000136392 001__ 136392
000136392 005__ 20240711101518.0
000136392 0247_ $$2sirsi$$a(Sirsi) a299814
000136392 0247_ $$2ISSN$$a1866-1793
000136392 0247_ $$2Handle$$a2128/4608
000136392 0247_ $$2altmetric$$aaltmetric:63190629
000136392 020__ $$a978-3-89336-800-6
000136392 037__ $$aPreJuSER-136392
000136392 041__ $$aGerman
000136392 082__ $$a333.7
000136392 082__ $$a620
000136392 1001_ $$0P:(DE-Juel1)VDB91801$$aKrieg, Dennis$$b0$$eCorresponding author$$gmale$$ufzj
000136392 245__ $$aKonzept und Kosten eines Pipelinesystems zur Versorgung des deutschen Straßenverkehrs mit Wasserstoff
000136392 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2012
000136392 300__ $$a228 S.
000136392 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$mphd
000136392 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000136392 3367_ $$02$$2EndNote$$aThesis
000136392 3367_ $$2DRIVER$$adoctoralThesis
000136392 3367_ $$2BibTeX$$aPHDTHESIS
000136392 3367_ $$2DataCite$$aOutput Types/Dissertation
000136392 3367_ $$2ORCID$$aDISSERTATION
000136392 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich. Reihe Energie und Umwelt / energy and environment$$v144
000136392 502__ $$aRWTH Aachen, Diss., 2012$$bDr.$$cRWTH Aachen$$d2012
000136392 500__ $$3POF3_Assignment on 2016-02-29
000136392 500__ $$aRecord converted from JUWEL: 18.07.2013
000136392 520__ $$aFuel cells and hydrogen have the potential to be essential contributors for meeting the challenges of the future traffic sector. The key challenges include: $\bullet$ reducing global and local emissions $\bullet$ reducing import dependencies $\bullet$ preserving Germany’s competitiveness $\bullet$ ensuring sufficient availability of the energy carrier. Hydrogen is assumed to be the most appropriate energy carrier, since it can be produced via any primary energy and in terms of security is comparable to natural gas. In the long run, renewable energy, e.g. via wind power electrolysis, will make emission-free driving feasible. In order to use hydrogen to fuel cars, a comprehensive distribution infrastructure is required. This is completely different than the case of conventional fuels such as gasoline or diesel. Large amounts of hydrogen can be transported in a gaseous state in pipelines, as is common practice for natural gas. This option has not been examined to date. In particular, at the moment no suitable material has been identified for transporting hydrogen, which degrades the stability of the pipe. The aim of this thesis was to design a technical concept for a pipeline system that would make it possible to supply hydrogen to fuel cell cars. Using the assumptions of the study GermanHy, crucial technical questions were investigated. These questions comprise aspects such as general material requirements, feed-in, transportation and feed-out of the hydrogen. With respect to the material challenges, different potential possibilities are provided in order to ensure that no embrittlement will occur. Taking Germany as an example, the design and length of the pipeline system were investigated as well as the related economic and ecological aspects. A Monte Carlo simulation was conducted in order to calculate the probability density of both the investment and the specific cost. These results were placed in the overall context by calculating the economic impact of production, storage and fuelling stations. This thesis, furthermore, identified areas with a need for further research and development. It was assumed that 14 sources will provide hydrogen for 9,860 fuelling stations. The length of the national transmission grid was calculated to be 12,000 km. Transportation at the regional level will require a distribution grid of 36,000 km. The overall expected costs of the pipeline system are € 23 billion. Taking into account compression, O&M and electricity yields a specific cost of € 0.79 €/kg H$_{2}$. Compared to values reported in the literature, this is rather conservative.
000136392 650_7 $$0V:(DE-588b)4012494-0$$2GND$$aDissertation
000136392 8564_ $$uhttps://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.pdf$$yOpenAccess
000136392 8564_ $$uhttps://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000136392 8564_ $$uhttps://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000136392 8564_ $$uhttps://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000136392 8564_ $$uhttps://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.gif?subformat=icon$$xicon$$yOpenAccess
000136392 8564_ $$uhttps://juser.fz-juelich.de/record/136392/files/Energie%26Umwelt_144.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000136392 909CO $$ooai:juser.fz-juelich.de:136392$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000136392 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000136392 9141_ $$y2013
000136392 9132_ $$0G:(DE-HGF)POF3-139H$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vAddenda$$x0
000136392 920__ $$lyes
000136392 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000136392 970__ $$a2128/4608
000136392 9801_ $$aFullTexts
000136392 980__ $$aUNRESTRICTED
000136392 980__ $$aJUWEL
000136392 980__ $$aConvertedRecord
000136392 980__ $$aVDB
000136392 980__ $$abook
000136392 980__ $$aFullTexts
000136392 980__ $$aI:(DE-Juel1)IEK-3-20101013
000136392 981__ $$aI:(DE-Juel1)ICE-2-20101013