001     137299
005     20210129212000.0
024 7 _ |a 10.1038/ncomms3351
|2 doi
024 7 _ |a WOS:000323753200012
|2 WOS
024 7 _ |a altmetric:1728192
|2 altmetric
024 7 _ |a pmid:23965846
|2 pmid
024 7 _ |a 2128/24482
|2 Handle
037 _ _ |a FZJ-2013-03754
082 _ _ |a 500
100 1 _ |a Warusawithana, M. P.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces
260 _ _ |a London
|c 2013
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1377596469_18660
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Emergent phenomena, including superconductivity and magnetism, found in the two-dimensional electron liquid (2-DEL) at the interface between the insulators lanthanum aluminate (LaAlO3) and strontium titanate (SrTiO3) distinguish this rich system from conventional 2D electron gases at compound semiconductor interfaces. The origin of this 2-DEL, however, is highly debated, with focus on the role of defects in the SrTiO3, while the LaAlO3 has been assumed perfect. Here we demonstrate, through experiments and first-principle calculations, that the cation stoichiometry of the nominal LaAlO3 layer is key to 2-DEL formation: only Al-rich LaAlO3 results in a 2-DEL. Although extrinsic defects, including oxygen deficiency, are known to render LaAlO3/SrTiO3 samples conducting, our results show that in the absence of such extrinsic defects an interface 2-DEL can form. Its origin is consistent with an intrinsic electronic reconstruction occurring to counteract a polarization catastrophe. This work provides insight for identifying other interfaces where emergent behaviours await discovery.
536 _ _ |a 421 - Frontiers of charge based Electronics (POF2-421)
|0 G:(DE-HGF)POF2-421
|c POF2-421
|f POF II
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Richter, C.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Mundy, J. A.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Roy, P.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Ludwig, J.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Paetel, S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Heeg, T.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pawlicki, A. A.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kourkoutis, L. F.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Zheng, M.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Lee, M.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Mulcahy, B.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zander, Willi
|0 P:(DE-Juel1)128648
|b 12
|u fzj
700 1 _ |a Zhu, Y.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Schubert, Jürgen
|0 P:(DE-Juel1)128631
|b 14
|u fzj
700 1 _ |a Eckstein, J. N.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Muller, D. A.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Hellberg, C. Stephen
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Mannhart, J.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Schlom, D. G.
|0 P:(DE-HGF)0
|b 19
773 _ _ |a 10.1038/ncomms3351
|g Vol. 4
|0 PERI:(DE-600)2553671-0
|p 9
|t Nature Communications
|v 4
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/137299/files/FZJ-2013-03754.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:137299
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)128648
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)128631
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-421
|2 G:(DE-HGF)POF2-400
|v Frontiers of charge based Electronics
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Peer review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21