000136464 001__ 136464
000136464 005__ 20240708132815.0
000136464 020__ $$a978-1-899072-21-7
000136464 037__ $$aFZJ-2013-03264
000136464 041__ $$aEnglish
000136464 1001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b0$$eCorresponding author$$ufzj
000136464 1112_ $$aEURO-PM 2011$$cBarcelona$$d2011-10-09 - 2011-10-12$$gEURO-PM 2013$$wSpain
000136464 245__ $$aDevelopment of metal supported gas separation membranes
000136464 260__ $$bEPMA$$c2011
000136464 3367_ $$0PUB:(DE-HGF)26$$2PUB:(DE-HGF)$$aProceedings$$bproc$$mproc$$s1376646602_26806
000136464 3367_ $$2BibTeX$$aPROCEEDINGS
000136464 3367_ $$2ORCID$$aBOOK
000136464 3367_ $$2DataCite$$aOutput Types/Book
000136464 3367_ $$2DRIVER$$aconferenceObject
000136464 3367_ $$03$$2EndNote$$aConference Proceedings
000136464 4900_ $$aProceedings of EURO-PM 2011$$v3
000136464 520__ $$aNanostructured gas separation membranes are discussed to make an important contribution for CO2 capture strategies in fossil power plants. Traditionally, gas separation membranes consist of polymers, which have restrictions regarding their mechanical, chemical and thermal stability. To overcome this drawback and to ease the assembling of membrane modules by established joining techniques like welding, a novel hybrid metallic-ceramic membrane is developed. The membrane is based on a porous metallic substrate, which is modified by a powder metallurgical interlayer made of 310S powder. Afterwards, a 8 YSZ ceramic interlayer is brought up by suspension coating. This interlayer bridges the large pore size gap between substrate and toplayer and acts as support for the gas separation membrane itself. Since pore sizes in the sub-nanometer range are pre-requisite for the separation of hydrogen (H2), nitrogen (N2) and carbon dioxide (CO2) gases, nano-particulate sol-gel-technology was the preferred method for the manufacturing of the SiO2-based gas separation membrane itself. Recently, H2/CO2 gas separation could be demonstrated with this new kind of membrane on a laboratory scale. Furthermore, first tests were conducted annealing this membrane in the flue gas of a hard coal fired power plant to investigate its stability under real conditions.
000136464 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000136464 7001_ $$0P:(DE-Juel1)VDB68297$$aHauler, Felix$$b1
000136464 7001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b2$$ufzj
000136464 7001_ $$0P:(DE-Juel1)129595$$aBüchler, Oliver$$b3$$ufzj
000136464 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b4$$ufzj
000136464 7001_ $$0P:(DE-Juel1)129666$$aStöver, Detlev$$b5$$ufzj
000136464 909CO $$ooai:juser.fz-juelich.de:136464$$pVDB
000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129595$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129666$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000136464 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000136464 9141_ $$y2013
000136464 920__ $$lyes
000136464 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000136464 980__ $$aproc
000136464 980__ $$aVDB
000136464 980__ $$aUNRESTRICTED
000136464 980__ $$aI:(DE-Juel1)IEK-1-20101013
000136464 981__ $$aI:(DE-Juel1)IMD-2-20101013