000013703 001__ 13703
000013703 005__ 20210129210600.0
000013703 0247_ $$2DOI$$a10.1143/JPSJ.79.124005
000013703 0247_ $$2WOS$$aWOS:000285532600021
000013703 0247_ $$2Handle$$a2128/22900
000013703 037__ $$aPreJuSER-13703
000013703 041__ $$aeng
000013703 082__ $$a530
000013703 084__ $$2WoS$$aPhysics, Multidisciplinary
000013703 1001_ $$0P:(DE-HGF)0$$aJin, F.$$b0
000013703 245__ $$aApproach to Equilibrium in Nano-scale Systems at Finite Temperature
000013703 260__ $$aTokyo$$bThe Physical Society of Japan$$c2010
000013703 300__ $$a124005
000013703 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000013703 3367_ $$2DataCite$$aOutput Types/Journal article
000013703 3367_ $$00$$2EndNote$$aJournal Article
000013703 3367_ $$2BibTeX$$aARTICLE
000013703 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000013703 3367_ $$2DRIVER$$aarticle
000013703 440_0 $$03931$$aJournal of the Physical Society of Japan$$v79$$x0031-9015$$y12
000013703 500__ $$aThis work is partially supported by NCF, the Netherlands, by a Grant-in-Aid for Scientific Research on Priority Areas, and the Next Generation Super Computer Project, Nano-science Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Part of the calculations were performed on the JUGENE supercomputer at JSC.
000013703 520__ $$aWe study the time evolution of the reduced density matrix of a system of spin-1/2 particles interacting with an environment of spin-1/2 particles. The initial state of the composite system is taken to be a product state of a pure state of the system and a pure state of the environment. The latter pure state is prepared such that it represents the environment at a given finite temperature in the canonical ensemble. The state of the composite system evolves according to the time-dependent Schrodinger equation, the interaction creating entanglement between the system and the environment. It is shown that independent of the strength of the interaction and the initial temperature of the environment, all the eigenvalues of the reduced density matrix converge to their stationary values, implying that also the entropy of the system relaxes to a stationary value. We demonstrate that the difference between the canonical density matrix and the reduced density matrix in the stationary state increases as the initial temperature of the environment decreases. As our numerical simulations are necessarily restricted to a modest number of spin-1/2 particles (<36), but do not rely on time-averaging of observables nor on the assumption that the coupling between system and environment is weak, they suggest that the stationary state of the system directly follows from the time evolution of a pure state of the composite system, even if the size of the latter cannot be regarded as being close to the thermodynamic limit.
000013703 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000013703 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000013703 588__ $$aDataset connected to Web of Science
000013703 65320 $$2Author$$aquantum statistical mechanics
000013703 65320 $$2Author$$acanonical ensemble
000013703 65320 $$2Author$$atime-dependent Schrodinger equation
000013703 65320 $$2Author$$athermalization
000013703 65320 $$2Author$$adecoherence
000013703 650_7 $$2WoSType$$aJ
000013703 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b1
000013703 7001_ $$0P:(DE-HGF)0$$aYuan, S.$$b2
000013703 7001_ $$0P:(DE-HGF)0$$aKatsnelson, M.I.$$b3
000013703 7001_ $$0P:(DE-HGF)0$$aMiyashita, S.$$b4
000013703 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b5$$uFZJ
000013703 773__ $$0PERI:(DE-600)2042147-3$$a10.1143/JPSJ.79.124005$$gVol. 79, p. 124005$$p124005$$q79<124005$$tJournal of the Physical Society of Japan$$v79$$x0031-9015$$y2010
000013703 8567_ $$uhttp://dx.doi.org/10.1143/JPSJ.79.124005
000013703 8564_ $$uhttps://juser.fz-juelich.de/record/13703/files/1010.2646.pdf$$yOpenAccess
000013703 8564_ $$uhttps://juser.fz-juelich.de/record/13703/files/1010.2646.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000013703 909CO $$ooai:juser.fz-juelich.de:13703$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000013703 9141_ $$y2010
000013703 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000013703 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000013703 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000013703 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000013703 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000013703 970__ $$aVDB:(DE-Juel1)125371
000013703 980__ $$aVDB
000013703 980__ $$aConvertedRecord
000013703 980__ $$ajournal
000013703 980__ $$aI:(DE-Juel1)JSC-20090406
000013703 980__ $$aUNRESTRICTED
000013703 9801_ $$aFullTexts