001     13714
005     20210129210600.0
024 7 _ |2 pmid
|a pmid:21140012
024 7 _ |2 DOI
|a 10.1039/c0mt00048e
024 7 _ |2 WOS
|a WOS:000286057100002
024 7 _ |2 Handle
|a 2128/7274
024 7 _ |a altmetric:21805483
|2 altmetric
037 _ _ |a PreJuSER-13714
041 _ _ |a eng
082 _ _ |a 690
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |0 P:(DE-Juel1)VDB95271
|a Qin, Z.
|b 0
|u FZJ
245 _ _ |a Trace metal imaging with high spatial resolution: Applications in biomedicine
260 _ _ |a Cambridge
|b RSC Publ.
|c 2011
300 _ _ |a 28 - 37
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 20981
|a Metallomics
|v 3
|x 1756-5901
|y 1
500 _ _ |a This work was supported by an AHA National Scientist Development Grant (0835268N).
520 _ _ |a New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |0 G:(DE-HGF)POF2-89571
|a 89571 - Connectivity and Activity (POF2-89571)
|c POF2-89571
|f POF II T
|x 1
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Biomedical Technology: methods
650 _ 2 |2 MeSH
|a Brain: cytology
650 _ 2 |2 MeSH
|a Brain: metabolism
650 _ 2 |2 MeSH
|a Brain: pathology
650 _ 2 |2 MeSH
|a Copper: analysis
650 _ 2 |2 MeSH
|a Copper: chemistry
650 _ 2 |2 MeSH
|a Cytological Techniques: methods
650 _ 2 |2 MeSH
|a Glioblastoma: metabolism
650 _ 2 |2 MeSH
|a Glioblastoma: pathology
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Mass Spectrometry
650 _ 2 |2 MeSH
|a Molecular Imaging: methods
650 _ 2 |2 MeSH
|a Rats
650 _ 2 |2 MeSH
|a Spectrometry, X-Ray Emission
650 _ 2 |2 MeSH
|a Zinc: analysis
650 _ 2 |2 MeSH
|a Zinc: chemistry
650 _ 7 |0 7440-50-8
|2 NLM Chemicals
|a Copper
650 _ 7 |0 7440-66-6
|2 NLM Chemicals
|a Zinc
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Caruso, J.A.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Lai, B.
|b 2
700 1 _ |0 P:(DE-Juel1)138474
|a Matusch, A.
|b 3
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB96675
|a Becker, J.S.
|b 4
|u FZJ
773 _ _ |0 PERI:(DE-600)2474317-3
|a 10.1039/c0mt00048e
|g Vol. 3, p. 28 - 37
|p 28 - 37
|q 3<28 - 37
|t Metallomics
|v 3
|x 1756-5901
|y 2011
856 7 _ |u http://dx.doi.org/10.1039/c0mt00048e
856 4 _ |u https://juser.fz-juelich.de/record/13714/files/FZJ-13714.pdf
|y Published under German "Allianz" Licensing conditions on 2010-12-07. Available in OpenAccess from 2011-12-07
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/13714/files/FZJ-13714.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/13714/files/FZJ-13714.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/13714/files/FZJ-13714.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:13714
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 2 _ |0 G:(DE-HGF)POF3-571
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Connectivity and Activity
|x 0
913 1 _ |0 G:(DE-HGF)POF2-89571
|a DE-HGF
|v Connectivity and Activity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0520
|2 StatID
|a Allianz-OA
920 1 _ |0 I:(DE-Juel1)ZCH-20090406
|g ZCH
|k ZCH
|l Zentralabteilung für Chemische Analysen
|x 0
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|g INM
|k INM-2
|l Molekulare Organisation des Gehirns
|x 1
970 _ _ |a VDB:(DE-Juel1)125403
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)INM-2-20090406
981 _ _ |a I:(DE-Juel1)ZCH-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21