000136473 001__ 136473
000136473 005__ 20240708132815.0
000136473 0247_ $$2doi$$a10.1002/adem.201200289
000136473 0247_ $$2WOS$$aWOS:000320187200015
000136473 037__ $$aFZJ-2013-03273
000136473 041__ $$aEnglish
000136473 082__ $$a540
000136473 1001_ $$0P:(DE-Juel1)VDB81115$$aCysne Barbosa, A.P.$$b0
000136473 245__ $$aRealization of a titanium spinal implant with a gradient in porosity by 2-Component-Metal Injection Moulding
000136473 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2013
000136473 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1376920236_22684
000136473 3367_ $$2DataCite$$aOutput Types/Journal article
000136473 3367_ $$00$$2EndNote$$aJournal Article
000136473 3367_ $$2BibTeX$$aARTICLE
000136473 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136473 3367_ $$2DRIVER$$aarticle
000136473 500__ $$3POF3_Assignment on 2016-02-29
000136473 520__ $$a2-Component-Metal Injection Moulding (2-C-MIM) is a technique derived from plastics industry which has been adapted to metal powders. In the present work, the production of titanium implants with a gradient in porosity was demonstrated by using this technology, starting from titanium feedstocks with and without space holder particles (NaCl, 350-500 μm). Binder systems specially tailored for the application were developed. The gradient in porosity is attractive for biomedical implants, as it combines low porous parts with high mechanical strength with high porous parts, which promote a stable interlock between bone tissue and implant. Compared to established production routes, the net-shape fabrication of titanium implants by 2-C-MIM promises a significant reduction of cost if aiming at large scale production. The feasibility study was accompanied by a detailed characterisation of each production step of 2-C-MIM process including influence of MIM processing on mechanical properties.
000136473 536__ $$0G:(DE-HGF)POF2-899$$a899 - ohne Topic (POF2-899)$$cPOF2-899$$fPOF I$$x0
000136473 588__ $$aDataset connected to
000136473 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b1$$eCorresponding author$$ufzj
000136473 7001_ $$0P:(DE-Juel1)129666$$aStöver, Detlev$$b2$$ufzj
000136473 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b3$$ufzj
000136473 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.201200289$$n6$$p510 - 521$$tAdvanced engineering materials$$v15$$x1438-1656
000136473 909CO $$ooai:juser.fz-juelich.de:136473$$pVDB
000136473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000136473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129666$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000136473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000136473 9132_ $$0G:(DE-HGF)POF3-899H$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vAddenda$$x0
000136473 9131_ $$0G:(DE-HGF)POF2-899$$1G:(DE-HGF)POF2-890$$2G:(DE-HGF)POF2-800$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000136473 9141_ $$y2013
000136473 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000136473 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000136473 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136473 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136473 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000136473 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000136473 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136473 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000136473 920__ $$lyes
000136473 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000136473 980__ $$ajournal
000136473 980__ $$aVDB
000136473 980__ $$aUNRESTRICTED
000136473 980__ $$aI:(DE-Juel1)IEK-1-20101013
000136473 981__ $$aI:(DE-Juel1)IMD-2-20101013