FTP/P1-05

Comparative Study of Chemical Methods for Fuel Removal

A. Kreter¹, S. Möller¹, C. Schulz¹, D. Douai², H.G. Esser¹, A. Lyssoivan³, V. Philipps¹,

U. Samm¹, G. Sergienko¹, T. Wauters³ and TEXTOR Team

¹Institute for Energy and Climate Research - Plasma Physics, Forschungszentrum Jülich, Association EURATOM-FZJ, TEC, Germany

²CEA, IRFM, Association Euratom-CEA, 13108 St Paul lez Durance, France

³LPP-ERM/KMS, Association Euratom-Belgian State, 1000 Brussels, Belgium

e-mail: A.Kreter@fz-juelich.de

Introduction

Fuel retention in ITER

- · Wall materials, i.e. carbon, are eroded and transported by
- Materials accumulate in remote areas
- Co-deposition of tritium, i.e. in a-C:T lavers
- Gaps are additional remote areas, distributed allover the vessel
- Total area of gaps in ITER ~1000 m²
- Fuel removal techniques need to be developed and nized, i.e. for gap cleaning

Limiter tile from TEXTOR after one campaign

Techniques for fuel removal and vessel wall conditioning

- Application of heat loads Desorb tritium from the surface or to ablate re-
- Disruption cleaning Photonic cleaning by flash lamps and lasers
- Physical desorption Ion-induced desorption Conditioning
- plasma discharge
- Exchange of hydrogen isotopes Bring non-radioactive hydrogen isotopes in contact with the tritium containing surface in the form of:

- Based on the chemical reactivity of the removal gases towards the hydrogen isotope and the wall materials as carbon Activation energy is provided by
- Active wall heating
- . Thermo-Chemical Removal (TCR), also known as baking in reactive gases Energetic incident particles
- · Conditioning plasma discharge: GDC, ICWC, ECWC

Studies in Forschungszentrum Jülich have been concentrated in recent years on chemical methods including

◆ Thermo-Chemical Removal (TCR) ◆ Glow-Discharge Conditioning (GDC) ♦ Ion-Cyclotron Wall Conditioning (ICWC)

Chemical erosion of carbon by hydrogen and oxygen

Chemical erosion of carbon:

formation of volatile compounds with impinging species

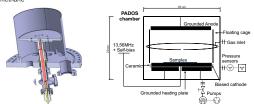
$$H + C \rightarrow C_xH_y$$

 $O + C \rightarrow CO_xCO_y$

Co-deposited D/T is released as hydrogen molecule

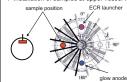
hydrocarbon or water Removal rates are functions of

- Surface temperature: According to activation energy of the process
- Impact energy: Enhancement by bombardment with energetic particles (e.g. ions) → Deeper penetration
- → Creation of active sites for other species (synergistic


Aim of the study

- · Optimize the removal efficiency of each method · Characterize application restrictions of methods
- · Find alternatives to oxygen as removal gas
- · Optimize removal from remote areas including gaps
- · Propose an integral scheme of fuel removal in carbon containing environment

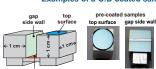
Experimental


Laboratory device PADOS

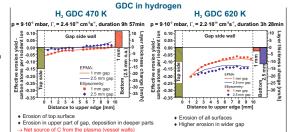
- Used for coating of samples by amorphous deuterated layers a-C:D and for TCR
- ♦ Capacitive RF discharge between two circular electrodes, Ø 25 cm, distance 7 cm Option of biasing for lower electrode
- . Lower plate is heatable, e.g. for TCR
- a-C:D layers are produced by Plasma Enhanced Chemical Vapour Deposition (PECVD) in

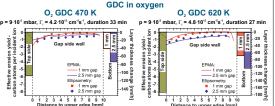
TOMAS toroidal plasma device

- Toroidal vacuum chamber with R = 0.78 m, a = 0.26 m, B₁ ~ 0.1 T
- RF-assisted DC glow discharge between cylindrical anode and grounded wall as cathode: $p \sim 10^{-2} \text{ mbar}$, $U_{co} = 300 \text{ V}$, $I_{co} \sim 1 \text{ A}$, $\Gamma_i \sim 10^{14} \text{ cm}^{-2} \text{s}^{-1}$, B, off
- ECR discharge at 2.45 GHz, P = 1.5 kW, p ~ 10⁴ mbar, Γ_i ~ 10¹⁵-10¹⁶ cm⁻²s⁻¹
- Installation of samples at upper vessel wall

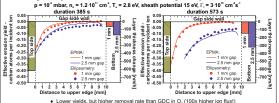


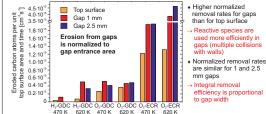
Tokamak TEXTOR equipped with ICRF antennae


- R = 175 cm, a = 46 cm
- · Circular plasma cross-section
- · All limiters made of carbon
- Test limiter locks to expose samples
- Frequency 25 38 MHz ◆ Typical ICWC power 2 x 50 kW
- ◆ Operational at B_i = 0.2-2.5 T



Examples of a-C:D coated samples


Removal from castellated structures


. Higher erosion than in hydrogen, especially top side and gap bottom

O, ECR poloidal 470 K O, ECR poloidal 620 K

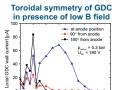
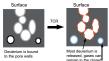

- . Removal at 620 K slightly more efficient that 470 K
- Significant erosion in deep regions of gap despite B field

Figure of merit for cleaning efficiency of GDC and ECR in gaps

Forschungszentrum Jülich | Institute of Energy and Climate Research - Plasma Physics | Association EURATOM - FZJ

Influence of magnetic field



- ◆ TCR and ICWC are compatible with high magnetic field. GDC is not
- ◆ GDC can be operated at B field of up to ~3 mT · GDC is compatible with residual fields from
- ferritic inserts planned for ITER to reduce B

Thermo-chemical removal (TCR)

- · Compatible with gap geometry
- ◆ TCR at 350°C in oxygen is at least one order of magnitude more efficient than in ammonia ◆ TCR in ammonia caused delamination of layer
- → Potential source of dust
- → Can by utilized for first mirror cleaning in ITER
- ◆ TCR in oxygen requires elevated wall temperature of >300°C. Arrhenius-type temperature
- Removal is homogeneous in the entire layer due to its porosity
- → Removal rate is proportional to inventory

TCR: mechanism of deuterium removal

Summary

Removal rates are given for oxygen at wall temperature of 350°C

7,00					
Removal method	Compatibility with B field	Minimum required wall temperature	Homogeneity of removal	D removal rate [at./m²h]	C removal rate [nm/h]
TCR (baking)	Yes	300°C	High, also for remote areas	3·10 ²¹ (for 200 nm)	50 (for 200 nm)
GDC	OK for <3 mT	Room temperature	High for plasma- wetted areas, limited for remote areas	7·10 ²¹	170
ICWC/ECWC	Yes	Room	Limited on a part of	20·10 ²¹	600

Projection for ITER

Typical deposition rates in a tokamak discharge

2 - 3 nm/s at top surface and upper edge of gap and 0.5 nm/s on gap bottom

→ 1000 nm deposition at top surface and at upper edge of gap and

hydrogen-GDC: 35 nm/h at top surface, 20 nm/h at upper edge and 2 nm/h on gap bottom → 100 hours to remove the layer from gap bottom deposited within one ITER puls

exygen-GDC: 170 nm/h at top surface, 30 nm/h at upper edge and 70 nm/h on gap bottom → 30 hours to remove the layer deposited within one ITER pulse

oxygen-ECR; 600 nm/h at top surface and at upper edge and 150 nm/h on gap bottom → 1.5 - 2 hours to remove the layer deposited within one ITER pulse

oxygen-TCR: removal rate is proportional to layer thickness: 50 nm/h at 200 nm, uniformly → for layer of >3 µm removal rate is higher than ECR.

Proposed combined removal scenario, applied once a week

- Start cleaning of thick layers ~10-100 μm by oxygen-TCR for ~24 hours
- Continue cleaning of remaining layer by oxygen-ICWC and / or oxygen-GDC for ~10 hours

Thick layer can be removed within one weekend