000013714 001__ 13714
000013714 005__ 20210129210600.0
000013714 0247_ $$2pmid$$apmid:21140012
000013714 0247_ $$2DOI$$a10.1039/c0mt00048e
000013714 0247_ $$2WOS$$aWOS:000286057100002
000013714 0247_ $$2Handle$$a2128/7274
000013714 0247_ $$2altmetric$$aaltmetric:21805483
000013714 037__ $$aPreJuSER-13714
000013714 041__ $$aeng
000013714 082__ $$a690
000013714 084__ $$2WoS$$aBiochemistry & Molecular Biology
000013714 1001_ $$0P:(DE-Juel1)VDB95271$$aQin, Z.$$b0$$uFZJ
000013714 245__ $$aTrace metal imaging with high spatial resolution: Applications in biomedicine
000013714 260__ $$aCambridge$$bRSC Publ.$$c2011
000013714 300__ $$a28 - 37
000013714 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000013714 3367_ $$2DataCite$$aOutput Types/Journal article
000013714 3367_ $$00$$2EndNote$$aJournal Article
000013714 3367_ $$2BibTeX$$aARTICLE
000013714 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000013714 3367_ $$2DRIVER$$aarticle
000013714 440_0 $$020981$$aMetallomics$$v3$$x1756-5901$$y1
000013714 500__ $$aThis work was supported by an AHA National Scientist Development Grant (0835268N).
000013714 520__ $$aNew generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.
000013714 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000013714 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000013714 588__ $$aDataset connected to Web of Science, Pubmed
000013714 650_2 $$2MeSH$$aAnimals
000013714 650_2 $$2MeSH$$aBiomedical Technology: methods
000013714 650_2 $$2MeSH$$aBrain: cytology
000013714 650_2 $$2MeSH$$aBrain: metabolism
000013714 650_2 $$2MeSH$$aBrain: pathology
000013714 650_2 $$2MeSH$$aCopper: analysis
000013714 650_2 $$2MeSH$$aCopper: chemistry
000013714 650_2 $$2MeSH$$aCytological Techniques: methods
000013714 650_2 $$2MeSH$$aGlioblastoma: metabolism
000013714 650_2 $$2MeSH$$aGlioblastoma: pathology
000013714 650_2 $$2MeSH$$aHumans
000013714 650_2 $$2MeSH$$aMass Spectrometry
000013714 650_2 $$2MeSH$$aMolecular Imaging: methods
000013714 650_2 $$2MeSH$$aRats
000013714 650_2 $$2MeSH$$aSpectrometry, X-Ray Emission
000013714 650_2 $$2MeSH$$aZinc: analysis
000013714 650_2 $$2MeSH$$aZinc: chemistry
000013714 650_7 $$07440-50-8$$2NLM Chemicals$$aCopper
000013714 650_7 $$07440-66-6$$2NLM Chemicals$$aZinc
000013714 650_7 $$2WoSType$$aJ
000013714 7001_ $$0P:(DE-HGF)0$$aCaruso, J.A.$$b1
000013714 7001_ $$0P:(DE-HGF)0$$aLai, B.$$b2
000013714 7001_ $$0P:(DE-Juel1)138474$$aMatusch, A.$$b3$$uFZJ
000013714 7001_ $$0P:(DE-Juel1)VDB96675$$aBecker, J.S.$$b4$$uFZJ
000013714 773__ $$0PERI:(DE-600)2474317-3$$a10.1039/c0mt00048e$$gVol. 3, p. 28 - 37$$p28 - 37$$q3<28 - 37$$tMetallomics$$v3$$x1756-5901$$y2011
000013714 8567_ $$uhttp://dx.doi.org/10.1039/c0mt00048e
000013714 8564_ $$uhttps://juser.fz-juelich.de/record/13714/files/FZJ-13714.pdf$$yPublished under German "Allianz" Licensing conditions on 2010-12-07. Available in OpenAccess from 2011-12-07$$zPublished final document.
000013714 8564_ $$uhttps://juser.fz-juelich.de/record/13714/files/FZJ-13714.jpg?subformat=icon-1440$$xicon-1440
000013714 8564_ $$uhttps://juser.fz-juelich.de/record/13714/files/FZJ-13714.jpg?subformat=icon-180$$xicon-180
000013714 8564_ $$uhttps://juser.fz-juelich.de/record/13714/files/FZJ-13714.jpg?subformat=icon-640$$xicon-640
000013714 909CO $$ooai:juser.fz-juelich.de:13714$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000013714 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000013714 915__ $$0StatID:(DE-HGF)0520$$2StatID$$aAllianz-OA
000013714 9141_ $$y2011
000013714 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000013714 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000013714 9201_ $$0I:(DE-Juel1)ZCH-20090406$$gZCH$$kZCH$$lZentralabteilung für Chemische Analysen$$x0
000013714 9201_ $$0I:(DE-Juel1)INM-2-20090406$$gINM$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
000013714 970__ $$aVDB:(DE-Juel1)125403
000013714 980__ $$aVDB
000013714 980__ $$aConvertedRecord
000013714 980__ $$ajournal
000013714 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000013714 980__ $$aI:(DE-Juel1)INM-2-20090406
000013714 980__ $$aUNRESTRICTED
000013714 980__ $$aJUWEL
000013714 980__ $$aFullTexts
000013714 9801_ $$aFullTexts
000013714 981__ $$aI:(DE-Juel1)ZEA-3-20090406
000013714 981__ $$aI:(DE-Juel1)INM-2-20090406
000013714 981__ $$aI:(DE-Juel1)ZCH-20090406