000136519 001__ 136519
000136519 005__ 20210129211844.0
000136519 0247_ $$2doi$$a10.1016/j.jcrysgro.2012.08.034
000136519 0247_ $$2ISSN$$a1873-5002
000136519 0247_ $$2ISSN$$a0022-0248
000136519 0247_ $$2WOS$$aWOS:000317271000074
000136519 037__ $$aFZJ-2013-03315
000136519 082__ $$a540
000136519 1001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b0$$eCorresponding author$$ufzj
000136519 245__ $$aSite-controlled growth of indium nitride based nanostructures using metalorganic vapour phase epitaxy
000136519 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2013
000136519 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1375708028_28273
000136519 3367_ $$2DataCite$$aOutput Types/Journal article
000136519 3367_ $$00$$2EndNote$$aJournal Article
000136519 3367_ $$2BibTeX$$aARTICLE
000136519 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136519 3367_ $$2DRIVER$$aarticle
000136519 500__ $$3POF3_Assignment on 2016-02-29
000136519 520__ $$aIn this paper we report on studies on how to obtain selective area growth of indium nitride nanostructures on patterned SiO2/GaN(0 0 0 1)/c-plane α-Alα-Al2O3 substrates by means of metalorganic vapour phase epitaxy (MOVPE) for very small pattern filling factors. To this end we investigated the impact of growth parameters such as substrate temperature and the group V/group III molar flow ratio (V/III ratio) on nanostructure morphology and on selectivity. Furthermore we examined the evolution of InN nanostructure growth in 100 nm apertures and the influence of growth stage on the nanostructure's optical characteristics. We found a narrow growth parameter range in which both the reproducible selective growth of InN inside the circular apertures and the parasitic nucleation on the mask were concurrently kept under control. Under these optimized growth conditions we obtained regular, hexagonally shaped nanopyramids which evolved from coalesced nucleation seeds via cauldron-like structures. A systematic study of the nanostructure evolution reveals that the near band edge luminescence depends on the nanostructure growth stage, which is assigned to different strain states and to defect induced free carriers as the InN nanopyramids grow.
000136519 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000136519 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000136519 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b1$$ufzj
000136519 7001_ $$0P:(DE-Juel1)128637$$aStoica, Toma$$b2$$ufzj
000136519 7001_ $$0P:(DE-Juel1)128650$$avon der Ahe, Martina$$b3$$ufzj
000136519 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b4$$ufzj
000136519 7001_ $$0P:(DE-Juel1)141986$$aHaab, Anna$$b5$$ufzj
000136519 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6$$ufzj
000136519 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b7$$ufzj
000136519 773__ $$0PERI:(DE-600)1466514-1$$a10.1016/j.jcrysgro.2012.08.034$$gVol. 370, p. 336 - 341$$p336 - 341$$tJournal of crystal growth$$v370$$x0022-0248$$y2013
000136519 8564_ $$uhttps://juser.fz-juelich.de/record/136519/files/FZJ-2013-03315.pdf$$yRestricted$$zPublished final document.
000136519 909CO $$ooai:juser.fz-juelich.de:136519$$pVDB
000136519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000136519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000136519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000136519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128650$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000136519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000136519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141986$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000136519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000136519 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000136519 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000136519 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000136519 9141_ $$y2013
000136519 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000136519 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000136519 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000136519 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136519 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136519 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000136519 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000136519 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136519 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000136519 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000136519 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000136519 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000136519 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000136519 980__ $$ajournal
000136519 980__ $$aVDB
000136519 980__ $$aUNRESTRICTED
000136519 980__ $$aI:(DE-Juel1)PGI-9-20110106
000136519 980__ $$aI:(DE-82)080009_20140620