to be calculated 
a.) the coherent scattering length densities �PEP and �PEO in units of [cm-2]: 
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Known are the monomer sum formulae and densities 
h-PEP = C5H10, dPEP=0.84g/cm3 
h-PEO = C2H4O, dPEO=1.12g/cm3 
the degree of polymerisation, Dp, of the blocks: 
Dp,PEP = 15 
Dp,PEO = 40 
and the coherent scattering lengths bcoh in units [cm]: 
C=6.65E-13 
H=-3.741E-13 
D=6.671E-13 
O=5.803E-13 
b.) the isotopic solvent mixture (H2O/D2O) that match the scattering length density of either 
PEP and PEO. 
Given: dD2O=1.1g/cm3 

 

E6.3  Aggregation number of micelles 
For the same PEP-PEO micelles as in E6.2, in dilute solution using core contrast, i.e. the 
scattering length density of the solvent is matched to the scattering length density of the 
micellar shell (formed by the soluble block PEO), the first form factor minimum is observed 
at Q=0.12 Å-1. 
Calculate  
a.) the aggregation number Nagg, i.e. the number of diblock copolymers forming a single 
micelle, assuming full segregation, i.e. a non-swollen micellar core. 
b.) How can Nagg derived in this way be cross-checked without performing another 
experiment? 
 

E6.4  Reduced forward scattering (virial expansion) 
For the same PEP-PEO micelles as in E6.2 at finite concentration using core contrast the 
corresponding forward scattering I(Q=0) for volume fractions 01=1x10-3, 02=5x10-3 and 
03=7.5x10-3 assuming a second virial coefficient A2=2x10-4 should be calculated. 
 

E6.5  Peak position in S(Q) 
A solution of compact spherical colloids, R=250Å, with volume fraction 0.25 should be 
characterised by SANS. At which Q-vector do you expect the first peak in the structure factor 
S(Q) to appear? 
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7.2 R. P. Hermann

7.1 Introduction

Among the properties that make neutrons such powerful probes for investigating condensed
matter, the neutron spin and magnetic moment are of essential importance not only for investi-
gating magnetic properties, but also, in a maybe unexpected way, for investigating soft matter.
Interesting consequences that can be used in scattering experiments arise from these two proper-
ties. First, because the neutron has a spin S = ±1/2 and the scattering process is fundamentally
governed by quantum mechanics, the scattering length of a nucleus will in general be depen-
dent on the spin states of both the nucleus and the neutron; the nuclear interaction is thus spin
dependent. Second, because the nucleus possesses a magnetic moment, it will also interact
with magnetic moments in the probed sample or with magnetic fields; modeling this additional
magnetic interaction is thus required for a detailed description. Third, as the neutron spin and
its magnetic moment are tied, we further expect that any magnetic interaction that will influ-
ence the magnetic moment of the neutron will also influence its spin state; manipulation of the
neutron spin with magnetic interactions is thus a powerful technique to add to our toolkit.

The properties of the neutron have been discussed in previous lectures and the aspects relevant
to the present lecture are briefly developed below. The neutron is a particle, a nucleon, with
no electrical charge, and a mass close to that of a proton. Similarly to the proton, the neutron
possesses an internal structure and is comprised of three quarks. This quark structure is uud
and udd, for the proton and neutron, respectively. How the electrical neutrality of a neutron
comes about can be understood from the electrical charges of these quarks, which are 2e/3
and −e/3 for u and d, respectively. The internal structure of the neutron is in principle of no
further practical consequence for scattering applications, except that both the u and d quarks
also possess a spin 1/2. As a consequence, both the neutron and the proton have a non-zero
spin, which can after a lengthy calculation, be shown to be 1/2. Associated with this spin, both
particles also possess a magnetic dipolar spin moment. The natural unit to express this moment
is the nuclear magneton μN = e�

2mp
, where mp is the mass of the proton. Note that this moment

contrasts with the electronic Bohr magneton, μB = e�
2me

, where me is the mass of the electron,
as it is much smaller, μN/μB = me/mp � 1/1836. Exactly as for the electron, there is a
proportionality constant, the g-factor, which relates the magneton to the magnetic moment. For
the electron, this constant ge = 2·(1+1/137+· · · ) is very close to 2, which has as a consequence
that for the electron, with a spin s = 1/2, the magnetic moment μe = ge · s · μB � 1μB. For
the neutron and the proton, these constants are somewhat different, and can also be obtained
from the lengthy calculation related to their internal structure mentioned above. With the spin
S = ±1/2, the moments are:

μp = gp · S · μN � ±2.793μN,

μn = gn · S · μN � ∓1.913μN = ±γnμN.
(7.1)

where γn = −1.913 is the gyromagnetic factor for the neutron. Note that γn is negative,
i.e. the magnetic moment is antiparallel to the spin. The spin and magnetic moment are thus
intrinsically tied to each other, but in fact these properties lead to quite different behavior:
the spin is relevant for the nuclear interaction and scattering of the neutron with other nuclei,
whereas the magnetic moment is relevant for the interaction of the neutron with electronic
magnetic moments in samples and with magnetic fields.

This lecture will give an introduction in the spin dependence of neutron scattering processes.
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The nuclear spin dependent scattering length and how this dependence leads to spin incoher-
ent scattering will first be introduced. Secondly, a first insight into magnetic interactions and
scattering will be given. Thirdly, the different approaches to manipulate the neutron spin and
the polarization of a neutron beam will be reviewed. Finally, some instrumental realizations for
polarized neutron scattering will be presented. At the end of this lecture, understanding how the
spin and magnetic properties of the neutron can be used in order to gain deeper insight in the
materials under study must be achieved, in particular, how the nuclear coherent, spin incoher-
ent, and magnetic scattering contributions can be experimentally separated. The readers should
refer to Refs. [1–6] for more detailed insights and derivations. Essentially the discussion herein
will be restricted to elastic scattering of the neutrons, and inelastic scattering will be mentioned
only briefly when relevant.

7.2 Spin Dependent Interactions

The pseudo-potential for the scattering of a neutron by a single nucleus located at R describes
the interaction with a point-like nucleus and is proporptional to the scattering length, b,

V (r) =
2π�2

m
bδ(r−R). (7.2)

The matrix elements for scattering from the wavevector state |k〉 to 〈k′| with this pseudo-
potential for an ensemble of l nuclei with position Rl and scattering length bl are

〈k′|V |k〉 = 2π�2

m

∑
l

ble
iQRl , (7.3)

and lead to the scattering law, see Chapter 4,

dσ

dΩ
= N

(
b2 − b

2
)
+ b

2∑
ll′

eiQ(Rl−R′
l) (7.4)

where the first term on the right hand side is the isotope incoherent scattering that contain
no phase information and the second term is the coherent scattering that contains the phase
information.

We will now investigate the spin dependent scattering. For this purpose, we first consider a
single isotope, with a nuclear spin I 	= 0. Before the scattering event, the spin of the neutron and
the nucleus are in general randomly distributed. During the scattering process, the spin state J
of the compound system comprised of the neutron and the nucleus must be considered, and there
are (only) two possibilities for this spin state: either J = J+ = I + 1/2 or J = J− = I − 1/2,
the former if the neutron and nuclear spins are parallel, the latter if they are antiparallel. As
usual, the multiplicity for a spin state is 2J +1, and thus the multiplicities are 2I +2 and 2I for
the J+ and J− compound states, respectively. The total number of configurations is the sum of
the multiplicities and is thus 4I +2. Again assuming the statistical equiprobable distribution of
all states, we obtain the probabilities p+ and p− for realizing the J+ and J− compound states:

p+ =
I + 1

2I + 1
, p− =

I

2I + 1
. (7.5)
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Distinguishing these two cases would be pointless if the scattering cross sections, or the scat-
tering length, for both cases were identical. This is however not the case and for all isotopes
with nuclei that have I 	= 0 the scattering length b+ and b− are found to be different [7]. As
a consequence, for any such isotope the average and mean square average scattering lengths, b
and b2 become (see pp. 4.11-4.15):

b = p+b+ + p−b− =
(I + 1)b+ + Ib−

2I + 1
= A,

b2 =
∑

i pib
2
i = p+b2+ + p−b2−.

(7.6)

For the scattering from an ensemble of particles, if this ensemble is comprised of a single isotope
that possess a non-zero nuclear spin, the spin dependent scattering length has to be considered.
The difference between b+ and b− will give rise to a new type of incoherent scattering, namely
spin incoherent scattering, even for an ensemble comprised of a single isotope. This specific
spin incoherent differential scattering cross section is obtained by combining Eqs. 7.4 and 7.6,

dσ

dΩ spin inco
= N

I(I + 1)(b+ − b−)2

(2I + 1)2
= NB2I(I + 1) = Nb2inc, (7.7)

where B = (b+ − b−)/(2I + 1) and we introduce binc the spin incoherent scattering amplitude.
The specific (spin) coherent differential scattering cross section is in contrast,

dσ

dΩ coh
= b

2∑
ll′

eiQ(Rl−R′
l) = A2

∑
ll′

eiQ(Rl−R′
l) = b2coh

∑
ll′

eiQ(Rl−R′
l), (7.8)

where we introduce bcoh the (spin) coherent scattering amplitude. As usual, the total scattering
cross sections are obtained as σcoh = 4πb2coh and σinc = 4πb2inc for the (spin) coherent and spin
incoherent scattering, respectively.

A first simple and important example to consider from the point of view of instrumentation is
the scattering by vanadium. There is two stable vanadium isotopes, 50V, with I=6 and 0.25%
natural abundance, which we neglect in what follows, and 51V, with I=7/2 and 99.75% natural
abundance. For 51V, b+ = 4.93(25) and b− = −7.58(28) fm. The probabilities for the two
cases are p+ = 9/16 and p− = 7/16 and thus, we obtain the scattering lengths bcoh = −0.54
(exact: -0.4) and binc = 6.21 fm (exact: 6.35). The corresponding cross sections are σcoh =
2 fm2 = 0.02 barn, and σinc = 5.07 barn. Bragg scattering from vanadium is hence difficult to
observe, as the incoherent scattering provides a large background. However this large isotropic
background is very useful to calibrate the detector efficiency and solid angle, in particular in
multi detector instruments. A second important example is scattering from hydrogen, which
has been detailed in Chapter 4. Hydrogen has the largest incoherent scattering cross section
of all elements, ∼ 80 barn, and this large cross section can be exploited for spectroscopy in
hydrogen containing materials.

The spin incoherent scattering, exactly as the (spin coherent) isotopically incoherent scattering,
does not contain any phase information. This however does not mean that no useful informa-
tion can be extracted. Incoherent scattering always gives only information about single particle
behavior, i.e. the self-correlation function, see for example Chapter 11.2, and not about specific
arrangement of atoms, i.e. the pair-correlation function. The spin incoherent scattering can thus
be used in order to gain insight for example about diffusion of single atoms, in particular hydro-
gen. A second use is, that in samples that contain both spin incohrent and coherent scattering,
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the spin incoherent scattering can be used as internal calibration for absolute intensity measure-
ments, provided these contributions can be determined separately by polarization analysis, see
below and Section 4.

Summarizing, there is thus two sources for incoherent scattering, namely isotopic and spin
incoherent scattering, and one might wonder why it is important to differentiate them, as both
give rise to isotropic scattering that contains no phase information. A first difference is that it
is possible to reduce or enhance isotopic incoherent scattering by isotopic substitution, whereas
this is impossible for spin incoherent scattering (unless one were able to align all nuclear spins
in the sample which is a daunting but not impossible task [8]). The second difference concerns
the effect of the scattering of a neutron by a nucleus with I 	= 0 on the neutron spin. In order
to investigate this effect we need to consider the scattering amplitude and matrix elements for
spin dependent scattering

A(Q) = 〈k′S ′
z|A+Bσ̂ · Î|kSz〉, (7.9)

with A and B as defined in 7.6 and 7.7, and with σ̂ and Î the neutron and nuclear spin operators.
In what follows, we will not explicitly write out the wave vector dependence of these elements.
We can use the z projected spin states for the neutron, which we write 〈+| and 〈−| without
sacrificing generality. For nuclei with I = 0 we see that A(Q) = 〈S ′

z|b|Sz〉 = b〈S ′
z|Sz〉. Only

the terms with same initial and final neutron spin state are non zero, as 〈+|+〉 = 〈−|−〉 = 1
and 〈+|−〉 = 〈−|+〉 = 0. This is not surprising, considering the conservation of total angular
momentum.

In the general case, I 	= 0, angular momentum can be exchanged between the nucleus and the
neutron, and the non zero matrix elements are

A(Q)NSF = A+BIz for the ++ and -- case,
A(Q)SF = B(Ix + iIy) for the +- and -+ case,

(7.10)

where NSF and SF denote the spin-flip and non spin-flip scattering amplitude, and Ix, Iy, and
Iz are the x, y, and z components of the spin of the nucleus. The derivation of Eq. 7.10 is based
on the Pauli spin matrix algebra used for the neutron spin operator, see Appendix A. Note that a
flip of the neutron spin occurs only if the nuclear spin is not parallel to the neutron spin, which,
as will be discussed later, can be exploited to separate spin incoherent scattering experimentally.

A final question concerns the spin-flip process. As mentioned above, in such a process angular
momentum is exchanged. But is there also an exchange in energy? In general this is not the case
because the nuclear spin states have all the same energy. However, at low temperature and in
some magnetic materials, there might be a splitting in the nuclear spin states through hyperfine
interactions. In this case the spin-flip scattering will involve a small transfer in energy between
the nucleus and the neutron, and inelastic scattering in the μeV range is observed. This provides
an elegant method to measure hyperfine fields [9, 10].

7.3 Magnetic Interactions

We will now consider the interaction of the neutron with magnetic fields and thus also the
magnetic dipolar moments originating from unpaired electronic spins. For this purpose, the
magnetic dipole moment of the neutron μ will be considered. The existence of this purely
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magnetic, i.e. non nuclear, interaction of the neutron is extremely useful both in order to ma-
nipulate the polarization of a neutron beam and in order to determine the magnetic structure of
a material, i.e. the arrangements of the magnetic moments in a sample. Neutron scattering can
thus be used as a microscopic magnetometer, with a resolution comparable to the wavelength,
that reveals, for example, the onset of magnetic order or the distribution of magnetic moments
within nanoparticles.

The dipolar interaction potential of a neutron with the magnetic field is given by VM = −μ ·B
where B is the magnetic induction, generated e.g. by electrons in a sample or by magnetic coils.
The magnetic interaction tends to align the neutron moment within the magnetic induction in
order to minimize the interaction energy. However, we know from classical mechanics that the
magnetic moment is related to L, the angular momentum as μ = γL, where γ is the gyromag-
netic ratio. Thus, the torque G = μ × B, which is equal to the time derivative of the angular
momentum G = L̇, will lead to precession of the angular momentum and of the magnetic
moment and the spin. Accordingly

μ̇ = γμ×B. (7.11)

The gyromagnetic ratio for the neutron, not to be confused with the gyromagnetic factor, is
given by

γ = 2γnμN/� = −1.83 · 108 s−1T−1 (7.12)

or, in cgs units,
γ/2π = −2916Hz/Oe. (7.13)

The Larmor precession rate is given by ω = −γB. Note that in Eq. 7.11, the time derivative
of the moment is always perpendicular to the moment, which indeed indicates a precession, as
only the direction but not the magnitude of the moment changes with time. In contrast, the force
exerted on a dipole is given by F = (μ · ∇)B and is zero if the magnetic field is homogeneous.

In order to establish how the presence of magnetic moments in a sample leads to magnetic
neutron scattering we must now consider the magnetic induction generated by the spin and
orbital moment of an electron, see Fig. 7.1. The dipole field of the electronic spin moment,
μe = −2μB · ŝ, is

BS = ∇×
(
μe ×R

R3

)
(7.14)

Fig. 7.1: Left: electronic dipolar field lines and the corresponding induction, BS , in blue, and
the field lines and induction, BL, associated with the orbital motion, in red. Right: decom-
position of the magnetization vector M in its components parallel and perpendicular to the
scattering vector Q.
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whereas the magnetic induction generated by the electronic current related tothe orbital motion
of the electron is obtained from the Biot and Savard law

BL = −e

c

ve ×R

R3
. (7.15)

The scattering potential to consider is thus

VM = −μ · (BS +BL) = −μ ·
[
∇×

(
μe ×R

R3

)
− e

c

ve ×R

R3

]
. (7.16)

The derivation of the scattering law is quite lengthy and the reader is referred to Ref. [1] for
details. It leads to

dσ

dΩmag
= (γnr0)

2

∣∣∣∣ 1

2μB

〈S ′
z|σ̂ ·M⊥(Q)|Sz〉

∣∣∣∣2 , (7.17)

where r0 is the classical electron radius, and the important quantity to consider is the magneti-
zation, i.e. the density of magnetic moments, in reciprocal space, M(Q), which is obtained as
the Fourier transformation of the magnetization in real space M(R),

M(Q) =

∫ ∞

−∞
M(R)eiQ·RdR. (7.18)

Fig. 7.2: The magnetic field line configuration for M perpendicular, left, and parallel, right, to
the scattering vector Q give rise to constructive and destructive interference, respectively.

According to Eq. 7.17, only the component of the magnetization which is perpendicular to the
scattering vector contributes to the scattering cross section. The geometrical construction in the
right of Fig. 7.1 indicates how this component is obtained as

M⊥ = Q̂×M(Q)× Q̂, (7.19)

where Q̂ = Q/Q is the unitary scattering vector. This a priori somewhat surprising scattering
cross section can be understood as illustrated in Fig. 7.2, because the components of any mag-
netic dipole field parallel to the scattering vector will cancel out. In contrast to spin or isotope
incoherent scattering, the magnetic scattering is fundamentally anisotropic with respect to M,
and only the component perpendicular to Q is observable. Fig. 7.3 beautifully illustrates this.
The intensity is collected on an area detector and is given by the product of the magnetic and
nuclear scattering amplitude. Because the sample was magnetized in the horizontal direction,
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Fig. 7.3: The product of the magnetic and nuclear scattering amplitude was obtained in a
polarized small angle scattering experiment on a collection of magnetized nanoparticles. In the
direction parallel to the sample magnetization the magnetic scattering vanishes. (Adapted from
Ref. [11]; data obtained at the ILL D22 instrument from the (I+-I−) term in a half-polarized
experiment.)

the magnetic scattering vanishes in this direction and intensity is observed only for scattering
vectors that have a vertical component.

According to Eqs. 7.17 and 7.18 it is thus in principle possible to determine the magnetization
M(R) microscopically, which goes beyond the informations that can be obtained by macro-
scopic magnetometry measurements.

Before investigating the detailed consequences of the magnetic scattering, it is important to es-
timate its order of magnitude. If we consider a single unpaired electron with spin s = 1/2 and
thus replace the matrix element in Eq. 7.17 by a 1μB moment, we obtain a scattering length
of γnr0/2 = 2.696 fm and a cross section σmag = 0.91 barn. These values are quite compara-
ble to typical nuclear scattering lengths and cross sections. For x-ray scattering the magnetic
scattering cross section is between 6 and 9 orders of magnitude smaller than the structural or
charge scattering, and although this can be partly mitigated by using resonance scattering tech-
niques, magnetic neutron scattering thus clearly appear at first glance as being at an advantage
for investigating magnetism.

We now need to consider the scattering from an ensemble of atoms, or more precisely, here,
only their unpaired electrons. First, we neglect the orbital moment (L = 0) and consider pure
spin scattering such as for spherically symmetric ions, Fe3+, Mn2+, or ions with fully quenched
orbital moment. Ignoring itinerant electrons, we simplify further to an ionic crystal where the
electrons are in direct vicinity of the atoms and model these atoms as illustrated in Fig. 7.4. The
spin magnetization, i.e. the spin moment density, is

M(R) = −2μB · ŝ(R) = −2μB

∑
ik

δ (R− rik) · ŝik. (7.20)

where ŝik is the spin operator of the kth electron of the ith atom, located at rik in the coordinate
system, and at tik with respect to the nucleus. The Fourier transform of the magnetization is

M(Q) = −2μB

∑
ik

eik·rik · ŝik = −2μB

∑
i

eiQ·Ri

∑
k

eiQ·tik · ŝik, (7.21)

Because the electrons are described by a probability density, the expectation value for the quan-
tum mechanical state must be considered, as well as an averaging over the thermodynamic



Spin Dependent and Magnetic Scattering 7.9

Fig. 7.4: The electrons of atom i are located around its position Ri and contribute to the total
spin ŝi.

ensemble representative for the sample. Thus, the spin density, ρs(R), must be Fourier trans-
formed and the magnetic (spin) from factor fm(Q) is obtained as fm(Q) =

∫
atom

ρs(R)eiQ·RdR
and the magnetization is

Ms(Q) = −2μB · fm(Q) ·
∑
i

eiQ·Ri · 〈ŝi〉 (7.22)

where we again simplified and considered a single type of atoms in order to factorize the form
factor.

Finally, using Eq. 7.17 the differential cross section is given by

dσ

dΩmag
= (γnr0)

2

∣∣∣∣∣fm(Q)
∑
i

〈ŝi⊥〉eiQ·Ri

∣∣∣∣∣
2

. (7.23)

In sharp contrast with nuclear scattering, magnetic neutron scattering depends on a form factor
in a similar way than for x-ray scattering. This form factor comes about because the scattering
no longer occurs on a point-like nucleus but on an extended electronic (spin) cloud, and the
larger this cloud is, the faster the form factor drops in reciprocal space. The form factor thus
reveals the distribution of the spin and orbital magnetization. Because the unpaired electrons
are typically in the outer electronic shells, such as the 3d shell for the first row of transition
metal or the 4f shell for the rare earth elements, the magnetic form factor drops faster than for
the whole electronic cloud as seen by x-ray scattering, see Fig. 7.5. If an orbital moment is
present the magnetic form factor is significantly more complicated, see Appendix B.

Exactly as for spin dependent scattering in the previous section, the spin of the neutron explicitly
enters the magnetic scattering cross section. It is thus also important to establish how angular
momentum can be exchanged between the sample and the neutron through magnetic scattering,
i.e. understand in what conditions the spin of the neutron is flipped by magnetic interactions.
For this purpose we consider the magnetic scattering amplitude:

A(Q) = 〈S ′
z| −

γnr0
2μB

σ̂ ·M⊥(Q)|Sz〉 = −γnr0
2μB

∑
α

〈S ′
z|σ̂α|Sz〉M⊥α(Q), (7.24)

where the sum over α stands for the x, y, and z directions, and σ̂α are the Pauli matrices,
see Appendix A. Considering all possibilities for the neutron spin state before and after the
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Fig. 7.5: The form factor of Cr metal for nuclear, spin moment, and orbital moment neutron
scattering, and for x-ray charge scattering, adapted from Ref. [12] and of Mn2+ ions in MnF2

adapted from Ref. [2]. Curves and points indicate theory and experiment, respectively.

scattering process, and by decomposing M⊥(Q) in its components we obtain

A(Q) = −γnr0
2μB

·

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

M⊥Q,z

−M⊥Q,z

M⊥Q,x − iM⊥Q,y

M⊥Q,x + iM⊥Q,y

for the ++ NSF case,
for the -- NSF case,
for the +- SF case,
for the -+ SF case.

(7.25)

Note that exactly as for spin incoherent scattering, a flip of the neutron spin occurs only if there
is a component of M⊥Q which is not parallel to the neutron spin. Again, as will be discussed
later, this can be exploited in order to separate magnetic scattering experimentally. A simple,
interesting, and important case is achieved when the neutron spin is parallel to the scattering
vector: in this case M⊥Q is always perpendicular to the spin, and thus all magnetic scattering
will involve a spin flip.

The total scattering amplitude A(Q) thus consist of two parts, the nuclear and the magnetic
scattering and can be simply written as

A(Q) = N(Q) + σ̂ ·M⊥(Q) (7.26)

where N(Q) is the nuclear scattering amplitude and contains the nuclear coherent, the isotope
incoherent, and the spin incoherent part. The derivation of the resulting scattering cross sections
in the general case of a polarized neutron beam is given in Appendix C.

A final question concerns the spin-flip process, and again, in such a process angular momentum
is exchanged and potentially there is also an exchange in energy. In ordered magnetic materials,
whenever the neutron undergoes a spin-flip, ΔS = ∓1, there must also be a change in the
total electronic angular momentum, J , given by ΔJ = ±1, which typically creates a magnetic
excitation, a so called magnon. Inelastic magnetic scattering can thus be used in order to map
out the spectrum of magnetic excitations. In paramagnets a similar process is possible, but the
excitations are not well defined in energy and the spectrum is strongly broadened out. Generally
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speaking, inelastic magnetic scattering will reveal any magnetic fluctuation perpendicular to the
scattering vector.

7.4 Polarization and Separation Rules

We have seen in the two previous sections that both spin incoherent and magnetic scattering can
lead specifically to a flip of the neutron spin upon scattering. It is possible to take advantage
of this specificity if this spin flip process can be experimentally measured. In order to do so,
devices are required to detect and manipulate the neutron spin. For a schematic instrument, this
is solved by measuring the polarization of the neutrons scattered by the sample impinged upon
by an initially polarized neutron beam. An example of such instrument is given in Fig. 7.6.

The polarization of a neutron beam, P, is defined by the expectation value of the neutron spin
operator, Ŝ,

P = 〈2Ŝ〉. (7.27)

An equivalent alternative definition is that the polarization, P , with respect to the quantization
axis is given by the number of neutrons with spin up and down states, n↑ and n↓, respectively,
as

P =
n↑ − n↓
n↑ + n↓

. (7.28)
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Fig. 7.6: Schematic setup for a triple axis polarized neutron scattering experiment with po-
larization analysis. The field generated by the electromagnet could be used to align a sample
either in a horizontal or vertical magnetic field (Adapted from Ref. [2]).

In order to experimentally realize a polarized neutron beam a polarizing device is required,
as the neutrons extracted from the moderator, see Chapter 2.3, are initially unpolarized, e.g.
P = 0. In analogy with optics, there are two important ways to polarize the beam; either
the neutrons with the ’wrong’ polarization are absorbed, or these neutrons are separated and
directed to another direction. In practice, there are three types of polarizing devices:
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a) filters that absorb the neutrons in one of the spin states and transmit the others. In practice
this can be realized with polarized 3He gas cells, where the nuclear spins are kept aligned. The
absorption cross section is very large for neutrons with the spin anti-parallel to the nuclear spin,
and thus only the neutrons with the spin parallel to the 3He nuclear spins are transmitted.

b) super-mirrors, which show total reflection for one spin state only. These mirrors are realized
as magnetic layered structures, see Chapters 9 and 10.

c) Bragg scattering from a crystal monochromator, e.g. Heusler alloy crystals, where a reflection
is chosen such that the magnetic and nuclear scattering interfere destructively for one spin state
and constructively for the other, see Appendix C.

When constructing a neutron scattering instrument, the choice of the polarizer will depend on
the specific design. Bragg scattering monochromators reach excellent polarization but often
transport only a small wavelength band and divergence of the neutron beam. Super mirrors
achieve excellent polarization in a wider band but perform best only for long wavelength, i.e.
cold neutrons. 3He filters perform very well for thermal neutrons and their efficiency is tunable
by adjusting the pressure in the cell. At the end of the day, however, a compromise must
always be found between the degree of polarization that is required and the intensity of the
neutron beam. As will be discussed below, it is not necessary to have a perfect polarization, as
corrections can be made to account for P < 1.

Having now achieved the polarization process, the beam must be transported to the sample
while preserving the polarization. In principle, establishing a zero field region by screening
any magnetic field disturbance would work, see Fig. 7.9, but in practice, it is customary to use
a magnetic guide field, the field being parallel or antiparallel to P. The field should be fairly
homogeneous in order to avoid precession with unwanted angular components. Such guide
fields are typically weak enough not to modify the sample magnetization, but strong enough,
typically ∼1 mT, to avoid adverse effects from the earth magnetic field or other stray fields.
Depending on whether the polarizer is located far or near from the sample, one would use
polarized neutron guides, adding to the cost of the instrument, or simple guide fields generated
by magnetic coils. The advantage of the former is that the neutrons with the wrong polarization
are absorbed far from the sample and do not contribute to neutron and radiation background.

In order to manipulate the direction of the polarization, as required for measuring polarization
components in different directions, variations of the guide field can be used. If the field changes
slowly, the neutrons, moving with a velocity

v(λ) = 3956m/s · Å/λ, (7.29)

will keep their precession motion along a magnetic field that varies slowly in space. This slow
precession should be smaller than the Larmor precession in the guide field. The slow field
change is used to align the polarization in a particular direction at the sample position. If the
field changes rapidly, the polarization does not follow and the neutrons will start to precess in
the new field. A specific case of interest is when two guide fields have opposite directions, as
can be achieved by separating the fields by strong currents in a metallic sheet. The polarization
that was originally parallel to the first guide field would then end up antiparallel to the second
guide field.

An alternative way for modifying the direction of the polarization is the use of flippers, see Fig.
7.7. The neutrons will start to precess immediately if they are subject to a field (or a field com-
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Fig. 7.7: (a) A neutron spin flipper. Wires are typically Al in order to minimize absorp-
tion. Adapted from Ref. [3]. (b) A set of xyz Helmholtz coils used for adiabatically
guiding the neutron polarization in an arbitrary direction at the sample position [Source:
http://www.serviciencia.es]. (c) Neutrons adiabatically follow a field which rotates by π/2.
B must be sufficient strong so that ω � ωL [3].

ponent) perpendicular to their polarization. By defining a region in space where the neutrons
are subject to a perpendicular field, it is thus possible to have them precess by a defined angle.
One can, for example, use a long rectangular coil, with thickness d to make a homogeneous
field, H = n · I where n is the linear wire density and I the current, parallel to the coil axis
and perpendicular to the neutron polarization. During the time the neutrons spend in the coil,
t = d/v, they precess around this field. A rotation of 180◦ or π radian is realized when

ω · t = −γB · d/v = π. (7.30)

Accordingly for such a π-flipper, by combining Eqs. 7.13, 7.29, and 7.30,

B =
π

d
(m/s · Å/λ)/(2916 · 2πHz/Oe) =

67.83

dλ
cm Å Oe. (7.31)

For a 1 cm coil and a wavelength of 2.2 Å, a field of 30 Oe or 3 mT is thus required for a
rotation of 180◦. It is crucial to note that for a given width of the coil and a given field the π-flip
is perfect only for one particular wavelength, i.e. for a monochromatic beam. Using the same
approach, it is also possible to generate a π/2-flip. After such a flipper the polarization will be
perpendicular to the guide field, and thus precess in a plane perpendicular to the guide field.
Such precession mode can be use for example in spin echo spectrometers, see Fig. 7.12. Spin
flippers can also be build by using radio frequency resonators, where the time dependence of
the fields is the control parameter.

A final element in our schematic instrument is the detector for the polarization of the neutron
beam. Again in analogy to optics, this is easily solved by combining a polarizer, which we sim-
ply call analyzer as it comes second, with a general (unpolarized) detector. Possible physical
realizations are a Heusler alloy crystal that both selects a polarization and deflect the beam to-
wards the detector, see Fig. 7.6, a 3He cell placed in front of the detector, or a set of supermirrors
that only transmits a given polarization, as in Figs. 7.10 and 7.11.
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We now need to link what we have learned about the scattering cross sections with what is
measured in an experiment. The experimentally accessible quantities are the intensities dσ

dΩ

NSF
x,y,z

and dσ
dΩ

SF
x,y,z

, which can be obtained e.g. by using a beam polarized in z direction, passing through
a π-flipper that can be on or off, then having a guide field (slowly) bring the polarization in
either x, y, or z direction at the sample and back to the z direction after the scattering, and
finally measuring the intensity after an analyzer.

For soft matter investigations or when there is no magnetism, two measurements are sufficient:
NSF and SF in one direction. For colinear magnetism, three measurements at least are required,
but often six are done for completeness (SF and NSF in x,y, and z). In the most general case
more terms, up to 18, that involve mixing the initial and final polarization directions can be
obtained (e.g. from z to y), for example by using zero field sample environment [13] or a spin
precession technique [14].

Having established a workable idealized instrument, that allows one to measure the polarization
of the scattered neutrons, we can use the relations Eqs. 7.10 and 7.25 in order to experimentally
separate the different contributions and thus measure the spin incoherent, the coherent (i.e.
isotopically incoherent and nuclear coherent), and the magnetic scattering.

For the spin incoherent scattering, the expectation values and squared expectation values of Ix,
Iy, and Iz are relevant. The nuclear spin orientation is in general random, with two notable
exceptions, namely (dynamic) nuclear polarization [8] at low temperature and polarized 3He
cells, exceptions that we will neglect in what follows. Accordingly, the expectation values for
stochastic nuclear spin orientation are

〈Ix〉 = 〈Iy〉 = 〈Iz〉 = 0, (7.32)

and for the square operators:

〈I2x〉 = 〈I2y 〉 = 〈I2z 〉 =
1

3
〈I(I + 1)〉. (7.33)

By considering separately the case for the z, x, and y nuclear spin orientations, and then sum-
ming up the x and y cases that give rise to spin flip scattering, we obtain that

dσ

dΩ

NSF

spin inco
= 1

3
NB2〈I(I + 1)〉, dσ

dΩ

SF

spin inco
= 2

3
NB2〈I(I + 1)〉. (7.34)

First, we consider the case when there is no magnetic scattering involved, i.e isotropic scatter-
ing from the point of view of polarization. The measurement of dσ

dΩ

NSF
z

and dσ
dΩ

SF
z

is sufficient
(consider that the background has been subtracted). The NSF differential cross section corre-
sponds to the coherent scattering plus one third of the spin incoherent scattering, whereas the
SF differential cross section corresponds to two thirds of the spin incoherent scattering, see Eqs.
7.10 and 7.34. The different contributions can thus be obtained by

dσ

dΩ spin inco
=

3

2

dσ

dΩ

SF

,

dσ

dΩ coh
=

dσ

dΩ

NSF

− 1

2

dσ

dΩ

SF

.

(7.35)
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Second, considering now the possibility for magnetic scattering, it is required to distinguish
the cases where the magnetization is perpendicular and parallel to the scattering vector. We
will chose the coordinates such that the scattering vector is in a horizontal plane and in the x
direction, and the z direction is vertical. Obviously, according to Eq. 7.17, the component of
the sample magnetization parallel to the scattering vector will not contribute to the scattering,
that is, in this case Mx is not accessible. As further simplification we will consider that if the
material is ferromagnetic, a sufficiently strong field is applied in order to saturate the moments
and to remove domain boundaries that would depolarize the beam, and we neglect possible
magnetic chirality.

A first method to determine the magnetic scattering is the so-called ‖-⊥ method. Consider
the spin-flip and non spin-flip intensities for the two cases where the polarization (or the ap-
plied guide field) is first parallel to Q, i.e in x direction and parallel to M⊥(Q), and second
perpendicular to Q and in z direction. The scattering intensities are then

Polarization/Field Spin-flip Non spin-flip

P ‖ x ‖ Q 2
3
dσ
dΩ inc + bg + dσ

dΩ

M⊥
y

mag + dσ
dΩ

M⊥
z

mag
dσ
dΩ coh +

1
3
dσ
dΩ inc + bg

P ‖ z ⊥ Q 2
3
dσ
dΩ inc + bg + dσ

dΩ

M⊥
y

mag
dσ
dΩ coh +

1
3
dσ
dΩ inc + bg + dσ

dΩ

M⊥
z

mag
(7.36)

The z component of the magnetization is thus readily obtained by

dσ

dΩ

M⊥
z

mag
=

dσ

dΩ

NSF

⊥
− dσ

dΩ

NSF

‖
=

dσ

dΩ

SF

‖
− dσ

dΩ

SF

⊥
. (7.37)

where interestingly all contributions that are not of magnetic origin cancel out, as they do not
depend on the direction of the guide field or the neutron polarization [15]. This relation is
particularly useful for single crystals when the sample is placed in the beam with the moments
in z direction, or for powder samples. In powders |Mx| = |My| = |Mz| = 1

3
|M|. Note that the

magnetic scattering intensities are proportional to the square of the M components, and that
in the above derivation we have omitted to explicitly write out the magnetic form factor. The
total paramagnetic magnetic scattering cross section is actually given by σmag = σ

M⊥
y

mag +σ
M⊥

z
mag =

2 · σM⊥
z

mag and not 3 · σM⊥
z

mag , as one component is always hidden. This ‖-⊥ method was developed,
see Fig. 7.13 of Exercise 7.6, by Moon et al. in a seminal paper [2] and used to separate the
paramagnetic scattering of MnF2.

A second method to determine the magnetic scattering is used in the case of multi-detector
instruments where the condition of P ‖ Q cannot be fulfilled simultaneously for all detector
angles. We assume here that P ⊥ Q can be fulfilled by choosing P ‖ z, i.e. all detectors
are in the horizontal scattering plane. An expression similar to Eq. 7.36 can be obtained [16]
for paramagnetic scattering, i.e. with 〈M2

x〉 = 〈M2
y 〉 = 〈M2

z 〉, but requires to measure the
polarization both in the x and y directions with the strict condition that x ⊥ y, so that cos2 α +
sin2 α = 1, where α is the angle between x and Q. Both for the spin-flip and non spin-flip
channel we have

dσ

dΩ⊥
+

dσ

dΩ‖
=

dσ

dΩx
+

dσ

dΩy
. (7.38)
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Fig. 7.8: Dependence of the spin-flip (SF) and non spin-flip (NSF) scattering and the magnetic
scattering upon the initial polarization. If the flipping ratio from a known scatterer, i.e. the
polarization, has been measured it is possible to extrapolate to ideal conditions with P = 1.

Provided the measured intensities have been corrected for background, all contributions can
thus be separated by a set of rules:

dσ

dΩ para
= 2

(
dσ
dΩ

SF
x

+ dσ
dΩ

SF
y

− 2 dσ
dΩ

SF
z

)
= −2

(
dσ
dΩ

NSF
x

+ dσ
dΩ

NSF
y

− 2 dσ
dΩ

NSF
z

)
,

dσ

dΩ inc
= 3

2

(
3 dσ
dΩ

SF
z

− dσ
dΩ

SF
x

− dσ
dΩ

SF
y

)
,

dσ

dΩ coh
= dσ

dΩ

SF
z

− 1
2
dσ
dΩ para − 1

3
dσ
dΩ inc.

(7.39)

All derivations above for the separation rules have assumed that the polarization of the neu-
trons is perfect, which is not the case in practice. The first question that then arises is how to
determine the degree of polarization of a neutron beam, or, more generally, the quality of the en-
semble comprised by the polarizer, flipper, and analyzer. Because coherent scattering is purely
non spin-flip and the ratio of spin-flip to non spin-flip is exactly 2 for purely spin incoherent
scattering the polarization can readily be determined by the flipping ratios, fNSF or fSF, obtained
as the intensity ratios for the flipper off and on setting fNSF = I++/I+− or fSF = I+−/I++.
For purely coherent scattering and perfect polarization fNSF = ∞ and for unpolarized neutrons
fNSF = 1. A recommended and easy exercise is to show that

P =
fNSF − 1

fNSF + 1
, P = 3

fSF − 1

fSF + 1
. (7.40)

It is much more advisable to obtain the polarization from a coherent scatterer than from a spin
incoherent scatterer, because if multiple scattering occurs, multiple spin flip will also occur,
which is more difficult to handle. In order to obtain the flipping ratio for different scattering
angles it is however required to either interpolate between Bragg peaks, or, better, to use a strong
isotopically incoherent scatterer that does not produce spin incoherent scattering, such as ZrTi
alloys (see Exercise 7.5).
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Fig. 7.9: (a,b) The IN12 triple axis spectrometer at ILL, Grenoble. Helmholtz coils or a magnet
can be placed at the sample position. (c) Schematic drawing of Cryopad, a zero-field sample
environment based on superconducting shielding that allows to measure the flipping ratios in
all relative directions of P and P′ .

The second question that arises is how to correct for imperfections in the instrument and the
polarization. This can be done by calibrating with a sample with known flipping ratio, mea-
suring the real flipping ratio and then, by inverting Eq. 7.40 and solving for f(P ). A useful
visualization of the required corrections is given in Fig. 7.8, where the relative non spin-flip and
spin-flip intensities are represented.

7.5 Instrumentation

Armed with a set of relations and devices we can now have a first glance at basic techniques
that provide us insight into the materials under study, as well as some typical instrument designs
that take advantage of polarization analysis.

The probably easiest method for studying magnetic scattering is diffraction of an unpolarized
neutron beam. By measuring the scattering above and below the ordering temperature of the
material, that is in the magnetically ordered and in the paramagnetic state, and building the
difference in the scattering intensities, one can obtain |M⊥,order

Q |2 − |M⊥,para
Q |2, see Appendix C.

Under the assumption that in the ordered state strong magnetic Bragg scattering occurs, whereas
in the paramagnetic state only weak diffuse scattering is observed, the magnetic structure can
in most cases be solved. A minor complication of this technique is that often the nuclear Bragg
scattering is not perfectly subtracted, as the lattice constants might be slightly different in the
ordered and paramagnetic state due to magnetostrictive effects.

A second elegant method is the so-called half polarized experiment, in which a polarized neu-
tron beam is scattered by the sample but the polarization of the scattered neutrons is not ana-
lyzed. By applying a magnetic field parallel and antiparallel to the polarization, it is possible to
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Fig. 7.10: The JCNS diffuse neutron spectrometer DNS with polarization analysis and time of
flight option, at the FRM-II, Munich.

obtain the product of the nuclear and magnetic scattering amplitudes (see details in Appendix C,
Eq. 7.45, by setting P = 1 and P = −1 and building the difference). The purely nuclear scat-
tering can also be obtained by taking into account that the scattering in the direction parallel to
the field is purely nuclear. The method works best if the magnetic moment can be saturated in
field direction. This was illustrated in Fig. 7.3 for a half polarized small angle neutron scattering
experiment on magnetically saturated nanoparticles [11].

A host of other methods exist and require more or less specialized instrumental setups. The
conceptually simplest instrument is the triple axis spectrometer with polarizer and analyzer.
A schematic representation is given in Fig. 7.6. In the basic version, with this instrument it is
possible to measure the scattering intensities for one particular scattering vector. By using a spin
flipper before (or after) the sample the spin-flip and non spin-flip intensities can be recorded.
Further, the background can be efficiently measured by rocking the analyzer crystal by a few
degrees, see for example Fig. 7.13 in Exercise 7.6. Depending on the requirements, a set of
Helmholtz coils, see Fig. 7.7(b,c), can be placed around the sample in order to adiabatically
bring the neutron polarization at the sample from the original direction of the polarizer to either
x, y, or z direction and then back in the direction of the analyzer. Such instruments are very
efficient for precise measurements in small regions of reciprocal space, but the measurement
must be done step by step.

Multi detector instruments are more efficient when large volumes in reciprocal space must be
probed. Examples of such instruments are D7, at the ILL in Grenoble, see Fig. 7.11, or DNS, at
the FRM-II, in Munich, see Fig. 7.10. These instruments feature a bank of detectors for polar-
ization analysis mounted in the horizontal scattering plane. The polarizer and the analyzers are
magnetic multilayers separated by a layer of absorbing material, in which only one polarization
is transported by total reflection. As there is a large number of detectors for polarization analy-
sis, see right panel in Fig. 7.11, large amounts of multilayers had to be produced. A π-flipper
is located in the incident beam between the polarizer and the sample. A particular challenge
is to have a large area with a controlled guide field between the sample and the analyzers. As
for the triple axis instruments, a set of Helmholtz coils can be located at the sample position in
order to measure the spin-flip and non spin-flip scattering in different directions. Both of these
instruments also feature a time-of-flight mode for separating the elastic and inelastic scattering,
however inelastic polarized experiments are time consuming, as they require a factor ∼10 more
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Fig. 7.11: The D7 spectrometer at ILL, Grenoble, and its analyzer bank (top right) [17].

time for the 6 polarization components, and a factor ∼10-50 more due to the chopper duty cycle.
For only two components and H spin incoherent scattering this is however nicely feasible.

Finally, polarized neutrons can also be used in a very clever way in order determine the energy
transferred during the process of neutron scattering, in particular for quasielastic scattering
studies. In general, quasi- or inelastic scattering instruments rely upon a determination of the
wavelength of the neutrons before and after the scattering process. This can be bypassed by
encoding this wavelength on the neutron itself, by using its spin. In such a so called neutron spin
echo experiment, a polychromatic beam obtained by a velocity selector (Δλ/λ ∼ 10 − 20%)
is polarized longitudinally, i.e. the spin is parallel to k. At the entrance of a first magnetic
precession coil with field in z, the neutron spin is flipped perpendicular to k and starts to precess
for a distance l until reaching the sample. The precession rate depends on the field strength and
the number of precession depends on the time spent in the coils, that is, on the neutron velocity
or wavelength.

magnetic field

spin rotation

ππ/2 π/2

neutron spin

π/2
flipper precession 1

π

sample

precession 2 π/2
analyzer

detector

Fig. 7.12: The JCNS J-NSE neutron spin-echo spectrometer at FRM II, left. Diagram of a
neutron spin-echo spectrometer, right.

Neglecting scattering, if after the sample, the neutron travels in an exactly opposite magnetic
field for the same distance l, the spin at the exit of this second magnetic precession coil will be
exactly in the same direction as at the entrance of the first coil. More importantly, all neutrons,
regardless of their wavelength will have recovered the same polarization as initially. Thus, the
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spin polarization produces an echo of the initial state. In practice, in order to avoid regions of
null magnetic field where the beam could get depolarized, the neutron spins are flipped by π
just before the sample and the field in the second coil is in the same direction as in the first.
If elastic scattering occurs, the amplitude of the echo will not be affected; however, if some
neutrons lose energy when scattered, the number of precessions before and after the scattering
will be different, and the amplitude of the echo reduced. The gist of this trick is to use the spin
of the neutron as an internal individual clock. The neutron spin echo technique gives the best
dynamic resolution typically, ∼ 0.1μeV, and with the new JCNS instrument NSE at the SNS
spallation source, measurements with time resolutions between 1 ps (0.7 meV) and 1 μs (0.7
neV) will be possible.

Appendices

A Pauli Spin Operators

The vector spin operator can be represented in terms of its x, y, and z components:

σ̂ = {σ̂x, σ̂y, σ̂z}
where the σ̂α are the Pauli matrices

σ̂x =

(
0 1

1 0

)
σ̂y =

(
0 −i

i 0

)
σ̂z =

(
1 0

0 −1

)
for a spin 1/2 particle, we can use the spin state representations

|+〉 =
(

1

0

)
|−〉 =

(
0

1

)

and accordingly, the algebra for applying the Pauli matrices to these spin states are simply given
by

σ̂x|+〉 = |−〉 σ̂x|−〉 = |+〉
σ̂y|+〉 = i|−〉 σ̂y|−〉 = −i|+〉
σ̂z|+〉 = |+〉 σ̂z|−〉 = −|−〉.

B Combined Spin and Orbital Momentum Form Factor

When the considered ions have an orbital angular momentum next to the spin angular momen-
tum, the cross section is significantly more complicated [1]. We have to consider the total
angular momentum J = L + S and we will assume weak spin-orbit interaction, e.g. the L-S
or Russel-Saunders coupling, which is valid provide the atomic number is not too large. If the
momentum transfer is then small, compared to the size of the Fourier transform of the electron
orbits, a simplified expression is obtained in the dipole approximation

dσ

dΩmag
= (γnr0)

2

∣∣∣∣∣gJ2 fm(Q)
∑
i

〈Ĵi⊥〉eiQ·Ri

∣∣∣∣∣
2

. (7.41)
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where gJ = 3
2
+ S(S+1)−L(L+1)

2J(J+1)
is the Landé g-factor, and the form factor is

fm(Q) = 〈j0(Qr)〉+ C2〈j2(Qr)〉 (7.42)

with C2 =
2
gJ

− 1 and

〈jl(Qr)〉 = 4π

∫ ∞

0

jl(Qr)R2(r)r2dr (7.43)

where the jl(Qr) are the spherical Bessel functions and R(r) the radial density distribution. For
isolated atoms, the functions 〈j0(Q)〉 and 〈j2(Q)〉 have been tabulated [18] and the R(r) have
been determined by Hartree-Fock calculations.

C Scattering Cross Section for Polarized Neutrons

A full derivation of the magnetic scattering of neutrons has been obtained by Blume [5] and
Maleyev [6] and accordingly the scattering process is described by two equations, one for the
scattering cross-section, σ(Q) = σQ, and one for the final polarization, P′:

σQ = σN
Q,coh + σN

isotope inc + σN
spin inc

+ |M⊥
Q|2 +P(N−QM

⊥
Q +M⊥

−QNQ)

+ iP(M⊥
−Q ×M⊥

+Q)

(7.44)

P ′σQ = P(σN
Q,coh + σN

isotope inc)− 1
3
PσN

spin inc

+ M⊥
Q(PM⊥

−Q) +M⊥
−Q(PM⊥

Q)−PM⊥
QM

⊥
−Q

+ i(M⊥
−QNQ −M⊥

QN−Q)×P

+ iM⊥
Q ×M⊥

−Q

+ M⊥
QN−Q +M⊥

−QNQ

(7.45)

where NQ and M⊥
Q stands for the nuclear magnetic scattering amplitudes for a given Q.

For P = 0 only the square of the nuclear and magnetic scattering can be measured, σQ =
|NQ|2 + |M⊥

Q|2 and the other terms do not contribute to the total scattering cross section. In-
terestingly, as indicated by the last term in Eq. 7.45, polarization can be generated in collinear
structures by magnetic scattering through the interference of the nuclear and magnetic terms.
For P = 0, and neglecting chiral terms, we obtain that

P′ =
P′σQ

σQ

=
M⊥

QN−Q +M⊥
−QNQ

|NQ|2 + |M⊥
Q|2

(7.46)

which yields P′ = 1 if NQ = M⊥
Q. Chiral magnetism also can lead to polarization, as indicated

by the next to the last term in Eq. 7.45.
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[12] J. Strempfer, et al., Eur. Phys. J B 14, 63 (2003); J. Strempfer, et al., Physica B 267-268,
56 (1999).

[13] Poole A., J. Phys.: Condens. Matter 19, 452201 (2007).

[14] W. Schweika, Neutron News 16, 14-17 (2005); Physica B-Cond. Matter 335, 157-163
(2003); Journal of Physics Conference Series, PNSXM 2009 211, 012025 (2009)

[15] G. Shirane, et al., Phys. Rev. B 31, 1227 (1985).

[16] O. Schärpf and H. Capellmann, Phys. Stat. Sol. (a) 135, 359 (1993).

[17] J. R. Stewart, J. Appl. Cryst. 42, 69-84 (2009).

[18] E. Prince (Ed.), International Tables for Crystallography, Volume C (International Union
for Crystallography, Chester CH1 2HU, England, 2004).



Spin Dependent and Magnetic Scattering 7.23

Exercises

Exercises marked with * have priority, others are optional.

E7.1 Coherent and incoherent scattering cross section*

The values for coherent and incoherent neutron scattering length and cross section are tabulated
in several references. An excerpt from the ILL Neutron Data Booklet [7] is given below for
several elements and isotopes. Fill in the missing values indicate by XX in the table below
(optional: YY).

Table 7.1: Selected scattering lengths and cross-sections. p: abundance in %; bc,+,−: bound
coherent, spin dependent I+1/2 and I-1/2 scattering lengths, respectively, in fm; σcoh,inc,abs :
coherent, incoherent, and absorption (at 25.3 meV) cross-section in barn.
ZSymbA p I bc b+ b− σcoh σinc σabs

1H -3.7409(11) 1.7568(10) XX 0.3326(7)
1H1 99.885 1/2 -3.7423(12) 10.817(5) -47.420(14) XX XX 0.3326(7)
1H2 0.0149 1 6.674(6) 9.53(3) 0.975(60) XX 2.05(3) 0.000519(7)

21Ti -3.370(13) 1.485(2) 2.87(3) 6.09(13)

25Mn55 100 5/2 -3.750(18) -4.93(46) -1.46(33) YY XX 13.3(2)

27Co59 100 7/2 XX -9.21(10) 3.58(10) XX XX 37.18(6)

28Ni XX 13.3(3) XX YY
28Ni58 67.88 0 14.4(1) 26.1(4) 0 4.6(3)
28Ni60 26.23 0 2.8(1) 0.99(7) 0 2.9(2)
28Ni61 1.19 3/2 7.60(6) YY YY 7.26(11) 1.9(3) 2.5(8)
28Ni62 3.66 0 -8.7(2) 9.5(4) 0 14.5(3)
28Ni64 1.08 0 -0.37(7) 0.017(7) 0 1.52(3)

40Zr 7.16(3) 6.44(5) 0.02(15) 0.185(3)

E7.2 Neutron contrast*

The scattering length averaged over all Zr and Ti isotopes are given in Table 7.1. Zr1−xTix
alloys, with a hexagonal crystalline structure can be prepared for continuous values of x. Which
x would you choose if you had to construct a sample chamber from such an an alloy? Why?
What would be the disadvantage?

E7.3 Precession*

A fully polarized beam of cold neutrons with a wavelength of 5.4 Å enters the primary coil
of a spin echo spectrometer. The coil have a length of 2.2 m, and the 1000 Oe field inside
the coil is along the horizontal flight path. The initial direction of the neutron spins is in the
vertical direction. What is the direction of the neutron spins at the exit of the coil? Spin echo
spectrometers typically work with a 10 % or 20 % bandwidth in Δλ/λ. What polarization of
the neutron beam do you expect at the exit of the coil considering the full bandwidth?
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Fig. 7.13: Polarization analysis of the scattering by MnF2. Note that K stands for Q [Source:
Ref. [2]].

E7.4 Flipping**

A Mezei coil with 1 cm total thickness is used as a spin flipper. The field inside the coil
is perpendicular to both the polarization of the beam and the travel direction of the neutron.
What field would you chose for carrying out a π-flip of the neutron polarization, considering a
monochromatic beam with λ=3.4 Å? Is this solution unique? If not, what solution would you
choose for a neutron bandwidth of 5 %?

E7.5 Flipping ratio and corrections*

Using an ideal Zr1−xTix alloy scatterer with purely isotopic incoherent scattering, the spin-
flip and non-spin-flip intensities, ISF = 1000 and INSF = 19000 counts, respectively, were
determined at Q = 2 Å−1 (the background is subtracted). What is the flipping ratio and what is
the polarization of the neutron beam? What flipping ratio would you obtain using a purely spin
incoherent scatterer (such as, in good approximation, vanadium)? Is it preferable to determine
the flipping ratio with V or with Zr1−xTix? Why?

E7.6 Magnetic scattering***

Determine the relative spin-incoherent, spin-coherent, and magnetic scattering by MnF2 from
the data in Fig. 7.13a . How do you interpret Fig. 7.13d: a) what type of scattering is seen? b)
why does this scattering decrease with increasing angle? c) what information could you extract
from this data?
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8.1 Introduction 
The analysis of crystal structures and magnetic ordering is usually based on diffraction 
phenomena caused by the interaction of matter with x-rays, neutrons or electrons. Even 
though modern electron microscopy (HRTEM) can achieve atomic resolution, more 
detailed and quantitative information on the 3D atomic arrangement in crystals and on 
3D magnetic structures and spin densities requires diffraction methods. In a more 
general nomenclature, diffraction is equivalent to coherent, elastic scattering. The basic 
theory of diffraction used for structural analysis (the so called kinematical theory) is 
similar for all types of radiation. Due to the different properties of x-rays, neutrons and 
electrons and their specific interaction with matter, complementary information is 
obtained from experiments with different types of radiation. 

Considering only x-rays and thermal neutrons one finds that their wavelengths are 
similar (0.5 Å < B < 2.4 Å) but they are scattered very differently by matter: While the 
electromagnetic x-radiation is scattered from the electrons and yields the total electron 
density distribution in the crystal, the nuclear scattering of neutrons is sensitive to the 
density distribution of the nuclei and the magnetic neutron scattering probes the 
magnetisation density of unpaired electrons. 

x-ray diffraction using conventional laboratory equipment and/or synchrotron 
installations is the most frequently used method for structure analysis. Neutrons are, 
however, indispensable in a number of applications. The purpose of this chapter is to 
discuss a few typical examples of structural analysis, for which, instead of or 
complementary to x-rays, neutrons are required to solve structural problems.  

 

8.2 Diffraction Contrast Variation 
 
A great advantage of neutrons over x-rays in the context of structural analysis is the 
very much different variation of the scattering length of atoms within the periodic 
system of the elements: The contrast in conventional x-ray diffraction is directly related 
to the ratio of the number of electrons Zj of the different atoms or ions j involved. The 
atomic scattering factor fj in the structure-factor formula, which represents the Fourier 
transform of the atomic electron density distribution, is proportional to Zj (fj = Zj for 
sin�JB = 0). Standard x-ray techniques can hardly differentiate between atoms/ions with 
a similar number of electrons (like Si and Al or Cr and Mn). Even if the atoms are fully 
ordered on different sites, x-ray diffraction just ‘sees’ the average structure.  
For neutrons the atomic scattering factor fj is replaced by the nuclear scattering length 
(or coherent scattering amplitude) bj, which is of the same order of magnitude for all 
nuclei but varies from nucleus to nucleus in a non-systematic way. bj values can be 
either positive or negative and depend on the isotopes and nuclear spin states of the 
element j (see chapter 4). 
 
Crystal structure and site occupation of (Mn1-xCrx)1+4Sb.

As an example of contrast variation, the combination of x-ray and neutron diffraction 
information is demonstrated for the intermetallic compounds (Mn1-xCrx)1+4Sb, with 
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05K5x K 1 [1]. This solid solution system is interesting for its magnetic properties: One 
end member of the solid solution series (Mn1+4Sb) shows isotropic ferromagnetic 
behaviour while the other one (Cr1+4Sb) is a uniaxial antiferromagnet. Intermediate 
compositions are characterized by competing magnetic interactions leading to a 
complex magnetic phase diagram. The crystal structure is closely related to the 
hexagonal NiAs-type structure (space group: P63/mmc) with some additional partial 
occupation (K5TU14) of the interstitial site 2(d) (see Fig. 8.1): 

 
         
Fig. 8.1: Left: NiAs structure, right: (Mn1-xCrx)1+4Sb structure  
 

Conventional x-ray diffraction can hardly differentiate between chromium (ZCr= 24) 
and manganese (ZMn= 25) but still yields information on the overall occupation 
probabilities by (Mn,Cr) for site 2(a) (denoted as a) and site 2(d) (denoted as d). The Sb 
position is assumed to be fully occupied, thus serving as an internal standard for the 
scattering power. 
The compound formula can now be reformulated site-specifically as: 
 
     (Mn1-y Cry)a (Mn1-z Crz)d Sb 
        site 2(a)         site 2(d) 
 
corresponding to a chemical composition of Mn[(1-y)a + (1-z)d] Cr[ya +zd] Sb.  
 
On the other hand, the nuclear scattering lengths of Cr and Mn for neutron diffraction 
are extremely different with bCr = +3.52 fm and bMn = -3.73 fm (see also chapter 4). 
In the structure analysis of the neutron data, site-specific effective scattering lengths beff 
(2a) and beff (2d) are refined, which in turn are expressed as: 

beff(2a) = a·[(1-y)·bMn + y·bCr]   and   beff(2d) = d·[(1-z)·bMn + z·bCr] 

solving for the unknown parameters y and z gives: 

y = [beff(2a)/a - bMn] / [bCr - bMn]   and   z = [beff(2d)/d - bMn] / [bCr - bMn]. 

The combination of the overall occupation probabilities a and d - from conventional x-
ray studies – with the effective scattering lengths beff(2a) and beff(2d) determined in a 
neutron diffraction experiment allows the evaluation of the Cr and Mn concentrations 
on the different sites 2(a) and 2(d). 
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It is evident, that the individual (Cr,Mn) distributions on the two crystallographically 
different sites 2(a) and 2(d) are not accessible merely by a chemical analysis. For most 
of the samples studied, the site 2(a) was found to be fully occupied: a � 1.0. But the 
formula (Mn1-xCrx)1+4Sb used normally is only correct for the special case of equal Cr : 
Mn ratios on both sites: 

x = y = z   and   1 + 4 = a + d. 

Note that, in general, a statistical occupation of one crystallographic site with three 
kinds of scatterers - e.g. Mn, Cr and "vacancies" - requires at least two independent 
experiments with sufficiently different relative scattering power of the atoms involved 
to determine the fractional occupancies.  
The detailed information on the (Cr,Mn) distribution is needed to explain the magnetic 
properties of these intermetallic compounds, but we will not further elaborate on this.
 

8.3 The hydrogen problem in structural analysis 
 
The determination of the structural parameters (coordinates, displacement parameters) 
of hydrogen atoms in crystals is a special problem involving again the different 
properties of x-rays and neutrons. It is obvious that H or D atoms with Z = 1 give only a 
small contribution to the electron density and, therefore, they are hardly visible in x-ray 
structure analysis, particularly if heavy atoms are also present in the structure. However, 
there is an even more fundamental problem: The single electron of H or D is engaged in 
the chemical bonding and is by no means localised at the proton/deuteron position. 
Therefore, bond distances from x-ray diffraction involving hydrogen are notoriously 
wrong and any comparison with quantum mechanical calculations is quite hard to 
perform. This lack of sound experimental information is in sharp contrast to the 
importance of hydrogen bonding in solids, particularly in biological molecules like 
proteins, where hydrogen bonds govern to a large extent structures and functionalities of 
these ‘bio-catalysts’. A combination with neutron diffraction experiments is important 
to determine the structural parameters of the H/D atoms properly. More generally, the 
structure analysis by neutron diffraction yields separately and independently from the x-
ray data the structure parameters of all atoms including the mean square displacements 
due to static and dynamic (even anharmonic) effects.  
 
H/D ordering in ferroelectric RbH2PO4 (RDP): 
 
The hydrogen problem in crystal structure analysis is of special importance for 
structural phase transitions driven by proton ordering. KH2PO4 (KDP) is the most well-
known representative of hydrogen-bonded ferroelectrics. Here, we discuss the isotypic 
RbH2PO4 (RDP). The crystal structure consists of a three-dimensional network of PO4-
groups linked by strong hydrogen bonds (Fig. 8.2). 
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Fig. 8.2: Crystal structure of the paraelectric phase of RDP  (RbH2PO4) with a split-

model representation of the hydrogen disorder [3].
 
In the paraelectric phase at room temperature KDP as well as RDP crystallise in the 
tetragonal space group I:42d, where the H-atoms are dynamically disordered in 
symmetric O···H···O bonds, which are almost linear with short O–O distances, typically 
in the range of 2.5 Å. The disordered H-distribution may be interpreted as 
corresponding to a double-well potential [2].  
Figures 8.3 and 8.4 show the corresponding results for RDP, obtained from single 
crystal neutron diffraction [3]. 
 

 
 
Fig. 8.3: Local configuration of two PO4-tetrahedra in the paraelectric phase of RDP  

(RbH2PO4)(at Tc + 4 K) linked by a strong, disordered hydrogen bond [3].
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model: dynamic H-disorder according to a double-well potential  
 
Fig. 8.4: Difference-Fourier-plot of the negative proton density in the hydrogen bond 

of paraelectric RDP indicated by broken contour line [3]. The double-well 
potential model used to describe this density is inscribed in green. 

 
The two very close hydrogen positions with 50% occupation probability are, of course, 
an artefact of the time-space averaging that is inherent to diffraction. In this case, the 
hydrogen disorder is assumed to be a dynamic hopping process between the two 
energetically degenerate sites.  
At Tc = 147 K, RDP transforms to a ferroelectric phase of orthorhombic symmetry 
(space group: Fdd2) in which the protons order in short asymmetric O-H···O bonds (Fig. 
8.5).  The PO4-tetrahedra show a characteristic deformation with two shorter and two 
longer P-O distances due to a transfer of electron density to the covalent O–H bonds. 
The electrical dipole moments are oriented ||z which give rise to a polarisation along the 
c-direction. 
 

 
 
Fig. 8.5: Ferroelectric, hydrogen-ordered structure of RDP close to the phase 

transition at TC – 1 K (major changes indicated by arrows, presentation as 
in Figure 8.3) [3].
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The phase transition temperatures of KDP-type compounds change drastically when H 
is substituted by D. For K(H,D)2PO4, for instance, the para- to ferroelectric TC changes 
from 122 K in the protonated to 229 K in the deuterated compound. This huge H/D-
isotope effect proves that hydrogen-ordering and -dynamics is the major factor 
controlling this phase transition. Another type of H/D-isotope effect was found for 
Tl(H,D)2PO4 (TDP/DTDP) and  Rb(H,D)2PO4 (RDP/DRDP), where a different poly-
morphism between the protonated and deuterated phases exists. 
Clearly, the use of neutron diffraction is detrimental to a better understanding of these 
compounds and their interesting physical properties. 
 

8.4 Atomic coordinates and displacement parameters 
As discussed above, neutron diffraction is very useful for obtaining precise atomic 
coordinates and displacement parameters. The improved accuracy (compared to x-rays) 
stems mainly from the absence of the form-factor fall-off. We will use measurements on 
Cobalt-olivine, Co2SiO4, (crystal size 3 x 2 x 2 mm) taken at the four-circle 
diffractometer HEiDi at the hot-neutron source of the FRM II reactor (B = 0.552 Å) for 
demonstrating this advantage for the thermal displacements: 

 
Fig. 8.6: Structure  of  Co2SiO4  olivine  at  room  

temperature, projected along c. Green: SiO4-tetrahedra, Dark blue: 
Co(1)O6-octahedra, light blue: Co(2)O6-octahedra. Displacement ellipsoids 
are plotted at the 95% probability level (from [4]). 

The olivine structure (fig. 8.6) consists of chains of two types of edge-sharing CoO6-
octahedra connected by SiO4-tetrahedra. A large data set with 1624 independent 
reflections up to sin �/� = 1.05 Å-1 had been measured. The data were then successively 
cut off in shells of sin �/� and the resulting partial data sets were used to analyse the dis-
placement parameters. Figure 8.7 shows two interesting observations: First of all, the 
precision improves significantly with increasing (sin �/�)max, as is evident from the 
decreasing size of the error bars. In the x-ray case, high angle reflections are usually 
very weak and their measurement does often not lead to improved precision. Secondly, 
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there is a systematic change of the displacement values themselves, resulting from 
systematic errors that vary with (sin �/�)max. 

 

 

 

 

 

 

 

 

 

Fig. 8.7: Left: Statistical (error bars) and systematic 
errors of isotropic displacements parameters in Co2SiO4 as a function of 
measured sin �/� range from single-crystal neutron diffraction data at room 
temperature [4]. Right: Clinographic view of the CoO6 and SiO4 polyhedra 
in Co2SiO4 at room temperature [4]. 

High dhkl-value resolution data from neutron diffraction is also useful to derive precise 
temperature dependent displacement parameters (fig. 8.8): 

 
Fig. 8.8: Temperature dependence of the isotropic 

displacement parameters of Co2SiO4 [4]. 
Just as in the case of high quality single crystal x-ray diffraction data, anisotropic 
displacement parameters can be determined as well. In addition to that, the quality of 
single crystal neutron data also often allows refining anharmonic displacement 
parameters. Anharmonic oscillations of atoms in crystals occur if the atoms are 
vibrating in a non-parabolic potential well. In such cases, the harmonic approximation, 
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which is the basis of the description of thermal displacements by the Debye-Waller 
factor, fails. Analysis of the anharmonic displacements allows to reconstruct the non-
parabolic potential at the site of the vibrating atom.  
 

8.5 Magnetic structures from neutron diffraction 
Cobalt-Olivine, Co2SiO4, orders magnetically below about 50 K. The magnetic 
moments of the Co2+-ions turn from a paramagnetic phase with no long range order of 
the magnetic moments into an antiferromagnetically ordered arrangement. We use 
Co2SiO4 again to briefly demonstrate the application of neutron diffraction to the 
structural analysis of magnetic structures. This time, a powder neutron diffraction 
experiment has been performed at the diffractometer D20 (ILL, France) in its high-
resolution mode, at temperatures between 70K and 5K, with a neutron wavelength of B 
= 1.87 Å and approximately 2 g of powdered Co2SiO4 [4]. 
 
 
 

 
 
Fig. 8.9: Thermal evolution of the neutron powder diffraction pattern (low angle 

part) of Co2SiO4 [4].
 
At about 50 K, new magnetic reflections (001), (100), (110), (300) etc. appear (fig. 8.9). 
The nuclear reflections don’t change much at the magnetic phase transition. The new 
reflections can be indexed with the same unit cell as the nuclear reflections, but they 
were forbidden in the paramagnetic phase with space group P n m a. Obviously, the 
symmetry has changed at the magnetic ordering transition. The task is then - just as in 
‘ordinary’ structure determination - to find a structural model (that is: magnetic 
moments and their orientation on the magnetic ions, here Co2+) that fits the observed 
positions and intensities of the magnetic Bragg peaks. Magnetic structure determination 
is outside the scope of this chapter, but assumed such a model has been constructed, it 
can be refined - in the case of powder data by the Rietveld method (fig. 8.10). 
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Fig. 8.10: Neutron powder diffraction pattern (dots), Rietveld �t (black line) and 

allowed Bragg re�ections (green marks) at 5 K of Co2SiO4 [4]. 
 
The lower trace (blue) is the difference Iobs - Icalc on the same scale.  The upper row of 
the green marks shows Bragg re�ections corresponding to the nuclear phase and the 
lower row represents the allowed positions of the magnetic peaks. Some of the Bragg 
peaks are indexed. ‘N’ and ‘M’ denote the nuclear and magnetic contributions, 
respectively [4]. Note that the magnetic Bragg peaks are only visible at low diffraction 
angles. 
 

 
Fig. 8.11: Graphical representation of the magnetic structure of Co2SiO4 below 50 K. 

The non-magnetic atoms (Si and O) are excluded for simplicity. The �gure 
shows the zigzag chains of Co(1) and Co(2) in layers perpendicular to the  c 
axis [4]. 
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From the Rietveld refinements, one can derive the exact spin orientation (fig. 8.11) as 
well as parameters describing quantitatively the magnetic moments on the two 
symmetrically non-equivalent Co2+-sites (see table below). However, magnetic neutron 
diffraction from single crystals often gives additional and more accurate information: 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
The table shows cartesian (Mx, My and Mz) and spherical (M, � and �) components of 
the Co1 and Co2 magnetic moments according to the single-crystal neutron diffraction 
data at 2.5 K. The directions of the magnetic moments for other cobalt ions in the unit 
cell can be obtained by applying the symmetry operations of the magnetic space group 
(Schubnikov group) Pnma. 
 

8.6 Electron densities from x-rays and neutrons 
 
Another advanced application of neutron diffraction in structural analysis is the 
determination of 3-dimensional high resolution maps of the electron density in the unit 
cell to study, for instance, details of the chemical bonding. The most involved method 
of electron density studies (called x-N-synthesis) uses a combination of high quality 
single crystal neutron and x-ray diffraction experiments. In the present case, a single 
crystal of Co2SiO4 with dimensions 3 x 2 x 2 mm, was measured on the four-circle 
diffractometer HEiDi at the hot-neutron source of the FRM II reactor (Garching) at B = 
0.552 Å, the single crystal x-ray (synchrotron) experiment was performed on 
Diffractometer D3 at the synchrotron facility HASYLAB/DESY (Hamburg) with a 
Co2SiO4-sphere, diameter 150 �m as the sample and an x-ray wavelength of B = 0.5 Å.  
The next step is to take the x-ray-data, do a Fourier-transform (Fourier-synthesis) to 
obtain the electron density map: 
 
 �(r) = 1/V ·      F(;) · exp[2�i(;·r)],   with  F(;) = |F(;)|·exp[i9(;)].  �

;  
 

The  phases 9(;) are calculated from the atomic model (structure factor equation, see ch. 
4), the moduli |F(;)| are taken from the measured x-ray intensities. The result is a 3-
dimensional map of the total electron density �(r) within the unit cell: 
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Fig. 8.12: Electron density distribution �(r) of Co2SiO4 at 12 K from Fourier synthesis 

of x-ray data. Contours range from �8 e/Å3 (blue) to 10 e/Å3 (red). A plane 
which intersects the Co1O6 octahedron and contains the Co1, O1 and O3 
atoms is shown together with a sketch of the crystal structure [4]. 

 
 
In favourable cases, such a map already shows interesting features of the (anisotropic) 
bonding electron density, however, the information content of the map can be very 
significantly improved by taking the coordinates and displacement parameters from the 
more accurate neutron diffraction experiment (see above for the reasons) and calculate, 
in a second step, the so called deformation density. This is done by subtracting from the 
total electron density �(r) the density 
(r)spherical corresponding to a superposition of 
spherical atoms at the nuclear positions. More specifically: atomic positions xj, yj, zj and 
thermal displacements Tj of atoms j derived from the neutron experiment, ‘decorated’ 
with the calculated spherical single atom electron densities. 


(r)deform = 
(r) �  � 
(r)spherical, where the sum runs over all atoms in the unit cell.  


(r)spherical corresponds to the expectation value of the electron density within the unit 
cell without any effects which are due to chemical bonding. The deformation density 
then represents the deformation of the charge distribution as a result of the formation of 
chemical bonds. Figure 8.13 shows such a deformation density map for Co2SiO4. In 
favourable cases, the electron density in the hybridized bonding orbitals (in this case of 
Co3d- and O2p character) can be directly observed. 
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Fig. 8.13: Deformation density from the x-N-difference Fourier map of Co2SiO4  at  

300 K: Section through the O1–Co1–O3 plane  The difference density varies 
from �1.25 e/Å3  (blue) to 1.15 e/Å3  (red) [4]. 

 

8.7 Magnetization densities from neutron diffraction 
As a final example for the application of neutron diffraction in structural analysis, we 
briefly sketch how a 3-dimensional map of the magnetization density, that is: the 
density of magnetic moments (spin- as well as orbital-moments) within the unit cell can 
be determined. These maps are sometimes lucidly called ‘spin density maps’, but in 
systems with non-vanishing orbital moments, the term magnetization density is really 
the correct one. 
The experiment is performed by polarized neutron diffraction on a single crystal using 
the �ipping ratio method For details on the experimental method see the chapter on 
magnetic scattering. The flipping ratio method allows to separate nuclear and magnetic 
contributions to the diffracted intensities. It is performed above the magnetic phase 
transition in the paramagnetic state (in the case of Co2SiO4 above TN=50K) and the 
sample is in a strong external magnetic field (here: 7 T). 207 Bragg re�ection �ipping 
ratios were measured at diffractometer 5C1 of the ORPHÉE reactor (Laboratory Léon 
Brillouin, CEA Saclay, France) for Co2SiO4 at 70K  up to sin �/� � 0.62 Å�1 at a neutron 
wavelength of � = 0.845 Å. Given the flipping ratios and the nuclear structure factors, 
the magnetic structure factors can be calculated which are then Fourier transformed to 
give the spatially resolved magnetization density shown in figure 8.14 in a section 
through the unit cell of Co2SiO4. 
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Fig. 8.14: Reconstruction of  the density (projected along the b axis) corresponding to 

the observed magnetization distribution of Co2SiO4  at 70 K with contours 
ranging from 0 �B/Å3  (blue) to 2 �B/Å3  (red) [4]. 

 
 
Among the interesting features of this map is the observation of magnetization density 
on the, nominally non-magnetic, oxygen atoms coordinating the Co2+-ions. These 
‘transferred moments’ are direct experimental evidence for the hybridization of the 
oxygen 2p- with Co-3d-orbitals which is not only responsible for covalent bonding but 
also for the magnetic exchange interaction along the Co-O-Co-bond network. 
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Exercises 
 

E8.1  Rietveld refinement 
A. What is the basic problem in refining crystal structures from powder diffraction data?  

B. Sketch the fundamental idea to solve this problem. 

C. What kind of data can be obtained from a Rietveld refinement? 
(collect a list and sort into categories: Structural parameters, instrumental parameters, 
others) 
D. Can powder diffraction data be used for structure determination? (yes or no plus 
arguments) 
 

E8.2  Thermal displacement Parameters 
A. Write down the (isotropic) displacement factor ("Debye-Waller-factor”) that enters the 
structure factor formula (for x-rays) 
 
B. Discuss the physical origin of this factor. 
 
C. Describe the overall effect of this displacement factor on the diffracted intensities. 
 
D. Do you expect the formal description to be fundamentally different for neutron diffraction 
as compared to x-ray diffraction?  

E. It is generally said, that neutron diffraction yields much more precise displacement 
parameters than x-ray diffraction. Correct? If so: Why?

F. What are anisotropic displacement parameters and how can they be visualized?
 
G. Is it correct, that all atoms in cubic crystals have to vibrate isotropically? 
 
H. Discuss the symmetry restrictions (shape and orientation of the ellipsoid) following from 
the point symmetry at the atomic sites for the following cases: -1, 2/m, 4/m -3 2/m  
 

E8.3  Displacements at low temperatures 
A. Discuss the reduction of the displacement parameters with decreasing temperature 
(fig.8.8): Is this effect real or an artefact? Arguments?  
 
B. Discuss the non-zero values of the displacements factors for T => 0 K in the same figure 
and the different values for different atom types. 



8.16  G. Roth 

E8.4  Choice of neutron wavelengths 
A. Magnetic neutron diffraction experiments are usually done with rather long wavelengths 
(see chapter 8.7:  B = 1.87 Å): Why? 
 
B. Diffraction experiments aiming at obtaining precise atomic coordinates and displacements 
are done with much shorter wavelengths (see chapter 8.8: B = 0.552 Å): Why? 
 
C. Powder diffraction experiments usually use longer wavelengths than single crystal 
experiments: Why? 
(Discuss this issue in terms of the competition between angular and direct space resolution.) 
 

E8.5  Density maps from diffraction experiments 
A. How can one obtain (from diffraction) the bonding electron density map? 
(discuss the experiment(s), the necessary calculations and the information obtained) 
 
B. Discuss the difference between the bonding electron density map and a magnetization 
density map. (which kind of data is used, what is the specific information?)
 

E8.6  Hydrogen bonded crystals 
Assume you have grown a new hydrogen-bonded compound in the form of a single crystal 
and you want to know how the hydrogen bonds are arranged within the structure. 
 
A. Collect arguments pro & con the usage of single crystal x-ray- vs. neutron diffraction 
experiment to study your new crystal.
(Discuss availability / costs of the experiment, required size of the crystal, scattering power of 
hydrogen, absorption & incoherent scattering, additional effort to deuterate etc.) 
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9.1 Introduction

Neutron reflectometry is a relatively new technique that allows determining the nuclear and
magnetization profile along the depth of a nanometric thin film system. It has been extensively
used for solving soft matter problems like polymer mixing, the structure of air-water, liquid-
solid or oil-water interfaces, or the structure of bio-mimetic membranes [1]. The key property
of neutrons for soft matter studies is their large contrast in nuclear scattering length between
hydrogen and deuterium which allows selective labeling by deuteration.

In the mid 1980’s, a new field of neutron reflectometry emerged. Following the discovery of
new magnetic phenomena in ultra-thin films, interlayer exchange coupling and giant magneto-
resistance effect in multilayered films [2], there has been an interest in the precise measurement
of the magnetic moment direction in each layer of a multilayer and at the interface between
layers. The large magnetic coupling between the neutron spin and the magnetic moment makes
neutron reflectometry a powerful tool for obtaining information about these magnetic configu-
rations and for measuring magnetic depth profiles (see lecture 10 of this book).

In this lecture, we will concentrate on neutron reflectometry for the determination of nuclear
profiles. Section 9.2 shows the calculation of specular reflection at flat and homogeneous sur-
faces, introducing the concepts of scattering length density, index of refraction and total ex-
ternal reflection. It then describes the reflectivity from various types of layered structures and
the effect of interfacial roughness and interdiffusion. The two types of reflectometers one can
encounter and the practical aspects of a reflectometry experiment are discussed in section 9.3.
Finally, two examples are given, one in the field of polymer science (section 9.4), the other one
in biology (section 9.5).

9.2 Description of specular reflection

A monochromatic, well collimated beam impinges under a well defined, small angle αi = θ (in
most cases θ � 5o) onto the surface of the sample. It is then partly reflected specularly from
the surface, i.e. the outgoing angle αf = θ as well, and partly refracted into the material (See
Fig. 9.1). As we will derive below, the reflection from a laterally homogeneous medium can be
treated according to classical optics. Only the proper index of refraction n has to be used.

For most material, the index of refraction for neutrons is slightly smaller than 1, leading to total
external reflection for small angles of incidence θ < θc, where θc depends on the material.

In the case of a single layer on the substrate, reflection and refraction take place at both the
surface and the interface (Fig. 9.2). Then, the reflected beams from the different interfaces
interfere with each other. Maximum intensity is received, when the path length difference
between the two reflected beams is an integer multiple of the wavelength.

For the case of perfectly smooth surface and interfaces, an exact description of the reflected and
transmitted intensity can be deduced from quantum theory.
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Fig. 9.1: Reflection and refraction from a free surface

Fig. 9.2: Reflection and refraction from a single layer on a substrate

9.2.1 Wave equation in homogeneous medium. Optical index

The starting point is the Schrödinger equation for the wave function of the neutron:

[
− �

2

2m
Δ+ V (r)

]
ψ(r) = Eψ(r) (9.1)

The kinetic energy of the neutron is given by E = �
2k2/(2m) with the modulus k = 2π/λ of

the wave vector k.

Due to the small |Q| values that are probed, a reflectometry experiment does not resolve the
atomic structure of the sample in any of the three directions. Therefore, it is a valid approxima-
tion to describe the potential V1 of the homogeneous material as
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V1 =
2π�2

m
ρ (9.2)

where ρ if the scattering length density (SLD) defined by

ρ =
∑
j

Njbj (9.3)

where Nj is the number of nuclei per unit volume and bj is the coherent scattering length of
nucleus j. With that we receive

[
Δ+

(
k2 − 4πρ

)]
ψ(r) =

[
Δ+ k2

(
1− λ2

π
ρ

)]
ψ(r) =

[
Δ+ k2

1

]
ψ(r) = 0 (9.4)

with the wave vector k1 inside the medium. From this equation, it is justified to introduce the
index of refraction in the material

n =
k1
k

n � 1− λ2

2π
ρ (9.5)

It is a number very close to 1 for thermal and cold neutrons. The quantity 1− n is of the order
of 10−6 to 10−5. For most materials it is positive (because the coherent scattering length bj is
positive for most isotopes), so that n is smaller than 1. This means that the transmitted beam
is refracted towards the sample surface, which is opposite to the daily experience with light
refracted at a glass or liquid surface.

9.2.2 Solution for a sharp surface. Fresnel’s formulas

In analogy to classical optics, we can derive e.g. Fresnel’s formulas. For the solution of the wave
equation at a sharp surface between air and a semi-infinite medium, we assume the surface of
the sample to be at z = 0. The potential is then

V (z) =

{
0 for z > 0

V1 for z ≤ 0
(9.6)

As the potential V is independent of the in-plane coordinates x and y, the wave function in the
Schrödinger equation (9.4) is of the form

ψ(r) = ei(kxx+kyy)ψz(z) (9.7)

with the in plane components kx and ky of k independent of z. The Schrödinger equation then
reduces to the one dimensional equation

d2ψz(z)

dz2
+ k2

z(z)ψz(z) = 0 (9.8)
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with kz(z) depending on the medium. The general solution is given by

ψzl(z) = tle
ikzlz + rle

−ikzlz, (9.9)

where the index l distinguishes between vacuum (l=0) and medium (l=1). The unique solution
is determined by the boundary conditions. The incoming wave in the vacuum before interaction
with the sample is a plane wave of norm 1, i.e. t0 is equal to 1. In a half-infinite medium, there
is no reflected wave, because there is nothing to reflect from, i.e. r1 vanishes. In addition, the
wave function and its first derivative must be continuous at the interface. So we receive the
following boundary conditions:

t0 = 1 ; r1 = 0 ; ψz0(z = 0) = ψz1(z = 0) ;
dψz0

dz
(z = 0) =

dψz1

dz
(z = 0). (9.10)

When we insert (9.9) into (9.10) we receive the continuity equations for the wave function:

1 + r0 = t1 ; kz0(1− r0) = kz1t1. (9.11)

t1 is the amplitude of the transmitted wave and r0 is the amplitude of the reflected wave. The
reflectivity R is defined as the modulus squared of the ratio of the amplitudes or reflected and
incoming waves, the transmissivity T is defined as the modulus squared of the ratio of the
amplitudes or transmitted and incoming waves.

R = |r0|2 ; T = |t1|2 (9.12)

In conclusion, we arrive at the Fresnel’s formulas for the reflection and the refraction at a flat
interface

Reflectivity : R =

∣∣∣∣kz0 − kz1
kz0 + kz1

∣∣∣∣2 (9.13)

Transmissivity : T =

∣∣∣∣ 2kz0
kz0 + kz1

∣∣∣∣2 (9.14)

9.2.3 Snell’s law of refraction. Total external reflection

Taking into account the continuity relation for the wave vector component tangential to the
surface

kx0 = kx1 ky0 = ky1 (9.15)

together with k1 = k0n1 (Eq. 9.5), Snell’s law for refraction follows from trigonometry:



9.6 E. Kentzinger

cos θ

cos θ1
=

k1
k0

= n1 (9.16)

The fact that in most cases the index of refraction is n1 < 1 means that the transmitted beam is
refracted towards the sample surface (θ1 < θ in Fig. 9.1). For angles of incidence θ below the
so called critical angle θc with

n1 = cos θc θc � λ

√
ρ

π
(9.17)

total reflection is observed, i.e. all intensity is reflected and no wave propagating in z-direction
exists in the sample. Only an evanescent wave in the z-direction with propagation parallel to the
surface is induced. For angle of incidence above θc, the beam can partially penetrate the sample
and is only partly reflected.

From Snell’s law (Eq. 9.17) and the definition of the index of refraction in Eq. (9.4) one can
relate the normal components of the incoming and refracted wave vectors

k2
z1 = k2

z0 − k2
z0,c with kz0,c =

2π

λ
sin θc =

√
4πρ. (9.18)

This confirms that, for angles of incidence θ below θc, kz1 becomes purely imaginary and the
refracted wave is an evanescent wave in the z-direction.

The last relation allows to express the Fresnel coefficients (Eq. 9.13 and 9.14) as a function of
one variable only. In general the measured reflectivity is represented as a function of θ or the
magnitude of the scattering wave vector Q = 2kz0:

R =

∣∣∣∣∣Q−√Q2 −Q2
c

Q+
√
Q2 −Q2

c

∣∣∣∣∣
2

(9.19)

When Q � Qc, the preceding equation reduces to:

R � 1

16

Q4
c

Q4
(9.20)

which is the formula for the reflectivity within the Born approximation [3]. This shows that the
reflectivity above the critical angle decreases sharply with Q.

Once again, coming back to the wave function inside the surface, one finds using Eq. (9.18)
that, when θ < θc:

ψz1(z) = t1e
i(k2z0−k2

z0,c)
1/2

z = t1e
− 1

2(Q2
c−Q2)

1/2
z. (9.21)

This result is very important, because it shows that when the energy of the particle normal to
the surface is smaller than the potential barrier, the wave still can penetrate the medium on a
characteristic depth of 2/

√
Q2

c −Q2. This evanescent wave propagates itself along the surface



Neutron reflectometry 9.7

with a wave vector equal to (kx, ky) and then leaves the volume in the specular direction. For
example for Ni (ρ = 9.41×10−6 Å−2), the penetration depth is of the order of 200 Å at Q = 0; if
one neglects absorption, it raises rapidly to infinity at Q = Qc. No conservation rule is broken:
the reflectivity equals 1 because this wave represent no transmitted flux in the medium.

Fig. 9.3 represents, on a linear scale, the reflectivity and the transmissivity of a substrate as
a function of the angle of incidence θ. The reflectivity equals 1 for angles smaller than the
critical angle θc and decreases rapidly above this value (Eq. 9.20). The transmissivity increases
monotonously up to a value of 4 at θc and decreases to 1 at large angles. This result might look
very surprising at first sight. The value of 4 for the transmissivity comes from the fact that the
incident and the reflected waves in vacuum superpose to form a stationary wave of amplitude
exactly equal to 2 at the interface with the medium. For the intensity, we obtain a factor of 4.

Fig. 9.3: Reflectivity and transmissivity of a substrate as a function of the angle of incidence

9.2.4 Reflectivity from layered systems

In a layered system, the same Ansatz as in Eq. (9.9) can be written in each layer l. The co-
efficients of reflection rl and transmission tl can be deduced recursively from the continuity
relations of the wave function and its derivative at each interface. If N is the number of layers,
and considering the vacuum on top of the multilayer and the substrate below, 2(N+2) coef-
ficients have to be calculated. The number of interfaces being N+1, the continuity relations
lead to 2(N+1) equations. Two other equations are obtained considering that the transmission
into the vacuum is equal to one (t0 = 1) and that, in the substrate, there is no reflected wave
(rN+1 = 0), leading in total to a number of equations equal to the number of coefficients to
determine. The calculation of the coefficients of reflection and transmission in each layer and,
in particular, the calculation of the reflectivity in air are therefore possible [4].

Here we just want to demonstrate with very simple arguments how interference effects from
layered structures arise and how the intensity modulations in Q-space are related to real space
length scales.

Fig. (9.2) shows how interference can occur in a system composed of a single layer of thickness
d deposited on a substrate. Interference occurs between beams reflected from the surface and
those first transmitted in the layer, reflected from the interface between layer and substrate and
then leaving the layer into vacuum. To a good approximation, refraction at the top surface can
be neglected for incident angles twice the critical angle or total reflection. In this case θ = θ1
in Fig. (9.2) holds. Since the index of refraction of the neutrons is very close to one, this
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approximation is valid even for rather small angles of incidence. Then the optical path length
difference between the two beams is:

Δ = 2d sin θ (9.22)

We can now determine the distance between interference maxima from the condition that the
path length difference has to differ by one wavelength: λ = 2d · δ(sin θ) � 2d · δθ. With
Q = 4π

λ
sin θ � 4π

λ
θ we final obtain:

δQ � 2π

d
(9.23)
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Fig. 9.4: Reflectivity of a Si substrate and reflectivity of a Ni layer (ρ = 9.41× 10−6 Å−2) on Si
substrate (ρ = 2.15× 10−6 Å−2). Simulations are performed for two layer thicknesses d.

We can see that the interference phenomena in Q-space are connected with real space length
scales in a reciprocal way. (9.23) tells us that there will be a number of interference maxima at a
distance in Q of 2π

d
. These interference phenomena are called “Kiessig fringes”. Fig. 9.4 shows

calculations of the reflectivity of a Ni layer deposited on a Si substrate. One observes that the
reflectivities above the critical angle for total reflection decrease rapidly, therefore the ordinate
is on a logarithmic scale. The oscillations of the reflectivity due to the above described inter-
ference effect can be observed. At small angles, due to the effect of refraction, the interference
maxima are a bit denser distributed than at higher angles where formula (9.23) can be used to
determine the layer thickness from the distance between the interference maxima. The thinner
layer corresponds to an interference scheme with a bigger period. In both cases the minima of
the interference scheme lay on the reflectivity of the Si substrate.

Note that for a 100 Å thick layer of Ni, that has a scattering length density (SLD) approximately
4 times larger than the one of Si, the critical angle of total reflection is determined by the SLD
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of Si and not by the one of Ni. This comes from the penetration depth of the neutrons that is
bigger than 100 Å. For a 400 Å thick Ni layer, the θc approaches the one of Ni and the total
reflection plateau is somewhat rounded.

Fig. 9.5 shows the simulation of the neutron reflectivity from a multilayer on a Si substrate.
This multilayer is composed of 10 double layers of 70 Å Ni and 30 Å Ti. On can clearly see
the pronounced maxima due to the periodicity of the Ni/Ti double layer of thickness 100 Å. In
between, one observes many weaker oscillation (be attentive to the logarithmic scale) with a
period given by the total thickness of the multilayer.

Fig. 9.5: Reflectivities of a Ni/Ti bilayer and of a Ni/Ti multilayer on Si substrate. Simulations
are performed for Ni and Ti thicknesses of 70 and 30 Å respectively.

9.2.5 Roughness and interdiffusion

Until now we assumed perfectly flat interfaces. A real interface will, however, always show a
certain roughness at the atomic level, as shown in Fig. 9.6. The height profile of the interface
is completely described by the parametrization z(x, y). Such a detailed information is not at
all interesting. Much more interesting are parameters that statistically describe the interface,
such as the mean squared deviation from an ideally flat interface, or the lateral correlation
length. Those parameters can be determined from reflectometry and scattering under grazing
incidence [5].

As simplest model, we assume that the height coordinate z follows a random distribution of
values around the nominal value zj of the flat interface. The random distribution being described
by a Gaussian function

P (Δz) =
1

σ
√
2π

exp

(
−Δz2

2σ2

)
, (9.24)

the profile of index of refraction between layers j and j + 1 takes the form:
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Fig. 9.6: Roughness of a real interface, characterized by the parametrization z(x, y) and de-
pendency of the refractive index on z.

n(z) =
nj + nj+1

2
− nj − nj+1

2
erf
(
z − zj√
2σj

)
(9.25)

with the “Error” function:

erf(z) =
2√
π

∫ z

0

e−t2dt. (9.26)

The reflectivity from such a rough interface is obtained from the average of the reflectivities
from a sequence of layers that describe the profile of refraction index. This average is performed
in detail in Ref. [6]. As a result one obtains that the Fresnel coefficient for an ideally flat
interface has to be modified by an exponential damping factor in the following way:

Rrough = Rflat · exp
(−4σ2

jkzjkzj+1

)
. (9.27)

In this equation, σj is the root mean squared deviation from the nominal position of the flat
interface.

The effects of interfacial roughness on the neutron reflectivity from a Si substrate and from a
Ni layer on Si substrate have been simulated in Fig. 9.7. On the left side of Fig. 9.7 one can
observe that the effect of roughness is to decrease the reflectivity at large wave vector transfers.
The effect of roughness will be seen, if the value of the scattering wave vector gets bigger than
1/σ. Therefore, if one wants to determine very small roughness amplitudes, one has to measure
the reflectivity till very large reflection angles and over a large dynamical range.

The right side of Fig. 9.7 shows the effect of the roughness of a single layer. The simulations
have been performed for ideally flat interfaces, for a rough surface of the layer, for a rough
interface between layer and substrate and for the case where both interfaces are rough. One can
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see that the four cases can be well differentiated. When only one of the two interfaces is rough,
the interference pattern due to the reflection on the top and bottom interfaces is suppressed at
large wave vectors. If both interfaces are rough, a faster decrease of the averaged reflectivity
takes place.
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Fig. 9.7: Left: Neutron reflectivity at the interface between vacuum and Si. Right: Neutron
reflectivity from a 400 Å thick Ni layer on Si substrate. Effect of interfacial roughness.

Finally, one should point out that a specular reflectivity measurement can only describe the
profile of scattering length density normal to the interface. This means that a reflectivity mea-
surement can not differentiate between interfacial roughness and interdiffusion, as interdiffusion
will induce the same profile of refraction index as in Fig. 9.6. But what happens to the intensity
loss described by the exponential factor of Eq. (9.27)? In the case of a diffuse interface, this
intensity goes into the transmitted beam because there is no potential gradient in a direction dif-
ferent than the one normal to the interface. On the other hand, in the case of a rough interface,
the intensity loss comes from scattering by lateral fluctuations of the potential, leading to in-
tensities that can be observed in directions other than the specular direction: this is off-specular
diffuse scattering. A statistical function like the height-height pair correlation function can be
determined from the measurement of off-specular scattering [5].

9.3 Neutron reflectivity measurement and data analysis

The principal components of a reflectivity experiment are (i) a radiation source, (ii) a wave-
length selector (monochromator, choppers), (iii) a collimation system, (iv) the sample and (v) a
detection system.

The aim of a neutron specular reflectivity experiment is to measure the reflectivity as a function
of the scattering wave vector Q perpendicular to the sample surface:

Q =
4π

λ
sin θ (9.28)
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The measurement can be done by changing either the angle of incidence θ on the sample or the
wavelength λ, or both.

9.3.1 Monochromatic instruments

At a nuclear reactor source, the measurements are usually performed at a fixed value of λ, using
θ-2θ scans (2θ being the detector angle). The wavelength selection can be obtained by Bragg
scattering on a monochromator crystal or by using a velocity selector. Fig. 9.8 describes such
an instrument. This is the MARIA reflectometer of the JCNS located at the FRM-II source
in Garching [7]. The neutrons are brought from the cold source to the instrument using a
supermirror coated guide (see lecture 2 of this book). A certain wavelength with a spread of 10
% is chosen by adjusting the rotation speed of a velocity selector. The wavelength spread can
be reduced by using a Fermi chopper and time-of-flight detection. The neutron beam is then
collimated by a pair of slits in order to define the angle of incidence of the neutrons relative to the
sample surface with a certain precision. The neutrons are then detected on a two dimensional
position sensitive detector. Such a detector allows to record at the same time not only the
specular reflectivity signal but also the signals of off-specular scattering and grazing incidence
small angle scattering. The projection of the spin of the neutron on a quantization axis can
be selected before interaction with the sample by using a polarizer and after interaction with
the sample by using a polarization analyzer, allowing to retrieve information about the norm
and angle of the layer magnetizations in a magnetic sample (see lecture 10). The polarizer
uses magnetic supermirrors and the analyzer uses a nuclear polarized 3He gas to select the spin
projection.

Fig. 9.8: A monochromatic instrument: MARIA of the JCNS at FRM-II [7].

9.3.2 Time-of-flight instruments

At a spallation source, the measurements are performed at fixed values of θ and as a function
of λ. This is the time-of-flight technique, that consists in sending a pulsed white beam on the
sample. Since the speed of the neutron varies as the inverse of the wavelength, the latter is
directly related to the time taken by the neutron to travel from the pulsed source to the detector
(over the distance L) by:



Neutron reflectometry 9.13

λ =
h

mL
t. (9.29)

For a reflectivity measurement, the angle is fixed and the reflectivity curve is obtained by mea-
suring the reflectivity signal for each wavelength of the available spectrum, each wavelength
corresponding to a different scattering wave-vector magnitude. Sometimes it is necessary to
use several angles of incidence because the Q range is not large enough.

An example of time-of-flight reflectometer is presented in Fig. 9.9. This is the magnetism
reflectometer of the Spallation Neutron Source (SNS) in Oak Ridge, USA [8]. Neutrons coming
from the moderator are first deflected by 2.5o using a channel beam bender, composed of a stack
of supermirrors, in order to achieve enough separation with the neighbour instrument (a liquid
reflectometer) and in order to deliver to the sample a “clean” neutron beam, essentially free
of fast neutrons and γ radiation. As much useful neutrons as possible are transported to the
sample by using a supermirror coated tapered neutron guide that focuses the beam horizontally
and vertically to a size comparable to usual sample sizes, i.e. several cm2. The bandwidth
choppers are used to select a wavelength width (λ from 2 to 5 Å), in order to avoid frame
overlap. A chopper is a rotating disk with windows transparent to neutrons. When two choppers
are mounted at a certain distance one with respect to the other, the delay between the window
openings and the width of the windows can be chosen to achieve a transmission of only those
neutrons having speeds contained in a certain range. The phenomenon of frame overlap happens
when the slow neutrons of a pulse are overtaken by the fast neutrons of the next pulse. A time-
of-flight detection cannot differentiate between those neutrons. Therefore, frame overlap has
to be avoided. The function of the second of the three choppers is to absorb the very slow
neutrons. This instrument has also collimation slits, a position sensitive detector and polarizing
and analyzing devices whose functions are the same as the ones explained in the preceding
section.

Fig. 9.9: A time-of-flight instrument: The magnetism reflectometer of the SNS [8].
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9.3.3 Resolution

The reflectivity signal decreases very rapidly above the critical angle of total reflection when Q
increases (see Eq. (9.20), R ∝ 1/Q4). In order to win some intensity, either the collimation slits
can be opened or the wavelength spread δλ can be increased, at the price of a loss in resolution
in scattering wave vector. The dispersion in Q is given by (for θ � 1):

δQ �
√(

4π

λ

δλ

λ
θ

)2

+

(
4π

λ
δθ

)2

(9.30)

where δθ is the beam angular divergence. The divergence of the incident beam is usually deter-
mined by the two collimation slits if the beam is smaller than the effective width of the sample
seen by the neutron beam, or by the first slit and the sample itself if the sample is small enough
to be totally illuminated by the neutron beam. The experimental reflectivity is then the calcu-
lated reflectivity convoluted by a resolution function whose width is given by δQ. Experience
shows that Gaussian function works well to reproduce the resolution effects. In Fig. 9.10 the
reflectivity is calculated for a perfect instrument and by taking into account the effects of angu-
lar divergence and wavelength spread. As can be inferred from Eq. (9.30), angular divergence
induces a loss of resolution independent of θ, and wavelength spread degrades the resolution as
θ increases. This example shows that, when preparing a reflectometry experiment and depend-
ing on the sample under study, a good compromise between intensity and resolution has to be
found.
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Fig. 9.10: Effect of δθ and δλ. Comparison between a perfect instrument, an instrumental δθ,
and a δλ for a measurement on a 400 Å thick Ni layer on Si substrate
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9.3.4 Data analysis

The method of analysis often used for specular reflection data involves the construction of a
model of the multilayer consisting of a series of parallel layers of homogeneous material. Each
layer is characterized by a scattering length density ρ and a thickness d, which are used to cal-
culate a model reflectivity profile by means of the recursion method introduced in section 9.2.4
and taking into account the resolution in Q (section 9.3.3). The interfacial roughness or inter-
diffusion between two consecutive layers, σ, may also be included as described in section 9.2.5.
The calculated profile is compared to the measured profile and the quality of the fit is assessed
either visually or by using χ2 in the least-square method. By variation of ρ, d and σ in each layer
and interface, the calculated profile may be compared with the measured profile until optimum
fit to the data is found. Any one profile may not provide a unique solution. This is because
only the intensity, and not also the phase of the reflection amplitude is measured. In soft matter,
the use of different isotopic contrasts can usually ensure an unambiguous model of the system.
Contrast variation relies on the fact that different nuclear isotopes scatter neutrons with different
amplitudes, and sometimes, as in the case of protons and deuterons, with opposite phases. By
using several combinations of hydrogenated and deuterated materials the reflectivity profile of
a layered system can be substantially changed while keeping the same chemical structure. An
example where contrast variation is used is given in section 9.5.

9.4 Interdiffusion between diblock copolymer layers under
annealing

Diblock copolymers are made up of two blocks of different polymerized monomers. Block
copolymers are interesting because they can ”microphase separate” to form periodic nanostruc-
tures. Microphase separation is a situation similar to that of oil and water. Oil and water are
immiscible - they phase separate. Due to incompatibility between the blocks, block copoly-
mers undergo a similar phase separation. Because the blocks are covalently bonded to each
other, they cannot demix macroscopically as water and oil. In ”microphase separation” the
blocks form nanometer-sized structures. Depending on the relative lengths of each block, sev-
eral morphologies can be obtained. In diblock copolymers, sufficiently different block lengths
lead to nanometer-sized spheres of one block in a matrix of the second (for example PMMA
in polystyrene). Using less different block lengths, a ”hexagonally packed cylinder” geometry
can be obtained. Blocks of similar length form layers (often called lamellae in the technical
literature) [9].

In the study presented in this chapter, a diblock copolymer of the type polystyrene - poly-
butylmetacrylate (PS-PBMA), with similar lengths of the two blocks, has been deposited on a
substrate by spin-coating, forming a self-organized multilayer of a fixed thickness parallel to
the surface. The initial system consists in a layer of partially deuterated PS-PBMA copoly-
mer deposited on a trilayer of totally hydrogenated copolymer. The reflectivity of the system
is shown on the left picture of Fig. 9.11. The numerical fit shows a large index at the top
of the system corresponding to the deuterated copolymer. The system has then been annealed
for 12 hours at 400 K and then remeasured (right picture of Fig. 9.11). On this reflectivity
curve, one can observe a clear “Bragg” peak at the position q1 = 0.11 nm−1, and a second
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one at q2 = 0.29 nm−1. This indicates the diffusion of the deuterated polymer to the inner
layers. Since the diblock copolymers are ordered in multilayers, a periodic variation of the
index appears (see insert in Fig. 9.11), whose period is approximately given by 2π/(q2 − q1).
(After [10])

Fig. 9.11: Left: Reflectivity of a quadrilayer consisting in a partially deuterated PS-PBMA
copolymer layer deposited on a trilayer of totally hydrogenated polymer. Right: Reflectivity of
the quadrilayer after annealing for 1 hour at 115 C. (After [10]). Measurements performed on
the time-of-flight reflectometer EROS at the Laboratoire Léon Brillouin [11]

9.5 Structural characterization of sparsely tethered bilayer
lipid membranes

All cells are enclosed by biological membranes that define their boundaries and regulate their
interactions with the environment. The biological membrane consists of assemblies of lipid
and protein molecules. The lipid molecules form a continuous double layer, or bilayer, which
acts as a barrier to water-soluble molecules and provides the framework for the incorporation
of the protein molecules. The intrinsic complexity of the cell membrane system often precludes
direct access to these features, thus driving the development of simpler model systems that are
more amenable to a detailed characterization. One generic approach involves supports for the
stabilization of biomimetic membranes. The work shown here focuses on a membrane system,
illustrated in Fig. 9.12, that is chemically tethered to a gold support through a tether lipid.

Tethered membranes are systems designed for the incorporation of membrane-associated pro-
teins. In order to be useful as a biomembrane model, such membranes need to retain their fluid
in-plane organization and at the same time remain separated from the supporting solid interface
by a molecularly thin hydration layer. In order to create space for hydration, the tether lipid



Neutron reflectometry 9.17

is co-adsorbed with a smaller “backfiller” molecule (see Fig. 9.12). The resulting “sparsely-
tethered membrane” has been characterized by ellipsometry, electrochemical impedance spec-
troscopy and neutron reflectometry [12].

Fig. 9.12: Sparsely tethered biomimetic membrane. The arrows show the geometry of the neu-
tron reflection experiment: the neutrons hit the sample from the side of the silicon substrate.

Neutron reflection is uniquely capable of characterizing in molecular detail the resulting mem-
brane structure, particularly with respect to the thin hydration layer. Fig. 9.13 shows data sets
measured on the system discussed above in three distinct solvent contrasts (pure D2O, pure
H2O and a H2O/D2O mixture with SLD 4 × 10−6 Å−2 called CM4). The three measurements
used the same sample, with the exchange of the isotopically distinct water solutions performed
in-situ, and were co-refined on the assumption that the sample is identical except for the dis-
tinct solvent contrasts. As is evident from the differences in the SLD profiles, the spacer region
containing the tethers is highly hydrated while the bilayer membrane covers the substrate ho-
mogeneously: only a minimal hydration of the inner leaflet is present. Such a system thus
constitutes a biomimetic membrane that is very well suited to understand the interaction be-
tween lipid bilayer and membrane proteins [13, 14].

The top graph of Fig. 9.13 shows measurements performed on a system with a molar propor-
tion of tether to backfiller at the gold surface equal to 30 to 70 and the bottom graph shows
measurements performed with this proportion equal to 15 to 85. The SLD profiles show that the
aqueous reservoir for the system containing 30 % of tether at the gold surface is 21 Å thick, the
one for the system containing 15 % of tether being slighlty thinner, i.e. 19 Å thick. This slight
difference in thicknesses is revealed by slight shifts in the positions of the intensity maxima and
minima in the region of scattering wave vectors around Qz = 0.2 Å−1. This comparison gives
an idea of the high resolution of the neutron reflection technique.
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Fig. 9.13: Neutron reflectometry on sparsely tethered bilayer lipid membranes. The two graphs
represent measurements performed on two different samples with two different molar propor-
tions of tether and backfiller molecules anchored at the gold surface. Top graph: 30 % of tether.
Bottom graph: 15 % of tether. Those measurements were performed on the Advanced Neutron
Diffractometer/Reflectometer (AND/R) [15] at the NIST Center for Neutron Research (NCNR).

9.6 Conclusion and outlook

This chapter has given an overview of neutron reflectometry as a tool for the investigation of
surfaces and interfaces. We have presented a formalism which makes it possible to describe
the specular reflectivity on non-magnetic systems. Neutron reflectivity is especially suited for
polymer and magnetic thin film systems. This has been illustrated with two examples. The
formalism of neutron reflectometry for the investigation of the magnetic moment orientations
in magnetic multilayers is presented in the next chapter of this book, together with several
application examples.
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Recently, the neutron reflectometry technique has been extended to study nuclear and mag-
netic structures in the sample surface. At grazing incidence, it is possible to distinguish three
scattering geometries: specular reflection, scattering in the incidence plane of the neutrons
(off-specular scattering) and scattering perpendicular to the incidence plane (grazing incidence
SANS). These different scattering geometries probe different mesoscopic length scales and di-
rections in the sample surface [16–19].
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Exercises

In the following the nuclear scattering length densities (in 10−6 Å−2) of several elements are
displayed:

Cu: 6.53; Ag: 3.5; Si: 2.15; Au: 4.5

E9.1 Reflection and transmission by a flat substrate

The following figure shows the neutron reflectivity from a flat substrate.
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Q [nm-1]

Fig. 9.14: Reflectivity from a substrate.

• Determine the element of which this substrate is made of

• Explain why the amplitude of the wave transmitted in the substrate is equal to 2 at an
angle of incidence equal to the critical angle of total reflection
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E9.2 Layers on substrate

The figure below shows two simulations of reflectivity from a Cu layer deposited on Ag sub-
strate. Determine for both cases (red and blue curves) the thickness of the Cu layer.
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Fig. 9.15: Layer of Cu on Ag substrate

In the next figure, the reflectivity from a [Cu/Au]×n multilayer is depicted. Determine the
[Cu/Au] thickness, the total thickness of the multilayer and the number n of bilayers the multi-
layer is composed of.
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Fig. 9.16: Cu/Au multilayer on Ag substrate
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10.1 Introduction 
 

The physical properties of a layered structure of nanometer size, as it is shown 
schematically in Fig. 10.1, differs from the bulk properties of the constituents. There are 
several origins of new effects due to miniaturization: 

The ratio between surface and volume is much higher than in bulk. Therefore, the 
amount of atoms with reduced coordination is significant and can change the crystalline 
structure as well as the electronic structure of the whole layer. Boundary conditions, e.g. 
for the magnetic induction B become important, introducing shape anisotropies. The 
magnetization tends to align along the long edges of the magnetic nanostructure because 
the dipolar fields are smaller then. 

At the interface between two layers, the electronic structures and the crystal lattices 
have to be matched, which leads to structural stress, interfacial disorder and electro-
nically to charge transfer (e.g. a Shottky barrier in semiconductor heterostructures) or 
splitting of the layers’ bandstructures. 

Nanostructures can be prepared in several dimensions: thin films with a thickness in the 
nm range are 2D nanostructures, stripes with thickness and width in the nm range are 
1D nanostructures and dots or nanoparticles with all three dimensions in the nm range 
are 0D nanostructures. The dimension number indicates, in how many directions the 
dimension remains macroscopic. 

Magnetic nanostructures are nanostructures which contain at least one magnetic 
constituent. Typical systems are layered structures with ferromagnetic and nonmagnetic 
layers or arrays of ferromagnetic dots on a nonmagnetic substrate. The interesting 
aspect of magnetic nanostructures is the fact that two ferromagnetic (FM) layers with a 
nonmagnetic (NM) spacer in between have a connection between their electronic 
systems across the spacer layer. This connection influences as well the magnetic 
behaviour as the electron transport through the system. 

 

 

 
 

Fig. 10.1: Sketch of a layered structure of two materials 
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Fig. 10.2: Oscillating interlayer coupling as a function of interlayer thickness 
 

The first phenomenon found in magnetic layered structures has been the oscillating 
magnetic interlayer coupling in FM / NM / FM trilayer structures. Depending on the 
NM interlayer thickness, the magnetizations of the two FM layers tend to align parallel 
or antiparallel to each other [1]. It turned out that the coupling is mediated by electronic 
states in the NM interlayer close to the Fermi surface [2]. The oscillation period of the 
coupling is related to the length of the wavevector of the electrons at the Fermi surface, 
as is sketched in Fig. 10.2. 

Subsequently, the most important discovery followed, the Giant Magnetoresistance 
Effect (GMR) [3] [4]. For this discovery, P. Grünberg and A. Fert were honoured with 
the Nobel Prize for Physics 2007. They have found out that the resistivity of a layered 
structure containing more than one ferromagnetic layer depends on the mutual orien-
tation of the magnetization directions, see Fig. 10.3. They used the antiferromagnetic 
coupling in Fe / Cr / Fe trilayer structures to be able to influence the mutual orientation 
of the magnetization of the Fe layers by changing the applied magnetic field.  

 

 
 

Fig. 10.3: Giant Magnetoresistance effect in an Fe / Cr / Fe trilayer compared to the 
anisotropic magnetoresistance effect in a single Fe layer [3] 

Fe/Cr/Fe 



10.4  U. Rücker 

           
 

Fig. 10.4: Different matching of the bandstructure between ferromagnetic and non-
magnetic layers changes the resistivity for the different spin channels 

 

It turns out that the resistivity is highest in the case of antiparallel alignment of the two 
magnetization directions. This effect is much stronger and much more sensitive to 
changes in the magnetization direction of each ferromagnetic layer than the anisotropic 
magnetoresistance effect in single ferromagnetic layers, which was known before. The 
microscopic origin of the GMR effect is the matching between the spin-split band-
structures of the two ferromagnetic layers.  The conductivity of the entire structure is 
the sum of the conductivities for the two spin channels. As the Fermi surface is different 
for the two spin channels, the matching between the FM and the NM layer is different. 

As shown in Fig. 10.4, in the case of parallel alignment, the scattering probability of a 
conduction electron is the same at both interfaces. For one spin channel, the scattering 
probability is high while for the other it is low. The conductivity is then dominated by 
the spin channel with the smaller scattering probability. The resistivity of the entire 
structure, which can be described as a parallel wiring of the two resistors for the two 
spin channels, is small. 

In the case of antiparallel alignment, the scattering probability for each spin channel is 
high in one of the FM layers. This results in a relatively low conductivity for both spin 
channel, so that the resulting resistivity is much higher compared to the case of parallel 
magnetization. 

As GMR structures are easy to prepare and easy to use, the sensor technology based on 
this effect quickly became standard in the readout system of computer harddisks and 
many other applications. Today, it has been replaced by Tunneling Magnetoresistance 
(TMR), where the nonmagnetic interlayer is insulating and electrons travel across this 
tunneling barrier while preserving their spin state. Then, the height of the tunneling 
barrier depends on the spin of the electron and the magnetization direction of both 
ferromagnetic layers. A detailed overview over the field of spin transport in layered 
systems is given in Ref. [5]. 
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10.2 Why neutrons are useful for investigating magne-
tic nanostructures 

 

For the investigation of magnetism, many methods are well known. In most cases the 
magnetization of a sample is measured. A different, but more indirect approach is the 
measurement of spin-dependent bandstructures by absorption and photoemission 
spectroscopy of polarized light / x-rays. 

The first (and oldest) approach is to measure the integral magnetization of a sample by 
classical magnetometry, e.g. by using a Vibrating Sample Magnetometer (which 
measures the induction when moving the magnetic sample in a coil), a Faraday balance 
(which measures the force on the magnetic sample in a field gradient), or more recently 
a SQUID magnetometer (which measures the magnetic flux inside a superconducting 
loop). In case of magnetic nanostructures, the small signal coming from the nano-
structure is always superimposed by the signal from the substrate which is typically 
10000 times larger in volume. Even if the nanostructure is ferromagnetic and the 
substrate only diamagnetic, the correction due to the substrate is in most cases much 
stronger then the signal itself. 

Better adapted to thin structures are methods that are surface sensitive. The 
magnetooptical Kerr effect (MOKE) measures magnetization with polarized light 
reflected from a magnetic surface. Due to the magnetization of the sample the 
polarization direction of the light is modified. This method is surface sensitive in the 
range of the penetration depth of the light used (typically some 10 nanometers). At 
synchrotron x-ray sources one can use X-ray Magnetic Circular Dichroism (XMCD). 
The energy dependence of the absorption of circular polarized (soft) x-rays is measured 
at the absorption edges of the magnetic materials. Again, the information is integrated 
over the penetration depth of the x-rays used, but it is element specific due to the choice 
of the x-ray energy in resonance with the magnetic orbitals of a certain element. 

Magnetic domains can be imaged using e.g. Magnetic Force Microscopy (surface 
sensitive, measuring the stray fields above the sample), Lorentz microscopy (the 
transmission of electrons through a very thin sample is observed; due to the Lorentz 
forces the electrons are deviated according to the magnetization strength and direction), 
or Kerr microscopy (observing the MOKE using an optical microscope; again it 
integrates over the penetration depth of the light, with the lateral resolution of the 
optical microscope). Photoemission electron microscopy (PEEM) with soft x-rays can 
give an overview about the density of certain electronic states with a lateral resolution 
in the nanometer range and time resolution down to nanoseconds. In combination with 
XMCD, XMCD-PEEM can visualize the evolution of magnetic domains under variable 
magnetic fields. But again, the depth resolution is only determined by the penetration 
depth and the element specific absorption of the x-rays. 

What is missing is a method that can access the magnetism of buried layers using the 
depth information. Here, we need a probe that is sensitive to magnetic fields while 
having a spatial resolution (at least in depth) in the nm regime. Cold neutrons have a 
wavelength appropriate for resolving nm length scales and they carry a spin that 
interacts with the magnetic fields. For most of the magnetic investigations, the neutron’s 
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spin has to be prepared in a certain state, so we use polarized neutrons for the 
investigation of magnetic nanostructures. 

Polarized neutron reflectometry with polarization analysis is a method for depth-
resolved investigation of magnetic layered structures; I will introduce this method in the 
following chapter. Together with the analysis of off-specular scattering, lateral 
structures in the μm range can be investigated, allowing to access magnetic domains in 
buried layers. Polarized SANS reveals information about magnetic structures in the nm 
range perpendicular to the beam direction, while polarized GISANS (Grazing Incidence 
Small Angle Neutron Scattering) combines the possibilities of both methods and allows 
to access lateral magnetic structures in the nm range in buried layers. 

 

 

10.3 Specular reflectivity of polarized neutrons 
 

In the previous lecture, you have learned about specular reflectivity of neutrons on 
layered structures with nuclear scattering contrast. For the investigation of magnetic 
layered structures, we have to remind that the neutron is a spin ½ particle and therefore 
interacts with the magnetic induction B.  
To treat the neutron’s spin properly, we have to work with wave functions in the 2-
dimensional quantum mechanical spin space, where the usual space-dependent 
functions, e.g. the potential, become operators on the neutron’s spin. 

In analogy to eq. (9.2), the potential of a homogeneous magnetic material can be 
separated into two parts 
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where V1
N is the nuclear interaction from eq. (9.2), and 1̂  is the unity operator, which 

does not affect the spin state, so that the nuclear interaction is described independently 
on the neutron’s spin. The magnetic dipole interaction is described by the operator 
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M
l ˆV̂ B� ��� �  which is a scalar product of the neutron magnetic moment operator 
�̂n�  and the magnetic induction Bl inside the material. 

For the description in coordinates, we need to define a coordinate system which is 
convenient to describe the experiment. Typically, the magnetic field H is applied in the 
plane of the sample. We choose this direction to be the x-direction of the coordinate 
system H = Hex and also as the quantization axis for the neutron spin. Under this 
assumption, the spin operator ),,(ˆ zyx ����� is the following: 
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In analogy to chapter 9.2, the Schrödinger equation can be solved in coordinate and spin 
space, where the eigenvectors �  and �  of the operator x0ˆ ���b�  with the 
eigenvalues +1 and -1, respectively, define states of the neutron with “spin up” and 
“spin down”. The solution of the Schrödinger equation is the neutron wave function 

)(r� , which is again a linear combination of those two spin states. 
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After some calculation which you can find in Ref [6] we end up with a set of two 
coupled one-dimensional linear differential equations for every layer, which are the 
analogue to equation (9.8).  
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In this formulae, you find the nuclear scattering length density N�  that you know from 
eq. (9.3) together with its magnetic analogon M� , the magnetic scattering length 
density. It is proportional to the net magnetization M of the material. In case of a 
ferromagnetic material, the magnetization vector M typically is aligned in some 
direction, which is described by the unit vector m = M / M.  

Now, we can have a closer look at the different terms in equation (10.4) and (10.5). As 
Non-Spinflip (NSF) interaction, one finds in (10.4) for spin + (“spin up”) the sum of the 
nuclear interaction and the magnetic interaction with the magnetization along the 
quantization direction and in (10.5) for spin – (“spin down”) the difference. In case of a 
magnetically saturated layer (all the magnetization is aligned with the external field), 
the scattering length density for spin + neutrons is enhanced and for spin – neutrons is 
reduced compared to the nonmagnetic case.  

 
Fig. 10.5: The total reflection angle �c of the surface of a magnetized material is 

different for both spin directions 

R+R-

�c
- �c

+
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This has an influence on the index of refraction, on the total reflection angle, and of 
course on the reflectivity, which is a function of the change of the index of refraction at 
a certain interface. Fig. 10.5 shows schematically the splitting of the total reflection 
angle. 

In case that the magnetization is not fully aligned with the field, the component along 
the field direction influences the scattering length density for NSF. The in-plane 
magnetization component perpendicular to the field induces a spin-flip (SF) interaction 
that is equally strong for both spin-flip channels +– and –+, as is described in the last 
term of eq. (10.5) or (10.4), respectively. 

Specular reflectivity of polarized neutrons is not sensitive to any magnetization 
component perpendicular to the layer plane. This is in agreement with the statement in 
lecture 7 (eq. (7.17) ff.) that only the magnetization component M� perpendicular to Q 
contributes to the magnetic interaction with the neutron’s spin. 

As en example, I would like to show the polarized neutron reflectivity of a [Co / Cu] 
multilayer. The respective nuclear and magnetic scattering length densities are 

 Co: �N = 2.30 ·10-6 Å-2       �M = 4.24 ·10-6 Å-2 

 Cu: �N = 6.53 ·10-6 Å-2       �M = 0. 

Obviously, the sum of the magnetic and the nuclear scattering length density of Co is 
almost equal to the scattering length density of Cu. In the case of magnetic saturation, 
spin + neutrons will not feel any contrast at the Co / Cu interfaces because they see the 
sum of nuclear and magnetic scattering length density in the Co layer. The multilayer 
structure is invisible for spin + neutrons. In contrast, spin – neutrons experience the 
difference of nuclear and magnetic scattering length density (which is in fact negative), 
so that the contrast is huge. 

Fig. 10.6 makes the contrast situation visible by using colours representing the different 
scattering length densities. 

••
•

••
•

Co

Co

Co

Cu

Cu

••
•

••
•

M
�

M
�

M
�

••
•

••
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M
�

M
�

M
�

nuclear scattering
length density

nuclear + magnetic.
sc. length. density

nuclear – magnetic
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n � n �

 
 

Fig. 10.6: The contrast between Co and Cu depends on the magnetization state. It 
almost vanishes for spin up neutrons, but is strong for spin down. 
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Fig. 10.7: Specular reflectivity of polarized neutrons from a [Co/Cu] multilayer with 

20 periods at magnetic saturation 
 

Fig. 10.7 shows the measured polarized neutron reflectivity of such a multilayer. The 
total reflection edge is identical for both spin channels, because the biggest scattering 
length density in the layered structure is the one of Cu, which is not magnetic. But the 
multilayer Bragg peaks at 2� = 3° and 2� = 6° are strongly spin split. For spin – 
neutrons, the Bragg peak is about 30 times stronger than for spin + neutrons. Here, one 
can see that the contrast is responsible for the reflectivity, not the strength of the 
scattering potential, as the scattering length density (which describes the scattering 
potential) is higher for spin +, but the contrast between the layers is much stronger for 
spin –.  

 

 

10.4 Layer-by-layer magnetometry 
 

One important application of polarized neutron reflectometry with polarization analysis 
is layer-by-layer magnetometry. As an example, I present the magnetization evolution 
in exchange bias multilayers of the type [IrMn / CoFe]N with the number of periods [7]. 
The exchange bias effect is the coupling between a ferromagnetic layer and a neigh-
bouring antiferromagnetic layer. If the antiferromagnet has been cooled below its Néel 
temperature with the ferromagnet being saturated, it conserves the interface magneti-
zation without being sensitive to the applied magnetic field. This induces an additional 
unidirectional anisotropy on the ferromagnetic layer, i.e. the original magnetization 
direction is preferred over all others. The hysteresis loop is shifted away from H = 0. 
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Fig. 10.8: SQUID magnetization measurements (at room temperature, left) and AFM 

micrographs of the surface (right) of polycrystalline multilayers of the type  
SiO2 / 10 nm NiFe / [5 nm IrMn / 3 nm CoFe]N  with N = 1, 3, or 10, resp. 

 

The green curve in Fig. 10.8 shows the exchange biased magnetization curve of a IrMn / 
CoFe double layer shifted left together with the magnetization loop of the NiFe buffer 
layer, which is not affected by exchange bias and therefore symmetric around H = 0 
field. The CoFe layer shows a nice square hysteresis loop, indicating spontaneous 
magnetization flip at the coercive field. 

Strangely, the shape of the magnetization loop of the exchange biased CoFe layers 
changes, when the number of [IrMn / CoFe]N bilayers is increased. In addition, the 
strength of the exchange bias is increased. An AFM study of the surfaces shows that the 
grain size of the polycrystalline layers is reduced from layer to layer during the 
preparation procedure, but no information could be found that justifies the slope of the 
magnetization curves and that could eventually explain the origin of a magnetization 
rotation process responsible for the gradual evolution of the magnetization as a function 
of the applied field. 

Therefore, a polarized neutron reflectivity study was performed, to investigate the 
individual behaviour of the ferromagnetic layers in the multilayer structure. As an 
example, Fig. 10.9 shows the specular polarized neutron reflectivity at one of the 
coercive fields (i.e. the net magnetization vanishes) together with the fit.  
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Fig. 10.9: Polarized neutron reflectivity of the sample with N=10 at �0H = -0.1 mT 

after positive saturation 
 

The polarized neutron measurement shows no spin flip signal at all, immediately 
excluding the idea of a magnetization rotation process. Furthermore, the fit of the 
measured data shows that the magnetization of the upper 5 CoFe layers is aligned 
antiparallel to the field while the magnetization of the lower 5 CoFe layers is still 
aligned along to the field. I.e., the exchange bias on the upper layers (with smaller 
grains) still can hold the magnetization in the preferred direction, while the 
magnetization of the lower layers already has followed the field.  

Together with measurements at several other magnetic field values on both branches of 
the hysteresis loop it turned out that every single layer has a square magnetization loop, 
but the strength of the exchange bias effect (i.e. the shift of the centre of the loop away 
from H = 0) increases with reduced grain size. The overlaying of the differently shifted 
square loops then results in the inclined net magnetization loop measured with 
magnetometry. 

 

 

10.5 Vector magnetometry 
 

The second important application of polarized neutron reflectometry with polarization 
analysis is vector magnetometry in layered structures. The ability to distinguish between 
SF and NSF channels offers an independent access to the in-plane magnetization 
components perpendicular and parallel to the field direction. As a magnetization 
direction perpendicular to the sample surface is rare (due to the shape anisotropy) one 
can determine the full magnetization vector in most cases. 
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Fig. 10.10: Layer sequence of an epitaxially grown and antiferromagnetically coupled  
[Fe / Cr]N multilayer 

 

I would like to explain the power of vector magnetometry using the example of an 
epitaxially grown and antiferromagnetically (AF) coupled [Fe / Cr]N 
multilayer with an odd number of Fe layers [8]. Fig. 10.10 shows the 
layer sequence of such a sample grown on a GaAs single crystal with a 
Ag buffer layer to improve the surface quality. The magnetic 
behaviour is determined by the competition between 3 different 
interactions (see.  

Fig. 10.11): The crystalline anisotropy in the single crystalline Fe layers tries to align 
the magnetization in every Fe layer along one of the in-plane [100] directions. This 
results in 4 equivalent easy axes. The antiferromagnetic coupling (mediated by the Cr 
interlayer) has the tendency to align the magnetization of two neighbouring Fe layers 
antiparallel to each other. The Zeeman term tries to align the magnetization of every 
ferromagnetic layer along the applied field. 

...
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Fig. 10.11: The magnetic behaviour in an applied magnetic field is governed by 3 

competing interactions 
As the multilayer under investigation has an odd number of Fe layers, the antiparallel 
orientation of the magnetization in remanence (where the Zeeman term is weak) will 
leave the magnetization of one layer uncompensated, so that the Zeeman energy does 
not vanish even at very small fields. This effect is supposed to align the remanent 
magnetization of all layers along or antiparallel to the field direction. 

Fig. 10.12 shows MOKE measurements of such samples with N = 7 or N = 19 Fe layers 
in the multilayer sequence. The MOKE signal is a function of the magnetization, but not 
proportional to it, because it is a superposition of the longitudinal Kerr effect 
(proportional to the magnetization along the field) and the transverse Kerr effect 
(proportional to the magnetization perpendicular to the field). Furthermore, the weight 
of the layers close to the surface is much higher than the weight of lower lying layers 
due to the limited penetration depth of the light. Therefore, one should not worry about 
the MOKE curve not being monotonous. Nevertheless, a jump in the MOKE curve 
always indicates a spontaneous change of the magnetization state. 

In addition, Fig. 10.12 shows a simulation of the integral magnetization component 
along the field based on a numerical minimization of the three energy terms mentioned 
above. This kind of simulation cannot reproduce effects of activation barriers leading to 
hysteresis. 

In the case of the multilayer with N = 7 Fe layers, the simulation and the MOKE 
measurement have a good qualitative agreement. In saturation, the magnetic moment of 
every layer is aligned with the field. In the intermediate field range, the magnetization is 
alternatingly pointing left or right from the field direction, so that the magnetization 
component along the field is almost equal for every layer and the magnetization 
components perpendicular to the field fulfil as much as possible the AF coupling.  

At remanence, the magnetization of all layers is turned by 90°, so that 4 layers have the 
magnetization along the field and 3 layers antiparallel to the field. This configuration 

Fe single crystal layers: 4 easy axes 
[100] 

AF coupling through Cr interlayer 

Applied field: Zeeman energy 

H
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fulfils as well the AF coupling condition as the alignment of the net magnetization 
along the applied field. 

 

    

 

Fig. 10.12: MOKE measurement of [Fe / Cr]N  multilayers with N = 7 Fe layers (left) 
and N = 19 Fe layers (right). The simulation of the magnetization curve is 
based on minimization of the total energy. 

In contrast to that, the MOKE measurement of the multilayer with N = 19 Fe layers 
shows a smooth transition through H = 0 while the simulation proposes a step 
comparable to the case described previously. This behaviour is known from AF coupled 
multilayers with an even number of ferromagnetic layers, because there the net 
magnetization vanishes, so that there is no Zeeman energy that causes the rotation of the 
entire magnetic configuration at remanence. This contradiction cannot be resolved by 
magnetometry measurements only. 

Fig. 10.13 shows the polarized neutron reflectivity together with the offspecular 
scattering for the two samples at saturation field. One can see a structured signal with 
total reflection and several Bragg peaks according to the periodicity in the multilayer 
structure only in the R++ channel. For spin – neutrons the contrast between fully 
magnetized Fe and Cr vanishes, so the R– – shows only the total reflection (with a 
reduced critical angle compared to R++), but no Bragg peaks. As no magnetization 
component perpendicular to the field direction exists, there is no real spin flip signal. 
What you see in R+– and R –+ is a parasitic signal due to the limited efficiency of the 
polarizing equipment of the instrument. The Bragg sheets crossing the specular Bragg 
peaks are due to vertically correlated roughness of the Fe / Cr interfaces. 

No qualitative difference between the two samples can be observed except the fact that 
the Bragg peaks and Bragg sheets are sharper and more intense for the [Fe / Cr]19 
sample because of the bigger number of periods. 

Fig. 10.14 shows the same in the intermediate field range. Additional Bragg peaks of 
half order appear, which are stronger in SF compared to NSF. This is the indication of 
the alternation of the magnetization directions due to the antiferromagnetic coupling. 
Mainly the magnetization component perpendicular to the field oscillates while the 
component remaining along the field is modulated less. As the sample is no more 
saturated, the magnetization component in field direction is reduced, so that the contrast 
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for spin – neutrons does not vanish any more. Therefore, the full order Bragg peaks also 
come up in R– –. They are now mainly induced by the nuclear structure while the 
magnetic contribution is collected in the half order signal. The strong off-specular signal 
around the half order Bragg peaks in the SF channels is a signature of magnetic 
domains. Again, no distinct qualitative difference between the two samples is observed. 

This is very different at remanence, as shown in Fig. 10.15. The [Fe / Cr]7 sample has 
all half order peaks in the NSF channels while the [Fe / Cr]19 sample has all half order 
peaks in SF. The small contribution in the other channels can be explained due to the 
limited polarization of the neutron beam. This shows that the magnetization of all layers 
of the [Fe / Cr]7 sample is aligned alternatingly parallel and antiparallel to the field 
direction, as has been proposed by the simulation for the MOKE measurement. 

In the case of the [Fe / Cr]19 sample, all magnetization is now concentrated perpendicu-
lar to the field, no more difference between R++ and R– – can be observed. The mea-
surement clearly shows that the Zeeman energy contribution equivalent to the magne-
tization of a single Fe layer is not sufficient to turn the entire magnetization of all 19 
layers by 90° across the crystalline anisotropy barrier.  

In addition to the qualitative description presented here, a quantitative analysis of the 
measurements allows to determine the angle of the magnetization vector of every layer 
independently. This analysis is presented in Ref. [8].  
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Fig. 10.13: Polarized 
neutron reflectivity and 
offspecular scattering for 
two AF-coupled 
[Fe / Cr]N multilayers 
with N = 7 (top) and 
N = 19 (bottom) in 
saturation field of 
300 mT. Indicated are the 
primary beam blocked by 
the beamstop (1), the 
plateau of total reflection 
(2), the first (3), second 
(4) and third order (5) 
Bragg peak (giving 
information about the 
layer structure) and the 
Bragg sheets (6) (giving 
information about 
correlated roughness). 
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Fig. 10.14: Polarized 
neutron reflectivity and 
offspecular scattering for 
two AF-coupled 
[Fe / Cr]N multilayers 
with N = 7 (top) in 
intermediate field of 
30 mT and N = 19 
(bottom) in intermediate 
field of 25 mT. Indicated 
are the AF superstructure 
Bragg peaks of the order 
½ (1) and 1½ (2). 
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Fig. 10.15: Polarized 
neutron reflectivity and 
offspecular scattering for 
two AF-coupled 
[Fe / Cr]N multilayers 
with N = 7 (top) and 
N = 19 (bottom) in 
remanence field of 5 mT. 
Indicated are the AF 
superstructure Bragg 
peaks of order ½ in the 
NSF channels of the [Fe / 
Cr]7 system (1) and in the 
SF channels of the [Fe / 
Cr]19 system (2). 
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Exercises 
 

E10.1 Magnetic contrast 
 

We measure the polarized neutron reflectivity of a [Ni2Fe / Pt]N multilayer structure in 
magnetic saturation. The Ni2Fe alloy is ferromagnetic.  
 
a)  Calculate the nuclear and magnetic scattering length densities for the two consti-

tuents of the multilayer:   
 Ni Fe Pt 
density [g/cm³] 8.90 7.86 21.4 
atomic weight [g/mol] 58.71 55.85 195.09 
nuclear scattering length [1E-14 m] 1.03 0.954 0.95 
magnetic scattering length density  
[1E-6 Å-2] 

1.52 5.12 0 

 
If you do not manage to calculate the values properly, you may continue with the tabu-
lated values of the nuclear scattering length densities: Ni: 9.41E-6 Å-2, Fe: 8.09E-6 Å-2, 
Pt: 6.29E-6 Å-2. 
  

b)  Which of the 5 reflectivity curves presented below is the one measured on this alloy? 
Think about the critical angle (has to do with the highest scattering length density in 
all layers) and the contrast between adjacent layers (influences the height of the diff-
raction peaks) for both spin directions parallel (R+ +) and antiparallel (R– – ) to the 
applied magnetic field (saturation!). 
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c)  The other 4 curves have been measured on different samples. Which curve belongs 
to which sample? 

 
I. The sum of nuclear and magnetic scattering length density of the magnetic 

layers is equal to the nuclear scattering length density of the nonmagnetic 
layers 

II. The sample contains an additional nonmagnetic layer with a scattering length 
density higher than the sum of the magnetic and nuclear scattering length 
densities of Ni2Fe on top of the [Ni2Fe / Pt]N multilayer 

III. No layer is magnetic  
IV. The nuclear scattering length density of the nonmagnetic layers is somewhere 

between the sum and the difference of nuclear and magnetic scattering length 
density of the magnetic layers  

 

E10.2 Vector magnetometry 
 

The following figures show polarized neutron reflectivity measurements with polari-
zation analysis from a ferromagnetic single layer on a nonmagnetic substrate. Find out 
which figure belongs to which magnetization state: 
 

I. The sample is magnetized perpendicular to the field direction 
II. The sample is magnetized parallel to the field direction 

III. The magnetization of the sample is inclined by 45° against the field direction 
IV. This set of curves is wrong. (Why?) 
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11.1 Introduction

One of the most important benefits of neutron scattering is the possibility to do inelastic scat-
tering and by this way gain insight into the dynamics of materials as well as the structure.
Neutrons tell us where the atoms are and how they move [1]. Although this feature is shared
with inelastic x-ray scattering and dynamic light scattering, there is still a considerable range
of slow dynamics in molecular systems which can be studied exclusively by inelastic neutron
scattering.

This lecture can only present a short glimpse on the theoretical foundations and instrumen-
tal possibilities of inelastic neutron scattering. For those who are interested in more details,
several textbooks can be recommended [2–6]. Also supplementary information on correlation
functions [7] and Fourier transforms [8] may be found in earlier editions of this school.

k

k'

2θ

Q

Fig. 11.1: Definition of the scattering vector Q in terms of the incident and final wave vectors k
and k′. The black (isosceles) triangle corresponds to elastic scattering. The blue and red ones
correspond to inelastic scattering with energy loss or gain of the scattered neutron, respectively.

11.2 Theory

11.2.1 Kinematics of neutron scattering

Up to this lecture it has always been assumed that the wavelength (or wave vector, or energy)
of the neutrons is the same before and after scattering. The defining quality of inelastic neutron
scattering is that this is not anymore the case. The neutrons may lose or gain energy in the
collision with the nuclei implying that k′ �= k. This implies that Q now does not anymore result
from the isosceles construction drafted in black in Fig. 11.1 but from scattering triangles as
those in blue and red. Application of the cosine theorem leads to the following expression for
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Q in the inelastic situation:

Q =

√
k2 + k′2 − 2kk′ cos(2θ) (11.1)

=

√
8π2

λ2
+

2mω

�
− 4π

λ

√
4π2

λ2
+

2mω

�
cos(2θ) . (11.2)

Note that there is a fundamental difference to the simpler expression for elastic scattering,

Qel =
4π

λ
sin θ , (11.3)

used in the preceding lectures. Q now also depends on the energy transfer �ω implying that Q is
not anymore constant for a single scattering angle. Fig. 11.2 shows the magnitude of this effect
for typical parameters of a neutron scattering experiment. It can be seen that it is by no means
negligible for typical thermal energies of the sample even at temperatures as low as 100 K.

The other fundamental difference to elastic scattering to be considered is that the total scattering
cross section is not identical anymore to the bound scattering cross section read from tables. In
the extreme case of a free nucleus the scattering cross section is reduced to [2]

σ =
4πb2

(1 +m/M)2
(11.4)

where M is the mass of the scattering nucleus. It can be seen that in the worst case (scattering
from a gas of atomic hydrogen) this is a reduction by 1/4.

11.2.2 Scattering from vibrating atoms

The most important case of inelastic neutron scattering from vibrating atoms is that of scattering
from phonons in crystals. In this field, inelastic neutron scattering is the most important tool of
research. At first, a short recapitulation of the phonon picture will be presented [9, 10].

As a simplified model for the crystal one can consider a chain of N atoms with mass M regularly
spaced by a distance a and connected by springs with the spring constant K. For this system
the equations of motion can readily be written down:

d2uj

dt2
=

K

M
(uj+1 − 2uj + uj−1) . (11.5)

In addition, it has to be specified what the equations of motions are for the first and the last
atom (boundary condition). This is usually done by identifying the left neighbour of the first
atom with the last and vice versa, u0 = uN and uN+1 = u1, as in a closed necklace rather than
an open chain. This is the most natural choice for large N and called the Born-von-Kármán
boundary condition. The equation system (11.5) can be solved by the ansatz

uj(t) =
∑
k

Uk(t) exp

(
i
kj

N

)
(11.6)
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Fig. 11.2: Scattering vectors Q accessed by a neutron scattering experiment with the detector at
scattering angles 2θ = 10 . . . 170◦ vs. the energy transfer �ω (incident wavelength λ = 5.1 Å).
For comparison the thermal energy kBT corresponding to 100 K is indicated by an arrow.

with integer k (k ∈ Z). Here, Uk are the normal coordinates and each of them fulfils the
equation of motion of a single harmonic oscillator:

d2Uk

dt2
=

2K

M

(
cos

2πk

N
− 1

)
Uk . (11.7)

By introducing these normal coordinates, the system of differential equations (11.5) can be
decoupled into a set of differential equations which can be solved separately. The solutions are

Uk(t) = Ak exp (iΩkt) with (11.8)

Ωk =

√
2K

M

(
1− cos

2πk

N

)
= 2

√
K

M

∣∣∣∣sin πk

N

∣∣∣∣ . (11.9)

The second equation gives a relation between the index of the oscillator k and the frequency. On
the other hand, the index determines via equation (11.6) the wavelength of the vibration. One
wavelength covers N/k lattice positions, corresponding to λvib = Na/k in actual length. The
corresponding wave ‘vector’ is q = 2π/λvib = 2πk/Na1. This implies that there is a relation
between the wave vector and the frequency called the dispersion relation (Fig. 11.3):

Ω(q) = 2

√
K

M

∣∣∣sin qa

2

∣∣∣ . (11.10)

1 As will be seen later, there is a close connection between this lower case q and the scattering vector upper case
Q. Nevertheless, they are not the same and care has to be taken not to mix up both q-s.
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Fig. 11.3: Dispersion relation in a linear chain with N = 40 atoms (Born-von-Kármán bound-
ary condition).

This relation does not contain the number of atoms anymore. For large N the points consti-
tuting the curve in Fig. 11.3 will get closer and closer, finally leading to the continuous func-
tion (11.10). The individual positions of these points depend on the boundary condition. But
because they are getting infinitely dense for N → ∞ the exact boundary conditions do not
matter for a large system.

It can be seen that the dispersion relation (11.10) is periodic in q. On the other hand, there
are only N normal coordinates necessary to solve the N original equations of motion. This is
exactly the number of wave vectors found in a q interval of length 2π/a. The usual choice is
−π/a . . . π/a as a representative zone for the dispersion relation.

There are two modifications necessary when considering a real three-dimensional crystal in-
stead of this simplified model: (1) The crystal is periodic in three dimensions. (2) The vi-
brations are governed by quantum mechanics. The first requirement leads to the consequence
that instead of a scalar, one has to use a real wave vector, q → q = (qx, qy, qz) in reciprocal
space. The interval defined in Fig. 11.3 changes into a polyhedron called the first Brillouin zone
(Fig. 11.4) [9, 10]. It is constructed in the same way as the Wigner-Seitz cell in real space: The
Brillouin zone contains all points which are closer to the origin than to any other lattice point.
Its surfaces are the bisecting planes between the origin and its neighbours (in reciprocal space).

For every amplitude Ak equation (11.8) gives a valid solution of the equations of motion. This
means that in the classical picture the vibrations can have any energy. The quantum mechanical
treatment (which is too complex to be treated here in detail) leads to the result that only certain
energies with a distance of �Ωk are allowed. This quantisation implies that the vibrations can
be treated as quasiparticles with the energy �Ωk called phonons. The increase of the vibrational
amplitude corresponding to an energy change of +�Ωk is then seen as a creation, the inverse
process as an annihilation of a phonon. Then it makes sense to define �q as the momentum of
the phonon. In this way the dispersion relation Ω(q) is similar to the relations shown in Fig. 4.2
of lecture 4 for real particles.
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Fig. 11.4: Brillouin zones for cubic lattices: (a) simple cubic, (b) face-centred cubic, (c) body-
centred cubic. From [10].

The introduction of the quasiparticle (phonon) concept leads to the simple interpretation of
inelastic neutron scattering by vibrating lattices: The scattering process can be viewed as a
collision between phonons and neutrons. In this process the energy as well as the momentum
has to be conserved:

E ′ − E = �ω = ±�Ω(q) , (11.11)
k′ − k = Q = ±q+ τ . (11.12)

The second equation shows that the analogy with a two-particle collision is not complete. A
wave vector, changed by a lattice vector τ in reciprocal space, corresponds to the same phonon.
In the one-dimensional case, this can be seen from equation (11.6): If one adds an integer mul-
tiple of N to k (corresponding to a multiple of 2π/a in q) all values of the complex exponential
remain the same. Analogously, in the three dimensional case adding a lattice vector

τ = hτ1 + kτ2 + lτ3 (h, k, l ∈ Z) (11.13)

does not change anything and momentum has only to be conserved up to an arbitrary reciprocal
lattice vector. The condition (11.12) can also be visualised by the Ewald construction as done
in lecture 4 for elastic scattering.

From the conservation laws (11.11) and (11.12) one expects that the scattering intensity has
sharp peaks at the positions where both conditions are fulfilled and is zero everywhere else.
This is indeed so for coherent scattering, unless effects as multi-phonon scattering and anhar-
monicity are strong (usually at higher temperatures). Therefore, inelastic scattering allows the
straightforward determination of the phonon dispersion relation as shown in Fig. 11.5.

In this figure, it can be seen that some of the phonon ‘branches’ start at the origin (acous-
tic phonons), as in the simple calculation of the one-dimensional chain. Others are ‘floating’
around high frequencies (optical phonons). The latter occur in materials with atoms of different
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Fig. 11.5: Left: Phonon dispersion of NiO measured by inelastic neutron scattering. Frequen-
cies are expressed as ν = ω/2π and the wave vector is expressed in units of ζ = π/a. The
lattice is simple cubic, thus the symbols below the abscissa correspond to those in Fig. 11.4(a).
Right: Phonon density of states (see section 11.2.3) of NiO plotted to the same scale in fre-
quency. From [11].

weight or bond potential. (The one-dimensional chain would also produce these solutions if the
masses were chosen differently for even and odd j.) In this case, a mode, where all atoms of a
unit cell move roughly in phase, has the usual behaviour expected from the monatomic chain.
In particular the dispersion relation at low q is a proportionality:

Ω(q) = vq . (11.14)

This relation is typical for sound waves. v is the sound velocity, longitudinal or transverse
according to the type of phonons considered. In the polyatomic crystal or chain, there are
additional modes where the atoms move in anti-phase. This implies a much higher deformation
of the bonds. These vibrations constitute the optical phonon branches.

There is another difference between the one-dimensional chain and the three-dimensional crys-
tal visible. The atomic displacements are not simply scalars uj but vectors uj which have a
direction. This direction can be either parallel or perpendicular to to the wave vector q. De-
pending on this, one speaks of longitudinal and transverse phonons. The usual notation is LA,
TA, LO, TO, where the first letter indicates the phonon polarisation and the second whether it
is acoustic or optical. An additional index as T1A is used for q directions where the symme-
try allows a distinction between the perpendicular orientations of uj . The full mathematical
expression for the phonon scattering [2] includes an intensity factor proportional to |Q · uj|2.
This factor obviously vanishes if Q and uj are perpendicular, implying that purely transverse
modes are unobservable in the first Brillouin zone where Q = q.

It has to be noted, that the above arguments only hold for coherent neutron scattering (see
equation (11.21) below) from crystalline materials. If the material is amorphous the coherent
scattering will be diffuse (as it is for incoherent scattering always). The readily understandable
reason for this is that the definition of the phonon wave vector q requires a lattice.
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Finally, an indirect effect of vibrations on the elastic scattering should be mentioned. The elastic
scattering (also for x-ray scattering) is reduced by the Debye-Waller factor. This reduction
can be understood from a ‘hand-waving’ argument: Due to the thermal vibrations, atoms are
displaced by uj from their nominal lattice position. Although on the average 〈u〉 is zero, there
will be a finite mean-square displacement 〈u2〉. The Debye-Waller factor can be shown [2,9] to
be

exp (−〈(Q · u)〉) = exp
(−Q2〈u2〉/3) (11.15)

where the second expression is only valid for isotropic conditions. It can be seen that the attenu-
ation of diffraction peaks increases with increasing Q and increasing mean-square displacement,
that is at higher temperature. Note, that this does not mean that elastic scattering can observe
dynamics, because a permanent static displacement of the atoms would have the same effect.

The treatment of inelastic scattering by spin waves is very similar to that of deformation waves
above. In analogy to the phonon the quasiparticle “magnon” is introduced. Thereby, the dis-
placement uj is replaced by the orientation of the spin. The construction of normal modes
(Bloch waves) and the quantisation proceeds in the same way as for phonons. As explained in
lecture 7 neutrons interact with the nuclei as well as with the magnetic moments of nuclei and
electrons. Therefore, inelastic neutron scattering is also a tool for the detection of magnons and
this has been one of its first applications [12].

11.2.3 Scattering from diffusive processes

For the inelastic scattering from vibrational motions it was practical to consider the scattering as
a process between (quasi)particles, neutrons and phonons/magnons. But there are many types
of molecular motions, mostly irregular and only statistically defined, which cannot be treated in
this concept, e.g. thermally activated jumps or Brownian motion. For these motions it is more
adequate to use a concept of correlation functions to calculate the scattering.

Because these ‘diffusive’ processes are usually much slower than phonon frequencies it is in
most cases not necessary to treat them quantum-mechanically. Therefore, in this section, a
picture of the scattering material will be used where the positions of all scatterers are given
as functions of time rj(t) (trajectories)2. In this picture the double differential cross-section,
defined as the probability density that a neutron is scattered into a solid angle element dΩ with
an energy transfer �ω . . . �(ω + dω), is

dσ

dΩdω
=

1

2π

k′

k

∫ ∞

−∞
e−iωtdt

N∑
j,k=1

b∗jbk
〈
eiQ·(rk(t)−rj(0))

〉
. (11.16)

In order to derive a quantity similar to the structure factor S(Q) in lectures 4 and 5, one assumes
again a system of N chemically identical particles. Because the neutron scattering length is a
nuclear property, there may still be a variance of scattering lengths. And even in monisotopic
systems, there may be such a variance due to disorder of the nuclear spin orientations, since
the scattering length also depends on the combined spin state of the scattered neutron and the

2 This treatment also ignores that in the scattering process the trajectories of the scattering particles are modified,
i.e. recoil effects. The consequences of this approximation are outlined by the end of this section.
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scattering nucleus3. Therefore, it is assumed that scattering lengths are randomly distributed

with the average b = (1/N)
∑

j bi and the variance |b|2− ∣∣b∣∣2 = ∣∣b− b
∣∣2 = (1/N)

∑
i

∣∣bj − b
∣∣2.

As will be seen later, this gives rise to the incoherent scattering contribution which is usually
found in neutron scattering (in contrast to x-ray scattering). The sum in expression (11.16) can
be decomposed into one over different indices and one over identical indices:

N∑
j,k=1

b∗jbke
iQ·(rk(t)−rj(0)) =

N∑
j �=k=1

b∗jbke
iQ·(rk(t)−rj(0)) +

N∑
j=1

|bj|2eiQ·(rj(t)−rj(0)) . (11.17)

They have to be averaged in different ways with respect to the distribution of scattering lengths.
In the first term b∗j and bk can be averaged separately because the different particle scattering
lengths are uncorrelated: b∗ b = b

∗
b = |b|2. In the second term one has to average after taking

the absolute square:

=
N∑

j �=k=1

|b|2eiQ·(rk(t)−rj(0)) +
N∑
j=1

|b|2eiQ·(rj(t)−rj(0)) . (11.18)

In order to avoid the sum over distinct particles, the first sum is complemented by the j = k
terms, |b|2eiQ·(rj(t)−rj(0)), and to compensate, these terms are subtracted in the second sum:

=
N∑

j,k=1

|b|2eiQ·(rk(t)−rj(0)) +
N∑
j=1

(
|b|2 − |b|2

)
eiQ·(rj(t)−rj(0)) . (11.19)

With this result it is possible to express the double differential cross section as

∂σ

∂Ω∂ω
= N

k′

k

(∣∣b∣∣2 Scoh(Q, ω) +
(
|b|2 − ∣∣b∣∣2)Sinc(Q, ω)

)
(11.20)

with

Scoh(Q, ω) =
1

2πN

∫ ∞

−∞
e−iωtdt

N∑
j,k=1

〈
eiQ·(rk(t)−rj(0))

〉
(11.21)

and

Sinc(Q, ω) =
1

2πN

∫ ∞

−∞
e−iωtdt

N∑
j=1

〈
eiQ·(rj(t)−rj(0))

〉
. (11.22)

The quantities defined by (11.21) and (11.22) are called coherent and incoherent scattering
function or dynamic structure factors. It is a peculiarity of neutron scattering that there is also
the incoherent term, which solely depends on the single particle dynamics due to the variance
of the scattering lengths.

The prefactors of the scattering functions in expression (11.20) are often replaced by the scat-
tering cross sections

σcoh = 4π
∣∣b∣∣2 , σinc = 4π

(
|b|2 − ∣∣b∣∣2) . (11.23)

3 In this section only nuclear non-magnetic scattering will be considered. For a full treatment of magnetic scattering
see lecture 7 or vol. 2 of ref. 2.
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They give the scattering into all directions, i.e. the solid angle 4π (for the incoherent part in
general and for the coherent in the limit Q → ∞).

As demonstrated in ref. 2, it is also possible to use the concept of correlation functions for
phonons. In this way it is possible to calculate the scattering from phonons in terms of
Scoh(Q, ω) and Sinc(Q, ω). The result for the coherent scattering gives non-vanishing con-
tributions only for (Q, ω) combinations which fulfil the conservation laws (11.11) and (11.12).
This was already shown in section 11.2.2 but the explicit calculation gives also the intensity of
the phonon peaks, e.g. the mentioned result that transverse phonon peaks vanish in the first Bril-
louin zone. But with this mathematical approach it is also possible to calculate the incoherent
scattering which is not bound to the momentum conservation (11.12). The result is for inelastic
incoherent neutron scattering from cubic crystals in the one-phonon approximation [2]:

Sinc(Q, ω �= 0) =
�Q2

2M
exp(−2W (Q))

g(|ω|)
ω

1

exp(�ω/kBT )− 1
(11.24)

high T limit−−−−−−→ exp(−2W (Q))
Q2kBT

2M

g(|ω|)
ω2

. (11.25)

(Here, exp(−2W (Q)) is a shorthand for the Debye-Waller factor (11.15).) From this expression
it can be seen that the incoherent scattering is determined by the phonon density of states g(ω)
alone and does not depend on the full details of the phonon dispersion. The density of states
g(ω) is the projection of the phonon dispersion curves onto the frequency axis, as demonstrated
in Fig. 11.5. Besides nuclear inelastic scattering, which requires Mößbauer-active nuclei, in-
elastic incoherent neutron scattering is the most important method to determine g(ω).

In some cases it is interesting to consider the part of expression (11.21) before the time-
frequency Fourier transform, called intermediate coherent scattering function:

Icoh(Q, t) =
1

N

∑
jk

〈
eiQ·(rk(t)−rj(0))

〉
. (11.26)

Its value for t = 0 expresses the correlation between atoms at equal times. A theorem on
Fourier transforms tells that this is identical to the integral of the scattering function over all
energy transfers:

Icoh(Q, 0) =
1

N

∑
jk

〈
eiQ·(rk−rj)

〉
= S(Q) =

∫ ∞

−∞
Scoh(Q, ω)dω . (11.27)

(S(Q) is the structure factor as derived in lectures 4 and 5 for the static situation.) This integral
relation has a concrete relevance in diffraction experiments. There, the energy of the neutrons
is not discriminated: The diffraction experiment implicitly integrates over all �ω 4. Equa-
tion (11.27) shows that this integral corresponds to the instantaneous correlation of the atoms.
The diffraction experiment performs a ‘snapshot’ of the structure. All dynamic information is
lost in the integration process and therefore it is invisible in a diffraction experiment.

4 Strictly speaking, this is only an approximation. There are several reasons why the integration in the diffraction
experiment is not the ‘mathematical’ one of (11.27): (1) On the instrument the integral is taken along a curve of
constant 2θ in Fig. 11.2 while constant Q would correspond to a horizontal line. (2) The double differential cross-
section (11.20) contains a factor k′/k which depends on ω via (11.1). (3) The detector may have an efficiency
depending on wavelength which will introduce another ω-dependent weight in the experimental integration. All
these effects have been taken into account in the so-called Placzek corrections [8, 13, 14].
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Similarly the incoherent intermediate scattering function is

Iinc(Q, t) =
1

N

N∑
j=1

〈
eiQ·(rj(t)−rj(0))

〉
(11.28)

with

Iinc(Q, 0) =
1

N

N∑
j=1

〈
eiQ·(rj−rj)

〉
= 1 =

∫ ∞

−∞
Sinc(Q, ω)dω . (11.29)

Note that this result is independent of the actual structure of the sample. Integration of the
double-differential cross section (11.20) over ω shows that also the static scattering contains
an incoherent contribution. But because of (11.29), this term is constant in Q. It contributes
as a flat background in addition to the S(Q)-dependent scattering. In some cases (e.g. small-
angle scattering) it may be necessary to correct for this, in other cases (e.g. diffraction with
polarisation analysis) it may even be helpful to normalise the coherent scattering.

In the paragraphs before it was shown, that the value of the intermediate scattering functions at
t = 0 corresponds to the integral of the scattering function over an infinite interval. This is a
consequence of a general property of the Fourier transform. There is also the inverse relation
that the value of S(Q, ω) at ω = 0 is related to the integral of I(Q, t) over all times. The most
important case is here when I(Q, t) does not decay to zero for infinite time, but to a finite value
f(Q). In that case the integral is infinite, implying that S(Q, ω) has a delta function contribution
at ω = 0. This means that the scattering contains a strictly elastic component. Its strength can
be calculated by decomposing the intermediate scattering function into a completely decaying
part and a constant for the coherent and the incoherent scattering:

I[coh|inc](Q, t) = I inel[coh|inc](Q, t) + f[coh|inc](Q) . (11.30)

Because the Fourier transform of constant one is the delta function this corresponds to

S[coh|inc](Q, ω) = Sinel
[coh|inc](Q, ω) + Sel

[coh|inc](Q)δ(ω) , (11.31)

where Sel
[coh|inc](Q) = f[coh|inc](Q), the elastic coherent/incoherent structure factor (EISF), can

be written as

Sel
coh(Q) =

1

N

N∑
j,k=1

〈
eiQ·(rk(∞)−rj(0))

〉
, (11.32)

Sel
inc(Q) =

1

N

N∑
j=1

〈
eiQ·(rj(∞)−rj(0))

〉
. (11.33)

Here, t = ∞ indicates a time which is sufficiently long that the correlation with the position at
t = 0 is lost. For the EISF this lack of correlation implies that the terms with initial and final
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positions can be averaged separately:

Sel
inc(Q) =

1

N

N∑
j=1

〈
eiQ·rj〉 〈e−iQ·rj〉

=
1

N

N∑
j=1

∣∣e−iQ·rj ∣∣2 (11.34)

=
1

N

N∑
j=1

∣∣∣∣
∫
V

d3r exp (iQ · r) ρj(r)
∣∣∣∣2 . (11.35)

Here, ρj(r) denotes the ‘density of particle j’, i.e. the probability density of the individual par-
ticle j being at r. From (11.34) one can see that the normalisation of the EISF is Sel

inc(0) = 1 (in
contrast to that of the structure factor, limQ→∞ S(Q) = 1). One can say that the EISF is the form
factor of the volume confining the motion of the particles. E.g. for particles performing any kind
of motion within a sphere, the EISF would be Sel

inc(Q) = 9 (sin(QR)−QR cos(QR))2 /Q6R6

as derived in lecture 5.

As in the static situation, the scattering law can be traced back to distance distribution functions.
These are now (in the treatment of inelastic scattering) time-dependent. They are called van
Hove correlation functions:

G(r, t) =
1

N

〈
N∑

j,k=1

δ(r− rk(t) + rj(0))

〉
, (11.36)

Gs(r, t) =
1

N

〈
N∑
j=1

δ(r− rj(t) + rj(0))

〉
. (11.37)

Insertion into

I[coh|inc] =
∫
Vd

G[s](r, t) exp(iQ · r)d3r (11.38)

directly proves that the spatial Fourier transforms of the van Hove correlation function are the
intermediate scattering functions.

The two particle version can be reduced to the microscopic density,

ρ(r, t) =
N∑
j=1

δ(r− rj(t)) . (11.39)

Its autocorrelation function in space and time is

〈ρ(0, 0)ρ(r, t)〉 . (11.40)

The 0 is showing that translational symmetry is assumed. So the correlation function can be
replaced by its average over all starting points r1 in the sample volume:

〈ρ(0, 0)ρ(r, t)〉 = 1

V

∫
V

d3r1〈ρ(r1, 0)ρ(r1 + r, t)〉 . (11.41)
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Insertion of (11.39) gives

〈ρ(0, 0)ρ(r, t)〉 =
1

V

〈
N∑

j,k=1

∫
V

d3r1δ(r1 − rk(t))δ(r1 + r− rj(t))

〉
(11.42)

=
1

V

〈
N∑

j,k=1

δ(rk(t) + r− rj(t))

〉
. (11.43)

Together with (11.36) this implies

G(r, t) =
1

ρ0
〈ρ(0, 0)ρ(r, t)〉 . (11.44)

Again setting t = 0 results in the static scattering situation:

G(r, 0) =
〈ρ(0, 0)ρ(r, 0)〉

ρ0
= δ(r) + ρ0g(r) (11.45)

with g(r) as defined in lecture 5.

As in the case of static scattering there is an alternative way to derive the scattering function by
Fourier-transforming the density

ρQ(t) =

∫
d3reiQ·rρ(r, t) =

N∑
j=1

eiQ·rj(t) (11.46)

and then multiplying its conjugated value at t = 0 with that at t:

Icoh(Q, t) =
1

N

〈
ρ∗Q(0)ρQ(t)

〉
(11.47)

and
Scoh(Q, ω) =

1

2πN

∫ ∞

−∞
e−iωt

〈
ρ∗Q(0)ρQ(t)

〉
dt . (11.48)

(This is a consequence of the cross-correlation theorem of Fourier transform which is the gen-
eralisation of the Wiener-Khintchine theorem for two different correlated quantities.)

Note that a reduction of the self correlation function Gs(r, t) to the density is not possible
in the same way. The multiplication ρ(0, 0)ρ(r, t) in equation (11.44) inevitably includes all
combinations of particles j, k and not only the terms for identical particles j, j. Therefore, the
incoherent scattering cannot be derived from the density alone but requires the knowledge of
the motion of the individual particles.

From the definitions (11.36) and (11.37) it is immediately clear that the van Hove correlation
functions (as defined here) are symmetric in time

G[s](r,−t) = G[s](r, t) . (11.49)

if the system is dynamically symmetric to an inversion of space. From (11.49) and general
properties of the Fourier transform it follows that I(Q, t) is real and that it is also symmetric in
time:

I(Q,−t) = I(Q, t) . (11.50)
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In turn this implies that the scattering functions are real and symmetric in energy transfer �ω:

S(Q,−ω) = S(Q, ω) . (11.51)

It can be seen that this identity violates the principle of detailed balance. Up- and downscatter-
ing should rather be related by

S(Q,−ω) = exp

(
�ω

kBT

)
S(Q, ω) . (11.52)

The reason for this is that (as mentioned in footnote 2) the influence of the neutron’s impact
on the motion of the system particles is neglected. This would be included in a full quantum-
mechanical treatment as carried out in ref. 2 or ref. 8 where the detailed balance relation (11.52)
emerges in a natural way. Note that equation (11.52) implies that both I(Q, t) and G[s](r, t) are
complex functions. (This is not ‘unphysical’ because they are no directly measurable quantities
in contrast to S(Q,ω) which is proportional to dσ/dΩdω. Even neutron spin-echo measures
only the real part of I(Q, t), see equation (11.69).)

Because the detailed balance relation (11.52) is also valid in classical thermodynamics (and
also recoil can be understood in the framework of classical mechanics) there should be a way
to derive a correct result from a classical treatment of the system too. This task is important
because only rather simple systems can be treated quantum-mechanically. Especially, results
from molecular dynamics computer simulations are classical results. The result for S(Q, ω)
derived here is obviously only a crude approximation. Better approximations can be obtained
by applying correction factors restoring (11.52) [16–18]. The exact classical calculation is
rather complicated [19] and requires knowledge of the system beyond just the trajectories of the
particles.

Inelastic scattering is often also called neutron (scattering) spectroscopy. That there is indeed
a relation to better-known spectroscopic methods as light spectroscopy, can be seen from the
dependence of the scattering function on a frequency ω. It can be said that inelastic neutron scat-
tering, for every Q, produces a spectrum, understood as the frequency dependence of a quantity,
here the scattering cross section. The optical methods Raman- and Brillouin spectroscopy are
completely analogous in this respect, yielding the same S(Q, ω) but different measured double-
differential cross-sections because photons interact with matter differently. Other methods, as
absorption spectroscopy, impedance spectroscopy or rheology do not yield a Q dependence and
are thus insensitive to the molecular structure. They provide only information about the overall
dynamics. The deeper reason for this analogy is that scattering experiments as well as ‘ordinary’
spectroscopy can be explained by linear response theory (appendix B of ref. 2 or ref. 15).

Example: diffusion

For simple diffusion the density develops in time following Fick’s second law,

∂ρ

∂t
= DΔρ ≡ D

(
∂2ρ

∂x2
+

∂2ρ

∂y2
+

∂2ρ

∂z2

)
. (11.53)

The underlying mechanism is Brownian motion, i.e. random collisions with solvent molecules.
Therefore, it can be concluded from the central limit theorem of statistics that the density of
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particles initially assembled at the origin is a Gaussian in all coordinates:

ρ1 =
1√
2πσ

exp

(
− x2

2σ2

)
1√
2πσ

exp

(
− y2

2σ2

)
1√
2πσ

exp

(
− z2

2σ2

)

=
1

(2π)3/2σ3
exp

(
− r2

2σ2

)
. (11.54)

The index 1 should remind that the prefactor is chosen such that the total particle number∫
ρ1 d3r is normalised to one. The width of the distribution, σ has the dimension length.

The only way to construct a length out of D (dimension length2/time) and time is σ = c
√
Dt

where c is a dimensionless constant. Inserting this into (11.54) yields:

ρ1 =
1

c3(2πDt)3/2
exp

(
− r2

2c2Dt

)
. (11.55)

The derivatives of this expression with respect to t and x, y, z can be calculated and inserted
into (11.53):

√
2 (r2 − 3c2Dt)

8π3/2c5D5/2t7/2
exp

(
− r2

2c2Dt

)
=

√
2 (r2 − 3c2Dt)

4π3/2c7D7/2t7/2
exp

(
− r2

2c2Dt

)
. (11.56)

One can see that the right- and left-hand side are identical if c =
√
2. This proves that the

‘guess’ (11.54) is indeed a solution of Fick’s second law and also determines the unknown c.
With the value of c substituted, the ‘single particle density’ is

ρ1 =
1

(8πDt)3/2
exp

(
− r2

4Dt

)
. (11.57)

Diffusion-like processes are often characterised by the mean-square displacement 〈r2〉 5. Be-
cause of the statistical isotropy, the average displacement 〈r〉 is always zero. Therefore, the
characterisation of the mobility of a diffusional process has to be done using the second mo-
ment, which is the average of the square of the displacement. For the simple Fickian diffusion
this can be calculated from (11.57):

〈r2〉 =
∫

ρ1r
24πr2d3r = 6Dt . (11.58)

For incoherent scattering the starting position r(0) is irrelevant. Therefore, expression (11.57)
is also Gs(r, t). Because the Fourier transform of a Gaussian function is a Gaussian itself, the
corresponding incoherent intermediate scattering function is

Iinc(Q, t) = exp
(−DQ2t

)
, (11.59)

5 Here, the definition is “displacement from the position at t = 0” rather than “displacement from a potential
minimum” on page 8. This is an obvious choice because the diffusing particle is not subjected to a potential as
the atom in a crystal. Therefore, there is nothing like an ‘equilibrium position’. This difference is indicated by the
usage of 〈r2〉 instead of 〈u2〉. Because in the case of motion in a potential the displacement between time zero and
time t can be understood as the difference of the displacements at time zero from the equilibrium position and that
at time t, it follows that 〈r2〉 = 2〈u2〉
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and because the Fourier transform of an exponential decay is a Lorentzian the incoherent scat-
tering function is

Sinc(Q,ω) =
1

π

DQ2

ω2 + (DQ2)2
. (11.60)

This function is centred around ω = 0, and for that reason the scattering is called quasielas-
tic. This is typical for diffusionlike processes in contrast to vibrational processes which yield
(phonon) peaks at finite energy transfers. For this reason, many textbook authors distinguish
between inelastic and quasielastic neutron scattering instead of subsuming the latter under the
former as done here6.

From expression (11.59) one can see that Iinc(Q, t) decays faster with time for larger Q and
from (11.60) that Sinc(Q,ω) is getting broader. This is understandable because Q defines the
spatial resolution of a neutron scattering experiment in a reciprocal way. So a larger Q means
observation on shorter distances which can be travelled faster by the diffusing particle.

Finally, one can see that

Iinc(Q, t) = exp

(
−Q2〈r2〉

6

)
. (11.61)

Because this expression is derived independently of the specific form of σ(t) in (11.54) it is
generally valid if the distribution of displacements Gs(r, t) is a Gaussian. Even if this is not the
case, equation (11.61) is often a good low-Q approximation called the Gaussian approximation7

and is the dynamical analogue of to the Guinier approximation of static scattering.

In general, the incoherent intermediate scattering function cannot be derived from the mean-
square displacement alone. Because equation (11.61) is the first term of the cumulant expansion
exp(aQ2 + bQ4 + . . . ) of Iinc(Q, t) [20] the mean-square displacement can be calculated as

〈r2〉 = − lim
Q→0

6

Q2
ln Iinc(Q, t) or (11.62)

〈r2〉 = − d ln Iinc(Q, t)

dQ2

∣∣∣∣
Q=0

. (11.63)

By replacing Iinc(Q, t) by its value at infinite time, the EISF Sel
inc(Q), the limiting mean-square

displacement of a confined motion can be obtained. This is the principle of the elastic scan
technique often used on neutron backscattering spectrometers [21].

6 There are two reasons for the choice made here: (1) The correlation function approach is also applicable to
phonons. So, if this method is used, there is no conceptual difference between the treatment of vibrations and
diffusion. (2) There are models as the damped harmonic oscillator which yield a continuous transition between
inelastic scattering in the underdamped case and quasielastic scattering in the overdamped case.
7 In the literature, denominators 1, 2, and 3 are also found in this expression. Most of these formulae are never-
theless correct. Some authors use 〈r2〉 as mean-square displacement from an average position (what is called 〈u2〉
here). Then, 3 is the correct denominator because of 〈r2〉 = 2〈u2〉 (footnote 5). If the displacement is considered
only in one coordinate (〈x2〉), then 2 is the right denominator.
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Fig. 11.6: Schematic setup of a triple-axis spectrometer.

11.3 Instrumentation

11.3.1 Triple axis spectrometer

The basic objective of inelastic neutron scattering is to measure the momentum transfer
q = k′ − k and the energy transfer �ω = E ′ − E. This task in general requires a monochro-
mator for the incoming neutron beam and an analyzer for the scattered neutrons. In the most
straightforward setup, the triple-axis spectrometer (3AX), one uses the Bragg planes of crystals
similar to the diffracting grids in an optical spectrometer (figure 11.6).

Axis 1 turns the monochromator crystal. By doing this the neutron wavelength fulfilling the
Bragg condition can be changed. In this way the wave vector k = 2π/λ of the neutrons imping-
ing on the sample is determined. Axis 2 turns the arm carrying the analyser crystal around the
sample position. This defines the scattering angle 2θ. Finally, axis 3 turns the analyser crystal
around its own axis such that only the desired k′ is admitted to the detector.

For a given setting of axis 1 all points in the kinematically allowed (Q,ω) area (see Fig. 11.2)
can be addressed by suitable settings of axis 2 and 3. E.g., for the study of phonons usually a
‘constant-Q scan’ is performed where Q = k′ − k is held constant and only �ω = E ′ − E is
varied. For this purpose a coordinated change of the angles of axis 2 and 3 is required which is
accomplished by computer control.

Historically, the triple-axis spectrometer is the first inelastic neutron scattering instrument. The
first prototype was constructed in 1955 by Bertram N. Brockhouse. In 1994, Brockhouse re-
ceived the Nobel prize for this accomplishment (together with Clifford G. Shull for the devel-
opment of neutron diffraction).

The 3AX spectrometer is still widely in use for purposes where a high Q resolution is necessary
and only a small region in the (Q,ω) plane has to be examined. This is mostly the study
of phonons and magnons in crystals. In other fields, e.g. for ‘soft matter’ systems, it has been
replaced by instruments showing better performance. The most important ones will be discussed
here: time-of-flight (TOF) spectrometer, backscattering (BS) spectrometer, and neutron spin
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Fig. 11.7: Schematic setup of a time-of-flight spectrometer with crystal monochromator.

echo (NSE) spectrometer.

11.3.2 Time-of-flight spectrometer

The main disadvantage of the 3AX spectrometer is that it can only observe one (Q,ω) point
at a time. While for samples where the scattering is concentrated into Bragg peaks this may
be acceptable, for systems with diffuse scattering a simultaneous observation of a range of Q
vectors and energy transfers �ω is desired. This is accomplished by surrounding the sample
position with an array of detectors (figure 11.7). In addition the energy of the scattered neutrons
E ′ is here measured by their time of flight: A chopper in the incident beam defines the start
time of the neutrons. The electronic pulse from their registration in the detector gives the end
of their flight through the spectrometer. From the time difference the velocity of the neutrons
can be calculated and from this in turn the energy transfer. The relation between time-of-flight
and energy transfer is given by

�ω =

⎛
⎜⎝ l1

2(
l0 −

√
E/mntflight

)2 − 1

⎞
⎟⎠E . (11.64)

The monochromatization of the incoming neutron beam can either be done by Bragg reflection
from a crystal or by a sequence of choppers which are phased in order to transmit a single
wavelength only. The former principle usually yields higher intensities while the latter is more
flexible for the selection of the incident energy E and attains better energy resolution.
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Fig. 11.8: Top: raw data from TOF spectrometer: neutron counts in a time channel of 10μs
during one hour registration time. The sample is a mesoscopically confined glass-forming liq-
uid. The floating non-linear axis indicates the energy transfers calculated by equation (11.64).
Because of the strength of the elastic scattering that part of the spectrum has been reduced by a
factor of 200. Bottom: the same TOF data converted to S(Q,ω), elastic line reduced by factor
1000. The characteristic vibrational modes of the material at �ω ≈ 1.7meV (14 cm−1) become
only visible after the transformation.

Table 11.1 shows some representative TOF instruments with their basic specifications. Depend-
ing on the desired incident wavelength the instruments are constructed either using neutrons
directly from the reactor moderator (thermal neutrons, λmax ≈ 1.8 Å) or a cold source, where
an additional moderation, e.g. by liquid hydrogen, takes place (λmax ≈ 4 Å). Thermal neutrons
make a larger Q range accessible while cold neutrons yield better energy resolution. Therefore,
the choice of the instrument depends on the system to be observed but in general ‘cold neutron’
instruments are preferred for inelastic neutron scattering in soft matter systems.

A variant of the TOF spectrometer exists on spallation sources, the inverse time-of-flight spec-
trometer. Because the neutrons are produced in pulses by a spallation source one can use their
creation time to start the TOF clock and in principle there is no need for a chopper. In this way
all neutrons can be used in contrast to conventional TOF spectrometers which use only a few
percent. Then usually the incident energy is measured by the time-of-flight and the final energy
is kept constant by a fixed set of analyzer crystals (“inverse geometry”). By putting those crys-
tals into near backscattering postion (see next section for details) it is possible to obtain a very
good energy resolution already close to true backscattering spectrometers. Of course as a direct
consequence of the good resolution function the count rates are low, especially with current
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Instrument Type λi [Å] Qmax [Å−1] Δ�ω [meV]
IN4 (ILL) TX 0.8–4 3–14 0.25–6
IN5 (ILL) CC 2–15 0.8–5.7 0.01–6
IN6 (ILL) CX 4.1–5.9 1.8–2.6 0.05–0.17
NEAT (HMI) CC 1.8–19 0.6–6.5 0.006–5
IRIS (RAL) CI λf = 6.7–20 0.6–1.9 0.001–0.015

Table 11.1: Basic specifications of representative neutron time-of-flight spectrometers. Instru-
ment types: TX–thermal, crystal; CX–cold, crystal; CC–cold, chopper; CI–cold, inverse. The
maximal Q and the energy resolution Δ�ω depend on the incident wavelength; the upper limits
of their ranges correspond to the lower limit of the incident wavelength λi and vice versa.

spallation sources which have total neutron production rates significantly lower than reactors.

11.3.3 Backscattering spectrometer

A recurring problem of inelastic neutron scattering investigations is that processes are too slow
to be observed. Without resorting to extreme setups which lead to a loss of intensity, the energy
resolution of TOF spectrometers is limited to about 10μeV, which corresponds to a maximal
timescale of 200 ps. This is often not sufficient for e.g. the large scale motions in polymers or
the glass transition related relaxation. Therefore, instruments with highest energy resolution are
often needed, the backscattering (BS) and neutron spin echo (NSE) spectrometer.

The energy resolution of a TOF spectrometer is limited by the selectivity of the monochromator
crystal8. If perfect crystals are used the spread of the selected wavelengths Δλ/λ is determined
by the angular divergence Δα of the reflected neutrons. Differentiating the Bragg condition
λ = 2 sin θ/d one obtains

Δλ/λ = cot θ ·Δθ . (11.65)

This expression becomes zero for 2θ = 180◦. In practice this means that the wavelength spread
becomes minimal if the neutron beam is reflected by 180◦, i.e. in backscattering condition.

Figure 11.9 shows schematically the instrument based on this principle. The first crystal in the
beam is only a deflector with low wavelength selectivity. The actual monochromatization takes
place upon the second reflection by the crystal in backscattering position. The monochroma-
tized neutrons are then scattered by the sample which is surrounded by analyzer crystals placed
on a spherical surface. There they are again scattered under backscattering condition. The
reflected neutrons pass once more through the sample and finally reach the detector.

It can be seen that the backscattering condition leads to technical problems in several places:
(1) The deflector must not accept all neutrons otherwise the monochromatized beam would
be scattered back into the source. This can be solved by reducing its size deliberately below
the neutron beam area or putting it on a rotating disk which removes it at the moment when
the neutrons come back from the monochromator. Of course all these measures are taken at

8 For chopper spectrometers the limit is given by the pulse length which could in principle be arbitrary small. But
since the counted intensity decreases quadratically with pulse length the resolution limit of an efficient experiment
is in the same range.
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Fig. 11.9: Schematic setup of a backscattering spectrometer.

Instrument Type λ [Å] Qmax [Å−1] Δ�ω [μeV] �ωmax [μeV]
IN16 (ILL) CD 6.27 1.9 0.2–1.0 15
IN10B (ILL) CH 6.29 2.0 1.5 120
IN13 (ILL) TH 2.23 5.5 8 300
SPHERES (JCNS) CD 6.27 1.8 0.7 30

Table 11.2: Basic specifications of representative neutron time-of-flight spectrometers. In-
strument types: CD–cold, Doppler monochromator; CH–cold, heated monochromator; TH–
thermal, heated monochromator. The maximal Q and the energy resolution Δ�ω depend on
the incident wavelength; the upper limits of their ranges correspond to the lower limit of the
incident wavelength λi and vice versa.

the expense of intensity. (2) The second passage of the scattered neutrons through the sample
causes additional multiple scattering and absorption. Both problems can be avoided by leaving
exact backscattering condition but with the consequence that the energy resolution degrades.

So far it seems that the backscattering instrument can only observe elastic scattering (E ′ = E)
if the same crystals are used for monochromator and analyzer. In order to do inelastic scattering
one has to change either E or E ′. It turns out that this is much easier for the incident energy
by either using a moving monochromator (Doppler effect) or a heated monochromator (thermal
expansion modifying the lattice plane distance d). The latter technique usually allows larger
energy transfers. For very large energy transfers, different crystals are used for monochromator
and analyzer, yielding an offset of the whole �ω range. Table 11.2 comprises specifications of
representative BS spectrometers.
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11.3.4 Neutron spin echo spectrometer

In order to access even slower processes a very high resolution technique is needed allowing to
reach more than 100 nanoseconds corresponding to energy transfers in the neV range. Such a
technique is provided by neutron spin echo (NSE) spectrometers [22] which are able to measure
directly energy changes of the neutron due to scattering.

This distinguishes NSE from conventional inelastic neutron scattering techniques which pro-
ceed in two steps: (1) monochromatization of the incident beam to E, (2) analysis of the scat-
tered beam (E ′). The energy transfer is then determined by taking the difference E ′ − E. In
order to achieve high energy resolutions with these conventional techniques a very narrow en-
ergy interval must be selected from the relatively low-intensity neutron spectrum of the source.
Conventional high-resolution techniques therefore inevitably run into the problem of low count
rates at the detector.

Unlike these methods, NSE measures the individual velocities of the incident and scattered
neutrons using the Larmor precession of the neutron spin in a magnetic field. The neutron
spin vector acts as the hand of an internal clock, which is linked to each neutron and connects
the result of the velocity measurement to the neutron itself. Thereby the velocities before and
after scattering on one and the same neutron can be compared and a direct measurement of
the velocity difference becomes possible. The energy resolution is thus decoupled from the
monochromatization of the incident beam. Relative energy resolutions in the order of 10−5 can
be achieved with an incident neutron spectrum of 20% bandwidth.

The motion of the neutron polarization P(t)—which is the quantum mechanical expectancy
value of the neutron spin—is described by the Bloch equation

dP

dt
=

γμ

�
(P×B) (11.66)

where γ is the gyromagnetic ratio (γ = −3.82) of the neutron, μ the nuclear magneton and B
the magnetic field. Equation (11.66) is the basis for manipulation of the neutron polarization by
external fields. In particular, if a neutron of wavelength λ is exposed to a magnetic field B over
a length l of its flight path, its spin is rotated by

φ =

(
2π|γ|μλm

h2

)
Bl . (11.67)

The basic setup of an NSE spectrometer is shown in figure 11.10. A velocity selector in the
primary neutron beam selects a wavelength interval of 10–20% width. In the primary and
secondary flight path of the instrument precession fields B and B′ parallel to the respective
path are generated by cylindrical coils. Before entering the first flight path the neutron beam is
polarized in forward direction9. Firstly, a π/2 flipper rotates the polarization to the x direction
perpendicular to the direction of propagation (z). This is done by exposing the neutrons to a
well defined field for a time defined by their speed and the thickness of a flat coil (Mezei coil).
Beginning with this well-defined initial condition the neutrons start their precession in the field
B. After being scattered by the sample the neutrons pass a π flipper and then pass the second

9 This is done by a a “polarizing supermirror” which only reflects neutrons of that spin—similar to the Nicol prism
in optics.
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Fig. 11.10: Schematic setup of a neutron spin echo spectrometer.

precession field B′. Finally, the neutrons pass another π/2 coil which, under certain conditions,
restores their initial polarization parallel to their flight direction. In order to understand what
that condition is, one has to trace the changes of the spin vector (z always denoting the direction
parallel to neutron propagation):

(nx, ny, nz) neutronic device

(0,0,1)
π/2 flipper

(1,0,0)
field B

(cosφ, sinφ, 0)
π flipper

(cosφ,− sinφ, 0) =
(cos(−φ), sin(−φ), 0)

field B′
(cos(φ′ − φ), sin(φ′ − φ), 0)

π/2 flipper
(0, sin(φ− φ′), cos(φ− φ′))

In total, the spin is rotated by φ − φ′ around the x axis when a neutron passes through the
spectrometer. This means that the final polarization is identical to the incident if φ = φ′ (+2πn),
especially if λi = λf (elastic scattering) and

∫ l

0
Bdz =

∫ l′

0
B′dz (for homogeneous fields:

Bl = B′l′) as follows from (11.67). This condition is called “spin echo” and is independent of
the individual velocities of the neutrons because their difference alone determines φ− φ′.

Leaving spin echo condition the probability of a single neutron to reach the detector is reduced
due to the polarization analyzer by cos(φ′ − φ). If we keep the symmetry of the instrument,
Bl = B′l′, but consider inelastic scattering the precession angle mismatch can be approximated
by

φ′ − φ =

(
2π|γ|μm

h2

)
Bl(λf − λi)

≈ |γ|μmn
2λ3Bl

h3︸ ︷︷ ︸
=tNSE(B)

ω (11.68)

for small energy transfers where Δλ ≈ �ω
/

dE
dλ

can be used. Because the energy transfer for
inelastic scattering is not fixed but distributed as determined by the scattering function S(Q,ω)
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we have to average the factor cos(φ′ − φ) weighted by S(Q,ω) to get the reduction of count
rate at the detector, the effective polarization

P (Q, tNSE) =

∫∞
−∞ S(Q,ω) cos(ωtNSE)dω∫∞

−∞ S(Q,ω)dω
. (11.69)

Firstly, we note that S(Q,ω) in this expression usually is the coherent scattering function. In
principle, similar arguments can used for incoherent scattering because a well-defined fraction
of neutrons changes its spin. This leads to a “negative echo” because the majority of neutrons
invert their polarization. But because this effect is only partial (e.g. 2/3 for Hydrogen nuclei) it is
much more difficult to observe. Only recently, NSE spectroscopy could be applied successfully
to incoherently scattering samples.

Secondly, expression (11.69) reverses the temporal Fourier transform of equation (11.21) and
therefore the result of the NSE experiment

P (Q, tNSE(B)) =
I(Q, tNSE(B))

I(Q, 0)
(11.70)

is the normalised intermediate scattering function. This function is often more understandable
and easier to interpret than the frequency dependent scattering function.

In order to estimate typical Fourier times tNSE which can be accessed by NSE we consider
maximum fields of B = B′ = 500Gauss in precession coils of l = l′ = 2 m length operating
at λ = 8 Å. Then (11.68) results in a time of about 10 ns which can be reached.

From this equation it also becomes clear that the most efficient way to enlarge this time is to use
longer wavelengths because λ enters in the third power. This in turn reduces the accessible Q
range which constitutes a drawback for studies on low molecular materials but not for the large
scale properties of polymers which have to be observed at low Q anyway.

Typical NSE spectrometers with their specifications are listed in table 11.3. NSE spectrom-
eters are very flexible instruments often used with different setups of which only “typical”
ones have been included. As special features have to be mentioned that IN11 and SPAN have
one-dimensional detector arrays which span 60◦ and 150◦ degrees respectively, allowing the
simultaneous observation of a range of Q values. The instruments IN15 and J-NSE have two-
dimensional detector arrays which can be used for studying anisotropies but cover a smaller
angular range. IN15 uses a focusing mirror in order to increase neutron flux which would be
otherwise very low due to its long precession coils.
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Instrument λ [Å] Qmax [Å−1] tmax [ns]
IN11 (ILL) 4.5–12 0.9–2.4 2–45
IN15 (ILL) 8–25 0.13–0.4 30–1000
J-NSE (JCNS) 4.5–16 0.4–1.5 10–350
SPAN (HMI) 2.5–10 1.2–4.9 0.2–10

Table 11.3: Basic specifications of representative neutron spin echo spectrometers. The maxi-
mal Q and the maximal Fourier time tmax depend on the incident wavelength; the upper limit of
the Q range and the lower limit of tmax correspond to the lower limit of the incident wavelength
λ and vice versa.
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Exercises

Note: Exercises are labelled by stars (* through ***) indicating the level of difficulty. Try to
solve the easier ones first.

E11.1 Scattering triangle∗

For the feasibility of an inelastic neutron scattering experiment it is essential that the desired
Q, �ω combination (in the scattering function S(Q,ω) can be reached at a certain combination
of incident neutron wavelength λ and angle 2θ.

1. λ = 5.1 Å, 2θ = 90◦ and �ω = 5 meV, which value has Q? Which value would Q have
calculated from the formula for elastic scattering?

2. λ = 5.1 Å, Q = 1 Å−1, what is the largest energy gain and largest absolute energy loss
one can reach? What do you have to do if you need larger values of |�ω|?

3. **: (neutron Brillouin scattering) One of the most demanding tasks of inelastic neutron
scattering is the measurement of sound waves, i.e. Brillouin scattering. A typical sound
velocity for a metal is v = 2500m/s. If you would like to observe the Brillouin peaks at
Q = 1.5 Å−1 what would be ω? Give an incident wavelength λ such that both Brillouin
lines, ±�ω, can be observed at certain values of 2θ. What experiment-technical chal-
lenges does your result present? Why could you be still interested to do this experiment
with neutrons and not with light? Do you need coherent or incoherent scattering? Which
sound will you see, longitudinal or transverse?

Hints: � = 1.0546×10−34 Js, neutron mass: m = 1.6749×10−27 kg, 1 eV = 1.6022×10−19 J.

E11.2 Q dependence of characteristic time∗∗

In many cases, the incoherent intermediate scattering function can be written in the form
Iinc(Q, t) = exp

(−(t/τ(Q))β
)

with τ(Q) ∝ Q−x. E.g. in the lecture diffusion (x = 2, β = 1)
and the ideal gas (x = 1, β = 2) were presented. In a later lecture you will learn that for
polymers in the melt x = 4, β = 1/2 holds. For polymers in solution the Zimm model predicts
x = 3, β = 2/3. In all cases x · β = 2. What is the reason for this nearly universal relation?

E11.3 Jump diffusion in a confined space∗∗∗

In the lecture, it was shown that for diffusion the incoherent scattering function is

Sinc(Q,ω) =
1

π

DQ2

ω2 + (DQ2)2
. (11.71)

This function (‘Lorentzian’) has a width of w = 2DQ2 at half its maximum value. The ‘hand-
waving’ argument for this is that Q defines a length scale of observation l ≈ 2π/Q. The average
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time it takes a particle to diffuse out of this length scale is τ = l2/D ∼ D−1Q−2. The Fourier
transform from time to ω causes the width of S(Q,ω) to be related by w ∼ 1/τ ∼ DQ2.

In reality where diffusion is constituted from individual steps and on the long end may be limited
by some confinement e.g. a pore wall, the dependence of the width w on Q may look like this:

The Q−2 law is only valid in a small range. Can you explain this from the ‘hand-waving’
argument above? Where are the kinks in the double-logarithmic plot located approximately in
terms of the dimensions a and R?
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12.1 Introduction

Materials with strong electronic correlations are materials, in which the movement of one elec-
tron depends on the positions and movements of all other electrons due to the long-range
Coulomb interaction. With this definition, one would naively think that all materials show
strong electronic correlations. However, in purely ionic systems, the electrons are confined
to the immediate neighborhood of the respective atomic nucleus. On the other hand, in ideal
metallic systems, the other conduction electrons screen the long-range Coulomb interaction.
Therefore, while electronic correlations are also present in these systems and lead for example
to magnetism, the main properties of the systems can be explained in simple models, where
electronic correlations are either entirely neglected (e.g. the free electron Fermi gas) or taken
into account only in low order approximations (Fermi liquid, exchange interactions in mag-
netism etc.). In highly correlated electron systems, simple approximations break down and
entirely new phenomena and functionalities can appear. These so-called emergent phenomena
cannot be anticipated from the local interactions among the electrons and between the electrons
and the lattice [1]. This is a typical example of complexity: the laws that describe the behavior
of a complex system are qualitatively different from those that govern its units [2]. This is what
makes highly correlated electron systems a research field at the very forefront of condensed
matter research. The current challenge in condensed matter physics is that we cannot reliably
predict the properties of these materials. There is no theory, which can handle this huge num-
ber of interacting degrees of freedom. While the underlying fundamental principles of quantum
mechanics (Schrödinger equation or relativistic Dirac equation) and statistical mechanics (max-
imization of entropy) are well known, there is no way at present to solve the many-body problem
for some 1023 particles. Some of the exotic properties of strongly correlated electron systems
and examples of emergent phenomena and novel functionalities are:

• High temperature superconductivity; while this phenomenon was discovered in 1986 by
Bednorz and Müller [3], who received the Nobel Prize for this discovery, and since then
has continually attracted the attention of a large number of researchers, there is still no
commonly accepted mechanism for the coupling of electrons into Cooper pairs, let alone
a theory which can predict high temperature superconductivity or its transition tempera-
tures. High temperature superconductivity has already some applications such as highly
sensitive magnetic field sensors, high field magnets, and power lines, and more are likely
in the future.

• Colossal magnetoresistance effect CMR, which was discovered in transition metal oxide
manganites and describes a large change of the electrical resistance in an applied magnetic
field [4]. This effect can be used in magnetic field sensors and could eventually replace
the giant magnetoresistance [5, 6] field sensors, which are employed for example in the
read heads of magnetic hard discs.

• The magnetocaloric effect [7], a temperature change of a material upon applying a mag-
netic field, can be used for magnetic refrigeration without moving parts or cooling fluids.

• Metal-insulator-transitions as observed e.g. in magnetite (Verwey transition [8]) or cer-
tain vanadites are due to strong electronic correlations and could be employed as elec-
tronic switches.
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• Multiferroicity [9], the simultaneous occurring of various ferroic orders, e.g. ferromag-
netism and ferroelectricity, in one material. If the respective degrees of freedom are
strongly coupled, one can switch one of the orders by applying the conjugate field of the
other order. Interesting for potential applications in information technology is particularly
the switching of magnetization by an electric field, which has been proposed to be used
for easier switching of magnetic non-volatile memories [10]. Future applications of mul-
tiferroic materials in computer storage elements are apparent. One could either imagine
elements, which store several bits in form of a magnetic- and electric polarization, or one
could apply the multiferroic properties for an easier switching of the memory element.

• Negative thermal expansion [11] is just another example of the novel and exotic properties
that these materials exhibit.

It is likely that many more such emergent phenomena will be discovered in the near future.
This huge potential is what makes research on highly correlated electron systems so interesting
and challenging: this area of research is located right at the intersection between fundamen-
tal science investigations, striving for basic understanding of the electronic correlations, and
technological applications, connected to the new functionalities [12].

12.2 Electronic structure of solids

Fig. 12.1: Potential energy of an electron in a solid.

In order to be able to discuss the effects of strong electronic correlations, let us first recapitulate
the textbook knowledge of the electronic structure of solids [13, 14]. The description of the
electron system of solids usually starts with the adiabatic or Born-Oppenheimer approximation:
The argument is made that the electrons are moving so quickly compared to the nuclei that
the electrons can instantaneously follow the movement of the much heavier nuclei and thus
see the instantaneous nuclear potential. This approximation serves to separate the lattice- and
electronic degrees of freedom. Often one makes the further approximation to consider the nuclei
to be at rest in their equilibrium positions. The potential energy seen by a single electron in the
averaged field of all other electrons and the atomic core potential is depicted schematically for
a one dimensional system in Fig. 12.1.

The following simple models are used to describe the electrons in a crystalline solid:

• Free electron Fermi gas: here a single electron moves in a 3D potential well with in-
finitely high walls corresponding to the crystal surfaces. All electrons move completely
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independent, i.e. the interaction between the electrons is considered only indirectly by the
Pauli exclusion principle.

• Fermi liquid: here the electron-electron interaction is accounted for in a first approxima-
tion by introducing quasiparticles, so-called dressed electrons, which have a charge e,
and a spin 1

2
like the free electron, but an effective mass m∗, which can differ from the

free electron mass m. Other than this renormalization, interactions are still neglected.

• Band structure model: this model takes into account the periodic potential of the atomic
cores at rest, i.e. the electron moves in the average potential from the atomic cores and
from the other electrons.

Considering the strength of the long-range Coulomb interaction, it is surprising that the simple
models of Fermi gas − or better Fermi liquid − already are very successful in describing some
basic properties of simple metals. The band structure model is particularly successful to de-
scribe semiconductors. But all three models have in common that the electron is described with
a single particle wave function and electronic correlations are only taken into account indirectly,
to describe phenomena like magnetism due to the exchange interaction between the electrons or
BCS superconductivity [15], where an interaction between electrons is mediated through lattice
vibrations and leads to Cooper pairs, which undergo a Bose-Einstein condensation.

What we have sketched so far is the textbook knowledge of introductory solid state physics
courses. Of course there exist more advanced theoretical descriptions, which try to take into
account the electronic correlations. The strong Coulomb interaction between the electrons is
taken into account in density functional theory in the so-called “LDA+U” approximation or in
so-called dynamical mean field theory DMFT or a combination of the two in various degrees of
sophistication [16]. Still, all these extremely powerful and complex theories often fail to predict
even the simplest physical properties, such as whether a material is a conductor or an insulator.

Fig. 12.2: Left: Atomic potential of an electron interacting with the atomic core and the cor-
responding level scheme of sharp energy levels. Right: Broadening of these levels into bands
upon increase of the overlap of the wave functions of neighboring atoms.

Let us come back to the band structure of solids. In the so-called tight-binding model one
starts from isolated atoms, where the energy levels of the electrons in the Coulomb potential of
the corresponding nucleus can be calculated. If N such atoms are brought together, the wave
functions of the electrons from different sites start to overlap, leading to a broadening of the
atomic energy levels, which eventually will give rise to the electronic bands in solids, each of
which is a quasi-continuum of N electronic states. The closer the atoms are brought together,
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the more the wave functions overlap, the more the electrons will be delocalized, and the broader
are the corresponding bands (Fig. 12.2).

Fig. 12.3: band structure of metals, semiconductors, and instulators.

If electronic correlations are not too strong, the electronic properties can be described by a band
structure, which allows one to predict whether a material is a metal, a semiconductor or an
insulator. This is shown in Fig. 12.3. At T = 0 all electronic states are being filled up to the
Fermi energy. At finite T the Fermi-Dirac distribution describes the occupancy of the energy
levels. If the Fermi energy lies somewhere in the middle of the conduction band, the material
will be metallic. If it lies in the middle between valence band and conduction band and these
two are separated by a large/small gap (compared to the energy equivalent of room temperature)
the material will show insulating/semiconducting behavior. However, as mentioned above this
band structure model describes the electrons with single particle wave functions. Where are the
electronic correlations?

12.3 Strong electronic correlations: the Mott transition

Fig. 12.4: Rock-salt (NaCl)-type structure of CoO.

It turns out that electronic correlations are particularly important in materials, which have some
very narrow bands. This occurs for example in transition metal oxides or transition metal
chalcogenides as well as in some light rare earth intermetallics (heavy fermion systems). Con-
sider CoO as a typical and simple example of a transition metal oxide. CoO has the rock-salt
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structure shown in Fig. 12.4, with a face-centered cubic (fcc) unit cell containing four formula
units. The primitive unit cell of the fcc lattice, however, is spanned by the basis vectors

a′ =
1

2
a(ex + ey); b′ =

1

2
a(ey + ez); c′ =

1

2
a(ez + ex). (12.1)

Here, a is the lattice constant, and ex, ey, and ey, are the unit basis vectors of the original fcc
unit cell. Therefore the primitive unit cell contains exactly one cobalt and one oxygen atom.
The electronic configurations of these atoms are: Co: [Ar]3d74s2; O: [He]2s22p4. In the solid,
the atomic cores of Co and O have the electronic configuration of Ar and He, respectively.
These electrons are very strongly bound to the nucleus and we need not consider them on the
usual energy scales for excitations in the solid state. We are left with nine outer electrons for
the Co and six outer electrons for the O atom in the solid, so that the total number of electrons
per primitive unit cell is 9 + 6 = 15, i.e. an odd number. According to the Pauli principle, each
electronic state can be occupied by two electrons, one with spin up and one with spin down.
Therefore with an odd number of electrons, we must have at least one partially filled band and
according to Fig. 12.1, CoO must be a metal.

What does experiment tell us? Well, in fact, CoO is a very good insulator with a room-
temperature resistivity ρ(300K) ∼ 108 Ωcm (For comparison, the good conductor iron has
ρ(300K) ∼ 10−7 Ωcm. The resistivity of CoO corresponds to activation energies of about
0.6 eV or a temperature equivalent of 7000K, which means there is a huge band gap making
CoO a very good insulator. To summarize these considerations: the band theory breaks down
already for a very simple oxide consisting of only one transition metal and one oxygen atom!

Fig. 12.5: Illustration of (electron) hopping between two neutral Na atoms - involving charge
fluctuations.

In order to understand the reason for this dramatic breakdown of band theory, let us con-
sider an even simpler example: the alkali metal sodium (Na) with the electronic configuration
[Ne]3s1=1s22s22p63s1. Following our argumentation for CoO, sodium obviously has a half-
filled 3s band and is therefore a metal. This time our prediction was correct: ρ(300K) ∼
5 × 10−6 Ωcm. However, what happens if we pull the atoms further apart and increase the lat-
tice constant continuously? Band theory predicts that for all distances sodium remains a metal,
since the 3s band will always be half-filled. This contradicts our intuition and of course also
the experiment: at a certain critical separation of the sodium atoms, there must be a transition
from a metal to an insulator. This metal-to-insulator transition was predicted by Sir Nevill Mott
(physics Nobel price 1977), which is therefore called the Mott-transition [17]. The physical
principle is illustrated in Fig. 12.5: On the left, two neutral Na atoms are depicted. The atomic
energy levels of the outer electrons correspond to an energy ε3s. The wave functions of the 3s
electrons will overlap giving rise to a finite probability that an electron can hop from one sodium
atom to the other one. Such a delocalization of the electrons arising from their possibility to hop
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is favored because it lowers their kinetic energy. This can be seen for example by generalizing
the “particle in a box” problem: Ekin ∝ p2 = h2/λ2 (de Broglie) and λ ∼box dimension, and
it is consistent with the uncertainty principle Δp · Δx ≥ �

2
. Fig. 12.5 on the right shows the

situation after the electron transfer. Instead of neutral atoms, we have one Na+ and one Na−

ion. However, we have to pay a price for the double occupation of the 3s states on the Na− ion,
namely the intra-atomic Coulomb repulsion between the two electrons denoted as U3s. While
this is a very simplistic picture, where we assume that the electron is either located on one or
the other Na atom, this model describes the two main energy terms by just two parameters: the
hopping matrix element t, connected to the kinetic energy, and the intra-atomic Coulomb re-
pulsion U , connected with the potential energy due to the Coulomb interaction between the two
electrons on one site. In this simple model, we have replaced the long range Coulomb potential
proportional to 1/r with its leading term, an on-site Coulomb repulsion U . More realistic mod-
els would have to take higher order terms into account but already such a simple consideration
leads to very rich physics. We can see from Fig. 12.5 that electronic conductivity is connected
with charge fluctuations and that such charge transfer costs energy, where U is typically in the
order of 1 or 10 eV. Only if the gain in kinetic energy due to the hopping t is larger than the
penalty in potential energy U can we expect metallic behavior. If the sodium atoms are now
being separated more and more, the intra-atomic Coulomb repulsion U will maintain its value
while the hopping matrix element t, which depends on the overlap of the wave functions, will
diminish. At a certain critical value of the lattice parameter a, potential energy will win over
kinetic energy and conductivity will be suppressed. This is the physical principle behind the
Mott transition.

More formally, this model can be cast into a model Hamiltonian, the so-called Hubbard model
[18]. In second quantization of quantum-field theory, the corresponding Hamiltonian is

Ĥ = −t
∑
j,l,σ

(ĉ†jσ ĉlσ + ĉ†lσ ĉjσ) + U
∑
j

n̂j↑n̂j↓, (12.2)

where the operator ĉ†jσ creates an electron in the atomic orbital Φ(r−Rj)|σ〉. The first term is
nothing but the tight-binding model of band structure (in second quantization), where t is the
hopping amplitude depending on the overlap of the wavefunctions from nearest-neighbor atoms
at R1 and R2:

t =

∫
Φ(r−R1)

e2

4πε0 |r−R2|Φ(r−R2) dr. (12.3)

It describes the kinetic energy gain due to electron hopping.

The second term is the potential energy due to doubly-occupied orbitals. Here, n̂jσ = ĉ†jσ ĉjσ is
the occupation operator of the orbital Φ(r − Rj)|σ〉 and U is the Coulomb repulsion between
two electrons in this orbital,

U =

∫
e2 |Φ(r1 −Rj)|2 |Φ(r2 −Rj)|2

4πε0 |r1 − r2| dr1dr2, (12.4)

The Hubbard model is a so-called lattice fermion model, since only discrete lattice sites are be-
ing considered. It is the simplest way to incorporate correlations due to the Coulomb interaction
since it takes into account only the strongest contribution, the on-site Coulomb interaction. Still
there is very rich physics contained in this simple Hamiltonian like the physics of ferromagnetic-
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or antiferromagnetic metals and insulators, charge- and spin density waves and so on [18]. A
realistic Hamiltonian should contain many more inter-site terms due to the long-range Coulomb
interaction likely to contain additional new physics.

Fig. 12.6: Illustration of hopping processes between neighboring atoms together with their
corresponding energy scales.

The most direct consequence of the on-site Coulomb interaction is that additional so-called
Hubbard bands are created due to possible hopping processes, illustrated in Fig. 12.6: The first
row shows hopping processes involving a change of the total Coulomb energy. The second
row shows hopping processes without energy change. The last row shows hopping processes
forbidden due to the Pauli principle (here, the spin enters the model, giving rise to magnetic
order). From Fig. 12.6 we can identify two different energy states. Configurations for which
the on-site Coulomb repulsion comes into play have an energy which is higher by the on-site
Coulomb repulsion U as compared to such configurations where the electrons are not on the
same atom. In a solid these two energy levels will broaden into bands (due to the delocalization
of the electrons on many atoms driven by the hopping matrix element t), which are called
the lower Hubbard band and the upper Hubbard band. If these bands are well separated, i.e.
the Coulomb repulsion U dominates over the hopping term t, we will have in insulating state
(only the lower Hubbard band is occupied). If the bands overlap, we will have a metallic state.
Note that lower and upper Hubbard band are totally different from the usual band structure
of solids as they do not arise due to the interaction of the electrons with the atomic cores but
due to electronic correlations. As a result the existence of the Hubbard bands depends on the
electronic occupation: the energy terms for simple hopping processes depend on the occupation
of neighboring sites. The apparently simple single electron operator gets complex many body
aspects.

12.4 Complex ordering phenomena: perovskite manganites
as example

The correlation-induced localization leads to atomic-like electronic degrees of freedom that can
order in complex ways. In the following we will discuss these ordering processes, taking as an
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Fig. 12.7: Perovskite structures. Left: Ideal (cubic) structure. Middle: cubic structure in
orhorhombic setting. Right: distorted structure with rotated and tilted oxygen octahedra.

example perovskite manganites (see e.g. [19]). Their stoichiometric formula is A1−xBxMnO3,
where A is a trivalent cation (e.g. A = La, Gd, Tb, Er, Y, Bi) and B is a divalent cation (B =
Sr, Ca, Ba, Pb). The doping with divalent cations leads to a mixed valence on the manganese
sites. In a purely ionic model (neglecting covalency) charge neutrality requires that manganese
exists in two valence states: Mn3+ (electronic configuration [Ar]3d4, note that the 5s electrons
are lost first upon positive ionization) and Mn4+ ([Ar]3d3) according to the respective doping
levels: A1−xBxMnO3 →

[
A3+

1−xB
2+
x

] [
Mn3+

1−xMn4+
x

]
O2−

3 . The structure of these mixed valence
manganites is related to the perovskite structure (Fig. 12.7). Perovskite CaTiO3 is a mineral,
which has a cubic crystal structure, where the smaller Ca2+ metal cation is surrounded by
six oxygen atoms forming an octahedron; these corner sharing octahedra are centered on the
corners of a simple cubic unit cell and the larger Ti4+ metal cation is filling the interstice in the
center of the cube. This ideal cubic perovskite structure is extremely rare. It only occurs when
the sizes of the metal ions match to fill the spaces be-tween the oxygen atoms ideally. Usually
there is a misfit of the mean ionic radii of the A and B ions, which leads to sizeable tilts of
the oxygen octahedra. The resulting structure is related to the perovskite structure as illustrated
in Fig. 12.7: in the middle the cubic perovskite structure is shown in a different, orthorhombic
setting. The usually observed (e.g. for LaMnO3) perovskite structure is related to this structure
by a tilting of the corner shared oxygen octahedra as shown on the right.

For the manganites the octahedral surrounding of the Mn ions leads to so-called crystal field
effects. To explain these we stay in the ionic model and describe the oxygen atoms as O2− ions.
The outer electrons of the Mn ions, the 3d electrons, experience the electric field created by the
surrounding O2− ions of the octahedral environment. This leads to a splitting of the electronic
levels by the crystal field as depicted in Fig. 12.8: The 3d orbitals with lobes of the electron
density pointing towards the negatively charged oxygen ions (3z2− r2 and x2−y2; so-called eg
orbitals) will have higher energies with respect to the orbitals with the lobes pointing in-between
the oxygen atoms (zx, yz, and xy; so-called t2g orbitals). For the manganites this crystal-field
splitting is typically ∼ 2 eV. If we now consider a Mn3+ ion, how the electrons will occupy
these crystal field levels depends on the ratio between the crystal-field splitting and the intra-
atomic exchange: According to the first of Hunds’ rules, electrons tend to maximize the total
spin, i.e. occupy energy levels in such a way that the spins of all electrons are parallel as far as
Pauli principle permits. This is a consequence of the Coulomb interaction within a single atom
and is expressed by the Hunds’ rule energy JH. If the crystal field splitting is much larger than
Hunds’ coupling, a low-spin state results, where all electrons are in the lower t2g level and two
of these t2g orbitals are singly occupied and one is doubly occupied. Due to the Pauli principle
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Fig. 12.8: Energy level diagram for a MnO3+ ion in an oxygen octahedron. For the free ion, the
four 3d electron levels are degenerate. They split in a cubic environment into t2g and eg levels.
If Hunds’ rule coupling is stronger than crystal field splitting, a high spin state results. The
degeneracy of the eg level is lifted by a Jahn-Teller distortion resulting in an elongation of the
oxygen octahedra. On the right of the figure, the a basis set of 5 real 3d orbitals are depicted.

the spins in the doubly occupied orbital have to be antiparallel, giving rise to a total spin S = 1
for this low spin state. Usually, however, in the manganites Hunds’ rule coupling amounts to
∼ 4 eV, stronger than the crystal field splitting. In this case the high spin state shown in Fig.
12.8 is realized, where four electrons with parallel spin occupy the three t2g orbitals plus one
of the two eg orbitals. The high spin state has a total spin of S = 2 and the orbital angular
momentum is quenched, i.e. L = 0. This state has an orbital degree of freedom: the eg electron
can either occupy the 3z2 − r2 or the x2 − y2 orbital. The overall energy can (and thus will)
be lowered by a geometrical distortion of the oxygen octahedra that shifts the eg levels, lifting
their degeneracy This so-called Jahn-Teller effect (Fig. 12.8) further splits the d-electron levels.
For the case shown, the c-axis of the octahedron has been elongated, thus lowering the energy
of the 3z2 − r2 orbital with respect to the energy level of the x2 − y2 orbital. The Jahn-Teller
splitting in the manganites has a magnitude of typically ∼ 0.6 eV.

The Jahn-Teller effect demonstrates nicely how in these transition metal oxides electronic and
lattice degrees of freedom are coupled. Only the Mn3+ with a single electron in the eg orbitals
exhibits the Jahn-Teller effect, whereas the Mn4+ ion does not. A transfer of charge between
neighboring manganese ions is accompanied with a change of the local distortion of the oxygen
octahedron: a so-called lattice polaron. Due to the Jahn-Teller effect, charge fluctuations and
lattice distortions become coupled in these mixed-valence oxides.

Having explained the Jahn-Teller effect, we can now introduce an important type of electronic
order occurring in these materials: orbital order. Consider the structure of LaMnO3: All man-
ganese are trivalent and are expected to undergo a Jahn-Teller distortion. In order to minimize
the elastic energy of the lattice, the Jahn-Teller distortions on neighboring sites are correlated.
Below a certain temperature TJT ∼ 780K, a cooperative Jahn-Teller transition takes place, with
a distinct pattern of distortions of the oxygen octahedra throughout the crystal lattice as shown
in Fig. 12.9 left. This corresponds to a long-range orbital order of the eg electrons, not to be
confused with magnetic order of an orbital magnetic moment. In fact, the orbital magnetic mo-
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Fig. 12.9: Left: Orbital order in LaMnO3. Below the Jahn-Teller transition temperature of
780K, a distinct long range ordered pattern of Jahn-Teller distortions of the oxygen octahedra
occurs leading to orbital order of the eg orbitals of the Mn3+ ions as shown. Also shown is the
antiferromagnetic spin order which sets in below the Néel temperature TN ∼ 145K. Oxygen
atoms are represented by filled circles, La is not shown. Right: Charge-, orbital- and spin-order
in half-doped manganite La3+

0.5Sr2+0.5Mn3+0.5Mn2+0.5O3.

ment is quenched, i.e. totally suppressed, by the crystal field surrounding the Mn3+ ions (this
is always the case for non-degenerate states with real wave functions because such functions
have pure-imaginary expectation values for an angular momentum operator). Orbital ordering
instead denotes a long-range ordering of an anisotropic charge distribution around the nuclei.
As the temperature is further lowered, magnetic order sets in at TN ∼ 145K. In LaMnO3 the
spin degree of freedom of the Mn3+ ion orders antiferromagnetically in so-called A-type order:
spins within the a-b plane are parallel, while spins along c are coupled antiferromagnetically.
This d-type orbital ordering and A-type antiferromagnetic ordering results from a complex in-
terplay between structural-, orbital- and spin degrees of freedom and the relative strengths of
the different coupling mechanisms in LaMnO3.

Doped manganites are even more complex, because the charge on the Mn site becomes an addi-
tional degree of freedom due to the two possible manganese valances Mn3+ and Mn4+. In order
to minimizes the Coulomb interaction between neighboring manganese sites, so-called charge
order can develop. This is shown for the example of half-doped manganites in Fig. 12.9 on the
right: These half-doped manganites show antiferromagnetic spin order, a checkerboard-type
charge order with alternating Mn3+ and Mn4+ sites and a zig-zag orbital order of the additional
eg electron present on the Mn3+ sites. This is only one example of the complex ordering phe-
nomena that can occur in doped mixed valence manganites. These ordering phenomena result
from a subtle interplay between lattice-, charge-, orbital-, and spin degrees of freedom and can
have as a consequence novel phenomena and functionalities such as colossal magnetoresistance.

How are these ordering phenomena related with the macroscopic properties of the system? To
answer this question, let us look at the resistivity of doped Lanthanum-Strontium-Manganites
( Fig. 12.10): The zero field resistance changes dramatically with composition. The x = 0
compound shows insulating behavior: the resistivity ρ increases with decreasing temperature T .
The higher doped compounds, e.g. x = 0.4, are metallic with ρ(T ) decreasing. Note, however,
that the resistivity of these compounds is still about three orders of magnitude higher than for
typical good metals. At an intermediate composition x = 0.15, the samples are insulators at
higher T down to about 250K, then a dramatic drop of the resistivity indicating an insulator-
to-metal transition and again an upturn below about 210K with typical insulating behavior.
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Fig. 12.10: Resistivity in the La1−xSrxMnO3 series [20]. Left: resistivity in zero field for
various compositions from x = 0 to x = 0.5. Right: resistivity for x = 0.15 in different
magnetic fields H , and magnetoresistance, defined as the change in resistivity relative to its
value for H = 0.

The metal-insulator transition occurs at the temperature where ferromagnetic long-range order
sets in. Around this temperature we also observe a very strong dependence of resistivity on
external magnetic field. This is the so-called colossal magnetoresistance effect. In order to
appreciate the large shift in the maximum of the resistivity curve with field (Fig. 12.10 right)
one should remember that the energy scales connected with the Zeeman interaction of the spin
1
2

electron in an applied magnetic field are very small: the energy equivalent of 1 Tesla for a
spin 1

2
system corresponds to 0.12meV, which in turn corresponds to a temperature equivalent

of 1.3K. The strong dependence of the resistance on an external field is partly due to the
so-called double exchange mechanism: the electron hopping from Mn3+ to Mn4+ (associated
with metallicity) can occur only if the t2g spins are parallel, which is automatically fulfilled
(only) in the ferromagnetic state. This phase competition and consequent tunability by external
parameters, such as temperature and field, is typical for correlated-electron systems.

It is clear that our entire discussion starting from ionic states is only a crude approximation
to the real system. Therefore we now have to pose the question how can we determine the
true valence state? Or more general, which experimental methods exist to study the complex
ordering and excitations of the charge-, orbital-, spin- and lattice- degrees of freedom in these
complex transition metal oxides?

12.5 Probing correlated electrons by scattering methods

How can these various ordering phenomena be studied experimentally? Obviously we need
probes with atomic resolution, which interact with the spins as well as with the charges in the
system. Therefore neutron and x-ray scattering are the ideal microscopic probes to study the
complex ordering phenomena and their excitation spectra. The lattice and spin structure can be
studied with neutron diffraction from a polycrystalline or single crystalline sample as detailed
in chapter 8 of this course, “Structural analysis”. Fig. 12.11 shows as an example a powder
spectrum of a La7/8Sr1/8MnO3 material. Neutrons also allow one to determine the magnetic
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Fig. 12.11: High resolution neutron powder diffractogram of a powdered single crystal of
La 7

8
Sr 1

8
MnO3. ◦: data points, line: structural refinement. Structural and magnetic Bragg

reflections are located at the 2 values indicated by the vertical lines below the spectrum. The
solid line underneath shows the difference between the observed and simulated spectra. Insets
show details in certain regions e.g. a magnetic Bragg reflection at very low q.

structure from a powder diffraction pattern. As a result of a complete refinement, one can show
that the low temperature structure of this compound is monoclinic or even triclinic (for solving
the metric of the cell, complementary synchrotron x-ray diffraction data is often useful because
of the higher achievable q-resolution), i.e. there exists an additional distortion from the Pnma
structure introduced in Sec. 12.4. Ferromagnetic order becomes visible by intensity on top of
the structural Bragg peak. Antiferromagnetic order is usually (but not always!) connected with
an increase in the unit cell dimension, which in turn shows up in the diffractogram by additional
superstructure reflections between the main nuclear reflections. It is beyond the scope of this
lecture to discuss the experimental and methodological details of such a structure analysis or
to present detailed results on specific model compounds. For this we refer to the literature,
e.g. [19]. We just want to mention that with detailed structural information, we cannot only
determine the lattice- and spin structure, but also the charge- and orbital order and can relate
them to macroscopic phenomena such as the CMR effect. At first sight it might be surprising
that neutron diffraction is able to give us information about charge order. We have learnt in the
introductory chapters that neutrons interact mainly through the strong interaction with the nuclei
and through the magnetic dipole interaction with the magnetic induction in the sample. So how
can neutrons give information about charge order? Obviously charge order is not determined
directly with neutrons. However in a transition metal-oxygen bond, the bond length will depend
on the charge of the transition metal ion. The higher the positive charge of the transition metal,
the shorter will be the bond to the neighbor-ing oxygen, just due to Coulomb attraction. This
qualitative argument can be quantified in the so-called bond-valence sum. There is an empirical
correlation between the valence Vi of an ion and the bondlengths Rij to its neighbors:

Vi =
∑
ij

sij = Vi =
∑
ij

e
R0−Rij

B . (12.5)

Here, the Rij are the experimentally determined bond lengths, B = 0.37 is a constant, and R0

are tabulated values for the cation-oxygen bonds, see, e.g., [21]. Table 12.1 reproduces some of
these values. The sum over the partial “bond-valences” sij gives the valence state of the ion.

Even though this method to determine the valence state is purely empirical, it is rather precise
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Table 12.1: R0 values of cation-oxygen bonds [21] in manganese perovskites needed for the
bond valence calculation (12.5).

compared to other techniques. The values of the valences found with this method differ signif-
icantly from a purely ionic model. Instead of integer differences between charges on different
transition metal ions, one finds more likely differences of a few tenth of a charge of an electron,
though rare exceptions, where near-integer valence differences were observed, exist [22].

Just like charge order, orbital order is not directly accessible to neutron diffraction since orbital
order represents an anisotropic charge distribution and neutrons do not directly interact with the
charge of the electron. However, we have seen in the discussion of the Jahn-Teller effect (Figs.
12.8 and 12.9) that an orbital order is linked to a distortion of the local environment visible
in different bond lengths within the anion complex surrounding the cation. Thus, by a precise
determination of the structural parameters from diffraction, one can determine in favorable cases
the ordering patterns of all four degrees of freedom: lattice, spin, charge and orbitals.

Is there a more direct way to determine charge- and orbital order? The scattering cross section
of x-rays contains the atomic form factors, which are Fourier transforms of the charge den-
sity around an atom. Therefore, one might think that charge and orbital order can be easily
determined with x-ray scattering. However, as discussed in the last paragraph, usually only a
fraction of an elementary charge contributes to charge- or orbital ordering. Consider the Mn
atom: the atomic core has the Ar electron configuration, i.e. 18 electrons are in closed shells
with spherical charge distributions. For the Mn4+ ion, three further electrons are in t2g levels.
Since in scattering, we measure intensities, not amplitudes, these 21 electrons contribute 212r20
to the scattered intensity (the classical electron radius r0 is the natural unit of x-ray scattering).
If the difference in charge between neighboring Mn ions is 0.2 e, this will give an additional
contribution to the scattered intensity of 0.22r20. The relative effect of charge ordering in x-ray
scattering is therefore only a tiny fraction 0.22

212
∼ 10−4, even ignoring that scattering from all

other atoms makes the situation worse. There is, however, a way to enhance the scattering from
non-spherical charge distributions, the so-called anisotropic anomalous x-ray scattering, first
applied for orbital order in manganites by Murakami et al. [23]. The principle of this technique
is depicted in Fig. 12.12, showing scattering from a hypothetical diatomic 2D compound. Non
resonant x-ray scattering is sensitive mainly to the spherical charge distribution. A reconstruc-
tion of the charge distribution done from such an experiment might look schematically as shown
on the left. The corresponding crystal structure can be described with a primitive unit cell (white
lines). To enhance the scattering from the non-spherical part of the charge distribution, an ex-
periment can be done at a synchrotron source, with the energy of the x-rays tuned to the energy
of an absorption edge (middle). Now, second order perturbation processes can occur, where
a photon induces virtual transitions of an electron from a core level to empty states above the
Fermi energy and back with re-emission of a photon of the same energy. As second-order per-
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Fig. 12.12: Anisotropic anomalous x-ray scattering for a hypothetical diatomic 2D compound.
Left: Reconstruction of the charge distribution from a laboratory x-ray source, sensitive mainly
to the spherical charge distribution and corresponding unit cell (white lines). Middle: Prin-
ciples of resonance x-ray scattering in an energy level diagram (see text). Right: Charge
distribution deduced from such an anomalous x-ray scattering experiment. An orbital order-
ing pattern is apparent, which could not be detected with non-resonant x-ray scattering. The
evidently larger unit cell gives rise to superstructure reflections (at resonance).

turbation processes have a resonant denominator, this scattering will be strongly enhanced near
an absorption edge. If the intermediate states in this resonant scattering process are somehow
connected to orbital ordering, scattering from orbital ordering will be enhanced. Thus in the
resonant scattering experiment, orbital order can become visible as indicated on the right. With
the shown arrangement of orbitals, the true primitive unit cell of this hypothetical compound is
obviously larger than the unit cell that was deduced from the non resonant scattering experiment
(left), which was not sensitive enough to determine the fine details of the structure. An increase
of the unit cell dimensions in real space is connected with a decrease of the distance of the
reciprocal lattice points, leading to additional superstructure reflections. The intensity of these
reflections has the strong energy dependence expected for a second-order perturbation process.
This type of experiment is called anisotropic anomalous x-ray scattering, because it is sensitive
to the anisotropic charge distribution around an atom.

So far we have discussed some powerful experimental techniques to determine the various
ordering phenomena in complex transition metal oxides. Scattering can give much more in-
formation than just on the time averaged structure. Quasi-elastic diffuse scattering gives us
information on fluctuations and short range correlations persisiting above the transitions, e.g.
short range correlations of polarons, magnetic correlations in the paramagnetic state, local dy-
namic Jahn-Teller distortions etc. Studying these correlations and fluctuations helps to under-
stand what drives the respective phase transitions into long-range order. The relevant interac-
tions, which give rise to these ordering phenomena, can be determined from inelastic scattering
experiments as learnt in the chapter on “Inelastic neutron scattering”. For example, in a new
class of iron-based high-temperature superconductors, the involvement in Cooper pairing of lat-
tice vibrations or alternatively magnetic fluctuations is controversial, and both of these can be
probed in-depth by inelastic neutron scattering (see, e.g., [24]). Since there is a huge amount of
scattering experiments on highly correlated transition metal oxides and chalcogenides, a review
of these experiments definitely goes far beyond the scope of this introductory lecture.



12.16 M. Angst

12.6 Summary

Fig. 12.13: Illustration of complexity in correlated electron systems. H, E: magnetic and elec-
tric field, respectively; μ: chemical potential (doping); T : temperature; P : pressure; σ: strain
(epitaxial growth); d: dimensionality (e.g. bulk versus thin film systems); CO: charge order;
OO: orbital order; SO: spin order; JT: Jahn-Teller transition.

This chapter gave a first introduction into the exciting physics of highly correlated electron
systems, exemplified by transition metal oxides and chalcogenides. The main message is sum-
marized in Fig. 12.13. The complexity in these correlated electron systems arises from the
competing degrees of freedom: charge, lattice, orbit and spin. The ground state is a result
of a detailed balance between these different degrees of freedom. This balance can be easily
disturbed by external fields or other thermodynamical parameters, giving rise to new ground
states or complex collective behavior. Examples are the various ordering phenomena discussed,
Cooper pairing in superconductors, so-called spin-Peierls transitions in 1D systems etc. This
high sensitivity to external parameters as well as the novel ground states of the systems gives
rise to novel functionalities, such as the colossal magnetoresistance effect, high temperature
superconductivity, multiferroicity, and many more. A theoretical description of these com-
plex systems starting from first principles, like Schrödinger equation in quantum mechanics or
the maximization of entropy in statistical physics, is bound to fail due to the large number of
strongly interacting particles. Entirely new approaches have to be found to describe the emer-
gent behavior of these complex systems. Therefore highly correlated electron systems are a
truly outstanding challenge in modern condensed matter physics. We have shown in this lecture
that neutron and x-ray scattering are indispensable tools to disentangle this complexity experi-
mentally. They are able to determine the various ordering phenomena as well as the fluctuations
and excitations corresponding to the relevant degrees of freedom. No other experimental probe
can give so much detailed information on a microscopic level as scattering experiments.
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Exercises

Note: � indicates an increased difficulty. Solve the easier problems first.

E12.1 Electronic structure and Mott transition

a) In modeling the electronic structure of crystalline solids, what is the typical starting assump-
tion to separate the electronic structure from the lattice dynamics, and why does it work?

b) In which of the three simplest models of electrons in a solid are the electronic correlations
taken into account at least approximately?

c) Neglecting electronic correlations, would you predict NaCl to be an insulator or a metal?
Why?

d) The competition of which two contributions to the total energy of the electrons is crucial
for the Mott-transition? Which further contributions to the total energy are neglected in the
simplest model?

e) Assume that a particular material is a Mott-insulator, but just barely so (i.e. the relevant
energy contributions are almost equal). What would you predict to happen when sufficiently
high pressure is applied, and why?

E12.2 Electronic ordering in correlated-electron materials

a) List and very briefly explain three “electronic degrees of freedom”, which can become or-
dered.

b) � Discuss why electronic correlations favor ordering processes of these electronic degrees of
freedom.

c) What, if any, connection is there between orbital order and orbital magnetic momentum?

d) To order of which of the electronic degrees of freedom is neutron scattering directly sensitive,
and to which not?

e) For those electronic degrees of freedom, to which neutron is not directly sensitive, neutron
scattering can still be used to deduce an ordered arrangement: How and why? Is there a more
direct scattering method than neutron scattering?

E12.3 Crystal field

Fe has atomic number 26 and in oxides typically has valence states 2+ or 3+.

a) Determine the electronic configuration of free Fe2+ and Fe3+ ions (hint: as for Mn the outer-
most s-electrons are lost first upon ionization).

b) From Hund’s rules determine the values of the spin S, orbital angular momentum L, and total
angular momentum J of Fe2+ and Fe3+ ions.
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(Hund’s rules:

1. S max.

2. L max consistent with 1.

3. J = |L− S| for a less than half filled shell,
J = |L+ S| for a more than half filled shell).

c) � The effective moment μeff of a magnetic ion can be determined experimentally by the
Curie-Weiss law, and is given by μeff = gJ

√
J(J + 1)μB, where the Landé factor is

gJ =
3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
. (12.6)

Calculate the expected effective moment in units of μB of Fe2+ and Fe3+ ions, i) assuming S,
L, and J as determined in b) and ii) setting L = 0 (‘quenched orbital momentum’). Compare
with the experimental values of ∼ 5.88μB for Fe3+ and ∼ 5.25− 5.53μB for Fe2+.

d) � The negatively charged oxygen ions surrounding the Fe ions in an oxide solid influence the
energy of the different orbitals. Plot the expected energy level diagram for the case of an octa-
hedral environment of nearest-neighbor O2−. How does the total spin moment of Fe2+ change
between weak and strong crystal field splittings (relative to intra-atomic “Hund’s” exchange)?

e) (optional) �� In a tetrahedral environment the energy levels of the orbitals are reversed com-
pared to an octahedral environment. Determine the spin moment of Fe2+ in a tetrahedral en-
vironment with strong crystal field splitting. Is an orbital angular momentum possible in this
case? How about when a Jahn-Teller-distortion leads to a further splitting of the energy levels?

E12.4 Orbital and Magnetic order in LaMnO3 (Optional!)

The orbital and magnetic order in LaMnO3 is sketched in Fig. 12.9 (page 11 of the chapter) on
the left. One crystallographic unit cell a× b× c is shown.

a) Why is there no charge order in LaMnO3?

b) What are the smallest unit cells (sketch in relation to the crystallographic cell) that can de-
scribe i) magnetic order, ii) � orbital order (Hint: consider also centered cells), iii) both mag-
netic and orbital order.

c) Make a plot of reciprocal space in the a∗-c∗-plane indicating the positions, where you expect
nuclear, orbital, and magnetic Bragg peaks to occur.

d) � As c), but for the a∗-c∗-plane.
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1 Introduction and Overview 
 
Look around the house and you will see that you are surrounded by many kinds of polymers: 
plastic containers, surface coatings in the kitchen, toys and clothes in the living room and 
bedroom. Modern equipment and components in your car and work place are often made of or 
coated with polymer composite materials. Today traditional materials, such as metal, ceramics 
and wood have partly been replaced by synthetic polymers which may be stronger, lighter and 
cheaper and which through scientific research can be tailored to specific requirements.  
 
It is hard to imagine life without modern synthetic plastics and rubbers. These polymers can 
be moulded into almost any shape, extruded into thin firms and fibres, applied as coatings and 
given bright colours or made transparent. New polymer composites are continually being 
developed including reinforced rubbers or construction materials even for aeroplanes. 
 
Polymers can be categorized in three classes:  
 
 Thermoplastics. They can be repeatedly melted upon the application of heat and they are 

considered to be recyclable because of that.  
 
 Elastomers. These rubbery materials can be stretched many times their original length. 

They do not melt upon the application of heat but they will degrade if heated to high 
enough temperatures.  

 
 Thermosets. These are generally rigid material that can withstand higher temperature than 

elastomers. They do not melt and will degrade if heated to high enough temperature.  
 
As it is true for all classifications there are sometimes exceptions to the rules when describing 
the behaviour of polymers and intermixed behaviour is perfectly possible. 
 
Polymers are one of the most important products of chemical industry. The development of 
this industry in Germany started in the second half of the 19th century. BASF was founded in 
1866. In 1885 it had already 2335 employees. In 1900 BASF had grown to 6771 employees. 
Similarly Bayer was founded in 1881. In 1885 Bayer employed 24 chemists and 300 workers. 
Just 11 years later it had grown to 104 chemists and 2644 workers. The 2006 turnout of 
chemicals in Germany is given in Table 1. Among these products polymers are on the third 
rank with 25.88 billion Euros. Thus, polymers are indeed a very important commodity. 
 

Table 1: 
Turnover along products (Germany 2006) 

 
Product Turn over [109 €] 
Anorganic base chemicals   9,88 
Petrochemicals 21,88 
Polymers 25,88 
Fine + special chemicals 32,62 
Pharmaceuticals 29,33 
Body care products 10,02 
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Before coming to the present world of polymers, I like to briefly sketch the history of the 
development and understanding of polymer materials. Polymer production and use started 
with the search for a materials replacement of horn. This search started the modern plastics 
industry around 1800. The problem with horn was that it was not of uniform quality and that 
it was quite difficult to work with horn. Furthermore, though it had limited mold ability, it had 
unique properties and aesthetic appeal. The second natural material that came into focus was 
shellac. Shellac is a resin that is secreted by a particular beetle. It found use as a coating of 
furniture and was moulded into boxes, buttons, combs and electrical insulators and later the 
famous phonograph records were made out of it. Gutta-percha was the next natural material 
that came into use. Gutta-percha is attained from the palaquium tree and found use as an 
electrical insulator. For example, the first transatlantic cable was insulated with Gutta-percha 
and today still billiard balls are made from this material. Then it was realized that some 
natural polymers were becoming very useful, if they were modified chemically. The best 
example is rubber made from natural polyisoprene taken from the rubber tree. Charles 
Goodyear discovered the vulcanization of natural rubber using some sulphur compounds. 
With that rubber it turned out to be a very useful material and was one of the earliest and most 
important discoveries in the polymer industry. Celluloid was another early modified polymer. 
It was in addition the first polymer that was truly capable of imitating the aesthetics of horn 
and shell. Celluloid was a transparent material that could be coloured to imitate the patterns of 
horn and shell. One of its unique applications was the film industry where it was used as a 
substrate for the first motion picture film. 
 
However it turned out that the physical properties of these natural polymers were still not 
sufficient for broad applications. In 1909 the first synthetic polymer Bakelite was developed. 
It is a composition of phenol and formaldehyde and opened the way for many applications 
outside natural polymers. Then, in the 30ties major breakthroughs in synthetic polymers 
occurred by luck. In 1933 Fawcett and Gibson discovered polyethylene in a botched 
experiment. They heated a mixture of ethylene and benzaldehyde to 170°C at a pressure of 
1700 bar. Similarly Teflon was invented accidently by Roy Plunkett at Dupont in 1938 when 
he was experimenting with Freon coolants under pressure. Another most important discovery 
was the synthesis of synthetic rubbers – a mixture of butadiene and styrene monomers. The 
Buna called product was produced in an industrial scale first in 1937. 
 
Science and technical developments always depends crucially on people, therefore, I like to 
finish this introductory paragraph in paying tribute to some of the most important pioneers in 
the field. The notion of polymers as macromolecules build from monomeric building blocks 
was only realized in the 20ties of the last century. At that time Staudinger in Freiburg (Nobel 
Prize 1953) developed his macromolecular hypothesis namely that polymers are molecules 
from covalently bonded units and not colloids as it was considered at that time. He could 
show the macromolecular character of the polymers in detailed studies of the viscosity and 
osmotic pressure that showed that polymers are indeed large molecules. In the 1930ies 
polymer chemistry got a very important boost by Carothers’ research on condensation 
reactions. He developed the synthesis for the first synthetic fibres of Nylon 6.6. Then in the 
50ties the basis for coordination polymerization was found. Ziegler and Natta developed 
catalysers that allowed to synthesize stereo regular polymers, for example syndiotactic or 
isotactic polystyrene. For this very important development they received the Nobel Prize in 
chemistry in 1955.  
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So far the developments in polymers were dominated by chemical aspects. Polymer physics 
was largely developed by Flory in Stanford who layed ground for a statistical theory of 
polymer conformation  and thermodynamics. For his outstanding achievements he received 
the Nobel prize in 1974. For the theme of this lecture the research of Flory is fundamental. He 
developed most of the theories that deal with polymer conformations that I discuss here. 
While the basics of polymer conformational in statistics were developed in the late 40ties and 
50ties the understanding of polymer dynamics both in solution and in the melt took 25 years 
more. Pierre Gilles de Gennes who received the Nobel Prize in 1991 may be considered as a 
most eminent scientist in this field who laid ground for most of the basic concepts in polymer 
dynamics. In particularly famous is his reptation model where he discovered the basic 
motional mechanism of polymer chains in the melt. The last eminent scientist I like to 
mention is Alan Heeger who dealt with conductive polymers that are based on conjugated 
electrons in π-orbitals that may delocalize along the chain. Figure 1 presents photographs of 
these polymer pioneers.  
 
 

 (a)             (b)  (c) 

 (d)  (e) 
Fig. 1: Nobel Prize Winners in the field of polymer science. (a) Hermann  Staudinger (Nobel 

Prize 1953), (b) Karl Ziegler and Giulio Natta (Nobel Prize 1955), (c) Paul J. Flory 
(Nobel Prize 1974), (d) Pierre-Gilles de Gennes (Nobel Prize 1991), (e) Alan  
Heeger (Nobel Prize 2000). 

 
 
 

2 Basic definitions and properties 
 
Polymers are chain molecules built from monomers . As an example Figure 2 presents the 
chemical structure of polystyrene together with the styrene monomer. During polymerization 
the double bond between the carbon atoms in styrene is opened and polymerization reaction 
connects the different carbon atoms to a long chain molecule. The polymerization mechanism  
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of such a molecule makes it clear that the molecular size in principle is ill defined and spans a 
very broad range from the monomer to the oligomer to the polymer with in general a large 
size distribution. As we shall see later that the size of the polymer plays an important role in 
its properties.  
 
 

Monomer PolymerMonomerMonomer PolymerPolymer

Styrene Polystyrene

 
 
Fig. 2: The styrene monomer and the polystyrene chain. The bracket indicates the 

monomeric unit. 
 
 
Polymer backbones may be formed from a variety of atoms. Figure 3 shows a number of 
characteristic chain molecules that are often used in applications. The first and most common 
backbone is that of carbon atoms as shown before for polystyrene. Another important variety 
is that of a carbon oxygen backbone as presented by polyethyleneoxide where two carbons are 
separated by an oxygen atom along the chain. Within the molecules of life the polypeptides 
play an important role. There the backbone is built of carbon nitrogen chains and finally there 
exist also inorganic polymers like polydimethylsiloxane, a chain which is built from 
alternating silicon and oxygen atoms. In each case the monomer is always the smallest 
repeating unit along the chain. Thus, for polystyrene it contains two carbons along the 
backbone, for polyethyleneoxide two carbons and one oxygen and for polydimethylsiloxane 
one oxygen and one silicon atom along the backbone. 
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Fig. 3: Different polymer backbones. (a) carbon backbone, example: polystyrene, (b) carbon 
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oxygen backbone, polyethyleneoxide; (c) carbon nitrogene backbone: polypeptides; (d) 
inorganic polymers: polydimethylsiloxane. 
 
 

2.1 Molecular weight and weight distributions 

he molecular weight is of crucial importance for a large number of polymer properties. As 
 
T
the molecular weight increases so increases also the tensile strength that defines the 
elongation to break ,the impact strength that measures the reversible elasticity, the toughness 
which is related to the melting temperature, the creep resistance that follows from the melt 
viscosity and the stress crack resistance that is important for processing for example.  
 
 

Fig. 4: Chain length dependence of the 

 

igure 4 presents the length dependence of the boiling point and the melting point for 

Table 2: 
Properties in dependence of chain length: hydrocarbons 

 

boiling and melting points for 
hydrocarbons. 

 

 
F
paraffins that become polyethylene if the chain lengths N grows substantially. The growth of 
the boiling temperature is limited by the disintegration of the material, while the melting 
temperature saturates around N ≈ 100 to a little bit above 100°C. Table 2 gives property 
dependences on chain length for hydrocarbons. Examples and uses are given for different 
classes of chain length. The table manifests the large variety of properties and uses that can be 
achieved by the same material just at different chain lengths.  
 

Number of C-atoms State at 25°C Example Uses 
1-4 Simple gas Propane Fuel us)  (gaseo
5-15 Low d  viscosity liqui Gasoline Liquid fuel 

16-25 High viscosity liquid Motor oil O  ils + greases
20-50 Simple soft solid P Ca s araffin wax ndles + coating
>1000 T  ough plastic solid Polyethylene Bottles + toys 

 

ince apparently the molecular mass and also its distribution is very important for polymer 
 
S
properties, in the following we will discuss in more depth the relevant definitions and the  
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characterization of these quantities. Let us begin with the IUPAC (International Union of Pure 

“A molecule of high relative molecular mass, the structure of which 

 
here are two essential quantities that characterise these materials (i) the degree of 

and Applied Chemistry) definition of a polymer:  
 

essentially comprises the multiple repetition of units derived actually or 
conceptually from molecules of low relative molecular mass.  

T
polymerization or the number of units N of monomers and (ii) the distribution of the degree of 
polymerization N. The most common averages that are taken are the number average. 
 

N NN
n

NN

n M
M

n
= ∑

∑
 (1)  

 
nd the mass average.  a

 
N NN

w
NN

m M
M

m
= ∑

∑
 (2)  

 
hereby nN ⋅ NA is the number of molecules with a degree of polymerization N, mn ⋅ NA is the 

urther important definitions relate to the weight fraction.  

T
mass of the molecules with a degree of polymerization N and NA is the Avogadro number. 
 
F
 

N N
n

N NN

n MW
n M

=
∑

 (3)  

 
ith MN = nNM0, where M0 is the monomer mass. Finally, we consider the moments of the 

N

w
distributions. 
 

k
k Nm n M= ∑  (4)  

 
ith these definitions we can write the different averages in terms of the moments of the W

distribution. The number average becomes 
 

∑
∑==

N

NN
n n

Mn
m
mM

0

1  (5)  

 
or the weight average we have F

 
2

2

1

N N n N
w

N N n

n M W MmM
m n M W

= = =∑ ∑
∑ ∑

 (6)  
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Similarly also higher moments averages may be defined such as the Z average which relates 

hese moments are accessible by different experimental techniques. E.g. measurements of the 

inally in order to give an example and to provide some impression about the different 

m1 = 24 m2 = 3340 m3 = 788400 
 

rom that the different averages are easily found.  

Mn = 24 Mw = 139 Mz = 236 
 

hese numbers are very instructive. Very small fractions of high weight lead to drastic 

.2 Polymer structure 

 a covalently bonded system the microstructure i.e. the organization of atoms along the 

to the ratio of m3/m2. 
 
T
osmotic pressure reveal the number average. The forward scattering from a polymer ensemble 
gives the weight average and last but not least scattering experiments on the size of a polymer 
reveal the Z average.  
 
F
averages we will take a simple example. Consider 1000 spheres of steal with masses of 10g, 
50g and 250g. Their numbers are 900 and 50 for the higher weights respectively. Following 
the prescriptions of Eq.[3] to [6] for the moments we find  
 

F
 

T
differences in the averages and also may lead to inequate perceptions. If you look e.g. on the 
Z average you would not think that most of these spheres are small.  
 
 
 

2
 
In
chain is fixed by the polymerization process. There exist several isomerism’s that influence 
the local structure. First let us consider structural isomerism. Figure 5 displays two examples 
for this phenomenon. The first regards the formation of polypropylene. There the CH3 side 
groups may be either placed adjacent to each other – this is the head to head configuration or 
they may be placed on every second carbon. This leads us to a so called head to tail 
configuration. Similarly polybutadiene may exist in three structural isomers: The cis-form, 
where the chain is symmetrically arranged with respect to the double bond, the trans form is 
an asymmetric configuration and finally the vinyl form, where the double bond sticks out of 
the main chain and the main chain itself is formed by a single bonded carbons.  
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Fig. 5: Polymer microstructure. (a) The structural isomerism in the case of polypropylene. 

(b) Structural isomers of polybutadiene. 
 
The stereoisomerism is another form of structural isomerism on the local scale. Figure 6 
depicts the three forms of stereo isomerism for polystyrene. Isotactic polystyrene is a form 
where the phenyl ring is always on the same side of the chain. A syndiotactic form is reached 
when the direction of the phenyl ring is alternating along the chain and finally the atactic form 
that is produced by non –stereo specific polymerization mechanisms has a random sequence 
of phenyl rings with respect to the chain backbone. While the first two may crystallize, 
because of its irregular arrangement of the phenyl rings atactic polystyrene stays amorphous. 
Thus, small changes on the local chain structure may have large consequences for the 
polymer material as a whole.  
 
Polymers may also have structural differences on the large scale. The simplest case is the 
homopolymer which is built from just one monomer. Copolymers are polymers that are built 
from two or more different monomers and may exist at least in three different forms. The two 
monomers may be arranged in a random sequence – these copolymers are called random 
copolymers, the monomers may be arranged in blocks there would be an A block and a B 
block. Such a polymer is called diblock copolymer and finally the monomers could for 
example be arranged in an alternating way. Then we will have an alternating copolymer. But 
certain many other possibilities could be considered. Finally polymers can differ by their 
architecture.  
 
Figure 7 displays a number of common polymer architectures. The simplest case is a linear 
chain, ring polymers are very interesting subjects scientifically, star polymers are entities 
where different linear polymers are connected at one central point. All the other polymers are 
different examples for branched materials. The simplest nontrivial branched molecule is a so 
called H polymer, where a central cross bar is connecting arms on both sides. Comb polymers 
are featuring side arms along a common backbone. Ladder polymers are combs with another 
backbone on the other side. Dendrimers are branched polymers originating from a central star 
that at each end of a branch bifurcate again, (h) is showing a general branched polymer. The 
rheological properties of these materials differ greatly and modern polymer design considers a 
deliberate selection of architecture, in order to promote certain properties.  
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(a) 

 

(b) 

 

(c) 

 
Fig. 6: Sterio isomerism at the example of polystyrene. (a) Isotactic. (b) Syndiotactic. (c) 

Atactic. 
 

 
 
Fig. 7: Examples for a polymer architecture. (a) Linear. (b) Ring. (c) Star. (d) H-polymer. 

(e) Comb polymer. (f) Ladder polymer. (g) Dendrimer. (h) Randomly branched 
polymer. 

 
 
Finally, I want to mention rubbers, where elastomers are crosslinked by the vulcanization 
process. In this process, at least in the original one sulfur compounds join different chains. 
They form sulfur bridges of several sulfur atoms between backbones of adjacent chains. 
Depending on the degree of vulcanization the stress strain behaviour of such a rubber can be 
significantly altered. Figure 8 displays the stress strain curves for long chain polyisoprenes in 
the unvulcanized and vulcanised state. The mechanical strength of the vulcanised rubber is 
strongly enhanced compared to the homopolymer.  
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Fig. 8: Stress strain relationships for 
vulcanized and non-vulcanized polyisoprene. 
 

 

2.3 Polymer crystallization 
 
Figure 9 displays a spherulite structure as it is formed in polymer crystallization. This 
structure contains an assembly of chain folded lamellar crystallites that built up the spherulite. 
Each of the lamellae is in the order of 10nm thick and stapled as seen on the right hand part of 
the figure. They grow from the centre and form the beautiful spherulites. Because of kinetic 
hindrance - polymers are entangled - a large single crystal never form. Instead, lamellar 
structures appear and push the entangled amorphous part into the intermediate regime in 
between the lamellae. Thus, crystallizable polymers are always semicrystalline. As mentioned 
already above atactic, configurations on a local scale prevent crystallization all together.  
 
 

Fig. 9:  Spherolitic structure of 
semicrystalline natural rubber. 
The chain folded lamellar 
crystallites are represented by the 
white lines.  
 

 
 
 
In general the mechanical properties of polymers are strongly enhanced by crystallization. 
The tensile strength and the E modulus increase significantly with crystallinity. 
Semicrystalline polymers constitute the largest group of commercially useful polymers. These 
polymers exist as a viscous liquid at temperatures above the melting points of the crystals. 
Upon cooling crystals nucleate and strengthen the material significantly. Semicrystalline 
polymers are used for example as packaging materials, as plastic bags and all kinds of 
construction materials.  
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2.4 Mechanical behaviour  
 
The mechanical behaviour of polymers is very rich. Figure 10 displays schematically the 
temperature dependence of the shear elasticity modulus E. We see a number of different 
regimes. At very low temperature the material is brittle. Then at a first transition temperature 
Tβ secondary relaxations become important that make the material more ductile. At a glass 
transition temperature Tg the modulus drops significantly but at the same time the elasticity of 
the material is enhanced. At Tm the crystallites within the semicrystalline polymer melt and 
the system becomes a highly viscoelastic liquid. Such a viscoelastic liquid displays a very 
interesting frequency or time dependent modulus. This is shown in Figure 11.  
 
Here the real and imaginary part of the dynamic shear modulus is plotted for a high molecular 
weight polymer. The real part represent the elastic modulus and we see that within a certain 
frequency range the polymer melt basically reacts elastically. In this regime Hooke’s law is 
approximately valid. At low frequencies the material flows and there Newton’s law for 
viscous flow applies. The imaginary part, the loss modulus, shows a peak at low frequencies. 
This peak is characteristic for the longest relaxation frequency in the melt and also signifies 
the cross over from elastic to viscous behaviour. In the lecture on macromolecular dynamics 
this will be emphasized in much more detail.  
 
 

 

Fig. 10: Schematic representation of the 
shear modulus for a semicrystalline polymer 
as a function of temperature. (1) Brittle solid, 
Tβ onset of β-relaxation. (2) Ductile solid, Tg 
glass transition. (3) Elastomeric character, 
Tm melting point. (4) Viscoelastic regime 
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Fig. 11: Dynamic modulus of a long chain 
polymer. G’ and G’’ real an imaginary part 
of the modulus.  
 

2.5 Intermediate summary 
 
Summarizing this part of the lecture polymers are a huge class of substances with very broad 
and different properties. They are an important industrial commodity and are extremely 
important for many aspects of our daily life. Polymers encompass synthetic, organic 
polymers, biopolymers like proteins, polypeptides, polynucleotides, polysaccharides, natural 
rubbers, semisynthetic polymers like chemically modified biopolymers and inorganic 
polymers like the siloxanes, the silanes and the phosphascences.  
 
 
 

3 Polymer chain conformations – ideal chains 
 

3.1 Ideal chains  
 
The conformation of a polymer describes the spatial arrangements of its monomers that 
relates to its flexibility, to the interactions between the monomers and the interactions with 
the solvent. In order to illustrate the relevant magnitudes we consider a chain of N = 1010 
bonds which could be realised by a DNA molecule and magnify it to the centimetre scale. 
Thus, we consider magnitudes under the condition that the bond length amounts to 1cm. If we 
would now collapse the coil, then the volume it would pervade is given by 
V = N ⋅ 3 = 1010cm3. This is about the size of a lecture hall.  
 
Now let the molecule perform a random walk. Under this circumstances we have 
R ≈ N1/2 ⋅  = 1km. This is the size of the Forschungszentrum. Now let’s consider an excluded 

volume chain that we will discuss later. Under these circumstances R ≈ N3/5 = 10km. And 
finally if there would be a long range electrostatic interaction, the size of the chain would be 
the contour length R ≈ N1 = 105km or in the order of a third of the distance to the moon. Thus, 
polymer chains may pervade very different spatial regions depending on their conformation.  
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The basic building block for a polymer chain are the directional covalent bonds of their 
constituents. For carbon which is the most important polymer builder the local configurations 
are shown in Figure 12.  
 
 

(a) 
 

 

(b) 
 

 

(c) 
 
 

 
Fig. 12: Directionality of the covalent bonds of carbon. (a) Methane (tetrahedral 

arrangement). (b) Ethylene, easy rotation around C-C bond. (c) Coplanar butane. 
 
 
 
Figure 12a displays the simplest carbon based molecule, the methane. Here the tetrahedral 
arrangement of the bonding orbitals are clearly seen. This spatial arrangement is very 
important for the conformational properties of a carbon based polymer. Figure 12b displays 
the ethane molecule where two carbons form the backbone. In this molecule an easy rotation 
around the C-C axis is possible. The potential minimum is reached if adjacent hydrogen 
atoms are displaced by 60°C with respect to each other. Finally Figure 12c shows the butane 
molecule which comprises 4 carbons along the backbone. Here the typical conformational 
states also of a long polymer chain are visible. There are three conformational possibilities: 
the molecule may be coplanar - this is called a trans conformation or we may witness a 
rotation by plus or minus 120°C around the centre carbon bond. These states are called 
gauche+ and gauche-.  
 
Figure 13 displays the corresponding conformational potential for rotations. We see the three 
minima where the trans is the lowest state. For a hydrocarbon the barrier height from the trans 
to the gauche conformation is given by Eb = 1700K.  
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Fig. 13:  Rotational potential for 
trans- and gauche states. 
 

The jump rate between different states follows the Kramers relation 0 exp bE
T

ν ⎡ ⎤Γ ≈ −⎢ ⎥⎣ ⎦
 

(ν0  1012s-1 attempt frequency) which at 300K gives 4 ⋅ 109sec-1. Thus a carbon based 
polymer exhibits high conformational mobility. With that we now may define a conformation 
of a polymer as all spatial arrangements that originate by rotations around the bonds. 
 
We now consider a long chain and discuss its conformational characteristics. Figure 14 
displays a polymer chain where the different monomers are described by little beats. ri  are the 
bonds vectors and the ensemble of all ri describes the conformation. In order to measure the 
size of the polymer the end to end vector E i iR r= Σ  is a proper measure. If we take the 

statistical average then all positive and negative values of RE are equally possible and the 
average of RE is zero. Thus, we need to consider the mean square end to end distance.  
 

2

,

N N N

E E E i i i j
i i i j

R R R r r r r⎛ ⎞⎛ ⎞
= ⋅ = = ⋅⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ ∑ ∑  (7)  

 
In order to go further we have to evaluate the scalar products between the different bond 
vectors ri and rj, ( )2

0 cosi j ijr r θ= . With that we can write the mean square end to end 
distance.  
 

2 2
0 cos( )

N

i jE i
ij ij

R r r θ= =∑ ∑ j  (8)  

 
The next step requires knowledge about the ensemble averages of the projection angles θij. 
Here different models for chain conformations come in. The simplest case is the freely jointed 
chain where each segment can rotate freely around its connection to the next. Under these 
circumstances ( )cos 0 forij i jθ = ≠  and the end to end vector becomes  
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2 2
ER N=  (9)  

 
Even if fixed bond angles are considered, in an ideal chain there are no long range 
correlations. Thus, we have  
 

lim cos 0iji j
θ

− →∞
=  (10)

 
Under these circumstances the sum over all the projection angles converges and we get 
 

 '

1
cos

N

ij i
j

Cθ
=

=∑  (a) (11)

 
Then the mean square end to end distance assumes the form 
 

 2 2 2 '
0 0

,

cos
N

E ij i
i j i

2
NR C C Nθ= = =∑ ∑  (b) (11) 

 
where CN is called characteristic ratio. For infinitely long chains CN = C∞ which is a 
characteristic quantity for a polymer chain.  
 
 

Fig. 14: Schematic representation of a 
polymer chain. Ai are the monomers, 
Rn ≡ RE is the end to end vector 
connecting the first with the last 
monomer, θij is the angle between the 
bonds ri and rj. 
 

 
 
In order to map a given real chain on an ideal chain the notion of the Kuhn length b has been 
introduced. With that one can define an equivalently freely jointed chain which has the same 
end to end distance based on a larger segment and smaller number of monomers. The 
requirement of the same contour length leads to n ⋅ b = Rmax, where n is the number of Kuhn 
segments in the equivalent chain. Furthermore, we have to require that the end to end distance 
of the real and the equivalent chain are the same. Thus, 2 2

max 0Enb R bR C N∞= = = 2  from 
these two requirements we can calculate the number of Kuhn segments 
 

 
2
max

2
0

Rn
C N∞

=  (a) (12)

 
and the size of the Kuhn length itself 
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2

2 0

max max

ER C Nb
R R

∞= =  (b) (12) 

 
As an example we consider the case of polyethylene where C∞ = 7.4, 0 = 1.54 and θ = 68°. 

Thus, Rmax = N 0 cos(θ/2). With Eq.[12b] we arrive at b = 14Å. We may also define the mass 

of a Kuhn segment 0
Kuhn

bond
NM m
n

= .  

 
 
Table 3 displays characteristic conformational parameters for a number of polymers, 
including the characteristic ratio, the Kuhn length, the density and the molecular weight per 
Kuhn segment.  
 
 

Table 3: 
Characteristic ratios, Kuhn lengths and molar masses of Kuhn monomers  

for common polymers at 413K. 
 
Polymer 

Structure 0
Kuhn

bond
NM m
n

=  
C∞ b(Å) ρ(g cm-3) M0(g mol-1) 

1,4-Polyisoprene PI -(CH2CH=CHCH(CH3))- 4.6 8.2 0.830 113 
1,4-Polybutadiene PB -(CH2CH=CHCH2)- 5.3 9.6 0.826 105 
Polypropylene PP -(CH2CH(CH3))- 5.9 11 0.791 180 
Poly(ethylene oxide) PEO -(CH2CH20)- 6.7 11 1.064 137 
Poly(dimethyl siloxane) PDMS -(OSi(CH3)2)- 6.8 13 0.895 381 
Polyethylene PE -(CH2CH2)- 7.4 14 0.784 150 
Poly(methyl methacrylate) PMMA -(CH2C(CH3)(COOCH3))- 9.0 17 1.13 655 
Atactic polystyrene  PS -(CH2CHC6H5)- 9.5 18 0.969 720 
 
As a disclaimer I like to note that in the following we do not make an explicit difference 
between Kuhn chains and chains built from real monomers. We will use always Eq.[11b] 
without any further specification. If we address a Kuhn chain then this will be explicitly 
mentioned.  
 
 
 

3.2 Fractality 
 
The result for the mean square end to end distance as a function of chain length reminds on 
the mean square displacement for random walks. There  
 

2 2( ) 6r t Dt N= =  (13)
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The mean square displacement in the random grows proportionally with the time, where D is 
the diffusion coefficient. Thus, if we replace the time t by the chain length N and the diffusion 
coefficient by the elementary step length we can identify the trace of a diffusing particle with 
a polymer conformation.  
 

(a) 
 

 

(b) 
 

 
Fig. 15: (a) Trace of a random walk. (b) Jean Baptiste Perrin (Nobel Prize 1926). 

 
 
 
In the early part of the last century Jean Perrin performed very detailed investigations of the 
diffusional motion of colloidal particles under a microscope. Figure 15 displays the trace 
which was such observed. In describing these traces Jean Perrin noted “such images in which 
a large number of steps are shown in one step only give a weak imagination of the 
extraordinary unsteadiness of the true trajectory. If we would note the positions at a hundred 
time shorter scale then each segment would need to be replaced by polygon which would be 
as intricate as the original picture and so on”. With that notion Perrin addressed the 
phenomena of self similarity that has been emphasized much later on in connection with the 
investigation and description of fractal structures. Self similarity means that a small part looks 
as the hole. A simple mathematical example for such a fractal structure is the Sierpinski 
gasket which is shown in Figure 16. The construction rule may be easily read off the figure. 
Each part of this Sierpinski gasket looks as a whole and will go on infinitely like that.  
 
In terms of fractals a very important quantity is the fractal dimension. It describes for volume 
fractals how the mass of an object is increasing with its size. For three dimensional compact 
object we have m(r) ≈ rd = 3. If we consider a three dimensional polymer chain then m ≈ N, 
RE ∼ N1/2 or m(r) ~ r2 .Thus, the fractal dimension of an ideal polymer chain is 2. This can be 
generalized to the law  
 

( ) ~ fdm r r  (14)
 
where df is the fractal or Hausdorff dimension. We note that for polymers in solution the 
fractal dimension is even smaller and we have M(r) ~ r1.6.  
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As an example we will now equate the fractal Hausdorff dimension of the Sierpinski gasket. 
Looking on the construction of this gasket, if we increase the radius by 2 then the mass 
increases by 3. Thus we have r1 = 2r2 and m1 = 3m2. Now the scaling law for the mass is 

fdm r≈  or ( )1 1 22 ff ddm A r A r= ⋅ =  and 1 23 3 2
fdm m A r= = ⋅  . From these two equations we 

finally get ( )2 23 2 ff ddr r= . Solving the last equation for df we get  
 

log 3 1.58
log 2fd = =  (15)

 
The Hausdorff dimension of the Sierpinski gasket is 1.58.  
 

 

Fig. 16:  Sierpinski gasket. 
 

 
 
 
 

3.3 Specific chain models 
 
We now turn to specific chain models. First we will consider a chain with fixed bond angles 
but free rotation around the bond angles. Under these circumstances C∞ may be calculated 
easily. We have to evaluate the projection angles θij between monomers that are ⎪i-j⎪ apart. 
For adjacent monomers θ1 is the tetraeder angle θ = 180 - 109 = 71. If we now consider free 
rotation then 2

1 0 cosi ir r θ+⋅ =  and 2 2
2 cosi ir r θ+⋅ =  or 2 cosk

i i kr r θ+⋅ = . With 
Eq.[11b] we get  
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For N → ∞ the last contribution in the expression 16 goes to zero and the final result for the 
end to end distance becomes  
 

 2 2 1 cos
1 cosER N θ

θ
+

=
−

 (a) (17)

 
For C∞  we finally get  
 

 
2

2

1 cos 2
1 cos

ER
C

N
θ
θ∞

+
= =

−
 (b) 

(17) 

 
Its low value of 2 compares unfavourably with values between 6 and 8 found for real chains. 
Thus, there must be much more hindrance in the conformation of chains as expressed in the 
freely rotating chain. A next degree of complication would be the consideration of finite 
torsional angles plus the rotational potential. For this approach C∞ ≈ 3.4 is found which is still 
by at least a factor of 2 too small.  
 
A real solution to the problem was provided by Flory in his rotational isomeric state model 
(RIS model). The solution is the consideration of further non-bonded interactions, the so 
called Pentane effect. Pentane is built from 5 carbons atoms along the chain and we consider a 
conformation, where we have a positive and negative rotation about the 2 central C-C bonds 
thus a g+g-conformation. In this case the final CH3 groups of the molecule come very close. 
The steric repulsion between these nonbonded carbon atoms will prevent such conformations. 
A detailed calculation needs to include such nonbonded sterical interactions and lead to the 
right results. In detail the rotational isomeric state model makes the following assumptions.  
 All bond length and angles are fixed, torsional angles have the values of the minima for 

the rotational potential at t, g+, g-; fluctuations are not considered.  
 The chain conformation is described as a sequence of states tg-tttg+tg+ttg- … 
 Each bond provides three states.  
 The whole chain then can be described by 3N-2 rotational states.  
 In the RIS model the different states are not equally probable but their probability depends 

on the energies involved.  
 
This RIS model proves to be very successful in the calculation of chain dimensions. As an 
example for n-pentane where we have four bonds we would have to consider 32 = 9 states.  
 
Finally we like to present another extreme case namely the worm like chain that represents a 
very stiff polymer like DNA. Such a stiff chain may be considered as a continuously flexible 
isotropic rod. Its characteristic quantity is the contour length L and the direction of the tangent 
vector t(s) at any given point . The tangent vector is obtained by the derivative of 
the spatial coordinate r(s) with respect so s. For the end to end distance we then obtain 

(0,s L∈ )

 

0

( )
L

ER t s ds= ∫  (18)
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For the orientation correlation function between the tangent vectors at different positions 
along the chain we have 
 

( ) ( ) ( ) /' cos ' t Pt s t s s s eθ −= − =  (19)
 
where P is the persistence length of the chain. P is the length at which the correlation between 
the tangent vectors has decayed to 1/e. The mean square end to end distance can be calculated 
from Eq.[18] to 
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∫ ∫ ∫ ∫
 (20)

 
For the example of DNA P = 50nm. Using Eq.[12b] we can then also calculate the Kuhn 
length which comes out to b = 2P = 100nm. 
 
Finally we like to introduce the notion of the radius of gyration that also characterises the size 
of a coil but in a more general fashion that it can also be used for any branched polymer. The 
radius of gyration is defined as  
 

( )22 1
ig cR r

N
= −∑ mR  (21)

 
where Rcm is a centre of mass coordinate of the chain. For an ideal chain Eq.[21] reduces to 
 

22

6
1

Eg RR =  (22)

 
 

3.4 Distribution functions 
 
Now we ask the question how the intra chain distances 2

ijr  are distributed. For that purpose 
we define the probability density function to find a monomer at a distance r . For a statistical 
coil this is probability density P(r) is isotropic. 4πr2 P(r) is then the probability to find a 
monomer between r and r + dr. Following the central limit theorem for a random walk the 
distribution function is Gaussian 
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3/ 2

2

2 2

3 3exp
2 2

rP r
r rπ
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〈r2〉 is the average distance between the two considered monomers. P(r) is a very good 
approximation. However, P(r ≠ 0) for r > Rmax = N. This deficiency is minute. Consider the 
example of a long chain N = 104 then P(Rmax) = 10-26. 
 
Such a Gaussian distribution is of very general importance. It gives the distribution of 
statistical errors, it describes the distribution of distances in random walks and it also 
describes the solution of the diffusion equation. The distribution is directionally independent 
and can be written as a product from the contributions along the three Cartesian coordinates.  
 
  (a) 3 ( , ) ( , ) ( , ) ( , )d x x y y zP N R P N R P N R P N R= z
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Each end to end distance vector RE may be realised by a number of conformations of a chain 
with N monomers. The probability distribution function P3d may be written in terms of these 
conformation numbers Ω as follows.  
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E
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Ω
=
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This notion relates to the conformational entropy of the chain that is given by the logarithm of 
the number of conformations of a chain with N monomers and RE.  
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If we now neglect the monomer- monomer interaction that in a polymer melt is well screened, 
the internal energy U(N,RE ) is independent of RE. Then the Helmholtz free energy becomes 
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The free energy shows a quadratic increase with the absolute value of the end to end distance. 
Thus, we have derived an entropic elasticity. If we stretch or compress a chain, then in 
response an entropic force acts to restore the ideal conformation. 
 

( )
2

, 3 B
x x

x

F N R k Tf R
R N

∂
= =

∂
 (28)

 
fx is the force to hold a chain at a fixed radius R = Rx. This force increases with temperature 
and the spring constant is given by the prefactor in Eq.[28].  
 
 

3.5 Correlation function and scattering 
 
The pair correlation function that describes the probability to find a monomer at a given 
distance from another monomer is a very important quantity that describes the spatial cloud of 
monomers. It is also directly measured in any scattering experiment. Let n be the number of 
monomers within a radius r. From Eq.[11b] follows n ≈ (r/ )2. The number density within the 
same volume r3 is proportional to n/r3. Then the probability to find a monomer in a volume r 
is given by  
 

3 2

1( ) ng r
r r

≈  (29)

 

the exact solution for an ideal chain gives ( ) 2

1g r
rπ

= . Eq.[29] may be generalised for 

fractal objects where n ≈ rd or 
 

3
3( ) ~ ~ dng r r

r
−  (30)

 
Eqs. [29] and [30] tell us that large polymer coils are nearly empty.  
 
Now we consider the scattering form a chain performing a random coil conformation. The 
scattering cross section is evaluated by summing up the phase factors of all monomers at 
positions exp[iQrj] where the wave vector Q = ki - kf in the momentum transfer during 
scattering (ki and kf are the wave vectors of the incoming and scattered radiation). For elastic 
scattering Q = 4π/λ ⋅sin θ where λ is the wave length of the radiation and θ the scattering 
angle. The sum of the phase factors gives the scattering amplitude. The measured intensity 
reflects the square of this scattering amplitude  
 

( )( ) ~ exp i ji j
ij

I Q b b iQ r r⎡ ⎤−⎣ ⎦∑  (31)

 
where bi, bj are the scattering lengths of the monomers. Assuming bi = bj Eq.[31] reduces to 
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( ) 2

1~ exp ijW P
ij

I Q V K iQr
N

φ ⎡ ⎤⎣ ⎦∑  (32)

 
Here Φ is a polymer volume fraction Vw the polymer volume and Kp the scattering contrast 
factor. We now define the form factor  
 

( ) ( ) ( )2

1 exp iQr
ij

ij
P Q iQr g r e dr

N
= =∑ ∫  (33)

 
where the pair correlation function g(r) describes the probability to find a second monomer at 
distance r if there is one at r = 0. For a Gaussian chain Eq.[33] may be evaluated further. In 
such a chain, as we have seen above, all the distances are Gaussian distributed. Under these 
circumstances we can take the ensemble average into the exponent and have  
 

( )2 2 21exp exp exp
2 6ij ij ij

isotropic
iQr Qr Q r⎛ ⎞⎡ ⎤ = − = −⎜ ⎟⎣ ⎦ ⎝ ⎠

1  (34)

 
The last part of this equation follows from the isotropy of the problem. Taking random walk 
statistics, we have 2 2

ijr i= − j . With that the form factor becomes 
 

( ) 2 2
2

1 1exp
6ij

P Q Q i j
N

⎧ ⎫= − −⎨ ⎬
⎩ ⎭

∑  (35)

 
Now we have to evaluate the sum. We do this in two steps first we take the parts where i = j 
and then consider the relations i < j. With that the sum of Eq.[35] becomes  
 

( ) 2 2
2

1 12 exp
6i j

P Q N Q i j
N <

⎧ ⎫⎧ ⎫= + − −⎨ ⎨
⎩ ⎭⎩ ⎭
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the difference j – i = k occurs N - k times in the sum. Thus, Eq.[36] is further evaluated to  
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now we turn to an integral setting 
1

2 2

1 1/

1 ; and
6

N

k N

kz Q N x N d
N =

= = →∑ x∫ . For long chains 

(N → ∞), this leads to the Debye function  
 

( )2

2( ) 1zD z e z
z

−= − +  (38)

 
with 2 2

gz Q R= . Figure 17a displays the Debye function as a function of QRg. Figure 17b 
displays the same function in form of a Kratky representation that is achieved if D(z) is  
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multiplied by Q2. The Kratky representation emphasises the high Q regime. For Gaussian 
chains with an asymptotic Q-2

 behaviour the high Q regime then assumes a plateau.  
 
Small and high Q regimes can also be explicitly obtained from an expansion of Eq.[38]. For 

small Q we have ( )
2 211 1

3 3
gQ R

D z z= − = − . The cross section then assumes the form  

 
2 2

1
3

g
W P

Q Rd V K
d

φ
⎛ ⎞Σ

= −⎜ ⎟⎜ ⎟Ω ⎝ ⎠
 (39)

 
Thus, in the low Q regime we obtain information on the chain volume VW and the radius of 
gyration Rg. For high Q Eq.[38] gives  
 

2 2

2 2( )
g

D z
Z Q R

= =  (40)

 
From Eq.[40] the radius of gyration may also be obtained. However, since data at high Q, 
where the background plays an important role, are involved, these data are sensitive to 
background corrections.  
 

 
 

Fig. 17: Graphical representation of the Debye function. (a) Linear plot. (b) Kratky 
representation D(Q) ⋅ Rg ⋅Q 2. 
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Fig. 18:  Polymer form factors measured on 
polyethylene propylene in the melt at two 
different temperatures (A. Zirkel et al., 
Macromolecules 25, 954 (1992). 
 

 
 
We now turn to an experimental example. Using small angle neutron scattering, the chain 
form factor of polyethylenepropylene in the melt with a molecular weight of 8.3 ⋅ 104g/mol 
was studied. Figure 18 displays experimental form factors for different polymer 
concentrations and two different temperatures. A Zimm analysis of these data is displayed in 
Figure 19. The extrapolation towards Q = 0 displays a horizontal line. There is basically no 
interaction between the labelled chains – the second virial coefficient A2 ≈ 0. The 
extrapolation to φ = 0 gives the radius of gyration for each temperature.  
 
 

 

Fig. 19:  Zimm representation of the SANS 
data revealing the second virial coefficient, 
the radius of gyration and the polymer 
volume. 
 

 
 
Figure 20 displays the result for the temperature dependence of Rg and we realise that with 
increasing temperature Rg shrinks. At T ≈ 25°C Rg = 106Å is found, while at 275°C Rg shrinks 
to about 95Å. Using Eq.[11b] in connection with Eq.[22] C∞ = 6.2 is found at room 
temperature.  
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Fig. 20:  Temperature dependence of the 
radius of gyration for 
polyethylenepropylene. 
 

 
 

4 Real chains: Flory theory 
 
So far we have neglected any long range monomer-monomer interaction. We will now 
consider the effect of this long range interaction in terms of a simple model, the Flory 
approach. For further reading we refer for example to De Gennes’ book.  
 
We begin with an estimation of the number of monomer-monomer contacts, in 3-dimensional 
space. Thereby we approximate the N monomers of a chain by an ideal gas. We take a mean 
field approximation for the contact probability that is proportional to the overlap volume 
fraction. With a monomer volume of 3, the number density φ* amounts to  
 

( )1
2

31* 3 3 2
33

E

N N N
R N

φ
−

= = ≈  (41)

 

For the second part of the Eq.[41] we inserted 1
22

ER N= . From Eq.[41] it is clear that for 

large N, the number density within the volume of one chain is very small. With the 
approximation of an ideal gas the total number of contacts within one chain is then 
Nφ* = N1-1/2 = N½. For long chains the total number of contacts is much larger than one and 
therefore the contact energy will effect the chain conformation. We note that the net effect is 
important. That means the energetic difference between the monomer-monomer interaction 
and the interaction energy E with other molecules, for example, the solvent molecules if we 
consider chains and solution.  
 
In a mean field approximation Flory considered the balance between the effective repulsion 
between the different monomers in a chain and the entropy loss that occurs due to swelling. 
We assume: 
 a uniform distribution of monomers in R3.  
 the probability of a second monomer to be within the excluded volume υ = 3 of a given 

monomer is then the product of the excluded volume υ and the number density of 
monomers in the pervaded volume of the chain N/R3.  
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 the energetic costs of being excluded from this volume is kBT per exclusion or 

kBT ⋅ υ ⋅ N/R3 per monomer.  
 for all N monomers in the chain this energy is N times larger.  

 
2

int 3B
NF k T
R

υ≈  (42)

 
 The Flory estimate for the entropic contribution to the free energy is the energy required 

to stretch an ideal chain to the end to end distance R.  
 

2

2ent B
RF k T

N
≈  (43)

 
The total free energy is obtained by the sum of Eq.[42] and Eq.[43]. 
 

2 2

int 3 2ent B
N RF F F k T
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υ
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= + +⎜ ⎟
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The minimum free energy of the chain gives the equilibrium size RF. Taking 0F
R

∂
=

∂
 we 

obtain  
 

2

4 20 3 2 F
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R R

υ
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And finally 
 

31 2
5 5

F
5R Nυ=  (46)

 
Thus, the size of a real chain is much larger than that of an ideal chain with the same number 
of monomers. This can be expressed in terms of the swelling ratio 

1
5

1
2

1
2 3 3 1FR N for N

N
υ υ⎛ ⎞≈ ⎜ ⎟

⎝ ⎠
1

2 >

6

. If the total interaction energy of a chain is smaller than 

kBT  then a chain will not swell.  
 
The Flory theory thus leads to a universal power law  
 

~ ; 0.v
FR N v =  (47)

 
This theoretical result agrees very well with experimental results. Such a swollen chain has a 
fractal dimension df = 1/v  that is df = 1.67 for swollen chains. However, the success of the 
Flory theory is due to a fortuitous cancellation of errors. The repulsion energy is 
overestimated because the correlations between monomers along the chain are omitted.  
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Similarly the elastic energy is also overestimated because the ideal chain conformational 
entropy is assumed.  
 
The correct statistical theory relates to the renormalization group which was introduced by 
Robert Wilson, in order to describe phase transitions, where universal behaviour is observed 
for T close to the critical temperature Tc as expressed by ε = (T - Tc)/Tc. For small ε universal 
behaviour takes place that is described by this renormalization group. De Gennes realized that 
for long chain polymers 1/N may be identified with ε and then the mathematics of the 
renormalization group can be taken over to describe the polymer conformations of real 
polymers. The correct renormalization group result for the swelling index is ν = 0.588 very 
close to the Flory result of ν = 0.6. This exponent also describes the statistics of self avoiding 
random walks.  
 
 

5 Summary 
 
In this lecture we have given an introduction into flexible polymers. First we had a look on 
the range of applications and the history of the development of polymers. Then we 
emphasized a number of distinguished contributors to polymer science. Thereafter, the basic 
definitions and properties of polymers were elucidated. In particular the importance of the 
molecular weight for chain properties was discussed and different notions for the molecular 
weight distributions were presented. In the second part of the lecture the chain conformations 
were discussed in some detail. We introduced the mean square end to end distance in terms of 
the characteristic ratio C∞ and defined the Kuhn segment that gives the equivalent freely 
jointed chain. We then considered probability distributions for any distance rij along the chain 
which came out to be Gaussian for chains without interactions between the monomers. For 
such a chain the free energy is purely entropic and leads to a Hookian relationship between 
force and end to end vector. Turning to scattering we defined the pair correlation function and 
derived the polymer form factor in terms of the Debye function. Finally we addressed in a 
simple approximation real chains, where interactions between monomers take place. This 
interaction is described in terms of an excluded volume that a given monomer cannot pervade 
if another monomer is present. Using the Flory approach we minimized the free energy. This 
leads to a new scaling relation for the end to end distance that follows a behaviour RE ≈ Nν 
with ν = 0.6. The scaling exponent turns out to be very close to the result of sophisticated 
renormalization group approaches that give ν = 0.588. 
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Exercises 
 

A E13.1 
 

Silly Putty® is a typical viscoelastic material made from polydimethylsiloxane, silica and 
oils. 
 
Propose and justify the 3 functions for the following behavior of Silly Putty. 
-When left on the table for a long period of time the height, h, decays in the manner of 
figure "a". 
-When rapidly pulled and observed over only shot times the length, l, follows "b". 
-When pulled at intermediate speed (1) and then released (2) the behavior of "c" results. 
 

 
 
 

B E13.2 
 
The Rouse model is used to construct more complicated models for polymer dynamics that 
deal with chain entanglements such as the tube (reptation) model. In the tube model the 
polymer chain retains Rouse dynamics within the confinement of a rigid tube of cross-
sectional area <d2>, where d is the tube diameter. For simplicity we take 2d = 2 , where    
is the size of a Rouse unit. The tube follows a random walk in 3-D space. 
 
 
a) If the tube length is , where  is  the number of Rouse units in a chain, and if 
the chain in the axial direction of the tube follows Rouse dynamics, with a friction factor of 

p RL N= RN

Rξ for each Rouse unit, 
-What is the total chain friction factor along the tube axis for the chain in the tube, pξ ? 
-How does this compare with the Rouse chain friction factor in 3D space? 
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b) The Einstein relationship tells us that the diffusion coefficent should follow D = kT/ξ. 
-What is the diffusion coefficient for the entire chain for motions along the length of the 
  tube (along the tube axis)? 
-What is the predicted molecular weight dependence of this diffusion coefficient? 
-How does this compare with the Rouse diffusion coefficient? 
 
c) For Brownian motion, such as motion of the chain in the tube, the distance traveled, d, in  
time, t, is given by  s D= t . 
-What is the average time for the chain to move the length of the tube (this is called the 
reptation time, dτ )? 
-How does dτ  scale with molecular weight? 
-How does this compare with the scaling of the Rouse time, Rτ , with 
  molecular weight? 
-How does this compare with the observed relaxation time for entangled systems (same  as 
the scaling behavior of 0η  with molecular weight)? 
 
d) The diffusion coefficient for centre of mass motion of a chain in a tube in 3D-space is 
determined by considering the size of the random walk tube in 3-d space, , and the 
time required to move the length of the tube. (D = (distance)2/time) 

1/2
e RR N=

-What is the molecular weight dependence of the diffusion coefficient for chain motion in 
3D-space for a chain confined to a tube? 
-How does this compare with the Rouse diffusion coefficient you gave above? 
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14.1 Introduction 
 

 

 

 
Fig. 14.1: Length- and time scales covered by research with neutrons giving 

 examples for applications and neutron techniques [1].  
 

Research with neutrons covers an extraordinary range of length- and time scales as de-
picted in figure 14.1. The very extremes of length scales - below 10-12 m - are the do-
main of nuclear and particle physics, where e. g. measurements of the charge or electric 
dipole moment of the neutron provide stringent tests of the standard model of particle 
physics without the need of huge and costly accelerators. On the other extreme, neu-
trons also provide information on length- and time scales relevant for astronomical di-
mensions, e. g. the decay series of radioactive isotopes produced by neutron bombard-
ment give information on the creation of elements in the early universe. In this course, 
however, we are only concerned with neutrons as a probe for condensed matter research 
and therefore restrict ourselves to a discussion of neutron scattering. Still, the various 
neutron scattering techniques cover an area in phase space from picometers pm up to 
meters and femtoseconds fs up to hours, a range, which probably no other probe can 
cover to such an extend.  
 
Different specialized neutron scattering techniques are required to obtain structural in-
formation on different length scales:  
 

� With wide angle neutron diffractometry, magnetization densities can be deter-
mined within single atoms on a length scale of ca. 10 pm1. The position of at-

                                                 
1 In this sense, neutrons are not only nanometer nm, but even picometer pm probes! 
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oms can be determined on a similar length scale, while distances between atoms 
lie in the 0.1 nm range2.  

                                                

� The sizes of large macromolecules, magnetic domains or biological cells lie in 
the range of nm to μm or even mm. For such studies of large scale structures, 
one applies reflectometry or small angle scattering techniques.  

� Most materials relevant for engineering or geo-science occur neither in form of 
single crystals, nor in form of fine powders. Instead they have a grainy structure, 
often with preferred orientation of the grains. This so called texture determines 
the macroscopic strength of the material along different directions. Texture dif-
fractometry as a specialized technique allows one to determine this grainy struc-
ture on length scales of up to mm. 

� Finally, for even larger structures, one uses imaging techniques, such as neutron 
radiography or tomography, which give a two dimensional projection or full 3-
dimensional view into the interior of a sample due to the attenuation of the neu-
tron beam, the phase shift or other contrast mechanisms. 

 
In a similar way, different specialized neutron scattering techniques are required to ob-
tain information on the system’s dynamics on different time scales:  
 

� Neutron Compton scattering, where a high energy neutron in the eV energy 
range makes a deep inelastic collision with a nucleus in so-called impulse ap-
proximation, gives us the momentum distribution of the atoms within the solid. 
Interaction times are in the femtosecond fs time range.  

� In magnetic metals, there exist single particle magnetic excitations, so-called 
Stoner excitations, which can be observed with inelastic scattering of high en-
ergy neutrons using the so-called time-of-flight spectroscopy or the triple axis 
spectroscopy technique. Typically, these processes range from fs to several hun-
dred fs.  

� Lattice vibrations (phonons) or spin waves in magnetic systems (magnons) have 
frequencies corresponding to periods in the picosecond ps time range. Again 
these excitations can be observed with time-of-flight or triple axis spectroscopy.  

� Slower processes in condensed matter are the tunneling of atoms, for example in 
molecular crystals or the slow dynamics of macromolecules. Characteristic time 
scales for these processes lie in the nanosecond ns time range. They can be ob-
served with specialized techniques such as backscattering spectroscopy or spin-
echo spectroscopy.  

� Even slower processes occur in condensed matter on an ever increasing range of 
lengths scales. One example is the growth of domains in magnetic systems, 
where domain walls are pinned by impurities. These processes may occur with 
typical time constants of microseconds μs. Periodic processes on such time 
scales can be observed with stroboscopic neutron scattering techniques.  

� Finally, kinematic neutron scattering or imaging techniques, where data is taken 
in consecutive time slots, allow one to observe processes from the millisecond 
ms to the hour h range.  

 

 
2 In what follows, we use as “natural atomic unit” the Ångstrøm, with 1 Å=0.1 nm. 
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In this chapter, we will overview the various techniques used in neutron scattering and 
provide some examples for their application. We will start by repeating the properties of 
the different correlation functions, in order to be able to judge what kind of information 
we can obtain from a certain neutron scattering experiment. We will introduce neutron 
scattering techniques used to obtain information on “where the atoms are” (diffractome-
try) and “what the atoms do” (spectroscopy). We will finish by reviewing the range of 
applicability of various neutron scattering methods and compare them to other experi-
mental techniques. 
 

14.2 Scattering and correlation functions 
 

This somewhat advanced section can be skipped during first reading, but is given here 
for completeness. 
 
The neutron scattering cross section for nuclear scattering can be expressed in the fol-
lowing form (for simplicity, we restrict ourselves to a mono-atomic system):

� �
2

2 2 2' | | | | ( , ) | | ( , )inc coh
k N b b S Q b S Q
k

� � �
�

� � 	
 � � � 
� �� ����
 (14.1)

The cross section is proportional to the number N of atoms. It contains a kinematical 
factor k’/k, i. e. the magnitude of the final wave vector versus the magnitude of the inci-
dent wave vector, which results from the phase-space density. The scattering cross sec-
tion contains two summands: one is the coherent scattering cross section, which de-
pends on the magnitude square of the average scattering length density 2| |b  and the 
other one is the incoherent scattering, which depends on the variance of the scattering 
length � 2 2| | | |b b� � . The cross section (14.1) has a very convenient form: it separates 

the interaction strength between probe (the neutrons) and sample from the properties of 
the system studied. The latter is given by the so-called scattering functions ( , )cohS Q �  
and ( , )incS Q � , which are completely independent of the probe and a pure property of 
the system under investigation [2]. The coherent scattering function ( , )cohS Q �  (also 
called dynamical structure factor or scattering law) is a Fourier transform in space and 
time of the pair correlation function: 

( ) 31( , ) ( , )
2

i Q r t
cohS Q G r t e d rd��

�
� �
 �� t  (14.2)

Here the pair correlation function ( , )G r t  depends on the time dependent positions of 
the atoms in the sample: 
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(0)ir  denotes the position of atom i at time 0, while ( )jr t  denotes the position of an-
other atom j at time t. The angle brackets denote the thermodynamic ensemble average, 
the integral extends over the entire sample volume and the sum runs over all atom pairs 
in the sample. Instead of correlating the positions of two point-like scatterers at different 
times, one can rewrite the pair correlation function in terms of the particle density as 
given in the second line of (14.3). Coherent scattering arises from the superposition of 
the amplitudes of waves scattered from one particle at time 0 and a second particle at 
time t, averaged over the entire sample volume and the thermodynamic state of the 
sample. In contrast, incoherent scattering arises from the superposition of waves scat-
tered from the same particle at different times. Therefore the incoherent scattering func-
tion ( , )incS Q �  is given in the following form: 

( ) 31( , ) ( , )
2

i Q r t
inc sS Q G r t e d rdt��

�
� �
 ��  (14.4)

which is the Fourier transform in space and time of the self correlation function 
( , )SG r t : 
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N

� �
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 ���  (14.5)

We next define the intermediate scattering function ( , )S Q t  as the purely spatial Fourier 
transform of the correlation function (here we have dropped the index “coh” and “inc”, 
respectively, as the intermediate scattering function can be defined for coherent as well 
as for incoherent scattering in the same way): 

3( , ) : ( , )
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�  (14.6)

For reasons, which will become apparent below, we have separated in the second line 
the intermediate scattering function for infinite time 

( , ) lim ( , )
t

S Q S Q t
��

� 
  (14.7)

from the time development at intermediate times. Given this form of the intermediate 
scattering function ( , )S Q t , we can now calculate the scattering function as the temporal 
Fourier transform of the intermediate scattering function: 
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In this way, the scattering function has been separated into one term for frequency 0, i. 
e. vanishing energy transfer 0E �� 
 
�  and one term for non-vanishing energy trans-
fer. The first term is the purely elastic scattering, which is given by the correlation func-
tion at infinite times. Correlation at infinite times is obtained for particles at rest. A 
prominent example is the Bragg scattering from a crystalline material, which is purely 
elastic, while the scattering from liquids is purely inelastic, since the atoms in liquids 
are moving around freely and thus the correlation function vanishes in the limit of infi-
nite time differences.  
 
Often times the energy of the scattered neutron is not discriminated in the detector. In 
such experiments, where the detector is set at a given scattering angle, but does not re-
solve the energies of the scattered neutrons, we measure an integral cross section for a 
fixed direction ˆ ' 'k of k : 

�

2

,int 'coh k const

d d
d
� � �

�



�� � 
 �� �� ���� � �  (14.9)

Momentum and energy conservation are expressed by the following kinematic equa-
tions of scattering: 

'-Q k k
  ;  � �
2

2 '2'
2

E E k k
m

� 
 � 
 �
��  (14.10)

Due to these kinematic conditions, the scattering vector Q will vary with the energy of 
the scattered neutron E' or the energy transfer ��  as the integral in (14.9) is performed. 
The so-called quasi-static approximation neglects this variation and uses the scattering 
vector Q0 for elastic scattering ( 0)� 
�  in (14.9). This approximation is valid only if 
the energy transfer is small compared to the initial energy. This means that the move-
ments of the atoms are negligible during the propagation of the radiation wave front 
from one atom to the other. In this case, the above integral can be approximated as fol-
lows:  
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 (14.11)

which shows that the integral scattering in quasi-static approximation depends on the 
instantaneous spatial correlation function only, i. e. it measures a snapshot of the ar-
rangement of atoms within the sample. This technique is e. g. very important for the 
determination of short-range order in liquids, where no elastic scattering occurs (see 
above).  
 
Our discussion on correlation functions can be summarized in a schematic diagram-
matic form, see figure 14.2.  
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Fig. 14.2: Schematic diagrams depicting the various scattering processes: a) 

 coherent scattering is connected with the pair correlation function in 
 space-and time; b) incoherent scattering is connected with the self-
 correlation function; c) magnetic scattering is connected with the spin 
 pair correlation function; d) elastic and inelastic scattering from a 
 crystal measures average positions and movements of the atoms, 
 respectively, e) inelastic scattering in quasistatic approximation sees a 
 snapshot of the sample.  

 
Figure 14.2 shows that coherent scattering is related to the pair correlation between dif-
ferent atoms at different times (14.2a), while incoherent scattering relates to the one 
particle self correlation function at different times (14.2b). In analogy to nuclear scatter-
ing, magnetic scattering depends on the correlation function between magnetic moments 
of the atoms. If the magnetic moment is due to spin only, it measures the spin pair cor-
relation function. Since the magnetic moment is a vector quantity, this correlation func-
tion strongly depends on the neutron polarization. For this reason, in magnetic scatter-
ing we often perform a polarization analysis as discussed in the corresponding chapter. 
Figure 14.2d depicts elastic and inelastic scattering from atoms on a regular lattice. 
Elastic scattering depends on the infinite time correlation and thus gives us information 
on the time averaged structure. Excursions of the atoms from their time averaged posi-
tions due to the thermal movement will give rise to inelastic scattering, which allows 
one e. g. to determine the spectrum of lattice vibrations, see chapter on “inelastic neu-
tron scattering”. Finally, an experiment without energy analysis in quasi-static approxi-
mation will give us the instantaneous correlations between the atoms, see figure 14.2e. 
This schematic picture shows a snapshot of the atoms on a regular lattice. Their posi-
tions differ from the time averaged positions due to thermal movement. 
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14.3 The generic scattering experiment 
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Fig. 14.3: Schematic diagram of a generic scattering experiment; the primary 

 spectrometer in front of the sample serves to select an incident wave 
 vector distribution by means of collimation and monochromatization; the 
 secondary spectrometer after the sample selects a final wave vector; the 
 number of neutrons for a given distribution of incident wave vector k and 
 final wave vector k’

 is counted in the detector.  
 

A generic scattering experiment is depicted schematically in figure 14.3. The incident 
beam is prepared by collimators, which define the direction of the beam and mono-
chromators, which define the energy of the incident neutrons. Together these optical 
elements select an incident wave vector k. In reality, since these neutron-optical ele-
ments are never perfect, a certain distribution of incident wave vectors around an aver-
age wave vector is selected in the primary spectrometer. In an analogous manner, a final 
wave vector - or better a distribution of final wave vectors - is being selected from all 
scattered waves after the sample by the secondary spectrometer. Finally the scattered 
neutrons are being counted in the detector. Since our neutron-optical elements are never 
perfect, the measured intensity in the detector is not simply proportional to the scatter-
ing function ( , )S Q �  (or more precisely, the cross section), but it is proportional to the 
convolution of the scattering function (or cross section) with the experimental resolu-
tion function R:  

3
0 00 0

( , ) ( , ) ( , )I Q S Q R Q Q d Qd� � � � � ��� �  (14.12)

Here, the resolution function R appears due to the limited ability of any experimental 
setup to define an incident or final wave vector k or k’, respectively. R therefore depends 
purely on the instrumental parameters and not on the scattering system under investiga-
tion. The art of any neutron scattering experiment is to adjust the instrument - and with 
it the resolution function - to the problem under investigation. If the resolution of the 
instrument is too tight, the intensity in the detector becomes too small and counting sta-
tistics will limit the precision of the measurement. If, however, the resolution is too re-
laxed, the intensity will be smeared out and will not allow one to determine the scat-
tering function properly.  
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The simplest way to collimate an incident beam is to put two slits with given openings 
in a certain distance in the beam path and thus define the angular spread of the incident 
beam. For monochromatization of a neutron beam, usually one of two different methods 
is applied:  
 

� One can use the wave property of the neutron and diffract the neutron beam 
from a single crystal. According to Braggs' law 2 sind ! "
 , a certain wave 
length � is being selected for a given lattice d-spacing under a scattering angle 
2!.  

� One can use the particle property of the neutron and use the neutron time-of-
flight to determine its velocity and thus its kinetic energy. How this is being 
done technically is discussed in the corresponding section of this course.  

 
Following our discussion of the correlation functions, we will now distinguish two prin-
cipally different types of neutron scattering instruments:  
 

� Diffractometers: these are scattering instruments, which either perform no en-
ergy analysis at all, or which measure only the truly elastic scattering. As dis-
cussed in chapter 14.2, the truly elastic scattering allows one to determine the 
time averaged structure. The prominent example is Bragg scattering from single 
crystals. If, however, no energy analysis is performed, one usually makes sure 
that one works in quasistatic approximation to facilitate the interpretation of the 
scattered intensity distribution. Quasistatic approximation corresponds to a snap-
shot of the scatterers in the sample and is important for example to determine 
short-range order in a liquid. Be it elastic scattering or integral scattering in qua-
sistatic approximation, a diffraction experiment allows one to determine the po-
sition of the scatterers only. The movement of the scatterers is not (directly) ac-
cessible with such a diffraction experiment. Similarly, in a diffraction experi-
ment for magnetic scattering, the arrangement of magnetic moments within the 
sample, i. e. its magnetic structure, can be determined, while the spin dynamics 
is not accessible in a diffraction experiment . 3

� Spectrometers: a neutron spectrometer is dedicated to measure inelastic scatter-

ing, i. e. to determine the change of the neutrons’ kinetic energy 
2 2

2
kE
m



�  dur-

ing the scattering process. Such an experiment requires the analysis of the en-
ergy of the scattered neutrons, in contrast to a conventional diffractometer. Now 
the intensity measured in the detector depends on momentum- and energy- trans-
fer and is proportional to the convolution of the double differential scattering 
cross section (14.1) with the resolution function of the instrument (14.12). 
Therefore a neutron spectrometer gives us information on the scattering func-
tions (coherent or incoherent) and thus on the truly time dependent pair- or self 
correlation functions. This is why spectrometers are used to determine the dy-

                                                 
3 In fact there is a way to access also spin- or lattice- dynamics in a diffraction experiment: lattice vibra-
tions will give rise to diffuse scattering around Bragg peaks, so-called thermal diffuse scattering, which 
can be modelled and thus the spectrum of excitations can be determined in an indirect, but not model-free 
direct way.  



14.10  Th. Brückel 

namics of a system after its structure has been determined in a previous diffrac-
tion experiment . 4

 

14.4 Diffractometers 
 

14.4.1  Wide angle diffraction versus small angle scattering 
 

According to (14.10), the momentum transfer during a scattering experiment is given by 

'Q k
 �� � �k . Remembering that 2k �
"


 , the magnitude of the scattering vector Q can 

be expressed in terms of wavelength � and scattering angle 2� as:  
4 sinQ � !
"


  (14.13)

As we have seen in chapter 14.2, the scattering cross section is related to the Fourier 
transform of the spatial correlation function and therefore a reciprocal relation exists 
between characteristic real space distances d and the magnitude of the scattering vector 
Q, for which intensity maxima appear: 

2~Q
d
�

�  (14.14)

Bragg scattering from crystals provides an example for this equation (compare corre-
sponding introductory chapter): the distance between maxima of the Laue function is 
determined by 2Q d �� � 
 , where d is the corresponding real space periodicity. Reflec-
tometry provides another example (see below): the Q-distance between Kiessig fringes 
is given by the relation ~ 2Q d �� �  (compare (14.19)), where d is the layer thickness.  
(14.14) is central for the choice of an instrument or experimental set-up, since it tells us 
which Q-range we have to cover in order to get information on a certain length range in 
real space. (14.13) tells us, at which angles we will observe the corresponding intensity 
maxima for a given wavelength. This angle has to be large enough in order to separate 
the scattering event clearly from the primary beam. This is why we need different in-
struments to study materials on different length scales. Table 14.1 gives two examples. 

                                                 
4 Of course, spectrometers could also be used to determine the structure, but usually their resolution is not 
at all adapted to this purpose.  
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Tab. 14.1: Examples for scattering from structures on different characteristic real 

space length scales d. �Q is the corresponding characteristic scattering vec-
tor according to (14.14), 2� the scattering angle according to (14.13), calcu-
lated for two different wavelength �. 

 
1. The study of structures on atomic length scales is typically done with a wave-

length of around 1 Å (comparable to the distance between the atoms) and the 
scattered intensity is observed at rather large angles between 5° and 175°. There-
fore one speaks of wide angle diffraction, which is employed for the study of 
atomic structures.  

2. For the study of large scale structures (precipitates, magnetic domains, macro-
molecules in solution or melt) on length scales of 10 up to 10,000 Å (1 up to 
1000 nm), the magnitude of the relevant scattering vectors as well as the corre-
sponding scattering angles are small. Therefore one chooses a longer wavelength 
in order to expand the diffractogram. The suitable technique is small angle scat-
tering, which is employed to study large scale structures.  

 
In what follows we will first focus on the study of large scale structures. In the corre-
sponding conceptually very simple instruments, some typical considerations for the de-
sign of an instrument can be exemplified. We will distinguish between small angle neu-
tron scattering instruments and reflectometers, discuss the basic instrument concepts 
and list some possible applications. After having discussed how large scale structures 
can be studied with neutron diffraction, we will then introduce instruments for wide 
angle scattering and their possible applications.  
 

14.4.2  Small angle neutron scattering SANS 
 

As mentioned in chapter 14.4.1, small angle scattering is employed whenever structures 
on length scales between typically 10 Å and 10,000 Å (1 nm and 1,000 nm) are of inter-
est. This range of real space lengths corresponds to a scattering vector of magnitude 
between about 10-1 Å-1 and 10-4 Å-1 (1 nm-1 and 10-3 nm-1). In order to observe the scat-
tering events under reasonable scattering angles, one chooses a rather long wavelength. 
However, due to the moderator spectrum (see chapter on neutron sources), there is very 
little neutron flux at wavelengths above 20 Å. Therefore typically neutrons of wave-
length between 5 and 15 Å are employed for small angle neutron scattering.  
 

Example 

Distance between 
atoms in crystals 

Precipitates in 
metals (e.g. Co in 
Cu) 

d 

2 Å 

400 Å 

�Q 

3.14 Å-1

0.016Å-1

2!  
("=10 Å)

"cut-off"

1.46°

Technique 

wide angle diffraction

small angle scattering

2!  
("=1 Å)

29°

0.14°
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Two different principles of small angle neutron scattering will be distinguished in this 
chapter: the pinhole SANS and the focusing SANS depicted in figures 14.4 and 14.5, 
respectively. Other types of instruments, e.g. with multi-pinhole grid collimation, are 
variants of these techniques and will not be discussed here. 
 

 

 

 
Fig. 14.4: Schematics of a pinhole SANS, where the incident wave vector is defined 

 through distant apertures (KWS-1 or KWS-2 of JCNS [3]).  
 

 

 
Fig. 14.5: Schematics of a focusing SANS, where an image of the entrance aperture 

 is produced on the detector by a focusing mirror (KWS-3 of JCNS [3]).  
 

For both instrument concepts, the wavelength band is usually defined by a so-called 
velocity selector. Figure 14.6 shows a photo of a velocity selector drum build in Jülich 
for the instrument KWS-3. 
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Fig. 14.6: Photo of the velocity selector drum of the JCNS instrument KWS-3 show-

ing the screw-like twisted channels separated by absorbing walls, which only 
neutrons of a certain wavelength band can pass when the drum is turning. 

 

In the pinhole SANS, the incident wave vector k is defined by two distant apertures of 
comparable size. The longer the distance between the diaphragms, the higher is the col-
limation for a given cross section of the beam. The sample is placed right next to the 
second aperture and the scattered neutrons are being recorded in a detector, which is at a 
large distance from the sample; typically the sample-detector distance is comparable to 
the collimation distance. The overall length of such an instrument can amount to 40 m, 
up to 80 m.  
 
In contrast to the pinhole SANS, the focusing SANS uses a divergent incident beam and 
a focusing optical element produces an image of the entrance aperture on the detector. 
The sample is positioned directly behind the focusing element. Small angle scattering 
from the sample appears on the position-sensitive area detector around the primary 
beam spot. Such a set-up with a focusing element would be the natural solution in light 
optics, where focusing lenses are readily available. Due to the weak interaction of neu-
trons with matter, the index of refraction for neutrons is very close to one, and it is diffi-
cult to produce efficient focusing elements. In case of the focusing SANS realized by 
Forschungszentrum Jülich [4], a toroidal5 mirror is employed as focusing element. Lo-
cally, the toroidal shape is a good approximation to an ellipsoid with its well-known 
focusing properties. The challenge in realizing such a device lies in the fact that small 
angle scattering from the focusing element has to be avoided i.e. the mirror has to be 

                                                 
5 A torus is a surface of revolution generated by revolving a circle about an axis coplanar with the circle, 
which does not touch the circle (examples: doughnuts, inner tubes). 
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flat on an atomic scale (root-mean square roughness of about 3 Å !), which became pos-
sible due to the developments of optical industry for x-ray satellites.6 
 
As an example of the considerations leading to the design of a neutron scattering in-
strument, we will now discuss the resolution of a pinhole SANS machine. In general 
terms, the resolution of an instrument denotes the smearing out of the signal due to the 
instruments’ finite performance (14.12). As neutron scattering is a flux limited tech-
nique, there is need for optimization: the better the resolution of the instrument, i. e. the 
better the angular collimation �!, the smaller the wavelength spread ��, the smaller is 
the intensity recorded on the detector. Therefore resolution has to be relaxed to such an 
extent that the features of interest are still measurable and not smeared out entirely by 
the resolution of the instrument, while at the same time the intensity is maximized. In 
order to determine the resolution of a SANS instrument, we start from (14.13): 

4 sinQ � !
"


 . The influence of angular- and wavelength spread can be determined by 

differentiation of this equation, where the different contributions have to be added quad-
ratically:  
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�Q2 is the variance of the scattering vector due to the finite collimation and monochro-
matization. dE and dS are the diameters of the entrance and sample aperture, respec-
tively. dD denotes the detector pixel size. LC and LD are collimation length and sample-
detector distance, respectively. An optimization can be achieved, if all terms in (14.15) 
contribute the same amount, which leads to the condition  

 ,   2D C E DL L d d d
 
 
 S

                                                

 (14.16)

(14.16) shows that a pinhole SANS has to be designed such that sample-to-detector dis-
tance LD is equal to the collimation length LC. Typical values are LD = LC = 10 m with 
openings of dE = 3 cm for the entrance- and dS = 1.5 cm for the sample aperture. Note 
that one can chose the opening of the entrance aperture to be twice as large as the open-
ing of the sample aperture - or sample size - without sacrificing markedly in resolution, 
while gaining in neutron count rate! The detector needs a minimum pixel resolution 
dD � dE ; A detector with a radius of about RD � 30 cm is necessary to cover the required 
Q-range up to 0.05 Å-1 at LD = 10 m and for � = 8 Å. Having defined the incident col-
limation, we can now determine the appropriate wavelength spread with the same ar-
gument as above: the last term in the sum in (14.15), corresponding to the wavelength 
spread, should contribute the same amount to the variance of the scattering vector as the 
corresponding terms for the collimation, i. e.:  
 

 
6 It should be mentioned that nowadays focusing lenses for neutron scattering have also been realised. 
These have a very long focal distance, but can be employed to improve intensity or resolution in pinhole 
SANS.  
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(14.17) demonstrates that in general for small angle scattering we don't need a very high 
degree of monochromatization. A 10 % wavelength band is acceptable, since for small 
angles the smearing due to the wavelength spread is quite comparable to the smearing 
due to the incident divergence. This is the reason why usually a velocity selector is em-
ployed as monochromatizing element for small angle scattering, as it lets a wavelength 
band of typically 10 % pass.  
 
Let us give a short introduction into the analysis of small angle scattering experiments. 
As in any scattering experiment, the detected intensity is proportional to the scattering 
cross section, which in the SANS case is usually normalized to the sample volume and 
therefore has the unit [cm-1]:  

1

sample

d d
d V d

��

 �

� �
 (14.18)

Here we discuss the so-called “two phase model” only, where homogeneous particles 
are dispersed in a matrix (e. g. precipitates in metals or nanoparticles in solution etc.). 
The cross section will then be proportional to the contrast between particles and solution  

� �, ,j j P j M
j

b b % %� 
 ��  (14.19)

where j labels atom species j of scattering length bj with number density %j,P in the parti-
cle and %j,M in the matrix, respectively. The differential cross section per particle is 
given by the interference term (note: we use a continuum description for the small Q 
limit):  

2

3

2

2 2 3

( )

( )

1

iQ r

V

iQ r

V

f Q

d Q b e d r
d

b V e d r
V

�

�

&

 � �

�


 �

�

�
�����

 (14.20)

Here f(Q) denotes the particle form factor for a homogeneous particle of volume V:  
31( ) iQ rf Q e d

V
�
 r�  (14.21)

(14.20) is the differential cross section for a single particle. For very dilute solutions of 
identical particles, the cross section will be given by (14.20) times the number N of par-
ticles (“single particle approximation”). However, in more concentrated solutions, there 
will be additional interference effects between the particles, which are described by the 
so-called structure factor S and we obtain the modified cross section for dense solu-
tions: 

 



14.16  Th. Brückel 

22 2 ( ) ( )d N b V f Q S Q
d
�
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�
 (14.22)

where S(Q) is related to the Fourier Transform of the pair correlation function g(R) be-
tween the single particles at distance R:  

31( ) 1 ( )
sample

iQ R

sample V

S Q g R e d r
V

�
 
 �  (14.23)

(Note: for vanishing pair correlations g(R)'0, i. e. random distributed particles, the 
structure factor has to be unity: S(Q)'1).  
 
The isotropic form factor of a homogeneous sphere of radius R can be calculated by 
Fourier transform and is introduced elsewhere in this course:  

3

sin cos( ) 3
( )

QR QR QRf Q
QR
�


  (14.24)

For forward scattering f(Q=0)=1 per definition. For small values of the scattering vec-
tor, this expression can be approximated by:  
 
“Guinier Law” for QR(2:  

2( ) 2 2
2 3( ) 1

3

GQR
GQ Rf Q e

�
$ $ �  (14.25)

Here the quantity RG is the so-called radius of gyration of the particle. For a spherical 

particle 2 3
5G

2R R
 , but RG can defined in a more general way also for non-spherical 

particles.  
 
For QR=3 the form factor squared has dropped to about 10 %. In the larger Q region - 
neglecting the sharp minima of the form factor (14.24), which are often not visible due 
to particle size distribution and instrumental resolution - the form factor follows the 
behavior:  
 
“Porod Law” for QR)4.5: 

2 4
2( ) 2 Af Q Q

V
� �$  (14.26)

where A=4�R2 is the surface, and 34
3

V R�
 the volume of the sphere of radius R. In 

small angle scattering, often times one does not deal with simple geometrically smooth 
particles in a second phase. In stochastical growth processes or soft matter system, ir-
regular fractal structures can appear, which show self-similarity on multiple length 
scales. For such structures, power laws with other exponents are observed:  
 



Applications neutron scattering  14.17 

1 3

6 3 4

( ) ~ ...

( ) ~ ...s

D

D

d mass fractal Q Q Q
d
d surface fractal Q Q Q
d

�

�

� � �

� � �



�



�

 (14.27)

where D denotes the so-called fractal dimension for porous objects. D is in general 
smaller than 3 and non-integer. If the particles have a dense core, but a rough self-
similar surface, they are called surface fractals with a surface area of A ~ RDs. From the 
above discussion we see that characteristic regions can be distinguished in a small angle 
scattering experiment:  
 

1. Close to forward direction in the very small Q limit and for dilute solutions, we 
observe constant scattering proportional to the number of particles N, the square 
of the particle volume V2 and contrast (14.19). For known contrast, we can de-
duce the product N�V2, if the scattering is measured in absolute units by compar-
ing to a known scatterer e. g. water. For dense solutions, the structure factor 
from correlations between particles becomes apparent. 

2. In the region up to QR(2, the Guinier Law (14.25) holds for compact particles. 

From a Guinier-Plot ln d
d
�
�

 versus Q2 one can determine the radius of gyration  
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3. In the Porod-region QR)4.5 
2 42d b NAQ

d
� � �
 �
�

 (14.29)

 we can, independent of particle shape, determine the total surface area N�A of all 

particles with sharp surfaces from a Porod Plot 4d Q
d
�
�

�
 versus Q4. 

4. Finally, if Q approaches the value 1/a where a corresponds to typical atomic dis-
tances, we approach the region of Bragg scattering from atomic structures (wide 
angle scattering).  

 
Let us now turn to applications of small angle scattering. One example is given in figure 
14.7, which is concerned with the self-organization of crystalline amorphous diblock-
copolymers [4]. Combining three different instruments, small angle scattering has been 
observed over ten orders of magnitude in cross section and nearly four orders of magni-
tude in momentum transfer. In different regions, different power laws apply, corre-
sponding to different structures: the Q-2 power law corresponds to 2d structures on the 
shortest length scale, the Q-1 power law corresponds to the organization of rods in bun-
dles, while the Q-3 power law corresponds to a network of bundles with a mass fractal 
aspect and finally, correlations become visible in the very low Q-range.  
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Fig. 14.7: SANS investigation of the self-organization of a crystalline-amorphous 

 diblock-copolymer measured with three different instruments of different 
 resolution: double crystal diffractometer, focussing SANS and pinhole 
 SANS for the low, medium and larger Q range, respectively. Plotted is 
 the cross section in absolute units versus the magnitude of the scattering 
 vector. For details see [4].  

 

We will end this short introduction into the principles of small angle scattering by list-
ing some examples for applications of small angle scattering in different fields of sci-
ence:  
 

� soft matter: polymers and colloids, e. g. micelles, dendrimers, liquid crystals, 
gels, reaction kinetics of mixed systems, … 

� materials science: phase separation in alloys and glasses, morphologies of su-
peralloys, microporosity in ceramics, interfaces and surfaces of catalysts 

� biological macromolecules: size and shape of proteins, nucleic acids and of 
macromolecular complexes, biomembranes, drug vectors 

� magnetism: ferromagnetic correlations and domains, flux line lattices in super-
conductors, … 

 

14.4.3  Large scale structures: Reflectometry 
 

As elaborated in chapter 14.4.2, neutron small angle scattering is applied to determine 
large scale structures, e. g. scattering length density fluctuations on length scales of 
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some 100 Å in bulk material. There is another type of instrument, which is dedicated to 
the study of large scale structures in thin film systems, on surfaces and in multilayers. 
Such an instrument is called a neutron reflectometer. This conceptually simple instru-
ment is depicted schematically in figure 14.8. 
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Fig. 14.8: Schematics of a neutron reflectometer. Monochromatization can be done 

 in many different ways: by a velocity selector, by a crystal 
 monochromator, or by a chopper in a time-of-flight instrument. 
 Collimation slits define the direction of the incident beam. The monitor is 
 a low efficient detector of high transmission, which measures the incident 
 flux on the sample. The reflected neutrons are either detected in a  
 position sensitive detector, or a secondary collimation in front of a 
 point detector selects the direction of the reflected beam. For magnetic 
 samples, a polarizer, a polarization analyzer and guide fields can be 
 inserted for polarization analysis experiments.  

 

Similar to a pinhole SANS instrument, the incident beam is collimated through a set of 
two well separated slits. However, since in reflectometry, one is mainly interested in the 
momentum transfer perpendicular to the planar sample surface, the collimation of a re-
flectometer is tight only in this direction. Along the sample surface the beam can be 
wide and have a larger divergence in order to gain intensity. This collimated beam im-
pinges on the sample under a grazing angle (typically fractions of a degree up to a few 
degrees) and is reflected into a single point detector or a position sensitive detector. To 
define the angle of exit for a point detector, a secondary collimation is needed between 
sample and detector. The incident beam is monochromatized using different techniques, 
depending on the resolution requirements: velocity selector, time-of-flight chopper or 
crystal monochromator.  
 
With such an instrument, the layer structure of a sample can be determined, such as 
layer composition, layer thickness and surface- or interfacial roughness. This informa-
tion is obtained in so-called specular reflection, for which the incident angle is equal to 
the final angle like in a reflection from a perfect optical mirror. In this case, the momen-
tum transfer of the neutrons is perpendicular to the surface of the sample and thus only 
laterally averaged information can be obtained. In order to determine lateral correlations 
within the layers, for example magnetic domain sizes, a momentum transfer within the 
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layer has to occur, which implies that angle of incidence and final angle have to be dif-
ferent. Short range correlation within the layers will then give rise to so-called off 
specular diffuse scattering as well know in optics from a bad optical mirror. 
 
The scattering geometry is shown in figure 14.9.  
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Fig. 14.9: Scattering geometry for grazing incidence neutron scattering. Specular 

 reflections are obtained, if the angle of incidence equals the final angle 
 *i = *f. Off-specular scattering is observed at *i + *f.  

 

In fact, the theoretical description of neutron reflectometry follows exactly along the 
lines of conventional optics, except that for neutrons in most cases the index of refrac-
tion is smaller than one and thus external total reflection occurs for neutrons coming 
from vacuum towards matter7: The index of refraction n of neutrons of wavelength " 
from a layer composed of elements with scattering length bi and number density %i and 
linear absorption coefficient μn is given by:  

2

1 :
2 4j j n

j

n b i μ" " 1 i% � ,
� �


 � � 
 �� �

                                                

 (14.30)

Refraction and total reflection are described by the well-known Snell's Law of optics: 
 

 
7 This is exactly what happens in neutron guides, evacuated tubes of usually rectangular cross section, 
where neutrons are totally reflected from the smooth glass side walls, often coated, e.g. with 58Ni, to en-
hance the angle of total reflection. Since for total reflection conditions, reflectivity is close to 100%, neu-
trons are transported nearly without loss from the source to the instruments by bouncing back- and forth 
from the guide side walls. 
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  (14.31)

angle of total reflection: cos c n! 
  (14.32)

The intensities of reflected and transmitted beam can be determined from the optical 
Fresnel equation (A0, A1, B0: amplitudes of incident, transmitted and reflected waves, 
respectively; kz, ktz: component of wavevector k and kz, respectively, perpendicular to 
average surface):  
Fresnel equation: 

Reflectivity 
2 2

0

0

z tz i t

z tz i t

B k k nR
A k k n

2
* *
* *

� � �

 
 



 
 �
 (14.33)

Transmissivity 
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Figure 14.10 shows as an example the reflectivity and transmissivity of a Ni layer.  
 

 

 

 
Fig. 14.10: Reflectivity and transmissivity of neutrons from a Ni surface.  
 

Here we just want to demonstrate with very simple arguments how interference effects 
from layered structures arise and how the intensity modulation in Q-space are related to 
real space length scales. Figure 14.11 shows how interference can occur from a beam 
being reflected at the surface and at the internal interface of a double layer stack.  
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Fig. 14.11: Schematics of the reflection of a neutron beam from a single layer on a 

 substrate. There exists an optical path length difference � between the 
 rays drawn with a solid line and those drawn with a dotted line.  

 

For simplicity we consider only the case of a specular reflection, i. e. the incident angle 
�i is equal to the angle of exit �f: i f* * *
 


f

. Interference occurs between beams re-
flected from the surface (dotted line in figure 14.11) and those first transmitted into the 
layer, reflected from the interface between layer 1 and substrate and then leaving the 
layer into vacuum (solid line). To a good approximation, refraction at the top surface 
can be neglected for incident angles larger than about twice the critical angle of total 
reflection. In this case t i* * *
 
 *
  holds. Since the index of refraction for neutrons 
is very close to one, this approximation is valid even for rather small angles of inci-
dence. Then the optical path length difference for the two beams is: 

2 sind *� 
  (14.35)

Here d is the thickness of the layer 1. We can now determine the distance between inter-
ference maxima from the condition that the path length difference has to differ by one 

wavelength: 2 (sin ) 2d d" * *
 �� $ �� . With 4 4sinQ � �* *
" "


 $  we finally obtain: 

2Q
d
�

� $  (14.36)

Again we can see that the interference phenomena in Q-space are connected with real 
space length scales in a reciprocal way. (14.36) tells us that there will be a number of 

interference maxima at distances in Q of 2
d
� . These interference phenomena are called 

“Kiessig fringes” and are well known to us in conventional optics for example as the 
beautiful colors observed in soap bubbles. Figure 14.12 shows as an example the reflec-
tivity of neutrons from a thin nickel layer on a glass substrate, which is nothing else but 
a section of a neutron guide employed to transport the neutrons from the source to the 
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instrument over long distances by multiple total reflections. The Kiessig fringes are 
nicely visible in this example and the thickness of the nickel layer can be determined 
from the distance between adjacent intensity maxima. 

 

 

 

 
Fig. 14.12: Reflectivity of neutrons from a nickel layer on glass substrate on a 

 logarithmic scale. Data points were measured on the HADAS 
 reflectometer of the late FRJ-2 reactor. The solid line shows a fit, where 
 the layer thickness was determined to be 837.5 Å with a root mean 
 square roughness of 14.5 Å and where the resolution of the instrument of 
 3 1Å  has been taken into account; the dotted line shows a 
 simulation for the same structural parameters, but for an ideal 
 instrument without resolution broadening; the short dashed line shows 
 the simulation for the same layer thickness but without roughness; the 
 long dashed line shows the simulation for the glass substrate only.  

2.08 10Q� � �
 �

 

Neutron reflectometry has many applications in different fields of science of which we 
can only list a few:  
 

� soft matter science: thin films e. g. polymer films; polymer diffusion, self-
organization of diblock copolymers; surfactants; liquid-liquid-interfaces, … 

� life science: structure of biomembranes 
� materials science: surface of catalysts; kinetic studies of interface evolution; 

structure of buried interfaces 
� magnetism: thin film magnetism e. g. exchange bias, laterally structured systems 

for magnetic data storage, multilayers of highly correlated electron systems, … 
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14.4.4  Atomic structures: Single crystal and powder neutron 
  diffraction 

 

As explained in chapter 14.4.1, wide angle scattering with neutrons of wavelength typi-
cally 1 Å is applied for the determination of atomic structures. Due to the periodicity of 
the lattice, Bragg peaks appear under diffraction angles given by the Bragg equation 
(compare reflectometry: (14.35) and (14.36)!): 

2 sind ! "
  (14.37)

The intensity of the Bragg peaks is governed by the arrangement of the atoms within the 
unit cell (structure factor) and the scattering from the single atom (form factor). By col-
lecting a large set of scattered intensities for many Bragg peaks, modeling the atomic 
tructure and refining the parameters in order to get an optimum agreement between 

calculated and observed intensities, the arrangement of atoms within the unit cell as 
well as the arrangements of spins for magnetic samples can be determined. Figure 14.13 
shows the schematics of a single crystal diffractometer.  
 

s

 

 
 
Fig. 14.13: Schematics of a single crystal diffractometer. The drawing shows the 

 layout of the diffractometer D9 at the Institute Laue-Langevin and has 
 been taken from http://www.ill.eu/.  

 

In contrast to small angle scattering, where a broad wavelength band is employed to 

enhance the scattered intensity, a better monochromatization of typically ~ 1%"
"
�  has 

to be achieved for wide angle scattering to avoid the broadening of the Bragg reflections 
due to the wavelength spread according to (14.37). This monochromatization is typi-
cally done by Bragg diffraction from a single crystal. The direction of the incident beam 
is determined by a set of slits. As Bragg reflections only occur when the corresponding 
lattice planes have a definite orientation with respect to the incident beam, the single 
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crystal sample is usually mounted on a so-called Eulerian cradle, which allows one to 

 reflections simultaneously, it would be very inefficient to detect it by a single 
oint detector, which would have to be positioned recursively for the correct 2! values. 

ctions will overlap for larger unit cells e. g. due to the finite peak width. 
Among other factors, the peak width is determined by the resolution of the instrument. 
One can show that the resolution function for a neutron powder diffractometer on a 

e entire 
owder diffractogram and determine the corresponding parameters from a refinement, 

which aims at minimizing the weighted sum of the quadratic deviations of calculated 
and observed intensities for all data points. Figure 14.14 shows an example of such a 
Rietveldt analysis for data taken from a colossal magnetoresistance manganite.  
 

orient the sample using the three Eulerian angles �, � and -. Finally the scattered beam 
is detected in a point- or small area detector. Care must be taken to collect the entire 
integrated intensity for a scan through the Bragg reflection. 
 
A conceptually simpler experiment for the determination of atomic structures is the neu-
tron powder diffractometer. In this case, since the powder grains in the sample usually 
have random orientations with respect to the incident beam, there is no need for orient-
ing the sample with respect to the beam. Scattering will always occur for some of the 
grains, which by chance fulfill the Bragg condition. As scattering occurs for all allowed 
Bragg
p
Therefore in powder diffraction one usually uses a large linear - or even better area - 
position sensitive detector, which is arranged on a circular arch around the sample posi-
tion.  
 
While neutron powder diffraction is conceptually simple, it poses the problem that 
Bragg refle

beam being monochromized by a Bragg reflection from a monochromator crystal is 
given by:  

� �2 22 tan tanU V W! ! !� 
 
 
  (14.38)

In such a situation, one cannot determine the intensities of the various Bragg reflections 
separately. The solution to the problem is the so-called Rietveldt- or profile refinement, 
where structural parameters (unit cell metric a,b,c,�,�,�, atom positions and site occupa-
tions, the Debye-Waller-factors, etc) are refined together with the instrumental parame-
ters (zero point of the scattering angle 2!0, parameters of the resolution function U, V, 
W, etc). Assuming a certain peak shape function, this allows one to model th
p
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Fig. 14.14: Powder neutron diffraction from a colossal magnetoresistance  

 manganite. Points represent the measured intensities, the solid line the 
 calculated profile function. The green bars below the diffractogram 
 indicate the positions of the Bragg reflections and the line beneath 
 shows the difference between observed and calculated intensities [5].  

 

As one can see, there is a very strong overlap of Bragg reflections, especially at larger 
scattering angles. Still, by using the above mentioned profile refinement technique, the 
atomic structure of the compound could be determined to a great position.  
 
Applications of wide angle diffractions are manifold: 
 

� lifescience: structure of biological macromolecules, e. g. Hydrogen (crystal wa-
ter!) in protein structures 

� chemistry: structure determination of new compounds, position of light atoms; 
time resolved reaction kinetics 

� materials science: stress-strain determination; texture of materials 
� geo-science: phase and texture analysis 
� solid state physics: structure - function relations e. g. in high TC superconduc-

tors; magnetic structures and spin densities, e. g. in molecular magnets 
 

14.5 Spectroscopy 
 

So far, we have only explored the purely elastic - or the quasistatic correlation func-
tions, which give us structural information on various length scales only. We will now 
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turn to the general case of correlation functions in space and time, which allow us to 
determine in addition the microscopic dynamics of the sample under investigation. 
Again, different instrument types exist for different applications. First of all, if we con-
sider the neutron as a particle, we can determine the time of flight it needs to travel from 
the sample to the detector and thus its velocity or energy after the scattering process. 
With the knowledge of the incident energy, the energy transfer during the scattering 
process can be determined. This kind of neutron spectrometer is called a time-of-flight 
or TOF spectrometer. A special case of the TOF spectrometer is the so-called neutron 
spin echo spectrometer, where the time-of-flight of each single neutron is being deter-
mined through the Larmor precession of the nuclear spin of the neutron in an external 
magnetic field. Neutron spin echo spectroscopy has the highest energy resolution and 
measures the intermediate scattering function directly. Therefore it is well suited to 
study slow relaxation processes. An alternative approach to spectroscopy is to deter-
mine the energy of the scattered neutrons by means of Bragg reflection from an ana-
lyzer crystal. Such an instrument is called a crystal spectrometer and if the selection of 
the incident wavelength is done by a crystal monochromator, it is called a triple axis 
spectrometer. A variant of a crystal spectrometer is the high resolution backscattering 
spectrometer. Of course there are various combinations of these techniques, which exist 
in particular at spallation sources. A discussion of all of the various instrument concepts 
goes well beyond the scope of this introductory course.  
 

14.5.1  Time-of-Flight or TOF spectroscopy 
 

Figure 14.15 depicts schematically a generic time-of-flight spectrometer.  
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Fig. 14.15: Generic TOF spectrometer. The neutron beam is monochromatized, 

 either by a crystal monochromator (X-TOF) or by time-of-flight (TOF-
 TOF) with choppers and / or the pulse from a spallation source. A 
 chopper creates monochromatic neutron beam pulses incident on the 
 sample. The scattered neutrons are collected in an array of detectors 
 surrounding the sample. For each detector pixel, the neutrons are 
 counted into a histogram as a function of their arrival time. These 
 intensity – time histograms can be converted into the scattering function 
 S(Q,	) by using a reference sample for absolute calibration and simple 
 kinematic relations between scattering angle and flight time on one hand 
 and scattering vector and energy on the other hand.  

 

Neutrons are being monochromized either by reflection from a monochromator crystal 
or by time-of-flight techniques (X-TOF or TOF-TOF instruments, respectively). Mono-
chromatic neutron pulses are produced by a chopper, which can be a fast rotating (up to 
e.g. 600 Hz) disc or drum made from neutron absorbing material, which has a slit that 
lets neutron pass only during a short time interval of typically some microseconds. This 
pulsed neutron beam impinges on the sample and is scattered under all possible scatter-
ing angles. Neutrons are recorded on a two dimensional position sensitive detector 
(nowadays, this is often an array of linear position sensitive 3He detector tubes) sur-
rounding the sample typically on the surface of a cylinder. From the arrival time of the 
neutrons in the detector with respect to the starting time given by the opening of the 
chopper, an intensity spectrum can be recorded for each scattering angle separately as a 
function of the arrival time of the neutrons in the detector. Using simple kinematic 
equations for the neutron as a particle and a calibration obtained by measuring a refer-
ence sample, this time-of-flight spectrum can be converted into the scattering function 
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S(Q,	). Figure 14.16 illustrates the scattering process in a flight-path versus time dia-
gram.  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 14.16: Flight-path-versus-time-diagram for a generic time-of-flight instrument 

 (see text). (Courtesy of Dr. M. Monkenbusch).  
 

In such a diagram, a monochromatic neutron beam has a certain slope, which can be de-

rived from the de Broglie equation :h sp m v m
t"


 
 � 
 �  

mt s
h

"
 � �  (14.39)

Typical velocities for thermal neutrons lie in the range of meter per millisecond. In fig-
ure 14.16 the neutrons coming from a monochromator enter the chopper with a certain 
slope in the path-vs.-time diagram corresponding to the velocity of the monochromatic 
neutrons. With a repetition rate of 1

.  given by the chopper frequency, pulses of mono-

chromatic neutrons leave the chopper. A second chopper can be applied to suppress 
higher order reflections. The neutron scattered from the sample can either gain energy, 
resulting in a steeper slope in the path-vs.-time diagram or loose energy resulting in a 
shallower slope. The number of neutrons entering the detector in a certain time interval 
is counted into a histogram with the elastic line usually being strongest and inelastic 
events being visible in neutron energy gain or -loss.  
 



14.30  Th. Brückel 

A nice example for a powder neutron time-of-flight spectrum is given by the excitation 
spectrum of a molecular magnet, namely Mn12 acetat, see figure 14.17 [6]. Here the 
time-of-flight axis has been converted into an energy scale. Clearly visible are nicely 
separated excitations, which result in the energy level diagram depicted on the middle 
of figure 14.17. Transitions between these levels correspond to transitions between dif-
ferent values of the magnetic quantum number of the total spin of the molecule. Model-
ing this energy level spectrum allows one to determine the magnetic interaction parame-
ters, here mainly the magnetic anisotropy.  
 

 

 

 
Fig. 14.17: Left: Time-of-flight spectrum of the molecular magnet Mn12 acetat 

 converted into an energy scale; middle: the corresponding energy level 
 diagram; right: the magnetic molecule consisting of an outer ring of 8 
 Mn atoms with parallel coupled spins and an inner ring of 4 Mn atoms 
 with opposite spin orientation. Taken from [6].  

 

Typical applications of time-of-flight spectroscopy can be found in various fields of 
science:  
 

� soft matter and biology: dynamics of gels, proteins and biological membranes; 
diffusion of liquids, polymers; dynamics in confinement 

� chemistry: vibrational states in solids and adsorbed molecules on surfaces; rota-
tional tunneling in molecular crystals 

� materials science: molecular excitations in materials of technological interest 
(e. g. zeolithes) and especially in diluted systems (matrix isolation); local and 
long range diffusion in superionic glasses, hydrogen-metal systems, ionic con-
ductors 

� solid state physics: quantum liquids; crystal field splitting in magnetic systems; 
spin dynamics in high TC superconductors; phase transitions and quantum criti-
cal phenomena; phonon density of states.  
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14.5.2  Triple axis spectroscopy 
 

An alternative approach for the study of dynamics of condensed matter systems is the 
so-called triple axis spectroscopy. The schematic of a triple axis spectrometer is de-
picted in figure 14.18.  
 

 

 

 
Fig. 14.18: right: schematics of a triple axis spectrometer showing the three axes; 

 left: scattering diagram in reciprocal space. (Courtesy  
 Dr. H. Conrad).  

 

In this case the energies of the incident and scattered neutrons are selected by means of 
a single crystal monochromator and - analyzer, respectively. Also the sample is usually 
in single crystalline form. These crystals (monochromator, sample, analyser) are on ro-
tation tables, which form axis 1, axis 2 and axis 3 of the triple axis spectrometer. If we 
compare this instrument with the time-of-flight spectrometer shown in figure 14.15, one 
difference becomes immediately clear: while the time-of-flight spectrometer with its 
large detector bank allows one to obtain an overview over the excitation spectrum in 
reciprocal space, the triple axis spectrometer is the instrument of choice, if a certain 
narrow region in Q and 	 is of interest. This is the case, if sharp excitations like lattice 
vibrations (phonons) or spin waves (magnons) are being investigated. A propagation 
vector of such an excitation together with a certain energy transfer can be selected by 
setting monochromator, sample and analyzer to the corresponding values as depicted in 
the scattering diagram of figure 14.18, left. Here the energy transfer is given by 
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Figure 14.19 shows as an example spin wave dispersion relations determined for the 
garnet Fe2Ca3Ge3O12 by triple axis spectroscopy.  
 

 

 

 
Fig. 14.19: Spin wave dispersion relations for the garnet Fe2Ca3Ge3O12 along main 

 symmetry directions in reciprocal space. The data points are obtained 
 from scans keeping the momentum transfer Q constant. The figure on the 
 right shows examples of such “constant Q scans”. The solid lines are 
 model calculations, from which the interaction (exchange) parameters 
 between the spins in the unit cells can be determined; figure taken from 
 [7].  

 

Typical examples of triple axis spectroscopy lie mainly in solid state physics: 
 

� phonon dispersions in crystalline material, from which the interatomic forces 
can be determined 

� spin wave dispersions, which allow one to determine exchange and anisotropy 
parameters 

� dynamics of biological model membranes 
� lattice and spin excitations in quantum magnets, superconductors, … 
� phase transitions: critical behavior.  
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14.5.3  High resolution spectroscopy 
Both, time-of-flight and triple axis spectroscopy, have typical energy resolutions of a 
few percent of the incident neutron energy. While such energy resolutions are sufficient 
in many cases, there is need for higher energy resolutions, for example to investigate the 
rather slow movements of large macromolecules, the slow spin dynamics of frustrated 
spin systems, diffusion of atoms or tunneling processes in molecular crystals. In order to 
improve the energy resolution, one could just narrow the energy band width of the neu-
trons incident on the sample. However, such an improvement of resolution goes hand-
in-hand with the decrease of the signal in the detector and is therefore not practicable. 
There are, however, alternative approaches to increase the energy resolution: neutron 
spin echo spectroscopy and backscattering spectroscopy.  
 
Neutron spin echo spectroscopy can be understood as a further development of the time-
of-flight spectroscopy, where the flight time of each single neutron is encoded and thus 
a broad wavelength band of incident neutron energies can be used. Encoding of the 
flight-time is done by the Larmor precession of the nuclear spin of the neutrons in an 
external magnetic field. Loosely speaking "each neutron carries its own clock" to meas-
ure its individual time-of-flight. Figure 14.20 demonstrates the principle of neutron spin 
echo spectroscopy: the incident neutron beam with a broad wavelength band of typi-
cally 10 % is being polarized with the polarization along the neutron flight direction. A 

so-called 
2
� -flipper turns the neutron polarization into the vertical direction, just before 

the neutrons enter a strong magnetic field, which is designed in such a way that the field 

integral ( )B s d s�  is identical for all neutron flight paths (an absolute non-trivial re-

quirement!!). In the external filed, the nuclear magnetic moment of the neutron starts to 
precess in this field with a Larmor precession frequency determined by: 

d s s Bdt /
 0  (14.40)

Due to the different neutron velocities and thus different flight times in the magnetic 
field area, the neutron beam reaching the sample is entirely depolarized. Typical field 
integrals are in the range of 0.5 T·m giving rise to some 10,000 precessions of the neu-
tron spin. At the sample, the polarization of each neutron is inverted by a so-called �-
flipper. In the second arm of the neutron spin echo spectrometer, the scattered neutrons 
travel through an identical solenoid as on the incident side. If the neutrons are scattered 
elastically and the field integrals in the two coils are precisely identical, then the full 
polarization of the neutron beam will be restored and a full intensity will be recorded in 

the detector after a further 
2
�  flip and a polarization analyzer. This maximum intensity 

is called the spin echo. This spin echo is due to the fact that in the second coil, each neu-
tron performs as many revolutions as in the first coil and thus has to end up with the 
initial spin direction. If an inelastic scattering event happens at the sample, the spin echo 
will be destroyed i. e. the intensity in the detector will be lowered. The echo signal can 
be measured by scanning the field of the second coil with respect to the field of the first 
coil. Since the echo signal depends directly on the time-of-flight which neutrons need to 
travel through the magnetic field region, the spin echo technique directly measures the 
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intermediate scattering function S(Q,t) instead of S(Q,	). This type of spectroscopy is 
therefore well suited to measure slow relaxation processes like the magnetization dy-
namics in spin glasses or the dynamics of large macromolecules.  
 
 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 14.20: Schematics of the neutron spin echo spectrometer of JCNS at the FRM II 

 reactor in Munich [3]. The incident neutron beam has wavelength – or 
 energy band of 10%"

"
� 
 .  

  

Another instrument for high resolution spectroscopy, based on a crystal analyzer and 
thus related to the triple axis spectrometer, is the so-called neutron backscattering in-
strument. Starting from the Bragg equation 2 sind" !
  one can derive the wavelength 
spread of a Bragg reflection from a monochromator or analyzer crystal by simple deri-
vation:  

� � � � � �
2 2 2 2

2 2 2 cotdd
d d
" " " 2" ! !

! "
� � � �� � � � � � � �� 
 � 
 � 1 
 
 � �� � � � � � � �� �� � � � � � � �

!  (14.41)

(14.41) shows that the wavelength spread results from two factors: an uncertainty in the 
lattice d-spacing, which can be minimized for perfect crystals such as silicon or germa-
nium and a term resulting from the divergence of the beam. For backscattering i. e. 
2 180! 
 2  or 90! 
 2  this latter contribution vanishes due to the cot(!) dependence. 
Thus in backscattering, one can work with a very divergent beam and still achieve a 
very good wavelength- or energy- resolution – of course at the prize of a poor Q resolu-
tion. This principle is applied for backscattering instruments. An example of such a 
spectrometer from a neutron spallation source is shown in figure 14.21.  
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Fig. 14.21: Schematics of the neutron backscattering spectrometer BASIS at the 

 Spallation Neutron Source SNS in Oak Ridge, USA, taken from [8].  
 

Neutron pulses are produced in the supercritical hydrogen moderator. These pulses have 
a width of about 45 3s for 6.267Å" 
  wavelength neutrons (this wavelength corre-
sponds with silicon (111) backscattering analyzer). Bandwidth choppers are used to 
select a certain wavelength band from the pulsed white neutron beam. A long incident 
flight path of 84 m between moderator and sample allows one to define with great preci-
sion the wavelength of the incident neutrons arriving at the sample at a certain time after 
the initial neutron pulse. Neutrons are scattered from the sample onto Si (111) analyzers, 
reflected from these analyzers into detectors in a close-to-backscattering geometry. In 
this way the final neutron wavelength is fixed to 6.267 Å, while the incident neutron 
wavelength varies with time after the pulse and thus the energy transfer can be deter-
mined like in a time-of-flight instrument. An energy resolution of about 2.2 3eV can be 
achieved with the dynamic range of ± 250 3eV. Typical applications of such a backscat-
tering spectrometer lie in the investigation of tunneling in molecular crystals, spin diffu-
sion or slow spin relaxation in frustrated spin systems, or atomic diffusion processes.  
 

14.6 Summary and conclusions 
 

In this chapter we have given a rough overview over the different neutron scattering 
techniques and their applications. Many details will be discussed in the practical part of 
this course. In addition to the instrument concepts presented, there are many variants, 
which could not be discussed within the scope of this introduction. Besides neutron 
scattering there are of course many other techniques, which cover similar length and 
time scales for research in condensed matter. All these techniques are complementary 
since all of them can only access a certain range of length or time scales and since the 
contrast mechanisms are quite different for the different techniques. Figures 14.22 and 
14.23 depict the relevant length and time scales accessible with the various neutron- and 
non-neutron techniques.  
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Fig. 14.22: Experimental techniques with spatial resolution: neutron diffraction 

 compared to  other experimental techniques; taken from [9].  
 

TASTAS

 

 

 
Fig. 14.23: Experimental techniques with time and energy resolution, respectively: 

 neutron spectroscopy compared to other experimental techniques; taken 
 from [9].  

 

As these figures clearly demonstrate, neutron techniques cover a very large range of 
length and time scales relevant for research on condensed matter systems. Together with 
the typical assets of neutrons - sensitivity to magnetism, gentle non-destructive probe, 
sensitivity to light elements, contrast for neighboring elements etc. - it is clear why neu-
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trons are such an important probe in many fields of research. Figure 14.24 shows how 
research with neutrons is relevant in many areas of fundamental research and how this 
in turn is highly relevant for many developments of modern technologies, which are the 
basis to solve current challenges of mankind.  
 

 

 

 
Fig. 14.24: Significance of research with neutrons in fundamental research and 

 modern technologies, which finally shape our environment and help 
 solve pressing problems of modern societies, like energy supply,  
 transport or communication; taken from [9].  
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Exercises 
 

E14.1  Collimation 
Assume you have to define the direction of a neutron beam by collimation. The incident beam 
has a flat angular distribution over an angular range much wider than needed. Employ the 
following three methods, plot the intensity distribution after your collimating device, compar-
ing shape, width and transmission:  
 

1. two slits with opening S in distance L 
 
 
 
 
 

2. a “Soller Collimator” consisting of N neutron absorbing plane-parallel plates of thick-
ness t, channel width d and length l:  

 
 
 
 
 

3. a neutron guide of length L>> width w coated with 58Ni (b =14.4 fm; fcc-structure; 
a0 = 3.520 Å) 

 
 
 
 
 
What is the principle difference between method 3 and methods 1 and 2? 

 

E14.2  Monochromatisation 
You have now the task to monochromatize your ideally collimated neutron beam (neglect any 
angular divergence). Again three methods are offered:  
 

a) A velocity selector, see figure 14.6. Take as parameters the thickness of the drums of 
10 cm, an inner radius of the lamella of 6 cm, a distance between the lamella of 1 cm 
and an inclination angle of 10°. How fast does this selector have to turn to monochro-
matize neutrons of wavelength 10 Å? Estimate the wavelength spread in percent.  

 
b) A crystal monochromator made from pyrolytic graphite PG(002) reflection with a lat-

tice d-spacing of 3.343 Å. PG is not an ideal crystal, but a mosaic crystal consisting of 

l 
d 

t 

L 

w 
58Ni 

L 
S S 
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many small crystalline blocks slightly canted against each other within an angular 
width of say 40’. Calculate the Bragg angle for a wavelength of 2.4 Å and 10 Å and es-
timate the wavelength spread in percent.  

 
c) A sequence of two disk choppers with radius R and opening d in a distance L. Take 

L = 3 m, R = 20 cm, d = 1 cm. Which wavelength is selected, if the choppers rotate at 
200 Hz with a phase shift of 100°? 

 

E14.3  TOF-Spectroscopy (optional!) 
 
In a time-of-flight spectrometer, the energy change of the neutrons during scattering is being 
determined by the neutron time-of-flight:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

monochromatic 
neutron beam 

sample 

detector 

t0 

t1 
k’,E’ 

k,E 

2! 

Chopper s’ 

s 

 
a) Calculate the time-of-flight between chopper and detector for a flight path length 

s+s’=3m for neutrons of wavelength 1 Å for an elastic scattering process.  
 
b) Determine the relation between the delayed arrival time of neutrons at the detector and 

the energy loss during inelastic scattering at the sample.  
 
c) Determine the relation between energy transfer 'E E� 
 ��  and the magnitude of the 

momentum transfer 'Q k k�  for a detector with fixed scattering angle 2!.  
� �
 

Which factors determine the energy resolution of a TOF spectrometer? How does this affect 
the design of such an instrument? 
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