000136581 001__ 136581
000136581 005__ 20210129211852.0
000136581 0247_ $$2doi$$a10.1071/FP13224
000136581 0247_ $$2ISSN$$a1445-4416
000136581 0247_ $$2ISSN$$a1446-5655
000136581 0247_ $$2ISSN$$a1445-4408
000136581 0247_ $$2ISSN$$a0310-7841
000136581 0247_ $$2WOS$$aWOS:000335386300003
000136581 037__ $$aFZJ-2013-03367
000136581 041__ $$aEnglish
000136581 082__ $$a580
000136581 1001_ $$0P:(DE-Juel1)140327$$aPfeifer, Johannes$$b0$$eCorresponding author$$ufzj
000136581 245__ $$aSpring barley shows dynamic compensatory root and shoot growth responses when exposed to localised soil compaction and fertilisation
000136581 260__ $$aCollingwood, Victoria$$bCSIRO Publ.$$c2013
000136581 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1403099077_30228
000136581 3367_ $$2DataCite$$aOutput Types/Journal article
000136581 3367_ $$00$$2EndNote$$aJournal Article
000136581 3367_ $$2BibTeX$$aARTICLE
000136581 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000136581 3367_ $$2DRIVER$$aarticle
000136581 520__ $$aThe impact of heterogeneous soil compaction in combination with nutrient availability on root system architecture and root growth dynamics has scarcely been investigated. We quantified changes of barley (Hordeum vulgare L.) root and shoot growth during the first 3 weeks of growth in a controlled-environment chamber. Vertically divided split-root rhizotrons were filled either uniformly with loose or compacted peat, or heterogeneously with loose peat in one compartment and compacted peat in the other. We investigated the following questions. (a) Can growth processes affected by soil compaction be mimicked in our system? (b) Do plants show compensatory growth effects when exposed to heterogeneous soil compaction? (c) Does localised fertiliser application affect root systems’ responses to compaction? We observed compensatory effects regarding root system architecture and root growth dynamics due to vertically heterogeneous soil compaction. Roots grew deeper and lateral roots emerged earlier in the loose compartment of the split-root treatment compared with uniform treatments. When fertiliser was applied only via the compacted compartment in the split-root treatment, more lateral roots were initiated in the compacted compartment and lateral root formation started a few days earlier than in the uniform treatments. Consequently, the first days after exposure to heterogeneous soil conditions are critical for the analysis of underlying physiological responses.
000136581 536__ $$0G:(DE-HGF)POF2-242$$a242 - Sustainable Bioproduction (POF2-242)$$cPOF2-242$$fPOF II$$x0
000136581 536__ $$0G:(DE-HGF)POF2-89582$$a89582 - Plant Science (POF2-89582)$$cPOF2-89582$$fPOF II T$$x1
000136581 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000136581 7001_ $$0P:(DE-Juel1)140577$$aFaget, Marc$$b1$$ufzj
000136581 7001_ $$0P:(DE-HGF)0$$aWalter, A.$$b2
000136581 7001_ $$0P:(DE-Juel1)129286$$aBloßfeld, Stephan$$b3$$ufzj
000136581 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b4$$ufzj
000136581 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b5$$ufzj
000136581 7001_ $$0P:(DE-Juel1)129373$$aNagel, Kerstin$$b6$$ufzj
000136581 773__ $$0PERI:(DE-600)1496158-1$$a10.1071/FP13224$$gVol. 41, no. 6, p. 581 -$$n6$$p-$$tFunctional plant biology$$v-$$x1445-4416$$y2014
000136581 909CO $$ooai:juser.fz-juelich.de:136581$$pVDB
000136581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140327$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000136581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140577$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000136581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129286$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000136581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000136581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000136581 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129373$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000136581 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000136581 9131_ $$0G:(DE-HGF)POF2-242$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Bioproduction$$x0
000136581 9131_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vPlant Science$$x1
000136581 9141_ $$y2013
000136581 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000136581 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000136581 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000136581 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000136581 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000136581 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000136581 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000136581 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000136581 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000136581 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000136581 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000136581 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000136581 920__ $$lyes
000136581 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000136581 980__ $$ajournal
000136581 980__ $$aVDB
000136581 980__ $$aI:(DE-Juel1)IBG-2-20101118
000136581 980__ $$aUNRESTRICTED