001     136793
005     20210129211855.0
024 7 _ |a 10.1080/00268976.2013.813590
|2 doi
024 7 _ |a 0026-8976
|2 ISSN
024 7 _ |a 1362-3028
|2 ISSN
024 7 _ |a WOS:000327954200008
|2 WOS
024 7 _ |a altmetric:1622010
|2 altmetric
037 _ _ |a FZJ-2013-03382
082 _ _ |a 530
100 1 _ |a Sellner, Bernhard
|b 0
|e Corresponding author
245 _ _ |a Ultrafast non-adiabatic dynamics of ethylene including Rydberg states
260 _ _ |a London
|c 2013
|b Taylor & Francis
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1375343245_29801
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |a Online first
520 _ _ |a The photodynamics of ethylene has been studied by means of ab initio surface-hopping dynamics using extended multireference configuration interaction wavefunctions. At the highest level, the explicit possibility of excited-state CH dissociation and consideration of the Rydberg π−3s state was included into the electronic wavefunction. The initial dynamics is characterised by the torsional motion and the crossing between the bright π−π * state with S 1, the latter having primarily Rydberg character with only a minor contribution of the repulsive valence π−σ * state. Due to back-rotation to planar structures after 17 fs, part of the population flows into the Rydberg states. The lifetime for this fraction of trajectories is significantly longer than that for the valence population. An analysis of the latter population shows that the decay to the ground state proceeds mainly at the pyramidalised conical intersection. Thus, no major qualitative mechanistic changes as compared to previous dynamics simulations are observed for the valence population. In the present work, a decay time of 62 fs was found for the valence population. Simulations performed for ethylene-d4 show a slowdown of the torsional mode. However, since the crossing seam is reached in a more direct way with less torsional oscillations, the excited-state lifetime is almost unchanged as compared to ethylene.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Barbatti, Mario
|b 1
700 1 _ |a Mueller, Thomas
|0 P:(DE-Juel1)132204
|b 2
|u fzj
700 1 _ |a Domcke, Wolfgang
|b 3
700 1 _ |a Lischka, Hans
|b 4
773 _ _ |a 10.1080/00268976.2013.813590
|g p. 1 - 12
|p 1 - 12
|0 PERI:(DE-600)1491083-4
|t Molecular physics
|v 111
|x 1362-3028
909 C O |o oai:juser.fz-juelich.de:136793
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132204
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21