000136464 001__ 136464 000136464 005__ 20240708132815.0 000136464 020__ $$a978-1-899072-21-7 000136464 037__ $$aFZJ-2013-03264 000136464 041__ $$aEnglish 000136464 1001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b0$$eCorresponding author$$ufzj 000136464 1112_ $$aEURO-PM 2011$$cBarcelona$$d2011-10-09 - 2011-10-12$$gEURO-PM 2013$$wSpain 000136464 245__ $$aDevelopment of metal supported gas separation membranes 000136464 260__ $$bEPMA$$c2011 000136464 3367_ $$0PUB:(DE-HGF)26$$2PUB:(DE-HGF)$$aProceedings$$bproc$$mproc$$s1376646602_26806 000136464 3367_ $$2BibTeX$$aPROCEEDINGS 000136464 3367_ $$2ORCID$$aBOOK 000136464 3367_ $$2DataCite$$aOutput Types/Book 000136464 3367_ $$2DRIVER$$aconferenceObject 000136464 3367_ $$03$$2EndNote$$aConference Proceedings 000136464 4900_ $$aProceedings of EURO-PM 2011$$v3 000136464 520__ $$aNanostructured gas separation membranes are discussed to make an important contribution for CO2 capture strategies in fossil power plants. Traditionally, gas separation membranes consist of polymers, which have restrictions regarding their mechanical, chemical and thermal stability. To overcome this drawback and to ease the assembling of membrane modules by established joining techniques like welding, a novel hybrid metallic-ceramic membrane is developed. The membrane is based on a porous metallic substrate, which is modified by a powder metallurgical interlayer made of 310S powder. Afterwards, a 8 YSZ ceramic interlayer is brought up by suspension coating. This interlayer bridges the large pore size gap between substrate and toplayer and acts as support for the gas separation membrane itself. Since pore sizes in the sub-nanometer range are pre-requisite for the separation of hydrogen (H2), nitrogen (N2) and carbon dioxide (CO2) gases, nano-particulate sol-gel-technology was the preferred method for the manufacturing of the SiO2-based gas separation membrane itself. Recently, H2/CO2 gas separation could be demonstrated with this new kind of membrane on a laboratory scale. Furthermore, first tests were conducted annealing this membrane in the flue gas of a hard coal fired power plant to investigate its stability under real conditions. 000136464 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0 000136464 7001_ $$0P:(DE-Juel1)VDB68297$$aHauler, Felix$$b1 000136464 7001_ $$0P:(DE-Juel1)129669$$aVan Gestel, Tim$$b2$$ufzj 000136464 7001_ $$0P:(DE-Juel1)129595$$aBüchler, Oliver$$b3$$ufzj 000136464 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b4$$ufzj 000136464 7001_ $$0P:(DE-Juel1)129666$$aStöver, Detlev$$b5$$ufzj 000136464 909CO $$ooai:juser.fz-juelich.de:136464$$pVDB 000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129669$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129595$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b4$$kFZJ 000136464 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129666$$aForschungszentrum Jülich GmbH$$b5$$kFZJ 000136464 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0 000136464 9141_ $$y2013 000136464 920__ $$lyes 000136464 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0 000136464 980__ $$aproc 000136464 980__ $$aVDB 000136464 980__ $$aUNRESTRICTED 000136464 980__ $$aI:(DE-Juel1)IEK-1-20101013 000136464 981__ $$aI:(DE-Juel1)IMD-2-20101013