000013730 001__ 13730
000013730 005__ 20210129210600.0
000013730 0247_ $$2DOI$$a10.1016/j.cpc.2010.12.017
000013730 0247_ $$2WOS$$aWOS:000287432200019
000013730 037__ $$aPreJuSER-13730
000013730 041__ $$aeng
000013730 082__ $$a004
000013730 084__ $$2WoS$$aComputer Science, Interdisciplinary Applications
000013730 084__ $$2WoS$$aPhysics, Mathematical
000013730 1001_ $$0P:(DE-Juel1)VDB54396$$aTrieu, B.$$b0$$uFZJ
000013730 245__ $$aEvent-based simulation of light propagation in lossless dielectric media
000013730 260__ $$aAmsterdam$$bNorth Holland Publ. Co.$$c2011
000013730 300__ $$a726 - 734
000013730 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000013730 3367_ $$2DataCite$$aOutput Types/Journal article
000013730 3367_ $$00$$2EndNote$$aJournal Article
000013730 3367_ $$2BibTeX$$aARTICLE
000013730 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000013730 3367_ $$2DRIVER$$aarticle
000013730 440_0 $$01439$$aComputer Physics Communications$$v182$$x0010-4655$$y3
000013730 500__ $$aRecord converted from VDB: 12.11.2012
000013730 520__ $$aWe describe an event-based approach to simulate the propagation of an electromagnetic plane wave through dielectric media. The basic building block is a deterministic learning machine that is able to simulate a plane interface. We show that a network of two of such machines can simulate the propagation of light through a plane parallel plate. With properly chosen parameters this setup can be used as a beam splitter. The modularity of the simulation method is illustrated by constructing a Mach-Zehnder interferometer from plane parallel plates, the whole system reproducing the results of wave theory. A generalization of the event-based model of the plane parallel plate is also used to simulate a periodically stratified medium. (C) 2010 Elsevier B.V. All rights reserved.
000013730 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0
000013730 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000013730 588__ $$aDataset connected to Web of Science
000013730 650_7 $$2WoSType$$aJ
000013730 65320 $$2Author$$aComputer simulation
000013730 65320 $$2Author$$aEvent-by-event simulation
000013730 65320 $$2Author$$aInterference
000013730 65320 $$2Author$$aOptics
000013730 7001_ $$0P:(DE-Juel1)138295$$aMichielsen, K.$$b1$$uFZJ
000013730 7001_ $$0P:(DE-HGF)0$$aDe Raedt, H.$$b2
000013730 773__ $$0PERI:(DE-600)1466511-6$$a10.1016/j.cpc.2010.12.017$$gVol. 182, p. 726 - 734$$p726 - 734$$q182<726 - 734$$tComputer physics communications$$v182$$x0010-4655$$y2011
000013730 8567_ $$uhttp://dx.doi.org/10.1016/j.cpc.2010.12.017
000013730 909CO $$ooai:juser.fz-juelich.de:13730$$pVDB
000013730 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000013730 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000013730 9141_ $$y2011
000013730 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000013730 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000013730 970__ $$aVDB:(DE-Juel1)125420
000013730 980__ $$aVDB
000013730 980__ $$aConvertedRecord
000013730 980__ $$ajournal
000013730 980__ $$aI:(DE-Juel1)JSC-20090406
000013730 980__ $$aUNRESTRICTED