001     136464
005     20240708132815.0
020 _ _ |a 978-1-899072-21-7
037 _ _ |a FZJ-2013-03264
041 _ _ |a English
100 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 0
|u fzj
|e Corresponding author
111 2 _ |a EURO-PM 2011
|w Spain
|c Barcelona
|d 2011-10-09 - 2011-10-12
|g EURO-PM 2013
245 _ _ |a Development of metal supported gas separation membranes
260 _ _ |c 2011
|b EPMA
336 7 _ |a Proceedings
|b proc
|m proc
|0 PUB:(DE-HGF)26
|s 1376646602_26806
|2 PUB:(DE-HGF)
336 7 _ |a PROCEEDINGS
|2 BibTeX
336 7 _ |a BOOK
|2 ORCID
336 7 _ |a Output Types/Book
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Conference Proceedings
|0 3
|2 EndNote
490 0 _ |a Proceedings of EURO-PM 2011
|v 3
520 _ _ |a Nanostructured gas separation membranes are discussed to make an important contribution for CO2 capture strategies in fossil power plants. Traditionally, gas separation membranes consist of polymers, which have restrictions regarding their mechanical, chemical and thermal stability. To overcome this drawback and to ease the assembling of membrane modules by established joining techniques like welding, a novel hybrid metallic-ceramic membrane is developed. The membrane is based on a porous metallic substrate, which is modified by a powder metallurgical interlayer made of 310S powder. Afterwards, a 8 YSZ ceramic interlayer is brought up by suspension coating. This interlayer bridges the large pore size gap between substrate and toplayer and acts as support for the gas separation membrane itself. Since pore sizes in the sub-nanometer range are pre-requisite for the separation of hydrogen (H2), nitrogen (N2) and carbon dioxide (CO2) gases, nano-particulate sol-gel-technology was the preferred method for the manufacturing of the SiO2-based gas separation membrane itself. Recently, H2/CO2 gas separation could be demonstrated with this new kind of membrane on a laboratory scale. Furthermore, first tests were conducted annealing this membrane in the flue gas of a hard coal fired power plant to investigate its stability under real conditions.
536 _ _ |a 122 - Power Plants (POF2-122)
|0 G:(DE-HGF)POF2-122
|c POF2-122
|x 0
|f POF II
700 1 _ |a Hauler, Felix
|0 P:(DE-Juel1)VDB68297
|b 1
700 1 _ |a Van Gestel, Tim
|0 P:(DE-Juel1)129669
|b 2
|u fzj
700 1 _ |a Büchler, Oliver
|0 P:(DE-Juel1)129595
|b 3
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 4
|u fzj
700 1 _ |a Stöver, Detlev
|0 P:(DE-Juel1)129666
|b 5
|u fzj
909 C O |o oai:juser.fz-juelich.de:136464
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129669
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129595
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129594
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129666
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-122
|2 G:(DE-HGF)POF2-100
|v Power Plants
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a proc
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21