PHYSICAL REVIEW E 88, 022115 (2013)

Non-Gaussian propagator for elephant random walks
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For almost a decade the consensus has held that the random walk propagator for the elephant random walk
(ERW) model is a Gaussian. Here we present strong numerical evidence that the propagator is, in general,
non-Gaussian and, in fact, non-Lévy. Motivated by this surprising finding, we seek a second, non-Gaussian
solution to the associated Fokker-Planck equation. We prove mathematically, by calculating the skewness, that
the ERW Fokker-Planck equation has a non-Gaussian propagator for the superdiffusive regime. Finally, we
discuss some unusual aspects of the propagator in the context of higher order terms needed in the Fokker-Planck

equation.
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I. INTRODUCTION

Anomalous diffusion and transport [1-14] requires at least
one of two ingredients to avoid the consequences of the central
limit theorem: (i) long range power law correlations in time or
(ii) diverging variance for the distribution of velocities or jump
sizes. Classic examples of these two mechanisms are fractional
Brownian motion and Lévy flights, respectively [15]. The
relation to non-Gaussian propagators has also been discussed
in the literature, as in fractional Fokker-Planck equations
generating non-Gaussian, non-Lévy probability distributions
[16-18] and in intermittent maps exhibiting anomalous dif-
fusion [19-21]. Here we focus on temporal correlations,
i.e., memory effects. Random walks with long range power
law correlations cannot (usually) be reduced to Markovian
processes. Non-Markovian processes are still not very well
understood, but they are ubiquitous in physical, biological,
and socioeconomic phenomena [10,13-15,22-26], so their
importance is widely recognized. Very few non-Markovian
random walk models are exactly solvable. Notable among
them is the elephant random walk (ERW) model, in which the
random walker has memory access to the complete history of
the random walk. Not surprisingly, the ERW allows anomalous
diffusion. Specifically, there is superdiffusion in which the
mean squared displacement grows faster than linearly in
time. For almost a decade it had been thought that the exact
solution of the ERW model in both normal and anomalous
diffusion regimes is given by a simple Gaussian random walk
propagator. The term propagator refers to the fundamental
solution or Green’s function in the context of the probability
density function for a random walk. Here we show that the
behavior is, in fact, unexpectedly rich: we prove that the ERW
propagator is non-Gaussian in the superdiffusive regime. This
surprising result opens many further problems, a few of which
we briefly discuss.

II. THE MODEL

The ERW was introduced by two of us in 2004 [13]. The
ERW is a one-dimensional random walk in which the position
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X,41 at time 741 is given by a probabilistic recurrence
relation:

Xir1 = Xr + 0141 (1)

The position at time ¢ is thus X, = Zi,zl oy. Here 0,4 =
41 is a binary random sequence that contains two-point
correlations (i.e., memory).

At time 7 + 1 a previous time 1 < ¢/ < ¢t + 1 is randomly
drawn from a uniform probability distribution. The current
step direction oy, is then randomly decided on the value as
follows:

4o, with probability p,
Oy = . I (2)
—oy  with probability 1 — p,

so that for p > 1/2 there is positive feedback and for p < 1/2
there is negative feedback. The ERW with bias assumes that
the first step always goes to the right, i.e., oy = +1, so
X1 =1 assuming X¢ = 0. This initial condition introduces
an initial bias in the walk with obvious consequences to
the model statistics. The ERW model presents four types
of diffusion regimes, namely, normal diffusion for p < 1/2
(¢ < 0), normal diffusion with escape for 1/2 < p < 3/4
(0 < o < 1/2), marginal diffusion for p = 3/4 (« = 1/2), and
superdiffusive diffusion for p > 3/4 (« > 1/2).

The conditional probability P(X,%|X,t;) to find the
walker at X, at time #, given a previous position X at time ¢
is given by [Eq. (18) in [13]]

1 Y +1
PY,t 4+ 1|X,0) = 3 |:1 - @] P(Y 4 1,¢|X0,0)

alY — 1)
i [1 n f] P(Y — 1,¢|X0,0),
(3)

where « = 2p — 1. The usual continuum limit leads to the
Fokker-Planck equation [Eq. (20) in [13]],

1
2

2

9
S PO - %a[xP(x,t)], (4)

) pey = |
o VT3
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where
P(X, — Xy,t) = P(X,,t|X,,0). (®)]

Direct substitution shows that the solution for a Dirac § initial
condition, i.e., the random walk propagator, is a Gaussian with
a time dependent diffusion constant.

III. NUMERICAL RESULTS

Having introduced the ERW, we next report numerical
evidence (Fig. 1) that the propagator is not, in fact, Gaussian. In
what follows, we use the following non-Gaussian distribution
for comparison:

P*(x,t) = [1 4 g()(x = X)]P(x,1), (6)

where g(¢) and X = X(¢) are fitting parameters and P(x,t)
represents a Gaussian distribution [solution of Eq. (4)]. We will
always refer to P* as the modified Gaussian. This functional
form of P* will be justified in the discussion below.

The numerical evidence we present below is a comparison
of the simulation results with P and with P*. Fittings to
data obtained by Monte Carlo simulations with p = 0.8, i.e.,
o = 0.6, within the superdiffusive regime, are shown in Fig. 1.
In this case the walk with the initial bias of the original
ERW is considered, i.e., with a deterministic choice o7 = +1.
Figure 1(a) shows the residuals calculated as the difference
between the logarithm of the fit with respect to the numerical
data (long-dashed black line). The fitted distributions are the
Gaussian (red dots) and the modified Gaussian (blue crosses)
distributions. Clearly, the modified Gaussian provides a better
fit than the Gaussian. The inset shows the logarithm of the
same distributions (semilog plot), so that Gaussians become
parabolas. The Gaussian fit (red dots) provides the worst fit,
while the modified Gaussian (blue crosses) fit is the best. A
closer look reveals a skewness in this figure (a result of the
initial bias). In fact we have shown by Monte Carlo simulations
that the third central moment does not vanish in the asymptotic
limit for p = 0.8.

In order to remove the effect of the initial bias, we
ran identical simulations but with completely random (and
equiprobable) stochastic initial conditions oy = +1. The
distribution for this unbiased ERW is shown in Fig. 1(b).
Even after removing the skewness, the propagator remains
non-Gaussian for p = 0.8.

IV. ANALYTICAL RESULTS

Motivated by this strong numerical evidence of non-
Gaussianness, we sought a deeper theoretical understanding.
We next provide a mathematical proof that the propagator
is non-Gaussian for o > 1/2, corresponding to the superdif-
fusive regime p > 3/4. The strategy of our proof by con-
tradiction is to exploit the fact that the relative skewness
should vanish (at least in the long term limit) for Gaussian
propagators.

A. Skewness

The exact moments will be represented by x,(t) = (x,(¢))
and can be determined from the exact recurrence equation
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FIG. 1. (Color online) Numerically estimated ERW propagator
in the superdiffusive regime for « = 0.6 (p = 0.8). The red dots
(blue crosses) refer to a Gaussian [modified Gaussian, Eq. (6)] fit to
the numerically estimated pdf. The numerical data are shown as a
long-dashed black curve. (a) shows the residuals of the fittings to the
natural logarithm of the numerical data for the biased case. The inset
shows the logarithm of the distributions focusing on the central part
of the distributions to allow for a more accurate visual inspection.
The modified Gaussian (crosses) provides the best fitting. (b) shows
the nonbiased case. The residuals of the logarithm of the position
distributions against the position (x) are shown in the main panel.
It is clear that the Gaussian statistics (red dots) does not match the
numerical data. The best fit is provided by the modified Gaussian
(blue crosses). The numerical results are also shown in the inset
as a log-linear plot, representing the logarithm of the distribution
against the position (x) in the horizontal axis. With this choice of
scale a Gaussian is represented by a parabola. The resemblance to
a parabola, however, is misleading, as confirmed by the residuals
(red dots) in the main panel. The numerical results were obtained
for Tpax = 50000 and 4 x 107 runs and the histograms were drawn
by counting exactly the number of occurrences of a given position.
In this way we avoided the use of boxes (bins), which causes data
smoothing and may hide the details by averaging all the points inside
the boxes.

(see [13]) given by

Xp(t + 1) = hy (1) + gn(D)x, (1), (N
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FIG. 2. Analytically calculated skewness y; of the distribution
for the biased ERW from Egs. (A8), (A9), and (A10) for some
selected values of o with o« > 1/2 within the superdiffusive regime.
The nonzero skewness is proof of non-Gaussian behavior.

which is solved by

t—1 t—1 t—1
a0 =x, (D[ [+ (hn(m) [1 gn(k>>. ®)
k=1

m=1 k=m+1

Here 4, (¢) and g, (¢) are known functions that change for each
moment. Expressions for 4,(¢) and g,(¢t) for n = 1,2 were
given in the original paper [13]. Below we show how to get
these functions in general.

We consider the third central moment Az = (X, —x; (t))3),
the standard deviation o = ((X, — x;(1))*)'/2, and the
skewness

yi = As/o? 9)

and present analytical proof that the skewness y; is nonzero
in the superdiffusive regime, even in the long time limit. A
recurrence relation for the position averaged moments can be
written directly from the basic properties of the walker as (see
Ref. [27] for details)

no
x,t+1) =56+ (1 + T)xn(t)

s(n) " ; . .
i ; [<21) + (2[ + 1) 7} Xp—2(2), (10)

where § = [1 + (—1)"]/2, s(n) = (n — 6 — 1)/2. Recurrence
relation (10) can be used in conjunction with Eq. (7) to get
h,(t) and g,(¢t). The moments can then be obtained from
Eq. (8), which allows us to determine A3 using the conditions
x1(1) = x2(1) = x3(1) = 1. Keeping only the dominant terms,
we show in the Appendix that Ay ~ Ar3* [see Eq. (A8) for
details], which becomes exact in the asymptotic limit. We can
easily check numerically that the coefficient is positive for
o > 1/2.In the Appendix we also derive for « > 1/2 an exact
expression for o which has the form o = B*, and therefore
A3 A 11
n=-—3="% 1D
which is not zero. The variation of the skewness as a function
of @ for ¢ > 1/2 is shown in Fig. 2. The nonzero values of
1, even in the long time limit, contradict the assumption of a
Gaussian distribution. We have thus proved that the distribution
is non-Gaussian in the superdiffusive regime. The Fokker-
Planck equation (4) is not able to produce such moments unless
it is amended.
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The surprised reader may ask, could this skewness be an
artifact of the initial bias? The biased initial condition x;(1) =
X = 1is required for the nonzero value we found for Az. A
nonbiased initial condition, i.e., x;(1) = 0, leads to x;(¢) =0
[from Eq. (8)] with n = 3. Since x3(1) = 0, we get x3(t) =0
[from Eq. (8)] with n = 3. This leads to A; = 0 and therefore
y1 = 0. In fact, the odd moments are all zero if x;(1) =0,
leading to a symmetric distribution. Although this distribution
is symmetric, it is not Gaussian. In fact, using (8), one can
show that the kurtosis y» = ([X; — x1(¢)]*)/o* — 3 is nonzero
for the nonbiased initial condition. Therefore the propagator,
represented by the distribution of { X, }, is indeed non-Gaussian,
despite the even symmetry of the distribution for the symmetric
initial distribution.

B. The Fokker-Planck equation

Having shown that the propagator is non-Gaussian, we now
return to the Fokker-Planck equation. Clearly, the moments of
the distribution given by recurrence relation (10) are relative
to a non-Gaussian distribution. Moreover, these recurrence
relations were derived directly from the definition of the ERW.
They are not approximate, but exact [unlike Fokker-Planck
equation (4), which neglects higher order terms]. The Gaussian
solution to the Fokker-Planck equation (4) is not able to
produce such moments, which suggests that this equation
should be reviewed.

Indeed, our final goal is to derive a Fokker-Planck equation
for the ERW with the next higher order correction terms.
For completeness, we first study the equations of motion of
the random walker, which can be obtained from Eq. (10) by
subtracting x,(¢) from both sides, giving

no
S$p() = x,(t + 1) —x,(1) =6 + Txn(t)

s(n) " o .
" ; Kﬂ) T <21 + 1)} xn—(2).  (12)

Expanding this expression in a Taylor series, we finally get the
equation of motion:

d 1. d%x,(t)

dtxn(t) + T

In order to obtain the correction terms for the Fokker-Planck

equation, we start with the discrete (exact) equation (3). After
subtracting P(Y,t]|X(,0) from both sides and writing x = Y,
we can write

P(x,t +1)— P(x,t)
PO+ 1,0—2P(,0) + P(x — 1,D)
B 2
o |:(x + 1DPx+1,6) — (x — DHP(x — 1,1)

o= 8,00 (13)

t 2

A Taylor series representation of this equation can be written
in closed form as

o0

] (14)

& 2i

1 1
P =Y (==
2 i T Z((zi)!ax%

i=l1

P(x,1)
o 1 821'71

- FMW[W(M)O, (15)
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which is the complete form of the Fokker-Planck equation for
the ERW model. The first few terms can be rearranged to give

aP( t)+182 P(x,t) +
— P(x, ——P(x,
ot 2 912

=l<1—5>8—2P(x n— %2 P

2 t ] 0x? ’ t 0x ’
_ziip(x,)+L<1_z)3_4p(x,)+...
t 69x3 ’ 24 t ) ox4 ’ ’

which must be compared with Eq. (4). We see now that
Eq. (4) can be regarded as a lowest order Fokker-Planck
equation for the ERW, valid for large ¢. This lowest order
Fokker-Planck equation leads to the correct scaling exponents
for the first and second moments. Even for higher order
moments (third and so on), the scaling exponents are given
by (4), but the scaling coefficients are likely incorrect. In
fact, within the superdiffusive regime, the coefficients will
certainly be affected by neglecting the higher order derivatives
in the Fokker-Planck equation. This affects mainly the central
moments ([ X, — x1(1)]").

In view of the generalized form of the Fokker-Planck
equation (15), it is not surprising that the Gaussian statistics
should not prevail within all diffusion regimes. In fact, for
o > 0one can easily show that the lowest order Fokker-Planck
equation (4) admits a second, modified Gaussian solution,
namely, P*, in addition to the known Gaussian solution.
Notice, however, that the existence of a second solution has no
physical meaning. Indeed, Eq. (4) is valid only in lowest order.
Direct substitution shows that P*(x,t) is, in fact, a second
solution of the Fokker-Planck equation (4). We next find the
function g(¢). For large ¢ we can derive analytic expressions
for g(¢) in the form

Bs/1* (a > 1/2),
g)=1 A/lt'?Inr] (@ =1/2), (16)
B/t 0 <a<1/2),

for superdiffusion, marginal diffusion, and normal diffusion
with escape, respectively, where s and e stand for superdif-
fusive and diffusive with escape regimes. For o < O the
functional form of g(¢) is similar to that in the interval
0 < o < 1/2. However, in this case, the function g(z)(x — x)
vanishes altogether for large ¢, for any x, implying Gaussian
statistics, which agrees with the original results in [13].
For both the superdiffusion and escape regimes, one can
easily show (see below) that B, is nonzero and is given
by Bs = Be = |Qa — 1)(1/ (@ 4+ 1) — 1)|. This result is in
agreement with the non-Gaussian statistics associated with
the superdiffusive regime proved above. Also for0 < o < 1/2
this points towards a non-Gaussian statistics, but the skewness
and the kurtosis in this region go to zero asymptotically
(not shown). On the other hand, we did not find convincing
numerical evidence regarding non-Gaussian behavior in this
region. Therefore more studies are needed to determine the
statistics for 0 < o < 1/2.

We must remark that P*(x,f) must be positive in order
to represent a physical solution. Therefore [1 4 g(¢)(x — X)]
must be greater than zero. For o > 1/2, this can be achieved
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by setting [x — x| < 1/g(t) or |[x — X| < t*/B,. Therefore the
positiveness condition poses a problem in the tail of the
distribution, which is hardly present in the simulation. One
could argue that the overall shape of the distribution would not
be affected by removing such points by setting a cutoff for this
task.

V. CONCLUSIONS

In summary, we have investigated the statistical behavior
of the ERW. Motivated by numerical evidence of a non-
Gaussian propagator, we proved that the propagator is, in fact,
non-Gaussian in the superdiffusive regime. In the diffusion
regime p < 1/2 the propagator is definitely Gaussian. In the
intermediate regime 1/2 < p < 3/4 the situation is still not
completely clear, and the problem remains wide open. A closed
form for the Fokker-Planck equation has also been derived
with higher order terms included. We strongly believe that
these results will motivate further studies in the area in order
to establish the full solution of this non-Markovian problem.
In particular, future work on the ERW may elucidate the long
time influence of the initial steps in non-Markovian random
walks. At this very moment, the model is being extended to two
dimensions, and it may find suitable applications to, e.g., walks
of small insects, driven by internal communications within the
colony. The memory retained is an essential feature to avoid
random directions. It may also find applications in other fields
if one considers, for example, the possibility of introducing
memory damage, which causes the advent of log periodicity,
a distinguished feature, and ubiquitous characteristics of crash
events.

Note added in proof. Recently we became aware that
Gaussian deviations in the superdiffusive regime of the ERW
have also been pointed out by Paraan and Esguerra [6]. Their
work focuses on a continuous-time random walk (CTRW)
generalization of the ERW, which is a different approach than
the discrete-time calculations described in our paper.
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APPENDIX: PROOF OF THE NON-GAUSSIAN BEHAVIOR
IN THE SUPERDIFFUSIVE REGIME

In this section we provide an analytic proof that set-
tles definitely that the position distribution is non-Gaussian
for « > 1/2 (p > 3/4). This is done by showing that the
skewness y; = —Asz/o3, with Az = ((x1(t) — X,)3) and 0 =
(X, —xi(OP) 1/2, is nonzero in the superdiffusive regime.

Starting with the moments, we compare Egs. (8) and (10).
For the first moment we can write

o
x1(t+1)= (1 + ?)xl(t),
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from which A;(r) = 0 and g(t) = 1 + «/t follow. The solu-
tion for this equation is simply given by

t—1
0 =xM[] (1 + %)
k=1

and since x;(1) = 1, we get

i o It +a)
N = E (1 * E) TTOrd+a)’

For the second moment we can write

(AD)

2o
xt+1) =1+ (1 + T) xa(1),

which leads to 4,(t) = 1 and g>(t) = 1 + 2«/¢. Thus we can
write

xz(t)—xz(l)l—[<1+ >+Z ]_[( )

m=1k=m+1
but since x,(1) = 1, we get

t—1

o) £ 1 ()

k=1 m=1k=m+1

'+ 2w) B 1)

= ! ( (A2)
20 — 1 \TQa)T + 1)

Finally, for the third moment we can write

3
xt+1)= <1 + T) x3(1)

! n n o
+ I_Zl|:<21> + <21+1) ]x3 (1)
3
= (1 + Ta) x3(t) + (3+ %) x1(2).

However, since
L)
t

hs(t) = (3 +
_ (3 o I'it + o)
B ( ?) L(Or(1 + o)
and

3

the solution [with x3(1) = 1] becomes

x3(1) —x3(1)ngs(k)+z [m(m) ﬂ g«k)}

m=1 k=m+1
t—1 t—1
_ 3o o) _Lomta
_,E<1+ K ) +m§[(3+m)r(m)r<1+a>
—1
3a
k=m+1
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which can be written as
1+«
Qa — DI'Ga)a
14+ o+ 3¢
" Qa— Dal(a)

We can now evaluate As, defined by

Az = (a7 = 3[x()Px + 3x1(Dx — x%)
= =2[x1 (O + 3x1()x2(t) — x3(0).
Using equations (A1), (A2), and (A3), we can write
1+ I'(t + 3a)
Qo — DI Ba)a  T(1)
4+« O(t+a)
+ Qa — Dal(a) T(r)
3 It + ) T(r + 2a)
+ a(a — DI(@)TQa) T() T'(r)

2 rc+a)\’
B3(a)a? () ’
valid for all «. Using the asymptotic expansion for I'(¢), i.e.,

1 |
L) ~t=12e ' V2m (1 4+ — — ),
@) ¢ t 1 T osse

I'(t 4+ 3a)
()

Tt +a)
N

x3(t) =

(A3)

(A4)

Ay =—

(A5)

and keeping only terms up to the order !, we have

(t+a)t+a71/267(t+a)m(l+ 12([1+a))
e 2 (1+ 1)

()t <12t + 12a + 1) Y

Ir'et+ow ~
@)

=302 12t +1

1+ : 2 1)1 t* (A6)
M Ty
Therefore we can write
I'(t +2a) 1\ ,
—~ 1 da —1)— |t
NG ( + a(da )t>
and
I'(t + 3a) 3 1\ 4
—— ~ |14+ —a(ba — 1)—
0] < + 2<x( o )t>t
and, finally,
Tt +a)\’ 3 1\ .
— ) ~ |1+ =aQRx—-1D- ) A7
( T ) < +2a(a )t> (A7)

Inserting these back into Eq. (A5) and keeping only the
dominant terms, we get

A ~< 3
3\ aQa = DM@ Qa)

1 2
- e £ = A, (A8)
ao — DI'Ga) T3(a)a?
which becomes exact in the asymptotic limit. We can easily
check numerically that the coefficient is positive for « > 0.
On the other hand, the standard deviation o = [x,(t) —

x}(1)]'/? can be derived using expressions (A1) and (A2). For
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o < 1/2thisleadsto o ~ ¢t. For @ > 1/2 it can be shown that

1 1 12
o~ — t“ ~ Br*, (A9)
((Za —DI'Qa) T2+ a))

and therefore the skewness y; for & > 1/2 can be written as

(A10)
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We included a negative sign due to the definition of Aj
in Eq. (A4). Figure 2 shows the variation of the skewness as
a function of « for @ > 1/2. The nonzero values of y; imply
that the distribution is non-Gaussian in the superdiffusive
regime. We conclude that the moments of the distribution
given by the recurrence relation in Eq. (10) are relative to a
non-Gaussian distribution.
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