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1. Introduction 
 
 Excitations in crystals can be described using formalism of dispersion relations of the 
normal modes or quasi-particles (phonons, magnons, etc.). These relations contain the most 
detailed information on the intermolecular interactions in solids. 
 The result of a neutron scattering experiment is the distribution of neutrons that have 
undergone an energy exchange �� = Ei - Ef,  and a wave vector transfer, Q = ki – kf , after 
scattering by the sample.: 
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coh is coherent scattering cross section, 
inc is incoherent scattering cross section. They are 
constants that can be found in tables (http://www.ncnr.nist.gov/resources/n-lengths/). S(Q,�) 
functions depend only on the structure and dynamics of the sample and do not depend on the 
interaction between neutrons and the sample. Sinc(Q,�) reflects individual motions of atoms. 
Scoh(Q,�) provides the information on the structure and collective excitations in the sample.  

 
 
 
 The triple axis spectrometer is designed for measuring the Scoh(Q,�) in monocrystals. 
Therefore this function is of special interest for us. 

Energy transfer  
�� = Ei - Ef 

 
Momentum transfer 
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If ki = kf   
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2. Elastic scattering and Structure of Crystals 
 

In the case of coherent elastic scattering, when � = 0 (ki = kf ) only neutrons, that 
fulfill the Brags law are scattered by the sample: 

                                                   n� = 2dhklsin�hkl,                                                                      (2) 
where � is a wavelength of neutron, dhkl  is a distance between crystal planes described by 
corresponding Miller indexes hkl. �hkl denotes the angle between incoming (outgoing) scattering 
beam and the (hkl) plane. 
 For the analysis of the scattering processes in crystals it is convenient to use the concept of the 
reciprocal space. For an infinite three dimensional lattice, defined by its primitive vectors a1, 
a2 and a3, its reciprocal lattice can be determined by generating three reciprocal primitive 
vectors, through the formulae: 
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Note the denominator is the scalar triple product. Geometrically, the scalar triple product 
a1(a2�a3) is the volume of the parallelepiped defined by the three vectors.  
 Let us imagine the lattice of points given by the vectors g1, g2 and g3 such that � is an 
arbitrary linear combination of these vectors: 

                         321 ggg� lkh ��	 ,       (4) 

where h,k,l are integers. Every point of the reciprocal lattice, characterized by � corresponds 
in the position space to the equidistant set of planes with Miller indices (h,k,l) perpendicular 
to the vector �. These planes are separated by the distance   

hkl
hkld

�
�2

	         (6) 

 The Brag’s condition for diffraction can be expressed in the following vector form:  

Q = �hkl        (7) 
A useful construction for work with wave vectors in reciprocal space is the Brillouin 

zone (BZ). The BZ is the smallest unit in reciprocal space over which physical quantities such 
as phonon or electron dispersions repeat themselves. It is constructed by drawing vectors from 
one reciprocal lattice points to another and then constructing lines perpendicular to these 
vectors at the midpoints. The smallest enclosed volume is the BZ.  
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Fig.1 Real (left) and reciprocal (right) two dimensional lattices and BZ (gray area) 
 
 
3. Inelastic Neutron Scattering and Phonons 
 

 
Fig.2  Phonon dispersion curves for Ge. 

 
Atomic vibrations in a crystal can be analyzed in terms of lattice waves which are the 

normal modes of the crystal. The frequencies of normal modes � are related to their wave 
vectors q (q = 2�/�) by the dispersion relations 

      � = �j(q),          (7) 
where the index j denotes a particular branch. For a crystal with N atoms per primitive unit 
cell there are 3N branches of the frequency spectrum. Three branches are acoustic ones for 
which � � 0 as q � 0; the other 3N-3 are branches are optical branches for which � tends to 
a finite value as q � 0. In certain directions of high symmetry the normal vibrations are 
strictly transverse or longitudinal. The energy quantum �� is called phonon in analogy to the 
phonon for electromagnetic waves.  
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 If we want to measure the frequency of a phonon � for a certain q, the basic scattering 
conditions must fulfil the energy and momentum conservation laws: 

)()(
2

22 q���
�	�	� fi

n
fi kk

m
EE        (9) 

Q = ki – kf = G � q 

When the above conditions are fulfilled, the function Scoh(Q,�) shows a peak. We can held Q 
constant and vary ki (kf) to measure intensity of scattered neutrons at different energy 
transfers. In order to keep Q, and thus q, constant while varying ki, the scattering angle must 
change as well as the relative orientation of the crystal with respect to kf.  
 The intensity of neutrons scattered by phonon is proportional to the square of the 
dynamical structure factor F(Q): 
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Where sum is taken over all atoms in unit cell with coordinates rk , exp(-W) is a Debye-
Waller factor, ek denotes the polarization vector of the phonon. The scalar product � �jqeQ ��  
means that only lattice vibrations polarized along the momentum transfer are visible. This 
makes possible to distinguish transverse (TA) and longitudinal (LA) acoustic modes. For TA 
modes e�q, and therefore Q must be perpendicular to q, while for a LA mode, one must take 
Q�� q (Fig. 3) 

 

 
Fig. 3 Top: LA and TA phonons. Bottom: Neutron scattering diagram in the reciprocal space 
for TA (left ) and LA phonons  
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4. Triple Axis Spectrometer PUMA  
The three-axis instrument is the most versatile instrument for use in inelastic scattering 
because it allows one to probe nearly any coordinates in energy and momentum space in a 
precisely controlled manner. The three axes correspond to the axes of rotation of the 
monochromator (axis1), the sample (axis2), and the analyzer (axis3). The monochromator 
crystal selects neutrons with a certain energy from the white neutron beam emanating from 
the reactor. The monochromatic beam is then scattered off from the sample (second axis). The 
neutrons scattered by the sample can have a different energy from those incident on the 
sample. The energy of these scattered neutrons is then determined by the analyzer crystal 
(third axis). All three angles (�M, �S, �A) can vary during an experiment, the sample table and 
analyzer are equipped with air pads, so that they can glide over the “Tanzboden” (dancing 
floor). Below, we describe in detail each component of a triple-axis spectrometer. 
 
Monochromator 
A crystal monochromator is used to select neutrons with a specific wavelength. Neutrons with 
this wavelength interact with the sample and are scattered off at a similar (elastic) or different 
wavelength (inelastic). The energy of the neutrons both incident on and scattered from the 
sample is determined by Bragg reflection from the monochromator and analyzer crystals, 
respectively. For a specific Bragg plane (hkl) characterized by an interplanar spacing dhkl, the 
crystal is rotated about a vertical axis. A pyrolytic graphite with d002 =  3.35 Å (PG(002)) and 
a copper with d220 = 1.28 Å (Cu(220)) monochromators are available at PUMA. The angular 
range of the monochromator 2�M is of 15o - 115°. The PG(002) is usually used for energies 
below 50meV (�>1.3Å). For higher incident energies the Cu(220) can be used. 
Sample table 
The sample table from the company Huber provides a possibility to vary independently both 
2�s and �S. It is equipped with a goniometer moving the sample in the three translation axes x, 
y and z and tilting. The tilt angle is ±15°. Single crystal experiments can be performed with an 
Euler cradle at PUMA. The sample environment includes magnets, pressure cells, cryostats 
and high temperature furnace. 
Analyzer 
Like the monochromator, the PG(002) analyzer consist of 20x5 separate analyzer crystal 
plates are mounted in an aluminum frame. There is an option to measure with the flat or 
horisontaly and verticaly focused analyser. The angular range of the analysator 2�M is of  
-130o - 130°. 
Detector and monitor 
The detector consists of five counter tubes which are filled with a 3He pressure of 5 bar. To be 
able to monitor the neutron flux incident on the sample, a low-efficiency neutron counter 
monitor is usually placed before the sample. Such a monitor is required so that flux variation 
caused by, for example, the reactor power fluctuations and the change in reflectivity of the 
monochromator with neutron wavelength can be automatically corrected for.  
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Fig.4 PUMA spectrometer. 
 
 
 
Slits, Collimators, Filter 

Additional components like slits or collimators are used to define the beam cross 
section. Collimators (�1- �4) are used for the improvement of the resolution and to specify 
the beam divergence. They consist of multiple parallel arranged Gd2O3 coated foils with a 
defined angle to the beam. The angular divergence of the collimator in the horizontal plane � 
is defined by the distance between foils �d and the length of the collimator l (tan � = �d / l). 
Different collimators with a horizontal divergence between 10’ and 60’ are available at the 
instrument.  

One of the problems of the TAS method is the possible presence of higher harmonics 
in the neutron beam. Higher harmonics arise from higher order (hkl) in Bragg’s law (2). This 
means that if the monochromator (analyzer) crystal is set to reflect neutrons with a 
wavelength of � from a given (hkl) plane, it will also reflect neutrons with wavelength �/n. 
This leads to the appearance of several types of spurious peaks in the observed signal. 
Different filters are used to eliminate the high-order neutrons and to reduce the background. 
There are a sapphire filter (Al2O3) and an erbium filter (Er) at PUMA. They are installed in 
front of the monochromator. Sapphire filter is used wavelengths ��> 1 Å and reduce the 
background inducing by the epithermal neutrons. Erbium filter is suitable as �/2 filter for � 
between 0.5 and 1Å as well as �/3 filter for � between 0.7 and 1.6Å. 
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Components Axis PUMAs 
notation 

Description 

Monochromator M �M mth Monochromator Theta 
 2�M mtt Monochromator 2Theta 
  mtx, mty Monochromator Translation x-, y- direction 
  mgx, mgy Monochromator Goniometer x-, y- direction 
  mfh, mfv Monochromator Focus horizontal, vertical 
Sample S �S psi Sample Theta 
 2�S phi Sample 2Theta 
  stx, sty, stz Sample Translation x-, y-, z- direction 
  sgx, sgy Sample Goniometer x-, y- direction 
Analyzer A �A ath Analyzer Theta 
 2�A att Analyzer 2Theta 
  atx, aty Analyzer Translation x-, y- direction 
  agx, agy Analyzer Goniometer x-, y- direction 
  afh Analyzer Focus horizontal 
Collimators  alpha1 – alpha4 Collimation 
 
 
5. Experiment Procedure 
 
The aim of the experiment is to measure acoustic phonons in a germanium sample. The 
phonons will be measured for [110] (LA) and [001] (TA) directions in [220] BZ.  
The experimental procedure shall contain the following steps: 
 
Sample alignment 
It is very difficult to align a sample with triple axis spectrometer, if the sample orientation is 
absolutely unknown. A sample must be pre-aligned, this means that the vertical axis of the 
sample must be known and roughly perpendicular to the ‘Tanzboden’. Than we shall do the 
following steps: 
- Inform the control program of the spectrometer about a scattering plane of the sample. One 
must set two reciprocal vectors (in our case [110] and [001]) laying in the scattering plane. 
- Drive spectrometer (�M, 2�M, �S, 2�S, �A, 2�A,) to the position corresponding to [220] 
reflection. 
- Scan �S and find the Brag’s peak.  
- Scan corresponding goniometer axes to maximize intensity of the peak. 
- Do the same for other reflection [004]. 
- Change the offset of the �S so that the nominal �S values correspond to intensity maxima for 
the above reflections. 
 
Phonons measurements 
For our measurements we will chose the const-kf configuration with kf = 2.662 Å-1 (Ef = 14.68 
meV). This means that we will scan the energy transfer �� = Ei – Ef by varying incident 
energy Ei (ki). We are going to use PG(002) monochromator. 
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For LA phonon we will do constant-Q scans in the energy transfer range �� = 0 – 21 meV (0 
– 8 THz) for the following points:  
Q(r.l.u.) = (2.1, 2.1, 0), (2.2, 2.2, 0), (2.3, 2.3, 0), (2.4, 2.4, 0), (2.5, 2.5, 0), (2.6, 2.6, 0), (2.7, 
2.7, 0), (2.75, 2.75, 0).  
 
For TA phonon we will do constant-Q scans in the energy transfer range �� = 0 – 15 meV (0 
– 3.6 THz) for the following points:  
Q(r.l.u.) = (2, 2, 0.2), (2, 2, 0.3), (2, 2, 0.4), (2, 2, 0.5), (2, 2, 0.7), (2, 2, 0.8), (2, 2, 0.9), (2, 2, 
1).  
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Fig 5 Elements of PUMA 
 

a) PG Analyzer b) Soller collimator 

c) Sample table d) Shutter, filters and collimators 

e) Analyzer and Detector f) Detector, consists of 5 3He tubes 
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6. Preparatory Exercises 

1. Calculate angles �M, 2�M, �S, 2�S for the reflections [220] and [004] of germanium (cubic-
diamond, a = 5.66 Å), supposing that kf = 2.662 Å-1 = const, monochromator is PG(002), and 
check, if this reflections are measurable with our experimental setup. 
2. Before doing a scan it is important to check that all point in Q - �� space are available, 
instrument angles do not exceed high or low limits. Also, an experimental scientist must be 
sure that the moving instrument will not hit walls or any equipment. Calculate instrument 
parameters (�M, 2�M, �S, 2�S) for the momentum transfers Q (r.l.u.) = (2.1, 2.1, 0), (2.75, 
2.75, 0) and energy transfers �� = 0 and 21 meV. This can be done using an online triple-axis 
simulator:  
http://www.ill.eu/instruments-support/computing-for-science/cs-software/all-software/vtas/ 
 
7. Experiment-Related Exercises 
 

1. Plot obtained spectra for each Q as a function of energy (THz). Fit the spectra with 
Gaussian function and find centers of the phopon peaks. The obtained phonon 
energies plot as a function of q. 

2. Why triple-axis spectrometer is the best instrument to study excitations in single 
crystals? 

3. During this practicum we do not consider some problems that are very important for 
planning experiments with a triple axis instrument such as resolution and intensity 
zones [2]. Persons who have a strong interest to the triple-axis spectroscopy should 
study these topics by oneself. Advanced students should be able to explain our choice 
of Brillouin zone and parameters of scans for the phonon measurements. 

 
Useful formula and conversions 
 
1 THz = 4.1.4 meV 
 
n� = 2dhklsin�hkl, 

hkl
hkld

�
�2

	  

 
f0 kkQ �	  

�2cos222
fifi kkkkQ ��	  

 

If ki = kf  (elastic scattering) �
�
�� sin4sin2 		 ikQ  

 
E [meV] = 2.072 k2 [Å-1] 
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1. Applications of neutron powder diffraction 

 
Powder diffraction reveals information on the phase composition of a sample and the 
structural details of the phases. In particular, the positions of the atoms (crystallographic 
structure) and the ordering of magnetic moments (magnetic structure) can be obtained. In 
addition to the structural parameters, also some information on the microstructure (crystallite 
sizes/microstrains) can be obtained. The knowledge of the structure is crucial to understand 
structure – properties – relationships in any material. Thus, neutron powder diffraction can 
provide valuable information for the optimisation of modern materials. 
 
 
Typical applications: 
 

Material Task 
Lithium-ion battery materials Positions of Li atoms, structural changes/phase 

transitions at the electrodes during operation, 
diffusion pathways of Li atoms 

Hydrogen storage materials Positions of H atoms, phase transformations 
during hydrogen absorption/desorption 

Ionic conductors for fuel cells positions of O/N atoms, thermal displacement 
paramteters of the atoms and disorder at 

different temperatures, 
diffusion pathways of O/N atoms 

Shape memory alloys stress-induced phase transforamtions, stress-
induced texture development 

materials with CMR effect magnetic moment per atom at different 
temperatures 

catalysers Structural changes during the uptake of sorbents
Piezoelectric ceramics Structural changes during poling in electric field, 

positions of O atoms 
Nickel superalloys Phase transformations at high temperatures, 

lattice mismatch of phases 
magnetic shape memory alloys Magneto-elastic effects, magnetic moment per 

atom at different temperatures and magnetic 
fields 
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2. Basics of Powder Diffraction 
 
Diffraction can be regarded as detection of interference phenomena resulting from coherent 
elastic scattering of neutron waves from crystalline matter. Crystals can be imagined by a 
three-dimenional periodic arrangement of unit cells. The unit cell is characterised by the 
lattice parameters (dimensions and angles) and the positions of atoms or molecules.  
For diffraction experiments the probe should have a wavelength comparable to interatomic 
distances: this is possible for X-rays, electrons or neutrons.  
 
 
Structure factor 
 
The structure factor describes the intensity of Bragg reflections with Miller indexes (hkl), 
based on the particular atomic arrangement in the unit cell 
 

�  �
	

	
n

j
jjjhkl RHiTbF

1
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where 
Fhkl: structure factor of Bragg reflection with Miller indexes hkl.  
n: number of atoms in unit cell 
bj: scattering lengths (in case of neutron scattering) or atomic form factor (in case of X-ray 
diffraction) of atom j 
Tj: Debye Waller factor of atom j 
 
The scalar product H Rj consists of the reciprocal lattice vector H and the vector Rj, revealing 
the fractional atomic coordinates of atom j in the unit cell. 
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Thus, the structure factor can also be given as follows: 
 

�  �
	

��	
n

j
jjjjjhkl lzkyhxTbF

1
exp  

The intensity of a Bragg reflection is proportional to the square of the absolute value of the  
structure factor: 2

hklFI &  
 
 
Debye-Waller Factor 
 
The Debye-Waller Factor describes the decrease in the intensity of Bragg reflections due to 
atomic thermal vibrations. 
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vector uj reflects the thermal displacements of atom j 
 
 
Braggs' Law 
 
 
Braggs' Law provides a relation between distances of lattice planes with  Miller indexes hkl, 
i.e. dhkl, and the scattering angle 2� of the corresponding Bragg peak. Braggs' law can be 
illustrated in a simplified picture of diffraction as reflection of neutron waves at lattice planes 
(figure 4). The waves which are reflected from different lattice planes do interfere. We get 
constructive interference, if the path difference between the reflected waves corresponds to an 
integer multiple of the wavelength. 
The condition for constructive interference (= Braggs' law) is then: 
 

�� ndhkl 	sin2  
 

 
Figure 1: Illustration of Bragg’s law: constructive interference of neutron waves, reflected 
from lattice planes, where �, 2� are Bragg angles, 2�=2dhklsin� is the path difference and 
2�=n� is the constructive interference. 
 
Applying Bragg’s law one can derive the lattice spacings (“d-values“) from the scattering 
angle positions of the Bragg peaks in a constant-wavelength diffraction experiment. With the 
help of d-values a qualitative phase analysis can be carried out. 
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Ewald's sphere 
 
The Ewald's sphere provides a visualisation of diffraction with help of the reciprocal lattice. 
At first, we introduce the scattering vector Q and the scattering triangle (Figure 2). The 
incident neutron wave is described by a propagation vector ki, the scattered wave is given by 
kf. In the case of elastic scattering (no energy transfer) both vectors ki and kf  have the same 
length which is reciprocal to the wavelength. 
 

�
�2

		 fi kk  

 
 
remark:  

The length of the wave vectors are sometimes given as 
�
1

		 fi kk  (This definition is found 

esp. in crystallographic literature, while the other one is more common for physists).  
 
The angle between vectors ki and kf is the scattering angle 2�. The scattering vector   Q is the 
given by the difference between ki and kf : 
 
Q= k f � ki  

�
�� sin4	Q  

 

 
Figure 2: Illustration of scattering vector and scattering angle resulting from incident and 
scattered  waves. 
 
In the visualisation of the diffraction phenomena by Ewald the scattering triangle is 
implemented into the reciprocal lattice of the sample crystal – at first, we consider diffraction 
at a single crystal (Figure 3). Note that the end of the incident wave vector coincides with the 
origin of the reciprocal lattice. Ewald revealed the following condition for diffraction: we 
have diffraction in the direction of kf, if its end point (equivalently: the end point of scattering 
vector Q) lies at a reciprocal lattice point hkl. All possible kf, which fulfil this condition, 
describe a sphere with radius '�(�, the so called Ewald's sphere. Thus we obtain a hkl 
reflection if the reciprocal lattice point hkl is on the surface of the Ewald's sphere. 
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Figure 3: Illustration of diffraction using the Ewald's sphere. 
 

Here, the radius of  Ewald's sphere is given by 1/� (For
�
�2

	ik we obtain a radius of '�(�). 

 
We receive the following condition for diffraction: the scattering vector Q should coincide 
with a reciprocal lattice vector Hhkl (x 2�): 
 

hklHQ
��

�2	 ; xxx
hkl clbkahH ����

��	 ; 
hkl

x
hklhkl d

dH 1
		

�
 

From this diffraction condition based on the reciprocal lattice we can derive Bragg's law:  
 

���
�
��� 	�	�	 sin22sin42 hkl

hkl
hkl d

d
HQ
��

 

 
 
The Ewald's sphere is a very important tool to visualize the method of single crystal 
diffraction: At a random orientation of a single crystalline sample a few reciprocal lattice 
points might match the surface of Ewald's sphere, thus fulfil the condition for diffraction. If 
we rotate the crystal, we rotate the reciprocal lattice with respect to the Ewald's sphere. Thus 
by a stepwise rotation of the crystal we receive corresponding reflections.     
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Powder Diffraction in Debye-Scherrer Geometry 
 
In a polycrystalline sample or a powder sample we assume a random orientation of all 
crystallites. Correspondingly, we have a random orientation of the reciprocal lattices of the 
crystallites. The reciprocal lattice vectors for the same hkl, i.e. Hhkl, describe a sphere around 
the origin of the reciprocal lattice. In the picture of Ewald's sphere we observe diffraction 
effect, if the surface of the Ewald's sphere intersects with the spheres of Hhkl vectors. For a 
sufficient number of crystallites in the sample and a random distribution of grain orientations, 
the scattered wave vectors (kf) describe a cone with opening angle 2� with respect to the 
inident beam ki.  
In the so called Debye-Scherrer Geometry a monochromatic beam is scattered at a cylindrical 
sample. The scattered neutrons (or X-rays) are collected at a cylindrical detector in the 
scattering plane. The intersection between cones (scattered neutrons) and a cylinder (detector 
area) results in segments of rings (= Debye-Scherrer rings) on the detector. By integration of 
the data along the Debye-Scherrer rings one derives the conventional constant-wavelength 
powder diffraction pattern, i.e. intensity as a function of the scattering angle 2�.  
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Figure 4: Illustration of powder diffraction in Debye-Scherrer Geometry. On the left: cones of 
neutrons scattered from a polycrystalline sample are detected in the scattering plane. On the 
right: resulting powder diffraction pattern. 
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Figure 5: Two dimensional diffraction data (detector height vs. scattering angle 2�), collected 
at high-resolution powder diffractometer  SPODI, illustrating the Debye-Scherrer rings of a 
corundum sample. 
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Relations between Bragg positions and lattice parameters 
 
With the help of Braggs law one can derive the lattice spacings “d-values” directly from the 
positions of Bragg reflections. The d-values are related with the lattice parameters of the unit 
cell (the cell dimensions a,b,c and the cell angles �)*)+) and the Miller indexes (hkl) of the 
corresponding reflections. In the following, the relations are provided for the different crystal 
systems. 
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3. Information from powder diffraction experiments 
 

 
Figure 6: on the left: typical powder diffraction pattern. On the right: zoom on a single Bragg 
peak. 
 
In the following, we will consider the information which can be derived from different 
elements of the diffraction patterns. 
 
Positions (scattering angles) of Bragg reflections  
 
� phase identification (from d-values) 
� lattice parameters 
� symmetry information (space group) by lattice parameters and selection rules (systematic 

extinction of reflections) 
 
 
Intensity of Bragg reflections 
 
� crystallographic structure 

� positions of atoms (fractional atomic coordinates) 
� occupancies of atoms on their sites 
� thermal displacement parameters 

� magnetic structure 
� magnetic lattice (propagation vector) 
� magnetic symmetry (space group) 
� magnetic moment per atom 

� quantitative phase analysis 
� preferred orientation effects 
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Profiles of reflections 
 
The reflection profiles result in a convolution of the instrumental resolution function with 
broadening effects of the sample 
 
� microstructural information 

� microstrains 
� crystallite sizes 

 
 
Modulation/Profile of Background 
 
� short range order 
� disorder 
� amorphous contents 
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4. Evaluation of Powder Diffraction Data 
 
The methods of data treatment can be classified in analysis of phase composition or phase 
transformation, structure solution and structure refinement.  
Qualitative phase analysis is based on the determination of d-values and relative intensities (in 
particular intensities of strong reflections have to be considered). The phase identification is 
supported by crystallographic data bases (ICDD, ISCD), literature data and information from 
other methods (for instance, analysis of the chemical composition). Such kind of phase 
analysis is however typically carried out with X-ray diffraction.  
The majority of neutron powder diffraction studies is based on experiments at various 
temperatures to investigate phase transformation behaviour as a function of temperature. 
There is an increasing demand for parametric studies, i.e. diffraction studies under various 
environmental conditions (temperature, electric or magnetic field, mechanical stress, gas 
atmosphere...) with particular attention to reaction pathways/reaction kinetics. This kind of 
investigations require in general high-intensity powder diffraction. 
Powder diffracton data can be used either for phase identification or for the refinement of 
structural parameters, such as lattice parameters, fractional atomic coordinates, atomic 
occupancies and atomic displacement parameters by the full profile Rietveld analysis. In the 
Rietveld method, the full diffraction pattern is calculated by a structure model, taking into 
account the above mentioned structural parameters, as well as reflection profile parameters, 
instrumental parameters and background parameters. Using least-squares method, the 
experimental data can be fitted to the model in a stepwise refinement of the parameters. The 
complexity of the structures is directly dependent on the instrument specification, in 
particular, high-resolution powder diffractometers are designed for structure refinements on 
complex systems.   
Besides structure refinement, also structure solution can be done based on powder diffraction 
patterns by various methods. 
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Figure 7: Data treatment of a measurement on the ferroelectric Pb0.99La0.01Zr0.54Ti0.46O3, 
carried out at 5 K at diffractometer SPODI (FRM II):  Diffraction pattern including 
experimental data, calculated data by Rietveld fit, Bragg reflection positions of the phases 
(space groups CC and Cm)  and difference plot (between experimental and calculated data). - 
zoom into the diffraction pattern, hightlighting a superlattice reflection of the CC phase. - 
structure model of the  CC  phase, view in the [001]c direction -  structure model of the  CC  
phase, view in the [010]c direction. In particular, the superstructure in the tiltings of oxygen 
octahedra can be seen. 
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5. Comparison between Neutron and X-ray diffraction 
 
  
I) X-rays are scattered at electrons, neutrons are scattered at nuclei  
 
In case of X-ray scattering, the scattering power of an atom (described by the atomic form 
factor f) is proportional to the number of electrons.  
Neutrons are scattered at nuclei. Thus the interaction (described by the scattering length b) 
varies between different isotopes of an element. Scattering length of neighbouring elements in 
the periodic system can be very different. 
 
implications: 
 
Localisation of light elements next to heavier ones  
 
X-ray diffraction is a powerful tool to determine the positions of heavy atoms, but the 
localisation of light atoms in the vicinity of much heavier atoms is often difficult or related 
with high uncertainties. Neutron diffraction is advantageous to localise light atoms such as H, 
D, Li, C, N, O. 
 
 
Localisation of neighbouring elements in the periodic table 
 
Neighbouring elements in the periodic table can hardly be distinguished by means of X-ray 
diffraction. Neutrons are advantageous for such cases: examples: Mn – Fe - Co – Ni or O – N. 
 
 
Q-dependence of intensities 
 
Since the size of electron clouds is comparable to the wavelength, the atomic form factor 
depends on sin�(��or�Q,�Therefore the intensities of X-ray reflections decrease significantly 
for increasing Q (increasing scattering angles 2���. 
As the range of the neutron–nuclei–interaction is by orders of magnitude smaller than the 
wavelengths of thermal neutrons, scattering lengths do not depend on Q. As a consequence, 
neutron diffraction patterns do not show a decrease of Bragg reflection intensities for higher 
scattering angles, enabling the analysis of larger Q-ranges. In particular, neutron diffraction is 
advantageous for the analysis of thermal displacement parameters. 
 
 
II) neutrons interact weakly with matter 
 
implications: 
 
sample volume 
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The flux from neutron sources much lower compared to X-ray tubes or even synchrotrons. In 
addition, neutrons interact weakly with matter. Therefore, much larger sample amounts are 
required compared to X-ray diffraction (“grams instead of milligrams”). On the other hand 
this weak interaction results in much higher penetration depths of neutrons, compared to 
laboratory X-ray diffractometers. Thus, polycrystalline bulk samples can be investigated. 
Furthermore, using large sample volumes avoids possible problems due to preferred 
orientation effects. In principle, bulk samples can also be investigated with high-energy 
synchrotron radiation. Anyhow in special cases the very low scattering angles related to low 
wavelength (in high-energy synchrotron studies) can cause difficulties. 
 
Sample environments 
 
The large penetration depths of neutrons facilitate the usage of sample environments like 
cryostat, furnaces, magnets... In general neutron scattering experiments are more powerful 
applying high or low temperatures. On the other hand, the small sample volume required for 
synchrotron studies gives better possibilities for high-pressure experiments. 
 
 
III) neutrons exhibit a magnetic moment 
 
Though neutrons do not have an electric charge, the internal charge distribution due to its 
three quarks along with the spin result in a magnetic moment of the neutron. 
 
implications: 
 
magnetic scattering 
 
The interaction between the magnetic moment of the neutron and a possible magnetic 
moment of an atom results in a magnetic scattering contribution, incidentally in the same 
order of magnitude as the nuclear scattering contribution. The magnetic scattering 
contribution can be easily detected by means of neutron diffraction. In synchrotron diffraction 
studies, possible magnetic scattering events are by several orders of magnitude weaker than 
the Thomson scattering.  
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6. Setup of the high-resolution neutron powder diffractometer SPODI at 
FRM II 
 
The main components of a constant-wavelength neutron powder diffractometer are: source,  
monochromator, sample and  detector. Between these components collimation systems are 
installed which have high impact on the instrumental resolution function and the neutron flux.  
 

thermal

neutrons

neutron guide  

monochromator  
angle: 2�M 

mosaicity: * 

secondary collimator  
�2  

sample

detector 

primary collimator  
�1 

detector collimator
�3 

source

 
Figure 8: illustration of a typical instrumental layout, introducing the parameters used by 
Caglioti to describe the instrumental resolution function. 
 
 
Instrumental resolution function 
 
As shown by Calgioti, the instrumental resolution function of a constant-wavelength powder 
diffractometer can be approximated by: 

WVUFWHM ��	 �� tantan2  
 
with the Caglioti parameters: 
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in this approach it is assumed that all components have Gaussian transmission profiles. The 
resolution function is determined by the horizontal beam divergences �-)��')��.) the 
monochromator angle 2�m and the mosaicity of the monochromator *��(Figure 8). As the 
impact of these parameters on the instrumental resolution function can be estimated, the 
Caglioti equations help to design an instrument to achieve a designated performance. 
However, it should be emphasised that in the approximations of Caglioti only the horizontal 
beam divergences are taken into account, neglecting vertical beam divergences by a vertical 
focusing monochromator or a vertical divergent neutron guide. Those effects are taken into 
account by ray-tracing methods, which allow a detailed modelling of the individual 
components. 
The powder diffractometer SPODI has been designed to achieve both high resolution and 
good profile shape. In its standard configuration (highest resolution mode) SPODI uses a 
unique very high monochromator take-off angle of 155° along with a large monochromator-
to-sample distance of 5 meters. An evacuated beam tube of about 4 m in length is located 
between the monochromator and the sample which also controls both vertical and horizontal 
neutron beam divergences at the sample position. Thus the natural neutron beam divergence 
in horizontal plane is 25’ only. It can be reduced down to even 5’ by optional Soller 
collimators in front of the sample. 
 
 
Monochromator 
 
At constant-wavelength diffractometers, the monochromatisation is perfomed using crystals 
followings Bragg's equation: 
 

�� 	sin2 hkld , where the effective transmission band is determined by a derivative 

MM ��
�
� cot�	

�  

 
The width of the wavelength band ��(� �strongly �depends on the monochromator angle 
2�m and the mosaicity of the monochromator *�/0���m��. Thus these parameters have �a 
major impact on the instrumental resolution function and the flux on the sample.  
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Typically, the monochromator crystals are installed at a vertical focusing unit of 200 – 300 
mm, allowing optimization of the intensity distribution at the sample position with respect to 
the monochromator – sample distance or the sample height. On the other hand, the vertical 
beam divergence results in a smearing of the Debye-Scherrer rings along the detector height 
(this effect depends also on the sample height). At the high-resolution powder diffractometer 
SPODI, 15 Germanium wafer-stack crystals with a (551)-orientation are used. Different 
wavelengths between 1.0 and 2.6 Å can easily be selected by rotation of the monochromator 
unit (without changing the monochromator take-off angle 2�m), i.e. by selecting different (hkl) 
reflection planes. In general, large wavelengths are advantageous to investigate structures 
exhibiting large d-values. This is the case for large unit cells, but in particular for magnetic 
ordering. With decreasing wavelengths, larger Q-values can be achieved. Thus, with lower 
wavelengths, more reflections can be observed in the same scattering angle range. Low 
wavelengths are in particular advantageous for the analysis of thermal displacement 
parameters or static disorder phenomena. 
 
 
Detector array 
 
At constant-wavelength diffractometers the data are collected in an angle-dispersive manner 
at equidistant 2� points. Detector systems based on 3He have been most commonly used due 
to their very high efficiency. Now, the world wide shortage of 3He demands and promotes the 
development of alternatives, in particular scintillator based systems.  
Classical high-resolution powder diffractometers, such as D2B (ILL), SPODI (FRM II), BT1 
(NIST), ECHIDNA (ANSTO) use multidetector/multicollimator systems. The data are 
collected by 3He tubes while the beam divergence is limited by Soller collimators. Such 
systems enable high Q-resolution over a broad scattering angle regime, while the resolution 
does not depend on the sample diameter. On the other hand, a multidetector concept requires 
a data collection by stepwise positioning of the detector array to collect the full diffraction 
pattern. Therefore, kinetic measurements are not feaible due to the fact that the sample must 
not change during the collection of a pattern. 
The detector array of SPODI consists of 80 3He tubes, which are position sensitive in the 
vertical direction. Thus, two-dimensional raw data are obtained, which allow to rapid check 
for sample crystallinity, alignment and possible preferred orientation effects. The 
conventional diffraction patterns (intensity vs. scattering angle 2�) are derived from the two-
dimensional raw data by integration along the Debye-Scherrer rings. 
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7. Experiment: Phase- and structure analysis of lead titanate at various 
temperatures 

samples  

Lead zirconate titanates PbZr1-xTixO3 („PZT“) exhibit piezo-, pyro- and ferroelectric 
properties. Piezoelectricity describes the generation of an electric polarisation as a 
consequence of a mechanical deformation – or the other way round the development of a 
macroscopic strain by an electric field. The crystallographic condition of piezoelectricity is 
the lack of an inversion center: as the balance points of negative and positive charge do not 
coincide the displacements of the ions in the electric field results in a polarization. 
Pyroelectrticity refers to a spontaneous polarization of a material as a function of temperature. 
Ferroelectrics are special pyroelectric materials, in which the polarization can be switched by 
an electric field, resulting in a ferroelectric hysteresis. 

The electromechanical properties of PbZr1-xTixO3 can be understood by their phase 
transformation behaviour. At high temperatures they exhibit the perovskite structure with 
simple cubic symmetry (space group Pm-3m). Because of its symmetry (inversion center) this 
phase is not piezoelectric but paraelectric. During cooling, titanium-rich samples undergo a 
phase transition to a tetragonal phase (space group P4mm). This phase transformation is 
accompanied by atomic displacements. In particular, the Ti4+/Zr4+ are shifted in the opposite 
direction than  O2- ions, resulting in a dipole moment or a spontaneous polarisation. The 
material exhibits ferroelectric behaviour, with a polar axis in the direction of the pseudocubic 
c-axis, i.e. [001]c . Zirconium rich samples undergo a phase transition towards a 
rhombohedral phase (space group R3m) during cooling. In this case, the atomic displacements 
result in a polar axis in direction [111]c with respect to the parent pseudocubic lattice. 
Materials PbZr1-xTixO3 with compositions (Zr/Ti ratios) close to the so called morphotropic 
phase boundary between rhombohedral and tetragonal phase, show the highest piezoelectric 
response, i.e. the largest macroscopic strain as a function of the applied electric field. These 
compositions are therefore most interesting for technological applications. The piezoelectric 
properties can be modified further by adding doping elements to substitute Pb2+ or Ti4+/Zr4+ 
ions. 
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Figure 9: Structure models of the paraelectric cubic phase and the ferroelectric rhombohedral 
and tetragonal phases.  
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Figure 10: Phase diagram of PbZr1-xTixO3, illustrating regions of phase stability for 
paraelectric cubic phase PC, ferroelectric rhomboedral phases FR(HT) (= high temperature) and 
FR(LT) (= low temperature) and ferroelectric tetragonal phase FT. From B. Jaffe, W. R. Cook, 
H. Jaffe, Piezoelectric Ceramics and Related Issues, Academic Press, London, 1971. 

PbZr1-xTixO3, find extensive applications 

1 transformation from mechanical in electric energy: ignition elements, lighters 
1 transformation from electric in mechanical energy (actuators): loudspeakers, sonar 

transducers, Active control of vibration 
1 transformation from mechanical force in an electric signal (sensors): strain gauges, 

microphones 
1 data storage, information technology: capacitors, F-RAM 
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Experiment 

In the frame of the practical course, the temperature-dependent phase transformation behavior 
of a  PbZr1-xTixO3 with a composition on the tetragonal side should be investigated. 
Diffraction patterns at different temperature steps between room temperature and 600 °C will 
be collected with a vacuum high-temperature furnace. The structural changes at different 
temperatures will be investigated by an analysis of the lattice parameters. Based on the 
experimental data, the relations between the structural changes and the corresponding 
physical properties can be discussed. 

Following experimental procedures will be carried out 

1 sample preparation, filling the sample material into a sample can, adjustment of the 
sample stick, installation of the sample stick into the furnace 

1 short test measurement to check the sample adjustment and data quality 
1 editing a program to run the data collection at various temperatures and starting the 

scans  
1 data reduction: Derivation of diffraction patterns from the two-dimensional raw data 
1 data analysis: analysis of the lattice parameter changes as a function of temperature 
1 discussing the results with respect to structure – properties relationships 
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1 Introduction 

Many properties of solid matter like their mechanical, thermal, optical, electrical and 
magnetic properties depend strongly on their atomic structure. Therefore, a good 
understanding of the physical properties needs not only the knowledge about the particles 
inside (atoms, ions, molecules) but also about their spatial arrangement. For most cases 
diffraction is the tool to answer questions about the atomic and/or magnetic structure of a 
system. Beyond this, neutron diffraction allows to answer questions where other techniques 
fail. 

2 Crystallographic Basics 

In the ideal case a complete solid matter consists of small identical units (same content, same 
size, same orientation like sugar pieces in a box). These units are called unit cells. A solid 
matter made of these cells is called a single crystal. The shape of a unit cell is equivalent to a 
parallelepiped that is defined by its base vectors a1, a2 und a3 and that  can be described by its 
lattice constants a, b, c; �, * and +  (pic. 1). Typical lengths of the edges of such cells are 
between a few and a few ten Ångström (1Å=10–10 m). The combination of various restrictions 
of the lattice constants between a � b � c; ��� *� � +�� 90° (triclinic) and a = b = c; ��	�*� = +� 
= 90° (cubic) yields seven crystal systems. The request to choose the system with the highest 
symmetry to describe the crystal structure yields fourteen Bravais lattices, seven primitive and 
seven centered lattices. 

Fig. 1: Unit cell with |a1|=a, |a2|=b, |a3|=c, �)�*)�+ 
 

Each unit cell contains one or more particles i. The referring atomic positions xi=xi*a1 + yi*a2 
+ zi*a3 are described in relative coordinates 0 � xi; yi; zi < 1. The application of different 
symmetry operations (mirrors, rotations, glide mirrors, screw axes) on the atoms in one cell 
yield the 230 different space groups (see [1]). 
 
The description of a crystal using identical unit cells allows the representation as a 
threedimensional lattice network. Each lattice point can be described as the lattice vector t = 
u*a1 + v*a2 + w*a3; u, v, w 2 Z. From this picture we get the central word for diffraction in 
crystals; the lattice plane or diffraction plane. The orientations of these planes in the crystal 
are described by the so called Miller indices h, k and l with h, k, l 2 Z (see pic. 2). The 
reciprocal base vectors a*1, a*2, a*3 create the reciprocal space with: a*i * aj  = 3ij with 3ij=1 
for i=j and 3ij=0 for i�� j. Each point Q=h*a*1 + k*a*2 + l*a*3 represents the normal vector of 
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a (hkl) Plane. Each plane cuts the crystal lattice along its base vectors a1, a2 and a3 at 1/h*a1, 
1/k*a2 and 1/l*a3. A Miller index of zero means that the referring axis will be cut in infinity. 
Thus, the lattice plane is parallel to this axis.  

Fig. 2: Different lattice planes in a crystal lattice, a3 = viewing direction 
 
The atoms in a unit cell are not rigidly fixed at their positions. They oscillate around their 
positions (e.g. thermal excitation). A simple description for this is the model of coupled 
springs. In this model atoms are connected via springs whose forces describe the binding 
forces between the atoms (e.g. van der Waals, Coulomb, valence). The back driving forces of 
the springs are proportional to the deviation xi of the atoms from their mean positions and to 
the force constant D, thus. F = -D*�x (harmonic approximation). 
Therefore, the atoms oscillate with xi = Ai*sin(�*t) around their mean positions with the 
frequency � and the amplitude Ai. Both, � and Ai are influenced by the force constant Dj of the 
springs and the atomic masses mi of the neighbouring atoms. The resulting lattice oscillations 
are called phonons in reference to the photons (light particles) in optics, which as well 
transport energy in dependence of their frequency. A more complex and detailed description 
of phonons in dependence on the lattice structure and the atomic reciprocal effects is given in 
lattice dynamics. In the harmonic approximation the displacements of an atom can be 
described with an oszillation ellipsoid. This ellipsoid describes the preferred spacial volume 
in which the atom is placed. Its so called mean square displacements (MSD) Ui

jk represent the 
different sizes of the ellipsoid along the different main directions j, k in the crystal. The 
simplest case is a sphere with the isotrope MSD Bi. In the next paragraph MSD are discussed 
from the point of view of diffraction analysis. 
A full description of a single crystal contains information about lattice class, lattice constants 
and unit cell, space group and all atomic positions and their MSD. If the occupancy of one or 
more positions is not exactly 100%, e.g. for a mixed crystal or a crystal with deficiencies 
there has to be used also an occupancy factor.  
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3 Structure Determination with Diffraction 
3.1 Introduction 
Diffraction means coherent elastic scattering of a wave on a crystal. Because of the quantum 
mechanical wave/particle dualism x-rays as well as neutron beams offer the requested wave 
properties: 
 
Electrons: E = h�; ��= c/� 
Neutrons: Ekin = 1/2 * mn*v2 = h� = p2/2mn; ��= h/p; p ~4(mn kB T) 
 
h: Planck’s constant; �: oscillation frequency; �: wavelength; c: light speed; p: impact; mn: 
neutron mass; kB: Boltzmann constant; T: temperature 
 
Only the cross section partners are different (x-rays: scattering on the electron shell of the 
atoms, neutrons: core (and magnetic) scattering) as explained in detail below. In scattering 
experiments informations about structural properties are hidden in the scattering intensities I.  
In the following pages we will discuss only elastic scattering (�in=�out). The cross section of 
the radiation with the crystal lattice can be described as following: 
Parallel waves of the incoming radiation with constant � are diffracted by lattice planes which 
are ordered parallel with a constant distance of d. This is very similar to a light beam reflected 
by a mirror. The angle of the diffracted beam is equal to the angle of the incoming beam, thus 
the total angle between incoming and outgoing beam is 25 (see fig. 3). 

Fig. 3: Scattering on lattice planes 
 
The overlap of all beams diffracted by a single lattice plane results in constructive 
interference only if the combination of the angle 5, lattice plane distance d and wavelength 
��meet Braggs law: 

2d sin5 = � 
 
The largest distance dhkl = |Q| of neighboured parallel lattice planes in a crystal is never larger 
than the largest lattice constant dhkl � max(a; b; c). Therefore, it can only be a few Å�or less. 
For a cubic unit cell (a = b = c; � = * = + = 90°) this means:  
dhkl = a/4 (h2+k2+l2) 
 
With increasing scattering angle also the indices (hkl) increase while the lattice plane 
distances shrink with a lower limit of dmin = �/2. Therefore, scattering experiments need 
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wavelengths � in the same order of magnitude of the lattice constants or below. This is equal 
to x-ray energies of about 10 keV or neutron energies about 25 meV (thermal neutrons).  
 
Ewald Construction: In reciprocal space each Bragg reflex is represented by a point Q = 
h*a*1 + k*a*2 + l*a*3. A scattered beam with the wave vector k fulfills Braggs law if the 
relationship k = k0 + Q , |k|=|k0|=1/� is true, as shown in fig. 4. During an experiment the 
available reciprocal space can be described by an Ewald sphere with a diameter of 2/� and the 
(000)-point as cross point of k0 direction and the centre of the diameter of the sphere. The 
rotation of the crystal lattice during the diffraction experiment is equal to a synchronous 
movement of the reciprocal lattice around the (000)-point. If Braggs law is fulfilled, one point 
(h k l) of the reciprocal lattices lies exactly on the Ewald sphere. The angle between the k-
vektor and the k0-vektor is 25. The limited radius of 1/� of the Ewald sphere limits also the 
visibility of (h k l) reflections to |Q| < 2/�.  

 
Fig. 4: Ewald construction 

 
Determination of the Unit Cell: Following Braggs law the scattering angle 25 varies (for 
�=const.) according to the lattice distance dhkl. Thus for a given � and known scattering angles 
25 one can calculate the different d values of the different layers in the lattice of a crystal. 
With this knowledge is is possible to determine the lattice system and the lattice constants of 
the unit cell (although not always unambigously!).  
 
Atomic Positions in the Unit Cell: The outer shape of a unit cell does not tell anything about 
the atomic positions xi=(xi yi zi) of each atom in this cell. To determine the atomic positions 
one has to measure also the quantities of the different reflection intensities of a crystal. This 
works because of the relationship between the intensities of Bragg reflections and the specific 
cross section of the selected radiation with each element in a unit cell. Generally one can use 
the following formula for the intensity of a Bragg reflection (h k l) with Q (kinetic scattering 
theory): 
 
Ihkl ~ |Fhkl|2 with Fhkl =�n

i=1 si(Q) exp(2�6(hxi+kyi+lzi)) 
 

Q 
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The scattering factor F is a complex function describing the overlap of the scattering waves of 
each atom i (n per unit cell). si(Q) describes the scattering strength of the i-th atom on its 
position xi in dependence of the scattering vector Q, which depends on the character of cross 
section as described below. 
In this context one remark concerning statistics: For measurements of radiation the statistical 
error 
 is the square root of the number of measured events, e.g. x-ray or neutron particles. 
Thus, 100 events yield an error of 10% while 10,000 events yield an error of only 1%! 
 
Mean Square Displacements (MSD): Thermal movement of atoms around their average 
positions reduce the Bragg intensities during a diffraction experiment. The cause for this 
effect is the reduced probability density and therefore reduced cross section probability at the 
average positions. For higher temperatures (above a few Kelvin) the MSD Bi of the atoms 
increase linearly to the temperature T, this means B ~ T. Near a temperature of 0 K the MSD 
become constant with values larger than zero (zero point oscillation of the quantum 
mechanical harmonic oscillator). 
Thus, the true scattering capability si of the  i-th atom in a structure has to be corrected by an 
angle-dependent factor (the so called Debye-Waller factor): 
 
si(Q) � si(Q) * exp(-Bi(sin 5Q/�)2) 
 
This Debye-Waller factor decreases with increasing temperatures and yields an attenuation of 
the Bragg reflection intensities. At the same time this factor becomes significantly smaller 
with larger sin5(�~|Q|. Therefore, especially reflections with large indices loose a lot of 
intensity. The formula for anisotropic oscillations around their average positions looks like 
this: 
 
si(Q) � si(Q) * exp(-2�2(Ui

11 h2a*2 + Ui
22 k2b*2 + Ui

33 l2c*2 + 
                                   + 2Ui

13 hl a*c* + 2Ui
12 hk a*b* + 2Ui

23kl b*c*)) 
 
The transformation between B and Ueq (from the Uij calculated isotropic MSD for a sphere 
with identical volume) yields  B = 8�2Ueq. 
For some structures the experimentally determined MSD are significantly larger than from the 
harmonic calculations of the thermal movement of the atoms expected. Such deviations can 
have different reasons: Static local deformations like point defects, mixed compounds, 
anharmonic oscillations or double well potentials where two energetically equal atomic 
positions are very near to each other and therefore distribute the same atom over the crystal 
with a 50%/50% chance to one or the other position. In all those cases an additional 
contribution to the pure Debye-Waller factor can be found which yields an increased MSD. 
Therefore in the following text only the term MSD will be used to avoid misunderstandings. 

3.2 Comparison of X-ray and Neutron Radiation 

X-Ray Radiation interacts as electromagnetic radiation only with the electron density in a 
crystal. This means the shell electrons of the atoms as well as the chemical binding. The 
scattering capability s (atomic form factor f(sin5(�)) of an atom depends on the number Z of 
its shell electrons (f(sin(5=0)/�) =Z). To be exact, f(sin(5)/�) is the Fourier transform of the 
radial electron density distribution ne(r): f(sin(5)/�)=s ��0 4�2ne(r) sin(μr)/μr dr with 
μ=4�sin(5)/�,�Heavy atoms with many electrons contribute much stronger to reflection 
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intensities (I~Z2) than light atoms with less electrons. The reason for the sin5(�-dependence 
of f is the diameter of the electron shell, which has the same order of magnitude as the 
wavelength �. Because of this there is no pointlike scattering centre. Thus, for large scattering 
angles the atomic form factors vanish and also the reflection intensities relying on them. The 
atomic form factors are derived from theoretical spherical electron density functions (e. g. 
Hartree-Fock). The resulting f(sin5(�)-curves of all elements (separated for free atoms and 
ions) are listed in the international tables. Their analytical approximation can be described by 
seven coefficients (c; ai; bi; 1� i � 3) , see [1]. 
 
Neutron Radiation radiation interacts with the cores and the magnetic moments of atoms. 
The analogon to the x-ray form factor (the scattering length b) is therefore not only dependent 
on the element but the isotope. At the same time b-values of elements neighboured in the 
periodic table can differ significantly. Nevertheless, the scattering lengths do not differ around 
several orders of magnitude like in the case of the atomic form factors f . Therefore, in a 
compound with light and heavy atoms the heavy atoms do not dominate necessarily the Bragg 
intensities. Furthermore the core potential with a diameter about 10-15Å is a pointlike 
scattering centre and thus the scattering lengths bn become independent of the Bragg angle 
and sin5(� respectively. This results in large intensities even at large scattering angles. The 
magnetic scattering lengths bm can generate magnetic Bragg intensities comparable in their 
order of magnitude to the intensities of core scattering. On the other hand side the magnetic 
scattering lengths are strongly dependent on the sin5(� value due to the large spacial 
distribution of magnetic fields in a crystal. Therefore, it is easy to measure magnetic 
structures with neutrons and to separate them from the atomic structure. 
 
Comparison: In summary in the same diffraction experiment the different character of x-ray 
and neutron radiation yield different pieces of information that can be combined. x-rays yield 
electron densities in a crystal while neutron scattering reveals the exact atomic positions. This 
fact is important because for polarised atoms the core position and the centre of gravity of 
electron densities are not identical any more. In compounds with light an heavy atoms 
structural changes driven by light elements need additional diffraction experiments with 
neutrons to reveal their influence and accurate atomic positions respectively. One has to take 
into account also that for x-rays intensitied depend twice on sin5(�. Once bye the atomic form 
factor f, and twice by the temperature dependent Debye-Waller factor (see above). The first 
dependence vanishes if using neutron diffraction with b=const. and decouples the structure 
factors from the influence of the MSD. In general this yields much more accurate MSD Uij 
especially for the light atoms and might be helpful to reveal double well potentials. 

3.3 Special Effects 

From the relation I~|F|2 one can derive that the scattering intensities of a homogenous 
illuminated sample increases with its volume. But there are other effects than MSD that can 
attenuate intensities. These effects can be absorption, extinction, polarization and the Lorentz 
factor: 
 
Absorption can be described by the Lambert-Beer law: 
 
I = I0 exp(-μx) , μ/cm-1 = linear absorption coefficient, x/cm = mean path through sample  
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The linear absorption coefficient is an isotropic property of matter and depends on the 
wavelength and kind of radiation. For x-rays penetration depths are only a few millimetre or 
below (e.g. for silicon with μMoK�=1.546 mm-1, μCuK�=14.84 mm-1 with penetration depths of 
3 mm and 0.3 mm respectively). This limits transmission experiments to sample diameter of 
typically below 0.3 mm. To correct bias of intensities due to different scattering paths through 
the sample one has to measure accurately the sample size in all directions. Even for sphere 
liek samples the mean path lenghts depend on 257 In addition the sample environment must 
have an extraordinary small absorption  
Thermal neutrons have for most elements a penetration depth of several centimeters. Thus, 
sample diameters of several millimeters and large and complex sample environments 
(furnaces, magnets, etc.) can be used. On the other hand side one needs sufficiently large 
samples for neutron diffraction which is often a delicate problem.  
 
Extinction reduces also radiation intensities. But the character is completely different form 
that of absorption. In principle extinction can be explained quite easily by taking into account 
that each diffracted beam can be seen as a new primary beam for the neighbouring lattice 
planes. Therefore, the diffracted beam becomes partially backscattered towards the direction 
of the very first primary beam (Switch from kinetic to dynamic scattering theory!). Especially 
for very strong reflections this effect can reduce intensities dramatically (up to 50% and 
more). Condition for this effect is a merely perfect crystal.  
Theoretical models which include a quantitative description of the extinction effect were 
developed from Zachariasen (1962) and Becker and Coppens [2, 3, 4, 5, 6]. These models 
base on an ideal spherical mosaic crystal with a very perfect single crystal (primary 
Extinction) or different mosaic blocks with almost perfect alignment (secundary Extinction) 
to describe the strength of the extinction effect. In addition, it is possible to take into account 
anisotropic extinction effect if the crystal quality is also anisotropic. Nowadays extinction 
correction is included in most refinement programs [7]. In general extinction is a problem of 
sample quality and size and therefore more commonly a problem for neutron diffraction and 
not so often for x-ray diffraction with much smaller samples and larger absorption.  
 
Polarisation: X-ray radiation is electromagnetic radiation. Therefore, the primary beam of an 
x-ray tube is not polarized. The radiation hits the sample under an diffraction angle of 5 
where it can be separated into two waves of same intensity, firstly with an electrical field 
vector parallel E|| and secondly perpendicular E� towards the 5-axis. Whilst the radiation 
with E|| will not be attenuated the radiation with E� will be attenuated with E� � cos(25) E�. 
The polarization factor P for the attenuation has then the following formula (I  ~ E2): 
 
P = (1+cos(25)2)/2 
 
Additional optical components like monochromator crystals also have an impact on the 
polarization and have to be taken into account accordingly. 
  
Lorentz factor: The Lorentz factor L is a purely geometrical factor. It describes that during 
an �- and 5-scan respectively of Bragg reflections towards higher 25 values for the same 
angular speed ��/�t an effectively elongated stay of the sample in the reflection position 
results.: 
 
L = 1/sin(25) 
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This has to be taken into account for any kind of radiation in an diffraction experiment. 
 

3.4 Summary of Theory of Method 

The different interactions of x-ray and neutron radiation with the atoms in a crystal make 
neutrons in general the better choice for a diffraction experiment. But on the other hand one 
has to take into account the available flux of x-rays and neutrons respectively. The flux of 
modern neutron sources like the Heinz Maier-Leibnitz neutron source (FRM II) is spread 
around a broad spectrum of neutron energies. In a sharp band of energies/wavelengths, e.g. 
	�/�<10-3, there is the flux of neutrons several order of magnitude smaller than the flux of  x-
rays of a corresponding synchtrotron source or x-ray tube in the laboratory. The reason for 
this is the fact that in an x-ray tube most x-rays are generated in a small energy band, the 
characteristic lines of the tube target (K�, K*, etc.). Additional metal foil used as filter allow 
to cut off unwanted characteristic lines which yields quasi monochromatic radiation of a 
single wavelength.  
To use neutrons around a small energy band one has to use monochromator crystals. This 
reduces significantly the number of available neutrons for the diffraction experiment. Thus, 
the weak flux of neutrons and the weak cross section of neutrons with matter has to be 
compensated with large sample sizes of several millimeters. For the same reason the 
monochromatization of the neutrons is normally chosen to be not too sharp (resolution about  
	�/�
10-2 for neutrons, 	�/�
10-5 – 10-6 for synchrotron). 
 

3.5 From Measurement to Model 

To get a structural model from the experimentally collected integral Bragg intensities one 
needs several steps in advance. Firstly on has to make sure that all reflections are measured 
properly (no shading, no �/2-contamination, no Umweganregung (Renninger-effect) ). 
Damaged reflections have to be excluded from further treatment. 
During data refinement not only the quantities of the relative intensities but also their errors 
are taken into account. The total statistical error 
 of an integral intensity Iobs of a single 
reflection is calculated as following: 
 

' = Iobs + Ibackground + (k Itotal)2 
 
The part 
8

' = Itotal, Itotal = Iobs + Ibackground refers to the error caused by counting statistics. It 
contains as well the effective intensity Iobs as well as the contribution of the background. But 
there are other effects that influence the reproducibility of a measurement (and thus the total 
error), e.g. specific errors of the instrumental adjustment. Those errors are collected in the so 
called McCandlish-Factor k and contribute to the total error. Therefore, the total error cannot 
drop below the physically correct limit of the experiment and thus the impact of strong 
reflections does not become exaggerated in the refinement. The determination of k is done by 
measurent the same set of reflections several times during an experiment (the so called 
standard reflections). The mean variation of the averaged value represents k. In addition, the 
repeated measurement of standard reflections offers the opportunity to notice unwanted 
changes during experiment like structural changes or release from the sample holder.  
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To make sure the comparisability of all reflections with each other, all intensities and errors 
are normalized to the same time of measurement (or monitor count rate) and undergo the 
Lorentz and (in the x-ray case) polarization correction. 
Finally in advance of the data refinement there can be done an numerical (e.g. with DataP, 
[8]) or an empirical absoprtion if necessary. The quality of a measurement is checked in 
advance of the data refinement by comparing symmetry equivalent reflections and systematic 
extinctions to confirm the Laue group and space group symmetry. The result is written as 
internal R-value: 
 
Rint = (�k=1

m(�j=1
n

k (<Ik>- Ij)2))/ (�k=1�j=1
n

k(Ij
2)k) 

 
Rint represents the mean error of a single reflection j of a group k of nk symmetry equivalent 
reflections, corresponding to its group and the total number m of all symmetrically 
independent groups. Therefore Rint is also a good mark to check the absorption correction. 
After these preliminary steps one can start the final data refinement. 
At the beginning one has to develop a structural model. The problem with that is that we 
measure only the absolut values |Fhkl| and not the complete structure factor Fhkl = |Fhkl|exp(69) 
including its phase 9. Therefore, generally the direct fouriertransform of the reflection 
information Fhkl from reciprocal space into the density information 0 in the direct space 
(electron density for x-rays, probability density of atomic cores for neutrons) with 
 
0(x) ~ �h�k�l Fhkl exp(-2�(hx+ky+lz)) 
 
not possible. This can be done only by direct methods like patterson, heavy atom method or  
anomal dispersion for x-rays. 
In the so called refinement program a given structural model (space group, lattice constants, 
atomic form factors, MSD, etc.) are compared with the experimental data and fitted. In a leas 
squares routine those programs try to optimize (typically over several cycles) the free 
parameters to reduce the difference between the calculated structure factors Fcalc and 
intensities |Fcalc|2 respectively and the experimentally found Fobs and  |Fobs|2 respectively. To 
quantisize the quality of measurement there are several values in use: 
 
1. unweighted R-value: Ru = �hkl |Fobs

2-Fcalc
2|/�hkl Fobs

2 
This value gives the alignment of the whole number of reflections without their specific 
errors.  
 
2. weighted R-value: Rw = (�hkl w (Fobs

2-Fcalc
2)2)/�hkl w Fobs

4 
This value represents the alignment of the whole number of reflections including their 
specific errors or weights (w~1/
2). Sometimes weights are adopted in a way to suppress 
unwanted influence of the refinement algorithm by weak or badly defined reflections.  Be 
aware that such corrections have to be done extremely carefully because otherwise the 
refinement adopts the data to the selected structural model and not the model to the 
experimental data! 
  
3. Goodness of Fit S: S2 =(�hkl w (Fobs

2-Fcalc
2)/(nhkl-reflections - nfree parameter) 

 
S should have a value near one if the weighting scheme and the structure model fit to the 
experimental data set.  
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4 Sample Section 

4.1 Introduction 
La2-xSrxCuO4 is one of the cuprate superconductors with K2NiF4- structure for whose 
discovery the noble prize was granted in 1988 (Bednorz and Müller [9]) . Pure La2CuO4 is an 
isolator. Doping with earth alcali metals (Ca2+, Sr2+, Ba2+) on the La3+ lattice positions 
generates in dependence of the degree of doping superconductivity. Sr doping of x=0.15 
yields a maximum Tc of 38 K. 
 
Pure La2CuO4 undergoes at Tt-o=530 K a structural phase transition from the tetragonal high 
temperature phase (HTT) 
 
F4/mmm: a=b=5.384 Å, c=13.204 Å, �=*=+=90° at T=540 K 
 
to the orthorhombic low temperature phase (LTO)  
 
Abma: a=5.409 Å, b=5.357 Å, c=13.144 Å, �=*=+=90° at room temperature.  
 
The phase transition temperature Tt-o drops for La2-xSrxCuO4 with increased doping and 
disappears above x=0.2. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.. 6 left: J. Birgenau, G. Shirane, HTC Superconductors I, World Scientific (1989) 
Fig.. 6 right: Stuctural parts of La2CuO4 in the LTO phase 
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Fig. 7 left: tetragonal HTT phase   Fig. 7 right: orthorhombic´LTO phase 

 
4.2 Twinning 
During the transition into the low temperature phase the CuO6 octahedrons are tilted around 
their [010] axis. Thus, the two axes of identical length in the HTT phase, a1 and a2, are not 
equal in the LTO phase anymore. Instead, the longer one becomes the new a axis, the shorter 
one becomes the b axis. Whether a1 or a2 becomes the new a axis depends only on the real 
structure of the crystal, for instance grain boundaries or point defects. Therefore, one can find 
two equivalent crystallographic space groups in the LTO phase:  
 
Abma (a1 � a, a2 � b) and Bmab (a1 � b, a2 � a) 
  
For the structure factors in the LTO is valid: 
 
 FAbma(hkl)=FBmab(khl) 
 
 



14  M. Meven 

 
  Fig. 8 

(a) orthorhombic distortion with twinning correspondint to a (1-10) mirroring 
(b) corresponding reciprocal lattice 
(c) Overlay of  (110)- and (1-10)-mirroring in reciprocal space 

 
In the HTT phase only reflections with h, k, l of equal parity (g for even, u for uneven) are 
allowed - (uuu) and (ggg). They are called in the following main structrure reflections. 
In the LTO phase additional reflections occur, called super structure reflections: In the Abma-
Structure (ugg),  l�0 and (guu), in the Bmab structure (gug), l�0 and(ugu).  
Forbidden in both the HTT and the LTO phase are (uug), (ggu), (ug0) and (gu0).  
These extinction rules will become important later.  
In the real structure of the crystal there exist four domain types in total. They are separated 
into two pairs with the couple Abma1/Bmab1 (I/II) with the (1-10) mirror plane as grain 
boundary and the couple Abma2/Bmab2 (III/IV) with the (110) mirror plane as grain boundary 
(fig. 8). 
 
The following overlaps of reflections result from this twinning:  
 
- No splitting of the (00l) reflections, 
- triple splitting of the (hh0) reflections 
- fourfold splitting of the (h00) reflections. 
 
An equal distribution of the volumetric portion of each single domain yields a ratio of 
intensities of 1:2:1 for the triple splitting. The distance 	� between the centre and the side 
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peaks of a (hkl) reflex gives because of (a+b)/2 = a1/2 an information about the orthorhombic 
a/b splitting. For the triple splitting of a (hh0) reflex is valid: 
 
	� = 90°-2arctan(b/a) 
 
Thus, although the real crystal is twinned, one can quantify the orthorhombic distortion. 
 
The intensity contribution of the single domains corresponding to the whole intensity of a 
reflection can be described (taking into account the incoherent overlap of single intensities 
and the volumetric portions VA1 to VB2 of the domains) as follows: 
 
Iobs(hkl)            = IAbma1(hkl)  + IBmab1(hkl)  + IAbma2(hkl)  + IBmab2(khl) or  
 
Vtotal|Fobs(hkl)|2=VA1|FAbma1(hkl)|2 +VB1|FBmab1(hkl)|2 + VA2|FAbma2(hkl)|2 +VB2|FBmab2(hkl)|2  

 
  = (VA1 + VA2)|FAbma1(hkl)|2 + (VB1|+ VB2)|FBmab1(hkl)|2  
 
  = Vtotal {�|FAbma(hkl)|2 + (1-�) |FAbma(khl)|2 }  

 
with � being the relative portion of the volume of Abma domains to the crystal..  
 
Because of the extinction rules in the LTO phase for the super structure reflections is valid: 
Iobs(hkl) ~ �|FAbma(hkl)|2 for Abma and Iobs(hkl) ~ (1-��|FAbma(khl)|2 for Bmab. Thus, one can 
classify directly intensities to the volumetric portions of the domain types Abma and  Bmab  
respectively. Therefore, by using one single additional parameter � to describe the relation 
between the twins in the structure one can determine the orthorhombic single crystal 
structure! This holds true although the Bragg reflections contain contributions of up to four 
different domains. 
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4.3 Oxygen Position 
The oxygen atoms undergo the largest shift of their positions during the transition to the LTO 
phase. For the structure factor of a any Bragg reflection forbidden in F4/mmm is valid: 
 
 
F(hkl) ~ �i si exp(-2�6(hxi+kyi+lzi) =F(hkl)apex oxygen+F(hkl)in plane oxygen+F(hkl)structure w/o O  
                                                        �F(hkl)apex oxygen+F(hkl)in plane oxygen 
 
In the LTO phase the atomic position of the apex oxygens is (x 0 z), the atomic position for 
the in-plane oxygens is (1/4 1/4 -z). This yields the following intensities for the superstructure 
reflections: 
 
F(hkl)apex oxygen = cos(2�hx)cos(2�lz) for h even or 
F(hkl)apex oxygen =  sin(2�hx)cos(2�lz) for h uneven 
 
In the case of x-rays the form factor fi~Zi, Zi=order number is much smaller for oxygen 
(Z=16) than for Cu (Z=29) and La (Z=57). Because of Iobs(hkl) ~ |F(hkl)|2 the oxygen shift is 
hardly measurable. In the case of neutrons the scattering lengths bi of all atoms are in the 
same order of magnitude (bO=5.803 barn, bCu= barn, bLa= barn, 1 barn = 10-24 cm-2). 
Therefore, the intensity contribution of the oxygen atoms increeases in relation to the other 
elements in the structure and allows a much more precise determination of the structural 
change of the oxygen positions 

5 Preparatory Exercises 

1. What is the fundamental difference between powder/single crystal diffraction and 
what are the advantages and disadvantages of both techniques (Compare d-values and 
orientations of different reflections in a cubic structure)? 

2. What is wrong with fig. 2? 

3. Which reflections are not allowed in a face centered structure (structure factor)? 

4. There is no space group F4/mmm in the international tables. Why (Which other space 
group in the international tables yields the same pattern in direct space)? 
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6 Experiment Procedure 

During this practical course not all physical and technical aspects of structure analysis with 
neutrons can be discussed in detail. Nevertheless this course is supposed point out the basic 
similarities and dissimilarities of x-rays and neutron radiation as well as their specific 
advantages and disadvantages in general and referring to single crystal diffraction. The 
sample selected for this practical course is most suitable for this purpose because of its special 
crystallographic peculiarities.  

6.1 The Instrument 

Fig. 5 shows the typical setup of a single crystal diffractometer with a single detector. 
Outgoing from the radiation source a primary beam defined by primary optics (in our case the 
beam tube) reaches the single crystal sample. If one lattice plane (hkl) fulfills Braggs laws, the 
scattered beam, called secondary beam, leaves the sample under an angle 25 to the primary 
beam. The exact direction of this beam depends only on the relative orientation of the sample 
to the primary beam.  
For the diffractometer shown in fig. 5 the movement of the neutron detector is limited to a 
horizontal rotation around the 25 axis. Thus, only those reflections can be measured, whose 
scattering vector Q lies exactly in the plane defined by the source, the sample and detector 
circle. This plane is also called scattering plane.  

 
Fig. 5: Scheme of a single crystal diffractometer 
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To direct the secondary beam towards the detector position one has to orient the sample 
around the three axes �, : and 9. These three axes allow a virtually random orientation of the 
crystal in the primary beam. During the experiment the sample has to stay exactly in the cross 
point of all four axes (25, �)�: and 9) and the primary beam. Additionally, for 25 = ��	�: = 
9 = 0° the primary beam direction and the : axis on one hand side and the 25-, �- and 9-axes 
on the other hand side are identical while the angle between the primary beam and the 25-is  
exactly 90°. Because of the four rotational axes (25, �)�:, 9) this kind of single crystal 
diffractometer is often called four circle diffractometer. Another often used geometry - the so 
called �-Geometrie - will not be discussed in detail here. 
 
Further details of the experimental setup: 
 
1. Beam source and primary optics: The primary beam is generated by a suitable source (x-
rays: x-ray tube, synchrotron; neutrons: nuclear fission, spallation source). The primary optics 
defines the path of the beam to the sample in the Eulerian cradle. Furthermore, the primary 
optics defines the beam diameter using slits to make it fit to the sample size for homogeneous 
illumination. This homogeneity is very important because the quality of the data refinement 
relies on the comparison of the intensity ratios between the different reflections measured 
during an experiment. Wrong ratios caused by inhomogeneous illumination can yield wrong 
structural details! Other components of the primary optics are collimators defining beam 
divergence and filters or monochromators which define the wavelength � of the radiation. 
 
2. Sample and sample environment: The sample position is fixed by the centre of the 
Eulerian cradle which is defined by the cross point of the axes �)�: and 9.  As described 
above, the cradle itself has in combination with the �-circle the task to orient the sample 
according to the observed reflection in a way that it hits the detector. The sample itself is 
mounted on a goniometer head. This head allows the adjustment of the sample in all three 
directions x; y; z, via microscope or camera. To avoid scattering from the sample 
environment and goniometer head the sample is usually connected to the head via a thin glass 
fibre (x-rays) or aluminum pin (neutrons). This reduces significantly background scattering. 
For experiments at high or low temperatures adjustable cooling or heating devices can be 
mounted into the Eulerian cradle. 
 
3. Secondary optics and detector: The 25 arm of the instrument hold the detector which – 
in the ideal case – catches only radiation scattered from the sample and transforms it to an 
electrical signal. There exists a variety of detectors, single detectors and position sensitive 1D 
and 2D detectors. Area detectors have a large sensitive area that allows the accurate 
observation of spatial distribution of radiation. Other components of the secondary optics are 
slits and collimators or analyser (as optional units). They fulfil the task to shield the detector 
from unwanted radiation like scattering from sample environment, scattering in air, wrong 
wavelengths or flourescence 
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6.2 Sequence of measurement in Theory  

1. Centering: In advance of the planned scientific program (profile analysis, Bragg data 
collection) the orientation of the sample in relation to the coordinate system of the 
diffractometer has to be determined. First of all the sample has to be centered optically to 
assure a homogeneous illumination of the sample. Afterwards, a reflection search routine has 
to be started to optimize the intensity of a found reflection by moving several angles after 
each other.  
In many cases there are some structural informations like the unit cell and hkl values of strong 
reflections available from previous studies, e.g. from powder diffraction, thus, one can limit 
the reflection search to 25 values around these strong reflections to spare some time and to 
classify manually the found reflections with the correct indices. 
 
2. Determination of orienting matrix and lattice constants: The comparison of the Q 
vectors of the found and centered reflections yields generally one or more suggestions for a 
suitable unit cell. This is done by a least squares routine minimizing the error bars between 
the calculated and measured Q vectors.  This method allows to determine accurately the 
orientation matrix Mo = (a* b* c*)T of the sample relative to the coordinate system of the 
diffractometer and the lattice constants of the unit cell.  
 
On HEiDi the axes are defined as following: x=primary beam, z || 25 axis, y=z x x.  
A proposed unit cell is only acceptable if all experimentally found reflections can be indexed 
with integer hkl , this means Q = (h k l)*Mo. In addition the found reflection intensities I offer 
a course check, e.g. whether extinction rules are followed or intensities of symmetrically 
identical reflections are identical. 
 
3. Profile analyses and scan types: During profile analysis reflex profiles are analysed via so 
called � scans. During this scan the sample is turned for n steps around a center position �0. 
This scan makes different crystallites in one large sample visible. In addition one has to take 
into account that even in perfectly grown crystals there are grain boundaries and slight 
mismatches of the crystallites. These mosaic blocks are perfect crystals whose orientations are 
misaligned only a few tenths of a degree or less. By the way, the axis position 25(2=5	� is 
called the bisecting orientation of the Eulerian cradle.  
As long as the vertical aperture is large enough, a rotation of the crystal around a �0, that is 
equivalent to the ideal 50 Bragg angle of a reflex allows to catch the intensity portion of each 
crystallite in the sample in the neutron detector on the fixed 25 position, even those that can 
only be found for slightly differing �. Therefore, a crystal with large mosaicity gives 
measurable intensities over a broader � area than a perfect crystal. Thus it gives a broader 
reflex profile. Also the tearing and cracking of a crystal creates broad but unregular profiles. 
Beside the crystal quality also the instrumental resolution limits the measurable profile widths 
in the following sense: The divergence of a primary beam in real experiment is limited, for 
instance to 0.2°.  
If a reflection fulfills Bragg’s Law at 5) the total divergence is a convolution of the 
divergence of the primary beam and the mosaicity/divergence of the sample. Thus, the 
reflection profile will never be sharper than the divergence of the primary beam itself. 
In addition one has to take into account that for larger diffraction angles a fixed detector 
window will not be sufficient to catch the whole reflection intensities during a rocking scan. 
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For a given spectrum 	�/� of the primary beam, with increasing scattering angle 5 angular 
range 	5 increases with sin(	5(2)=tan(5)*	�/� for which all wavelengths in the interval 
�±	�/' fulfilling Bragg’s law are distributed. Because of the limited width of the detector 
window this yields a cut off of intensities for larger scattering angles for �-scans. 
To compensate this cut off effect it is necessary to begin at a certain 25-angle to move the 
detector window with the �-angle.. This can be done by so called �/25-scans. The start 
position of this 25�range depends on the primary beam divergence and sample quality and has 
to be checked individually for each sample. 
  
4. Collection of Bragg reflections: If a sample was found good after the described 
preliminary studies one can start with the Bragg data collection. In this data collection all (or 
selected) reflections in a given 25 intervall are collected automatically. The usual strategy 
follows the rule „Only as many as necessary“. This means the following: On one hand side 
the quality of the measured reflections has to fulfil certain standards (like small standard 
deviations 
 and a good shape of the profiles) to reach an acceptable accuracy. On the other 
side there is only a limited amount of time available for each reflection due to the huge 
number of them (up to several thousands). and the limited beam time. A rule of thumb is 
therefore to measure about 10 non symmetry equivalent reflections for each free parameter 
used in the data refinement to get the correct structure. To achieve this goal a typical 
algorithm is to do a prescan with tmin per point of measurement in combination with a given 
larger (e.g. I/
=4 and 25%, respectively) and a smaller  (e.g. I/
=20 and 5%, respectively) 
relative error limit. tmin is chosen in a way that the statistics of strong reflections is fine 
already after the prescan. Weak reflections are also noticed in the prescan and stored as weak 
reflections without additional treatment. Reflections in between get an additional chance to 
improve their statistics by performing a second scan with a limited amount of time up to tmax- 
tmin. This method avoids to spend unreasonable beam time to weak reflections which will not 
help to improve the quality of the structure model. 

6.3 and in Practice 

1. Adjust optically the sample in the neutron beam : Alignment of the sample in the 
rotational centre of the instrument. This is necessary for a homogeneous  illumination of 
the sample for all possible orientations. 
 

2. Search for Bragg reflections and center them, ‚ “Reflex centering”: Sample and 
detector position are controlled by a special diffractometer software. The main goal is to 
find suitable angular positions for the detector first and afterwards for the sample to get a 
measurable signal. Afterwards the orientation of the sample in the Eulerian cradle have to 
be optimized for maximum intensity. 
 

3. Analyse profiles of selected reflections: Study different reflex profiles and reveal the 
impact of twinning 
 

4. Determine the orthorhombic lattice parameters a, b and c:  Estimate the misalignment 
of a and b in reference to  a1/2 in the real tetragonal cell. 
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5. Determine the average tetragonal unit cell: The centering of different reflections allows 
the calculation of all lattice constants including the averaged tetragonal parameters. 
 

6. Observe super structure reflections: Measuring pairs of (hkl)/(khl) allows the estimation 
of the volumetric contribution of each single domain to the whole crystal. 
 

7. Select measurement parameters for Bragg data collection: In order to optimize the 
number and statistical quality of collected Bragg reflections suitable scan parameters 
(time/step, no. of steps, stepwidths, etc.) have to be determined. 
 

8. Collect a Bragg data set  

6.4  Data analysis 

After having measured a Bragg data set one has to do the final step, the alignment of model 
and measurement: 
 
1. Data Reduction: In this process the measured reflection profiles are analysed and 

reduced to a simple list of all measured reflections and their integrated intensities 
including error bars and some other useful information. This so-called hkl-list is the base 
for the next step: 
 

2. Structure refinement: Here the measured hkl-list and our structure model are combined 
to determine structural details like atomic positions and mean square displacements.  

7 Experiment-Related Exercises 

1. Why is the optical adjustment of the sample so important? 

2. How large is the a/b-splitting at room temperature (=|a-b|/(a+b))? 

3. What is the benefit/enhancement of studying the room temperature structure with 
neutrons instead of X-rays? 
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Appendix (Tables and space groups from [1])
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1 Introduction and theoretical basics

This summary is thought as a repetition of the basic knowledge needed for this experiment. It
is expected to be familiar with the different types of the crystal lattices, the terms of unit cell
and basis as well as the use of Miller’s indices.

1.1 Inelastic scattering cross section

In the experiment a sample is illuminated by a monoenergetic (energy Ei) neutron beam with a
direction (wave vector ki). The ratio of the intensity scattered in a decent solid angle dΩ (wave
vector kf ) with the energy Ef + dE to the intensity of the incoming beam is the differential
scattering cross section

IΩ,Ef

I0
=

dσ2

dΩ dEf

. (1)

The scattering of the neutrons at the nuclei is handled within the quantum mechanics as a
weak perturbation of the system. The calculation can be found as ”Fermi’s golden rule” in the
textbooks.Reference: [6]

Generally, the scattering cross section is:

d3σ

dΩ dEf

=
|kf |
|ki| S(Q, ω). (2)

The scattering function S depends on the momentum transfer1 Q = ki − kf and the energy
transfer, to be written in a change of the wave length ω = E

�
. The relation between ω or E

and |kf | is of squared, therefore the scattering cross section used in 1.9 is for the following
calculations (Reference: [11], chap.4):

d3σ

dkf x dkf y dkf z

∝ 1

|ki|S(Q, ω). (3)

We start with elastic scattering (|ki| = |kf |). We will find that this is given by the assumption
of a time-independent distribution of the scattering centers.

1.2 Elastic scattering function

We describe the incoming neutron beam as a plane wave. Its amplitude at every time t depends
on the site P = R+ r (see Fig. 1):

AP = A0 e
i[ki·(R+r)]−iω0t. (4)

It excited the scattering centers to emit spherical waves with an amplitude A′, having a fix phase
relation to the original (incident) wave.

A′
P = ρ(P ) AP , (5)

1 Really: the change of the wave vector. In units of � this is exactly the momentum transfer.
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Q

P

B
R

r

R′

R′ − r

Figure 1: General scattering geometry and notation

ρ(r) is the local scattering density with the unit m−2. No multiple scattering occurs 2. At a site
B we get for a wave starting from a site P :

AB(r, t) = AP (r, t) ρ(r)
ei[kf ·(R′−r)]

|R′ − r| (6)

where kf is pointing into the direction of (R′ − r)t.

We assume the distance between R and R′ to be large compared to r.

AB(r, t) = AP (r, t) ρ(r)
1

R′ e
i[kf ·(R′−r)] (7)

with the same direction of kf for all P . After replacing AP and ordering:

AB(r, t) =
A0

R′ e
i(ki·R+kf ·R′)ρ(r)e−i[(kf−ki)·r]−iωit. (8)

The first term is a constant phase factor, which is now space-independent within the sample.
The whole scattering amplitude is given by integration of the scattering region.

AB(t) ∝ e−iωit

∫
V

ρ(r)e−i[(kf−ki)·r]dr. (9)

As long as ρ is time-independent, the time dependence of AB includes only the frequency ωi

(elastic scattering).

In the experiment, we do not have access to the amplitude of the wave but only to the square of
it. For the scattering function one gets:

S(Q) ∝
∣∣∣∣
∫
V

ρ(r)e−iQ·rdr

∣∣∣∣
2

(10)

with: Q = kf − ki. (11)

Therefore, we identify the scattering function except a factor as the square of the Fourier trans-
form of the scattering density.References: [7], [12]

2 according to the Born approximation in the quantum-mechanical scattering theory
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1.3 Coherent vs. incoherent scattering

Restricting on the interactions with the nuclei and using thermal neutron wavelengths (≈ Å)
which are large compared to the radii of the nuclei (10−4 Å) the sample can be assumed to be
an array of point-shaped scattering centers. The scattering density follows as:

ρ(r) =
∑
i

biδ(ri − r) (12)

with the positions of the scattering centers ri and their scattering lengths bi, respectively. b
represents the amplitude of the spherical wave emitted by an atom and b̄ its average.

The scattering function of a material with identical atoms in regular order is again a regular
point lattice (see next chapter). But, a normal crystal is a mixture of several isotopes having
different neutron scattering lengths. In this case, the interference condition is valid only for an
averaged scattering length. Taking (12) for (10), the scattering function is s

S =
(
b̄
)2

Scoh. +
(
b̄2 − (

b̄
)2)

Sinc.. (13)

assuming a statistical distribution of the different scattering centers. Sinc. is now independent of
the relative positions of the atoms to each other and therefore independent of the concrete struc-
ture of the sample. It is a term of background signal, independent of the scattering angle and the
sample orientation. This so-called incoherent scattering is always observed when the scatter-
ing density varies locally and non-correlated, also for point defects in the lattice and randomly
distributed spin orientations in nuclei and atomic shells. A distinguished incoherent scatterer
- almost without a coherent distribution - is vanadium which is often used for spectrometer
alignments. Reference: [12]

1.4 Reciprocal space and Brillouin-zones

The samples to be investigated are normally good coherent scatterers, it is necessary to know
Scoh.. Let’s start on a Bravais-lattice with a one-atom basis. The scattering density is:

ρ(r) =
∑
h,k,l

b δ3[(ha1 + k a2 + la3)− r], (14)

with generating lattice vectors ai. The Fourier transform of such a function is:

ρ̃(q) =
1√
2π

∫ ∑
h,k,l

b δ3[(ha1 + k a2 + la3)− r]e−iq·rdr (15)

=
∑
h,k,l

be−iq·[(ha1+k a2+la3)]. (16)

Summarizing for a sufficient number of indices, one gets a point lattice again, the reciprocal
lattice 3. The wave vector space is named the reciprocal space.

3 It can be shown that the reciprocal lattice of a Bravais lattice is a Bravais lattice again having all symmetry
elements of the original lattice.
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a1 a2

1LE

g1
g2

1LE−1

Figure 2: 2-dimensional point lattice in the real and reciprocal spaces. The first Brillouin
zone is plotted around a reciprocal lattice point. Note the generating vectors of both lattices
satisfying equation (17).

By

gi · aj = 2πδi,j (17)

we get the generating vectors gi of the reciprocal space from the original vectors 4: The re-
ciprocal lattice vector g1 is perpendicular to the vectors a2 and a3 with an absolute value of:

2π

(a1 cos�(a1, (a2 × a3)))
. (18)

In the simple case of the sc lattice all real lattice vectors are pairwise perpendicular. Thus, the
directions of the reciprocal space are identical to that of the real space. But, the dimensions of
the reciprocal lattice as well as of the wave vectors are’m−1’ (see eq. (17)).

In (10) we identified the scattering function as the square of the Fourier transformed of the
scattering density. It is different from zero if

Q = G = hg1 + kg2 + lg3 (Laue condition). (19)

Wave vectors satisfying this condition built the Bragg reflections in the sample spectrum and
are enumerated by the indices h, k, l.

fcc and bcc lattices are normally not presented by their primitive unit cells but as sc lattices with
a polyatomic basis. Therefore, not all reflections of the sc lattice occur. This is described by
the structure factor. Here eq. (17) does not give the generating wave vectors of the reciprocal
space.

A useful construction to work with the wave vectors of the reciprocal space is the construction
of the Brillouin zones. For this, in the reciprocal lattice the perpendicular bisector planes of the
vectors connecting one lattice point with all the others are created. 5 (see also Fig. 2).

4 The definition (17) is used in physics. The 2π factor depends on the definition of the wave vector and is sometimes
omitted, especially in crystallography.
5 All incoming plane waves with wave vectors ending at the Brillouin zone boundary satisfy the elastic scattering
condition (19) since incident and final wave vector are of the same length.
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4π/a

(a) The reciprocal lattice of a fcc crystals is
a bcc lattice. The first two Brillouin
zones are drawn. If the crystal consists
of two interlocking fcc lattices (i.e.
Silicon), not all reflections occur.

(b) Laue picture of a Silicon crystal
([110]-direction) irradiated by polychromatic
x-rays. We get a two-dimensional projection
of the reciprocal lattice up to decent indices,
depending on the minimum wavelength of
the x-rays.

Figure 3: 3-dimensional view of the elastic scattering.

Remark: The construction of the Brillouin zones is of the basis Bravais lattice. I.e.,
Germanium and Silicon have a fcc lattice with a 2-atomic basis. The scattering function in
influenced in a way that several refections vanish, others are amplified. The reciprocal lattice
stays to be of fcc symmetry.

The first Brillouin zones around the points of the reciprocal lattice fill the reciprocal space. By
this, points of high symmetry are easy to identify. They are used to be named by letters (see
Fig. 6).

References: [7] Chapter about scattering on periodic structures.

1.5 Inelastic scattering processes

We allow a change of the scattering density ρ with time now.

ρ(r(t)) ∝
∑
n

δ(rn(t)− r). (20)

The atoms are oscillating with weak amplitudes around their average position.

rn(t) = rn + un(t). (21)

Assuming the forces between neighboring atoms to be proportional to their displacement (har-
monic approximation) every oscillation state of the crystal can be described as a superposition
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of plane waves with wave vectors q. 6:

un(t) =
∑
q

u e±i(q·rn−ω(q) t). (22)

The scattering amplitude is from (10) and (20):

A ∝ e−iωit
∑
n

e−iQ·rn(t). (23)

Take eq. (21) to develop the exponential function for small u’s:

A ∝ e−iωit
∑
n

e−iQ·rne−iQ·un(t) (24)

≈ e−iωit
∑
n

e−iQ·rn [1− iQ · u(t)] (25)

= e−iωit
∑
n,q

e−iQ·rn − iQ · u e−iQ·rne±i(q·rn−ω(q) t). (26)

In (26) we find in addition to the terms from elastic scattering for every q a term:∑
n

iQ · u e−i[(Q∓q)·rn]−i[ωi±ω(q)]t. (27)

Thus, there are scattering waves with frequencies shifted from the frequency of the primary
wave just by the frequency of the crystal oscillations. In addition, in analogy to the elastic case,
the sum in (27) is non-zero only if eq.

Q = ki − kf = G∓ q (28)

is satisfied by a reciprocal wave vector G. The condition for the frequency is:

ωf = ωi ± ω(q). (29)

Multiplying both equations with � and choosing G = 0 gives:

�Δω ∓ �ω(q) =0, (30)
�kf − �ki ∓ �q =0. (31)

This is just the quantum-mechanical description of the momentum and energy conservation
for neutron scattering on a particle generally called a phonon. The analogy is confirmed also
quantum-mechanically.

See i.e. [1] appendix N.

As to be seen from the equation, the momentum of a phonon is determined only modulo to
one reciprocal lattice vector. Really two lattice oscillations of wave vectors differing by one
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Figure 4: Scattering diagrams for inelastic scattering of neutrons on a fcc crystal. The recip-
rocal [11̄0] plane is drawn. Notation similar to the text. The energy transfer is represented by
the different lengths of ki and kf

a

Figure 5: Equivalence of lattice vibrations taken from [9]: Both of the shown waveslead to the
same displacement of the atoms from their avarage position. They are physically identical. All
waves with a wavelength λ1 smaller than 2a (white line) can be reduced to these with λ2 ≥ 2a
(black line). 2π

λ1
= 2π

λ2
− n2π

a
, with n2π

a
the length of a reciprocal lattice vector. The waves with

λ ≥ 2a are just these with wavevectors in the first Brilloin zone.
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reciprocal lattice vectors are similar by physics (see fig. 5). Thus, the wave vector of every
phonon can be related to the nearest reciprocal lattice point and the theoretical considerations
are restricted to the 1. Brillouin zone. The probability of the excitation of a phonon scales with
the intensity of the nearest elastic reflection. See for example fig. 9. Phonons are therefore
particles with a quasi-momentum 7.

Reference: see [7] chapter 4

For the visualization of the inelastic scattering process one can assume that the neutron initiates
an oscillation in the crystal. By this, the neutron looses energy or gains energy when scattered
on an oscillating atom which results in the annihilation of this oscillation. For the energy loss, a
decent mode has to be already excited in the crystal. Such a consideration of the energies leads
to the ”‘detailed balance”’ principle:

S(Q,−ω) = e
− �ω

kBT S(Q, ω) (32)

with the Boltzmann factor kBT . At room temperature, both sides are almost equivalent.

What is now the advantage of neutrons for the study of lattice vibrations, compared to x-rays
- which are easier to handle and available with much higher flux, especially at synchrotron
sources where in addition higher brilliance is achieved? The energy of thermal neutrons is
in average circa 30meV which is related to a wavevector of 3.8 Å−1. The dimensions of the
reciprocal space are given by eq. (17), i.e. circa 2 Å

−1 for Germanium. X-rays with similar
wave vectors have energies of ≈ 10 keV. The excitation of a lattice vibration with an energy of
10meV would be according to a relative energy change of 10−6 for photons. For neutrons the
change is in the order of kinetic energies.

1.6 Dispersion relation

One purpose of the experiment is to determine the correlation ω(q) experimentally. ω(q) is the
(phonon) dispersion relation. It contains all information about the dynamic properties of the
studied material. Physical quantities as velocity of sound and the phonon contribution of the
heat capacity can be deduced from it. But, also the dominating interaction potentials between
the atoms can be derived. For the visualization the 3-dimensional relation is drawn for several
directions of symmetry abreast.

The principle of ω(q) can be shown at an one-dimensional atomic chain. See the textbook
derivation (i.e. [1]). The generalization is done by the transition to parallel crystal planes oscil-
lating contrary.

6 This is the first-order Taylor series approximation of anharmonic potentials.
7 The real momentum transfer of the neutrons is - as for elastic scattering - absorbed by the whole sample and is
not relevant due to the mass ratio.
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Figure 6: Dispersion relation of Germanium at 80 K taken from [10]. Points of exceptionally
high symmetry are indicated by letters. (small picture).

1.7 Transverse and longitudinal phonons

As known from mechanics, for propagating waves the displacement of the single atoms can
be chosen parallel (longitudinal) or perpendicular (transversal) to the propagation direction. In
general, both excitation have different energies. For every q there are two transverse phonons
with polarizations perpendicular to each other, but only one of them is in the scattering plane.
In crystals of high symmetry these excitations are degenerated in energy. A crystal with a one-
atomic basis has three dispersion modes. For a basis of n atoms,this number increases to 3n (3
acoustic (E = 0 in the center of the B-zone) and 3(n − 1) optical modes (E �= 0 at q = 0)).
Fig. 6 shows this for the simple case of Germanium.

Reference: [9]

How can transverse and longitudinal oscillations to be distinguished in the experiment? The
equation of the inelastic scattering function (27) contains the scalar product Q · u with the po-
larization of the wave u (fig. 7). Thus, an oscillation is only excited for Q with a component in
the polarization direction, in analogy to the classical assumption. Fig. 4 shows the measurement
of a longitudinal and of a transverse phonon. The wave vector q points in the same direction
for both measurements.

11



Q q

a
ui−1 ui ui+1

(a) longitudinal. . .

Q
q

a
ui−1ui ui+1

(b) and transversal oscillations

Figure 7: Note: The momentum transfer of the neutrons Q points always into the direction of
the real displacements ui.

1.8 What is measured - what can we conclude for the sample

We look now at the correlation between the configuration of the spectrometer and the variables
Q and ΔE. The absolute values of ki and kf (incident and outgoing wave vectors) are deter-
mined by the scattering angles at the monochromator and the analyzer crystals 2Θm and 2Θa,
respectively 8. Having neutron waves we need

Ekin =
(� kn)

2

2m
, (33)

with p the momentum and m the mass of the neutron.
Thus, we know also

ω =
ΔE

�
= �

|ki|2 − |kf |2
2mn

. (34)

The orientation of the sample determines the direction of ki relatively to the crystal lattice
(characterized by the sample rotation angle ωs) and the scattering plane. Within the scattering
plane 2Θs determines the direction of kf . Q results from eq. (11).

Conversely, we do not get the configuration of the instrument from ω and Q.

In standard experiments, the scans are done at constant Q or constant energy transfer ΔE.
While for very stiff dispersion modes, in the vicinity of the Brillouin zone center, constant-E is
chosen (Fig. 8(b)), most of the Brillouin zone is normally measured with const.-Q (Fig. 8(a)).

8 2Θm and 2Θa are the relevant numbers. The rotation of the crystals Θm and Θa are fixed in relation to 2Θm/2
and 2Θa/2.
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(c) corresponding points of the dispersion
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Figure 8: Examples for different scans (scattering triangles and dispersion relation.)
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a)

c)

b)

q

q

Qa = Qc

Qb

Figure 9: The same phonon excitation measured in different ways:
(a)↔(b): Measurements at different elastic peaks but with identical |ki| and |kf |.
(a)↔(c): Identical position of the reciprocal space measured with different ki.
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Please take time and think about the reason and how the different angles change during the two
measurements shown in the figures.

As demonstrated in fig. 9, the lengths of ki or kf can be fixed. This is a way to change the
resolution of the instrument optimizing the measurement for different problems.

1.9 Normalization of the counting rates

Planning an experiment, it seems to be native to count the scattered neutrons in the detector
at every point for a useful time. But, the counting rate ZDet depends not only on the scatter-
ing cross section. It also depends on instrument parameters which possibly change during the
measurement or within a scan.

ZDet ∝ Iprim(ki) ·RMono(|ki|) d3σ

dkf x dkf y dkf z

RAnal(|kf |) · PDet.(|kf |) (35)

= Iprim(ki) ·RMono(|ki|) 1

|ki| S(Q, ω) RAnal(|kf |) · PDet.(|kf |). (36)

with R(|k|) the reflectivities of the Bragg crystals, PDet.(|kf |) the efficiency of the detector and
Iprim.(|ki|) the incident intensity at the used energy.

In our experiment here we are especially interested at the positions of the phonon excitations in
the Q-ωspace and not too much in their intensities. We therefore do not ask for the compara-
bility of different scans. We only need sufficient count rates within the scans and possibly the
normalization of different points in a scan to determine the peak position in a right way.

We use a monitor detector usually mounted after the monochromator and before the sample.
The probability to be detected is for neutrons with a velocity v proportional to the time t the
neutrons stay in a detector (monitor) of the width d:

t =
d

v
=

dmn

� |k| (37)

One expects as monitor count-rate:

ZMono ∝ Iprim(ki) ·RMono(|ki|) 1

|ki| (38)

To perform a measurement, events are counted in the detector until a particular number of
monitor counts is reached. The real count rate in the detector with monitor Z ′

Det is:

Z ′
Det =

ZDet

ZMoni

∝ S(Q, ω) RAnal(|kf |) · PDet.(kf ). (39)

For constant |kf |, as illustrated in fig. 8(a)(right), this dependence vanishes. This is therefore the
common mode. If |kf | is varied by any reasons during the scan, the corresponding corrections
have to be done for the data analysis.
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1.10 Resolution function

Up to now we did not consider the fact that at every point of the Q-ω-space the spectrometer is
pointing to the measured intensity is scattered in a finite volume around this point. A sharp (δ-)
peak in the scattering function at (Q0, ω0) gives a measured signal of the form:

ZDet(Q, ω) ∝ R(Q−Q0, ω − ω0). (40)

R is the resolution function and depends on the configuration of the spectrometer only. Ordinary
R is assumed to be Gaussian in its components.

The measured signal results from the convolution:

ZDet(Q, ω) ∝
∫

S(Q′, ω′) R(Q′ −Q, ω′ − ω) dQ′dω′. (41)

For illustration take a contour line of the resolution function (exactly: the 2-dimensional projec-
tion of the resolution function). It is normally elliptically and shows the region of the scattering
function ’seen’ by the instrument. In fig. 10 the projections of the resolution function are plotted
into the dispersion relation, at the right the intensities to be expected, respectively. A measure-
ment is characterized to be focused if the short axes of the resolution ellipsoid is perpendicular
to the dispersion surface (to be measured).

It is important to understand in which cases a sharp resolution function is helpful or not. E. g.,
see a const.-Q-scan through a sharp ’horizontal’ dispersion surface:

S(Q, ω) = S0 δ(ω − ω0). (42)

The measurement is focused, i.e.

R(Q, ω) = e−
ω2

σω ·R(Q). (43)

Eq.(41) gives:

Z(ω) ∝ e−
ω2

σω

∫
R(Q)dQ. (44)

Expanding the resolution ellipsoid in the momentum coordinates, the measured intensity in-

creases. The line width depends only on e−
ω2

σω .

Reference: [11] Chap.4

The real form of the resolution function is influenced now by several effects: The Bragg-
crystals are not of perfect lattices but have a finite mosaicity (which means it consists of several
small single crystals, and their lattice parameters have weak deviations from the average). This
’mosaicity spread’ - given by the angle ηm - broadens the Bragg peaks e.g. at the monochroma-
tor. Further influences are the finite angle resolution of the detectors, a finite size of the sample
and diverging beams.

The beam reflected at the monochromator is a bunch of wave-vectors with a distribution pm(ki),
the transmission function of the monochromator. The analyzer has to be described in analogy.
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Figure 10: Focused vs. unfocused measurement.

To calculate the resolution function of the spectrometer, the two transmission functions have to
be convoluted with respect to 2Θs. This simulation can be done by software tools. You will get
some qualitative ideas about this within the experiment.

Reference: [4]

1.11 Peak forms

We learned: For sharp peaks in the scattering function we get a Gaussian signal in the mea-
surement. This will be found in most of the experiments. However, some compounds exhibit
broadened phonon resonances, so-called soft modes. They are originated by phonon-phonon-
and phonon-electron-interactions 9 and result in a finite lifetime τ of the single oscillation states.
Calculating the damped harmonic oscillator the line shape is identified to be Lorentzian:

S(ω) ∝ ω2

(ω2
0 − ω2)

2
+
(
ω
τ

)2 (45)

with the line width (FWHM):

δω =
1

2τ
. (46)

The resulting signal of such a ’soft’ peak is the convolution of a Lorentzian with a Gaussian
curve called Voigt profile. This profile is not easy to be calculated mathematically. In the case
of comparable widths of the single profiles it can be sufficient to take the width of the Voigt
curve as the sum of the widths of the Gaussian and the Lorentzian contributions.

If it is necessary for the data analysis to determine the peakwidths, the resolution function has
to be deconvoluted from the measured signal. This can be done by software.

Reference: [3], [5]

9 These effects are neglected by the assumption of harmonic oscillations.
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2 Performance of the experiment

PANDA is a three axis spectrometer (TAS) at the cold source of FRM II. The first thermal TAS
was built 1954 and generally improved 1959 by Bertram N. Brockhouse at NRU Reactor in
Chalk River. For his merit in the field of inelastic neutron scattering he got the Nobel price
1994. Even if the intensities at the detector were increased by magnitudes, the instrument is
remote controlled and the safety is improved today, the general principle of the method is still
the same:

The beam of cold neutrons (energy E ≈ 5(30)meV, momentum p ≈ 1.5(4) · 10−24 kgm/s),
which has de Broglie wavelength

λ =
h

p
, (47)

or a wavevector of the length k = 2π
λ

, exits the moderator tank of the reactor through a beam
port. The neutrons enter a monochromator being of single crystals with a d-spacing d.

By the Bragg equation

nλ = 2d sinΘm (48)

the angle 2Θm defines the energy of a monochromatic neutron beam (wave vector ki, energy
Ei), which points to the sample to be investigated.

Direction and energy of the neutrons are changed at the sample following the inelastic scattering
laws. At the secondary spectrometer (analyzer) neutrons with the wave vector kf and the energy
Ef are selected by Bragg reflection at a second crystal and are counted in the detector. By this,
the momentum transfer (Q) of the neutrons to the sample as well as the energy transfer (ΔE)
from the sample to the neutrons can be determined.

Q = ki − kf , ΔE = Ei − Ef . (49)

For useful statistics normally a fixed configuration of the instrument - related to a decent energy
and momentum transfer - is taken for counting at the detector. The scattering function of the
sample is therefore taken pointwise. These scans are measured at constant Q or at constant
energy E, depending on the experimental strategy (see below).

PANDA is located at the beamport SR2 in the experimental hall of FRM II and has a comparably
large neutron flux at low background. For more detail see:
http://www.mlz-garching.de/panda.

We now discuss the components of the three axis spectrometer. Photos of the main components
are collected at the gallery 22 for better understanding.

Shielding Since neutrons damage biological matter the region of the primary beam has to be
shielded. This is done by a so-called drum (in the case of PANDA blue / green colored) with
the monochromator in its centre. The drum is made of heavy concrete with a large amount of
chemically combined water, boron added. Also used are boron-treated (PE) sheets. Chemically
combined water and PE contain a large amount of hydrogen which is able to decelerate fast
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Notation:
Q Neutron source
M Monochromator
S Sample table
A Analyzer
D Detector
α1

collimators
α2

α3

α4

2Θm angles of the
Spectrometer-
axis

2Θs

2Θa

Abs Shielding
Sel Selector
Mob Mobile blocks
Sh Primary shutter

Figure 11: Schematic design of a three axis spectrometer.
Remark: all angles are counted in the region [−180◦, 180◦]. (0◦ is directed in beam,

positive angles are counter-clockwise.) 2Θs is therefore positive.

neutrons. Boron as a large absorption coefficient for cold and thermal neutrons 10, and the
isotope emerging at the neutron capture is not radioactive. But, normally materials are activated
by the nuclear reactions and therefore activated (and the reactor emits hard Gamma radiation
also if the primary shutter is closed), so the shielding has to be opened only after measurements
of the remaining radiation even if the reactor is down. A part of the installation is shown here
at the photos. The drum is made to shield γ-radiation as well as neutrons.

During the movement of the monochromator axes a ring of the shielding which contains the
beam channel for the beam scatered at the monochromator is entrained. To avoid a closing of
the primary beam during the ongoing rotation, the ring partially consists of 11 so-called mobile
blocks (made of the same concrete as the ring) which are moved by an automatic control from
one side of the opening to the the other. The geometry and the control ensure a proper shielding
where necessary (see fig.11).

Monochromator In the rotation centre of the shielding the monochromator is positioned. It
consists of 121 single crystals of pyrolytic graphite (PG) mounted on a crystal holder. The
crystal holder and therfore the grapite lattice planes are rotated by the angle Θm to the primary
beam. The intensity of the monochromatic beam scattered at the angle 2Θm

11 depends on the
lattice parameter of the monochromator material (here PG) and on the incoming angle..

To avoid contamination of higher-order Bragg reflection in the incoming beam, n = 2, 3 . . .
(Gl. (48)), filter materials are positioned between monochromator and sample. In the case of

10 Typical reaction: 10
5 B+ 1

0n → 7
3Li +

4
2He + 2.8Mev

11 Remark: Sometimes the angles Θm, Θs and Θa are named α1 to α3.
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l

d

α

Figure 12: Drawing of a Soller collimator. The divergence of the outgoing beam is
tan(α/2) = d/l, which is in the example ca. 18◦. On PANDA the collimation can be chosen
between 15 and 80 minutes.

PANDA this is polycrystalline boron or, sometimes, pyrolytic graphite.

Maximum intensity at sample and detector can be achieved by focusing the monochromator and
the analyzer in horizontal and vertical direction. Here the 121 monochromator (55 analyzer)
crystals are curved in both directions by complex mechanics to get the crystal surfaces into
a paraboloid-like shape. The radius of the curvature depends on the neutron wavelength. By
taking into account the distances also a focus of the momentums is possible.

Sample table The sample is mounted on a table which can be moved on air-pressure. In
addition to motors rotating the sample and the analyzer/detector around the sample - giving
Θs and the scattering angle 2Θs, the sample orientation can be adjusted by goniometers and
translation stages. For studies of magnetism, the sample is normally positioned in a cryostat or
a cryomagnet - cooling down to temperatures of 0.03 K and appying fields up to 13.2 T.

Analyzer The analyzer is also located in a shielding, but here the reason is to decrease the
background in the detector. The crystal holder located again on a goniometer and translation
stages allows a horizontal focus of the analyzer, the crystals are mounted to have a fixed vertical
focus. The crystals are at the angle Θa to the beam, the detector is rotated by 2Θa.

Detector The neutrons are counted by a beamtube, filled with 3He under high pressure (ca 10
bar). A neutron can be trapped by a 3He nucleus and converted to 4He. The emitted γ quant
ionizate the gas and is detected like in a Geiger-Müller counter. This allows to count ca. 90%
of the incoming neutrons.

Diaphragms, collimators and attenuators In addition to the already described parts several
components are needed in the beam path dor beam conditioning. For example variable di-
aphragms (slits) are installed before and after the sample which are adjusted to the sample size
to decrease the background. A secondary shutter is mounted after the monochromator. More
diaphragms are with the primary shutter in the reactor wall and between the primary shutter and
the monochromator.

Beyond that in every part of the beam path so-called Soller collimators can be applied. It con-
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tains of ca. 20 cm long, coated with white GdO2 foils, which are exactly parallel and therefore
limit the divergence of the beam . The value of the divergence is described by the angle α (see
fig. 12). Collimators with α = 15′ to α = 60′ are available. Small divergence corresponds with
high resolution but small intensity. The primary collimators are placed in the primary shielding
and are changed automatically, the others have to be changed by hand (motorization planned).
The beam size is limited only horizontally, i.e. within the scattering plane. For increase of
intensity we normally allow a large divergence of the beam in the direction perpendicular to the
scattering plane.

Sometimes, e.g. for alignment, the detector is in the straight beam or Bragg reflections have
a very large intensity. To avoid a saturation of the detectors, the incoming beam ist attenuated
by PE-plates of different thicknesses which can moved into the beam (and combined) automat-
ically.

Monitor To compare or to combine data from different scans or measurements the intensities
are normalized to an intensity counted by the monitor in the primary beam. Its signal is propor-
tional to the incoming intensity. This is also important for energy scans, where the incoming
intensity changes with 2Θm due to the energy-dependent spectrum. Also different reactor power
can be corrected in this way (see paragraph 1.9).

Goniometer Monochromator, analyzer and sample are placed on 2-axis goniometers. This
allows tilts around two perpendicular to each other which meet in the centre of the beam. So
the sample does not move out of the beam centre during the tilt. The available angles are
limited (±15◦), the sample can be adjusted but has to be pre-oriented before measuring on the
three-axis instrument. It is also possible to translate the sample a few millimeters horizontally
and vertically.

Cover page: Overview over PANDA
From left: Monochromator shielding, sample table with 15T cryomagnet, analyzer box and
detector shielding.

Figure 13: (Following page) Components of PANDA taken in different phases of the construc-
tion.
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(a) Side view into the (opened)
Monochromator shielding onto the
PG-monochromator.

(b) PG-analyzer in the (opened) analyzer box.
The horizontal curvature is changed by
rotating the individual segments.

(c) Detailed view onto the sample table with
vacuum chamber. From bottom: Rotation
table, xy-stage, goniometer, z-stage

(d) Soller collimators in the automatic changer
for α1 (in the primary beam.)

(e) Typical sample mounting for use of
cryostat.

(f) Detector tubes to be built into the detector
shielding
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3 Experiment

PANDA is a complex research instrument, where normally measurements on samples at very low
temperature, high magnetic fields and / or high pressure are performed. Phonons for example
are measured to learn about the interaction potentials in solids. Measurements of spin wave
dispersions contribute to determine magnetic interactions.

The goal of this practice is to give inside to the potential of neutron scattering on a three-axis
spectrometer. To get results, you have to understand the functionality of the instrument. This
can include the alignment of the instrument and the sample. Some data can be taken on a well-
known sample, e.g. lead, which can be measured at room temperature (necessary due to the
limited time of the practice. A normal experiment needs several days.)

1. Preparation

• Gather theoretical basics.

• Generate a strategy for the measurements and a plan of the experiment.

• Safety instruction at the instrument PANDA.

2. Alignment

• Proof of the instrument alignment by scans of the monochromator or analyzer axis

• Determination of the (energy) resolution of the spectrometer for (min.) three dif-
ferent wave vectors by measuring of the incoherent elastic intensity on vanadium.
Choose an appropriate configuration for the following measurements.

• Alignment of the sample, define the scattering plane, optimize background.

• Perform control scans and learn the use of the user interface on PANDA.

3. Measurements

• Perform the planned scans to determine the resolution ellipsoid.

• Measure (min.) one mode of the dispersion relation of lead by different scans.

4 Report

After the experiment you have to report your work. Please explain the experiment and your
work in a short way to show how you understand the aim of the different steps. You can prepare
this by doing notes during the experiment.

Please analyze the data and interpret it. It is not necessary to repeat the theoretic aspects already
discussed in front of the experiment. But your report should be conclusive.

Please:

• Show the measured energy resolution depending on the wave vector. Explain your choice.

23



• Determine the direction of the resolution ellipsoid, add it to a scheme of the dispersion
and show the single scans.

• For the measurements of lead, plot the measured points with the error bars into a disper-
sion relation(s) and compare to references. Explain how different scan types influence the
result.

Finally: please give us a short feedback about the preparation, experiment and support. This can
also be done after the experiment. We like to give you an impression about neutron scattering
experiments even if practices are complicated. A feedback will help us to improve it for future
students.

P.S. Do not forget ruler and calculator.

24



References

[1] N. W. Ashcroft and N. D. Mermin. Festkörperpysik. Oldenbourg, 2001.

[2] B. N. Brockhouse and P. K. Iyengar. Normal modes of germanium by neutron spektrom-
etry. Phys. Rev., 111(3):747, Aug 1958.
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SPHERES 3

1 Introduction

Neutron backscattering spectrometers are used to measure inelastic scattering with very high
energy resolution. What does this mean?

In inelastic scattering, scattering intensity is measured as function of the energy exchanged
between the scattered neutron and the sample. As in other areas of physics, a data set of the form
intensity-versus-energy is called a spectrum. An instrument that resolves inelastic scattering is
therefore called a spectrometer.

While elastic scattering experiments yield information about structure or texture of a sample,
inelastic scattering is used to investigate its dynamics. Specifically, inelastic neutron scattering
yields information about the thermal motion of atomic nuclei.

The most common instrument for inelastic neutron scattering is the triple-axis spectrometer. It
is routinely used to measure phonon and magnon dispersions, with energy exchanges of the
order of meV. In contrast, the high resolution of a backscattering spectrometer allows to resolve
very small energy shifts of the order of μeV. By the time-energy uncertainty relation, small
energy means long times. Hence, backscattering addresses relatively slow nuclear motion —
much slower than the lattice vibrations typically seen in triple-axis spectrometry.

What processes take place on the energy or time scale made accessible by neutron backscatter-
ing? For instance the following:

• hyperfine splitting of nuclear spin orientations in a magnetic field,
• rotations or hindered reorientations of molecules or molecular side groups,
• quantum tunneling,
• hydrogen diffusion in solids,
• relaxation (molecular rearrangements) in viscous liquids,
• innermolecular rearrangements in polymers.

During your lab course day, you will use the backscattering spectrometer SPHERES (SPec-
trometer for High Energy RESolution) to study one example of these applications.

2 Spectrometer Physics

2.1 Energy Selection by Backscattering

In crystal spectrometers, neutron energies are selected by Bragg reflection from crystals, ac-
cording to the Bragg condition

nλn = 2dhkl sinΘ (1)

where dhkl is the distance of lattice planes [hkl], and Θ is the glancing angle of reflection
from these planes. The index n indicates that along with a fundamental wavelength λ1, integer
fractions λn = λ1/n are transmitted as well. To suppress these unwanted higher orders, ex-
perimental setups include either a mechanical neutron velocity selector (Fig. 1), or a beryllium
filter.
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Fig. 1: Rotor of a mechanical neutron velocity selector. The blades are coated with neutron
absorbing material. In SPHERES, such a selector is used as a pre-monochromator that reduces
the incoming white spectrum to about ±6%. c© Astrium GmbH.

In practice, the parameters d and Θ on the right-hand side of Eq. (1) are not sharp: Imperfec-
tions of the crystal lead to a distribution of lattice constants, characterized by a width δd. And
similarly, imperfections of the neutron optics (inevitable because the incoming beam, the sam-
ple, and the detector all have finite size) lead to a distribution of reflection angles, characterized
by a width δΘ. By differentiating the Bragg equation (1), one obtains the relative width of the
wavelength distribution reflected by a crystal monochromator:

δλ

λ
=

δd

d
+ cotΘ δΘ. (2)

In usual crystal spectrometers, the second term is the dominant one. However, by choosing
Θ = 90◦, the prefactor cotΘ can be sent to zero. This is the fundamental idea of the backscatter-
ing spectrometer. If a monochromator crystal is used in backscattering geometry, with Θ � 90◦,
then the reflected wavelength distribution is in first order insensitive to the geometric imperfec-
tion δΘ; it depends only on the crystal imperfection δd and on a second-order (δΘ)2 term.

The monochromator of SPHERES is made of silicon crystals in (111) orientation (Fig. 2).
The backscattered wavelength is λ = 2d111 = 6.27 Å, corresponding to a neutron energy of
2.08 meV. The crystals are cut from wafers produced by the semiconductor industry. They
are perfectly monocrystalline, so that their intrinsic resolution1 of δd/d � 10−6 is actually
too good because it does not match the spectrometer’s second-order geometric imperfection
(δΘ)2 � 10−4. As a remedy, the crystals are glued to a spherical support so that the resulting
strain induces a lattice constant gradient of the order δd/d � 10−4.

1 In perfect crystals, the intrinsic resolution δd/d is limited by primary extinction: Say, each crystalline layer has
a reflectivity of about 10−6. Then only about 106 layers contribute to the Bragg reflection. This limits δλ/λ to
about 10−6.
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Fig. 2: The monochromator of SPHERES consists of hexagonal Si(111) wafers of 750 μm
thickness, glued onto a spherical support made of carbon fiber.

Fig. 3: The analyzers of SPHERES are made of the same Si(111) as the monochromator. For
small scattering angles, they are shaped as rings; for large scattering angles, they are approxi-
mately rectangular sections of a sphere.

2.2 Spectrometer Layout

In a crystal spectrometer, a monochromator is used to send a neutron beam with a narrow
energy distribution Ei±δE onto the sample. After the sample, a second monochromator, called
analyzer, is used to select a narrow energy distribution Ef±δE out of the scattered spectrum. In
SPHERES, we actually have a huge array of analyzers (Fig. 3), covering a solid angle of about
2.5, which is 20% of 4π. These analyzers send energy-selected neutrons towards 16 different
detectors, depending on the scattering angle ϑ.

Fig. 4 shows the complete layout of SPHERES. The incoming beam is pre-monochromatized
by a mechanical velocity selector. Then, it is transported by a focussing neutron guide into the
instrument housing where it hits a rotating chopper. The chopper rotor (Fig. 5) carries mosaic
crystals made of pyrolitic graphite on half of its circumference. When the incoming neutrons hit
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Fig. 4: Layout of the Jülich backscattering spectrometer SPHERES at FRM II.

Fig. 5: Schematic front view of the chopper rotor of SPHERES. The red bands indicate the
mosaic crystals that deflect the incident beam towards the monochromator.

these crystals, they undergo a Bragg reflection towards the monochromator.2 Otherwise, they
are transmitted towards a beamstop.

The backscattering monochromator selects a neutron band Ei ± δE as described above. Neu-
trons within this band are sent back towards the chopper. When they reach the chopper, the
rotor has turned by 60◦: the mosic crystals have moved out of the way; the neutrons coming
from the monochromator are transmitted towards the sample.

The sample scatters neutrons into 4π. About 20% of this is covered by analyzers. If a scattered
neutron hits an analyzer and fullfills the backscattering Bragg condition, it is sent back towards
the sample. It traverses the sample3 and reaches a detector. To discriminate energy-selected
neutrons from neutrons that are directly scattered from the sample into a detector, the time of
arrival is put in relation to the chopper phase.

2 As a side effect, the Bragg deflection by rotating mosaic crystals achieves a favorable phase-space transform
(PST): the incoming wavevector distribution is spread in angle, but compressed in modulus. This results in a
higher spectral flux in the acceptance range of the monochromator.
3 Of course not all neutrons are transmitted: some are lost, some are scattered into a wrong detector. This inac-
curacy is inevitable in neutron backscattering. We strive to keep it small by using rather thin samples with typical
transmissions of 90% to 95%.
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While the primary spectrometer (everything before the sample) is mainly in vacuum, the sec-
ondary spectrometer is not. To minimize neutron losses in the secondary spectrometer, the
entire instrument housing can be flooded with argon. For the labcourse, we preferentially re-
move the argon so that participants can accede the housing. However, since refilling takes at
least one full day, time constraints may prevent us from doing so. In this case, a video will be
shown to present the interior of the spectrometer.

2.3 Measuring Spectra

So far we have introduced a static arrangement with fixed energies Ei = Ef . Such an arrange-
ment is actually used to measure the fraction of elastic versus total scattering, called the Debye-
Waller factor for coherent scattering and the Lamb-Mössbauer factor for incoherent scattering.
More often, however, one wants to measure full spectra S(Q,ω). Therefore, one must find a
way to modify the energy transfer

�ω = Ei − Ef . (3)

This can be done using the Doppler effect: The monochromator is mounted on a linear drive
that performs a cyclic motion. In the monochromator’s rest frame, the backscattered energy is
always the value E0 = 2.08 meV given by the lattice constant of Si(111). Depending on the
monochromator’s velocity v, the value in the laboratory frame is

Ei(v) =
mn

2
(v0 + v)2 (4)

where v0 = 631 m/s is the neutron velocity at E0 = mn/2 v
2
0 . The Doppler drive of SPHERES

has a linear amplitude of ±75 mm and achieves a velocity amplitude of ±4.7 m/s, resulting in
an energy range

−30.7 μeV < �ω < 30.9 μeV. (5)

This is called the dynamic range of the spectrometer.

When a scattered neutron is detected, its time of flight is traced back to the moment when it
has been backscattered by the monochromator. From the recorded trace of the linear drive, the
monochromator velocity at that moment is infered, ω is computed from (4) and (3), and the cor-
responding histogram channel is incremented. To determine S(Q,ω), one needs to normalize to
the time spent in channel ω. This normalization is routinely done by the instrument’s raw-data
reduction program SLAW.

2.4 Instrument Characteristics

The performance of a spectrometer can be characterized by its resolution function. To obtain
the resolution function, one measures the spectrum of a purely elastic scatterer. Fig. 6 shows the
result of a resolution measurement from a user experiment on SPHERES. Note the logarithmic
intensity scale.

Conventionally, the resolution of an instrument is characterized by the full width at half max-
imum (FWHM). For SPHERES, a typical value is 0.65 μeV. Note however that the FWHM is
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Fig. 6: Resolution function of SPHERES, measured on a user provided sample at a low temper-
ature where the scattering is purely elastic.

not the full story: the quality of an instrument also depends on the shape of the resolution func-
tions, especially of the deep wings. The resolution of SPHERES is slightly asymmetric. This is
related to the (δΘ)2 term in the wavelength spread of a backscattering analyzer: all deviations
from the perfect Θ = 90◦ geometry lead to the transmission of longer wavelengths, never of
shorter ones.

Another important figure of merit is the signal-to-noise ratio (SNR). It depends strongly on the
ratio of scattering to absorption cross sections and on the thickness and geometry of the sample.
With argon filling, the best value obtained in user experiments has been 1700:1; without argon,
1200:1. On the other hand, for strongly absorbing samples it is sometimes less than 100:1.

3 Applications

In the following, two different applications of neutron backscattering are explained: hyperfine
splitting in a magnetic material, and methyl group tunneling.

3.1 Hyperfine Splitting

The measurement of hyperfine splitting has been historically the first application of neutron
backscattering,4 and to this day, it is the conceptually simplest one.

Since the neutron has spin S = 1/2, its magnetic quantum number can take the values Sz =
±1/2. In a scattering event, this quantum number can change. In more pictorial words: when a

4 A. Heidemann, Z. Phys. 238, 208 (1970).



SPHERES 9

neutron is scattered, it may or may not undergo a spin flip.

As angular momentum is conserved, a change of Sz must be accompanied by an opposite
change of the magnetic quantum number Iz of the nucleus by which the neutron is scattered,
ΔIz = −ΔSz. Therefore, spin-flip scattering is only possible if the sample contains nuclei with
nonzero spin I .

Nuclei with nonzero spin quantum number I possess a magnetic moment

μ = IgμN (6)

with the nuclear magneton

μN =
e�

2mp

= 3.153 · 10−8 eV/T. (7)

The g factor is different for each nucleus.5

A local magnetic field B leads to a splitting of energy levels,

E = IzgμNB, (8)

called hyperfine splitting. Consequently spin-flip scattering is accompanied by an energy ex-
change ΔE = ±gμNB. By measuring the neutron energy gain or loss ±ΔE, one can accurately
determine the local field B in ferromagnetic or antiferromagnetic materials.

3.2 Molecular Rotation and Quantum Tunneling

Rotational motion of molecules or molecular side groups is one of the most important applica-
tions of neutron backscattering. Here, we specialize on the rotation of methyl (CH3) groups.
We consider these groups as stiff, with fixed6 CH bond length 1.097 Å and HCH angle 106.5.◦

The only degree of freedom is then a rotation around the RC bond that connects the methyl
group to the remainder R of the molecule. This RC bond coincides with the symmetry axis of
the CH3 group. The rotational motion can therefore be described by a wave function ψ that
depends on one single coordinate, the rotation angle φ.

The Schrdinger equation is {
B

∂2

∂φ2
− V (φ) + E

}
ψ(φ) = 0. (9)

For free rotation (V = 0), solutions that possess the requested periodicity are sine and cosine
functions of argument Jφ, with integer J . Accordingly, the energy levels are E = BJ2.

Given the value B = 670 μeV, it is obvious that free rotor excitations occur only far outside
the dynamic range of neutron backscattering. Conversely, if we observe an inelastic signal
from methyl groups on a backscattering spectrometer, then we must conclude that V �= 0: the

5 Tabulation: http://ie.lbl.gov/toipdf/mometbl.pdf.
6 Ignoring the variations of empirical values, which are of the order of ±0.004 Å and ±1.5◦.
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methyl group rotation is hindered by a rotational potential. This potential can be caused by the
remainder R of the molecule as well as by neighbouring molecules.

Due to the symmetry of the CH3 group, the Fourier expansion of V (φ) contains only sine and
cosine functions with argument 3mφ, with integer m. In most applications, it is sufficient to
retain only one term,

V (φ)
.
= V3 cos(3φ). (10)

The strength of the potential can then be expressed by the dimensionless number V3/B. In the
following we specialize to the case of a strong potential, V3/B � 10, which is by far the most
frequent one.

In a strong potential of form (10), the CH3 group has three preferential orientations, separated
by potential walls. The motion of the CH3 group consists mainly of small excursions from the
preferred orientations, called librations. Essentially, they are harmonic vibrations.

At low temperatures, almost exclusively the vibrational ground state is occupied. Yet reorien-
tational motion beyond librations is possible by means of quantum mechanical tunneling: the
wave functions of the three localised pocket states ψm (m = 1, 2, 3) have nonzero overlap.
Therefore, the ground state is a linear combination of pocket states.7 Periodicity and threefold
symmetry allow three such combinations: a plain additive one

ψ1 + ψ2 + ψ3, (11)

and two superpositions with phase rotations

ψ1 + e±i2π/3ψ2 + e±i4π/3ψ3. (12)

In the language of group theory, state (11) has symmetry A, the degenerate states (12) are
labelled Ea, Eb. It is found that A is the ground state. The tunneling splitting �ωt between
the states A and E is determined by the overlap integral 〈ψm|V |ψn〉 (m �= n). It depends
exponentially on the height of the potential wall. Provided it falls into the dynamic range of
neutron scattering, it leads to a pair of inelastic lines at at ±�ωt.

With rising temperatures, the occupancy of excited vibrational levels increase. This facilitates
transitions between A and E sublevels and results in a decrease of �ωt and a broadening of the
inelastic lines.

Upon further temperature increase, thermal motion of neighbouring molecules causes so strong
potential fluctuations that the picture of quantum tunneling is no longer applicable. Instead, the
motion between different pocket states can be described as stochastic jump diffusion.

Let pm(t) be the probability of being in pocket state m (m = 1, 2, 3). Assume that jumps
between the three main orientations occur with a constant rate τ−1. Then, the pm obye rate
equations

d

dt
pm(t) =

1

τ

{
−pm +

∑
n �=m

1

2
pn

}
. (13)

7 This is an extremely simplified outline of the theory. In a serious treatment, to get all symmetry requirements
right, one must also take into account the nuclear spins of the H atoms. See W. Press, Single-Particle Rotations in
Molecular Crystals, Springer: Berlin 1981.
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The stationary equilibrium solution is just pm = 1/3 for all m. When perturbed, the system
relaxes into equilibrium with a time dependence of exp(−t/τ̃). Explicit solution of the linear
differential equation system (13) yields τ̃ = 2τ/3.

According to a fundamental theorem of statistical mechanics (the fluctation dissipation theo-
rem), the relaxation by which a slightly perturbed system returns into equilibrium has the same
time dependence as the pair correlation function in equilibrium. Therefore, we can employ the
solution of (13) to write down the self-correlation function of the protons that constitute our
methyl group. Fourier transform yields then the incoherent scattering function

S(q, ω) = a(q)δ(ω) + b(q)
Γ

ω2 + Γ2
. (14)

The first term describes elastic scattering. The second term, the Fourier transform of the expo-
nential exp(−t/τ̃), is a Lorentzian with linewidth Γ = τ̃−1; such broadening of the elastic line
is often called quasielastic.

4 Preparatory Exercises

1. Relate the relative wavelength spread δλ/λ to the relative energy spread δE/E.

2. In SPHERES, useable detectors are located at scattering angles 2θ ranging from 12.5◦

to 134◦. Calculate the corresponding wavenumbers in Å−1. Recommendation: use the
following constants in atomic units: �c = 1973 eVÅ and mnc

2 = 940 MeV.

3. Convert dynamic range and resolution of SPHERES into GHz. To make contact with
optical spectroscopy, you might also wish to convert into cm−1.

4. Empirically, it is found that the centre of the resolution function can be fitted by a Gaus-
sian a exp(−E2/2/σ2). Derive an expression that relates the Gaussian standard deviation
σ to the FWHM.

5. Note that the above mentioned fit applies only to the very centre of the resolution function.
How does a Gaussian look like on the lin-log representation of Fig. 6? And a Lorentzian?

6. In SPHERES, the distance sample-analyzer is 2 m. Calculate the time neutrons need for
a round trip sample-analyzer-sample, and deduce the rotation frequency of the chopper.

7. Assume that the monochromator motion is perfectly sinusoidal. Sketch how the measur-
ing time per energy channel varies with �ω.

8. Draw a sketch of the expected backscattering spectrum S(q, ω) of a ferromagnetic mate-
rial with I �= 0.

9. Assume a hyperfine splitting of ΔE = 2 μeV. To which temperature do you have to
cool the sample to observe a 10% difference between the probabilities of energy gain and
energy loss scattering?

10. How do you expect ΔE to evolve when the sample is heated towards the Curie or Néel
temperature?
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11. Calculate the moment of inertia, I =
∑

mr2⊥, of a methyl group. Verify that the rota-
tional constant B = �

2/(2I) has a value of about 670 μeV.

12. Expand V (φ) around a potential minimum, and compare the resulting Schrödinger equa-
tion with that of a harmonic oscillator. Show that the splitting of oscillator levels is of the
order of meV.

13. Draw a coordinate system energy-versus-angle. Sketch V (φ), the harmonic approxima-
tion, the ground state’s ψ(φ), and the lowest oscillator energy levels. What does that
imply for the validity of the oscillator approximation?

14. Sketch the expected spectra for different temperatures.

5 Experiment Procedure

5.1 The experiment itself

After an initial discussion, the group chooses which experiment to perform: hyperfine splitting,
methyl group tunneling, or participation in an ongoing research project. For a given chemical
composition, the group computes the sample thickness that yields 90% transmission. Depend-
ing on the group’s interest, a sample is prepared, or a standard sample is used. The tutor shows
how to insert the sample in the instrument’s cryostat. Using the instrument’s graphical user
interface, starting a measurement is rather trivial. Log entries are written to the instrument log
wiki.

5.2 Raw data reduction

The program SLAW is used to convert raw neutron counts into S(Q,ω). It is parametrized by
a script, called Slawfile. The tutor provides a sample script, which is then modified to
convert the results of the current experiment.

SLAW can save S(Q,ω) in a variety of output formats. Most relevant are plain tabular formats
recttab and spectab, and a self-documenting format y08 required by our standard data-
analysis software FRIDA.

5.3 Data evaluation

In a first approach, labcourse participants should analyse plain tabular data using whatever all-
purpose data-analysis software they are used to.

1. Plot a representative selection (choose a few Q) of measured spectra.

2. Determine the FWHM of the elastic line, and of the inelastic lines if there are any.

3. Try to fit these lines with a Gaussian, with a Lorentzian, with a squared Lorentzian.
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4. Summarize the temperature dependence of the spectra.

For a more quantitative analysis, it is necessary to convolute a theoretical model with a measured
resolution function. This can be done with the data-analysis package FRIDA. For a tutorial, refer
to the SPHERES wiki.8

8 Follow the link at http://www.jcns.info/jcns_spheres.
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Contact

SPHERES
Phone: 089/289-14875

Web: http://www.jcns.info/jcns_spheres/

Michaela Zamponi

JCNS at FRM II, Forschungszentrum Jülich GmbH

Phone: 089/289-10793

e-Mail: m.zamponi@fz-juelich.de

Gerald J. Schneider
Phone: 089/289-10718

e-Mail: g.j.schneider@fz-juelich.de
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1 Introduction 

Polarized neutron scattering and polarization analysis represents a powerful technique for the 
studies of complex ordering phenomena and dynamics of condensed matters. The elements of 
this technique and its advanced applications in particular in magnetism have been 
comprehensively covered in a number of recent lecture notes [1-4] and several seminal papers 
[5-7]. The aim of this exercise on Neutron Polarization Analysis is to provide you with some 
hands-on experience on the practical aspects of polarized neutron scattering based on the 
multi-detector time-of-flight spectrometer DNS at FRM II. The details on the handling of 
polarized neutrons and the fundamentals of polarization analysis will be demonstrated from a 
range of carefully designed experiments and exercises. 

In Section 2 of this manual, an overview of the instrument DNS as well as its unique 
capabilities will be given. Section 3 consists of necessary preparatory exercises and questions 
which can be studied before the experiment. Section 4 describes the details of the experiment 
procedure and provides the experiment-related exercises. 

2 Overview of the DNS instrument 

DNS is a versatile diffuse scattering cold neutron time-of-flight spectrometer with 
polarization analysis at the neutron guide NL6a, FRM II. DNS has the capability to allow 
unambiguous separations of nuclear coherent, spin incoherent and magnetic scattering 
contributions simultaneously over a large range of scattering vector Q and energy transfer E. 
A schematic layout of DNS is shown in Fig. 1. 

 

 
 

Fig. 1 The schematic layout of DNS 
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DNS has a number of unique features such as wide-angle polarization analysis, a large 
position-sensitive detector array and a high frequency double disc chopper system. With its 
compact design and the powerful double-focusing PG(002) monochromator, DNS is 
optimized as a high intensity instrument with medium resolution. The monochromatic neutron 
beams with the wavelength ranging from 2.4 to 6 � are available at DNS. Newly constructed 
polarizer and polarization analyzers, both using m = 3 Schärpf bender-type focusing 
supermirrors, perform very well. A polarized neutron flux as high as 5 � 106 n/(s�cm2) has 
been achieved at 4.74 Å. The polarization rate of the incident neutron beams is nearly 96%. 
The wide-angle polarization analysis in the horizontal scattering plane is achieved via using 
24 units of polarization analyzers simultaneously. The neutron spins are manipulated using a 
Mezei-type �-flipper, followed by a set of orthogonal XYZ-coils situated around the sample 
position for providing guide fields. In addition to high polarized flux, the unique strength of 
DNS lies on its extreme versatility. DNS can be operated in a number of modes for a wide 
range of samples. There are three polarization analysis (PA) modes at DNS: uniaxial-PA for 
separation of coherent and spin-incoherent scattering in non-magnetic samples; longitudinal-
PA for separation of magnetic scattering in paramagnetic and antiferromagnetic samples; 
vector-PA for the determination of complex magnetic structures. 
 
Time-of-flight spectroscopy is another important application at DNS. The installation of 128 
position-sensitive 3He tubes of 1m height and half inch diameter has just been completed at 
DNS, and the commissioning is expected soon. This will increase the covered solid angle up 
to 1.9 sr. DNS will be running with a double disc chopper system with the frequency up to 
300 Hz. The setup with two phase-controlled choppers would allow to eliminate high-order 
(e.g. �/2) background or to select only high orders. DNS is targeted as a high count-rate cold 
neutron time-of-flight spectrometer with medium resolution. DNS is thus ideal for the studies 
of spin dynamics in many novel magnetic materials. The technical details of DNS are shown 
in Table 1. 
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Monochromator horizontal- and vertically 

adjustable double-focusing 
PG(002), d = 3.355 � 

(at NL6a) 
crystal dimensions 2.5 � 2.5 cm2 (5 � 7 crystals) 

wavelengths 2.4 � ; � ; 6 � 
Double-chopper 

system 
chopper frequency ; 300 Hz 

repetition rate ; 900 Hz 
chopper disks Titanium, 3 slits, 9 = 420 mm 

Expected flux at 
sample (n/cm2s) 

Non-polarized ~ 108  
Polarized (polarizer: m = 3 

supermirror benders) 
~ 5�106–107  

Detector banks for 
non-polarized 

neutrons 

position sensitive 3He detector 
tubes 

128 units, 9 = 1.27 cm, height 
~100 cm 

total solid angle covered 1.9 sr 
covered scattering angles in the 

horizontal plane 
0< < 2� ; 135<�

Detector banks for 
polarized neutrons 

polarization analyzers 24 units, m = 3 supermirror 
3He detector tubes 24 units, 9 = 2.54 cm, height 15 

cm 
covered scattering angles in the 

horizontal plane 
0< < 2� ; 150<�

Qmax �i = 2.4 � (Ei = 14.2 meV) 4.84 �-1 
�i = 6 � (Ei = 2.28 meV) 1.93 �-1 

Expected energy 
resolution 

�i = 2.4 � (Ei = 14.2 meV)  ~ 1 meV 
�i = 6 � (Ei = 2.28 meV) ~ 0.1 meV 

Suitable samples single crystals, powders, soft matters (e.g. polymer, liquid etc.) 
Sample 

environments 
top-loading CCR, closed-cycle cold head, orange cryostat, cryo-
furnace, 3He/4He dilution cryostat (~20mK), cryomagnet (self-

shielding, vertical field up to 5T) 
 

Table 1 The technical details of the DNS instrument 
 

Typical scientific applications at DNS are the studies of complex magnetic correlations, such 
as in highly frustrated magnets and strongly correlated electrons, as well as the structures of 
soft condensed matter systems, such as the nanoscale confined polymers and proteins, via 
polarization analysis. The exploration of unusual magnetic properties can also be efficiently 
undertaken on single-crystal samples by reciprocal space mapping. Fig. 2(a) shows an 
example of the measured magnetic diffuse scattering patterns in frustrated spin-ice pyrochlore 
compound (Ho1-xYx)2Ti2O7, due to in-plane magnetic correlations as determined by the spin-
flip scattering of the initial Pz polarization [8]. In addition to the separation of magnetic cross 
section from nuclear and spin-incoherent ones, polarization analysis can also be used to 
explore possible anisotropy of spin correlations in complex materials. Polarized powder 
diffraction carried out at DNS is complementary to standard neutron powder diffraction and 
may be extremely useful for magnetic structure refinements, particularly in case of small 
magnetic moments by improving the signal to background ratio. Fig. 2(b) shows the magnetic 
and nuclear scattering of iron-based superconductor Sr2CrO3FeAs measured at DNS via 
polarization analysis and the corresponding Rietveld refinements [9]. Fig. 2(c) shows the 
magnetic diffuse scattering derived with the same approach on the {Mo72Fe30} molecule 
magnet [10]. DNS also represents a powerful instrument for the soft condensed matter 
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community for the separation of nuclear coherent scattering from often dominating spin 
incoherent scattering background in hydrogenous materials. 

 

 

                 
(a) 

 
(b) 

 

 
 

(c) 
 
Fig. 2 Examples of the scientific applications at DNS: (a) peculiar magnetic diffuse scattering 
patterns observed on the frustrated spin-ice pyrochlore compound (Ho1-xYx)2Ti2O7 via 
polarization analysis [8]; (b) magnetic and nuclear scattering of iron-based superconductor 
Sr2CrO3FeAs at 3.5 K as measured (blue) at DNS via polarization analysis and the Rietveld 
refinements (red) [9]; (c) differential magnetic scattering cross section measured at 1.5 K and 
the theoretical simulation with the three-sublattice spin model of the {Mo72Fe30} molecule 
magnet [10]. 
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3 Preparatory Exercises 

The practical aspects and the experimental setup of DNS with respect to polarization analysis 
have been addressed and discussed in great details in the lecture [1]. Therefore, it is strongly 
recommended to go through the relevant sections of the lecture notes thoroughly before the 
exercises. Try to answer the following general questions would greatly improve your 
understandings: 

1. What is the Larmor precession? How to calculate the Larmor frequency (�L)? 

2. How neutron spins would respond to changing magnetic fields? What are adiabatic 
and non-adiabatic behaviour? 

3. How to produce polarized neutrons and how to analyze the spin state of the neutrons 
after the scattering process? 

4. What is the spin flipper? How does it work? 

5. What is the flipping ratio? What is the polarization rate of the neutron beams? 

6. What are nuclear coherent, spin incoherent, isotopic incoherent and magnetic 
scattering processes? Whether and how the spin states of the scattered neutrons would 
be changed in those scattering processes? 

 

 

 
(a) 

 
(b) 

Fig. 3 Preparatory exercises 
 
 

In addition to these general questions, the following exercises are provided: 

1. How strong the magnetic fields Hy should be provided in the coil of length L = 100 
mm to perform 90° turn for neutrons with �=4 Å? (see Fig. 3(a)) 

2. A magnetic field H changes its space direction by 90° over a distance of L = 20 mm 
(as shown in Fig. 3(b)). How strong H should be to provide adiabatic evolution of the 
neutron spins guided by such fields? The neutrons wavelength is �=4 Å. 
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4 Experiment Procedure and Experiment-related 
Exercises 

4.1 Manipulating neutron spins  

After the DNS instrument and its major instrument components are briefly introduced by the 
tutor, the first task for students is to learn how to manipulate neutrons spins via the Larmor 
precession and properly set guide fields. The following experiments are planned: 

1 Alignment of the �-flipper and z-compensation field coils for the incident neutrons 
with �=4.74 Å 

1 Alignment of the magnetic guide fields at the sample position along three orthogonal 
directions via XYZ-coils 

1 Measurement of the flipping ratio and the polarization rate of the incident neutron 
beams at DNS 

In addition, the following exercises are provided: 

1. For neutrons with a wavelength �=4.74 Å and a flight path of 10 mm through the 
flipper coil, how strong the flipping field would be required to achieve a �-flip? 

2. The measured flipping ratio (R) is 25, what is the polarization rate (P) of the incident 
neutron beams? 

4.2  Demonstration of the principle of neutron polarization analysis 

The principle of neutron polarization analysis will be demonstrated here by the measurement 
of various standard samples. The following samples are planned, 

 

1 (002) Bragg reflection of pyrolytic graphite: nuclear coherent scattering 

1 Vanadium hollow-cylinder: nuclear spin-incoherent scattering 

1 Non-magnetic alloy Ni0.89Cr0.11: isotopic incoherent scattering 

1 A prototypical antiferromagnet: magnetic scattering 

 

The students are expected to perform the experiment to measure the spin-flip and non-spin-
flip scattering intensities of each sample via wide-angle polarization analyzers at DNS. The 
basic rules for the separation of different scattering cross-sections can thus be derived. The 
students will be encouraged to compare the results obtained at DNS to those reported in the 
seminal work by R.M. Moon [5]. 

The polarization efficiency can never achieve 100% due to polarization losses by 
depolarizations in the polarizer, the analyzer and the guide fields and the imperfections of the 
polarizer, the analyzer and the flipper. This would always lead to a finite flipping ratio even 
for an ideal non-spin-flip scatter. The correction for finite flipping ratio thus becomes an 
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important and always necessary practical issue in order to obtain a precise separation. 
Therefore, the following exercise related to the flipping ratio correction is provided, 

1. The measured flipping ratio from an ideal isotopic incoherent scatter Ni0.89Cr0.11 is 20, 
the spin-flip scattering intensity is I== and the non-spin-flip scattering intensity is I=>, 
how to calculated the corrected intensities for I== and I=> by taking into account the 
finite flipping ratio? 

 

4.3  Case studies 

In the final part, two case studies will be provided for students to maser neutron polarization 
analysis via the measurements on two real samples. The first one is the separation of nuclear 
coherent scattering from incoherent scattering in heavy water D2O [11]. The second case 
study is the measurement of magnetic ordering in the novel superconducting compound via 
the XYZ-method [9]. The following exercises are provided, 

1. How to separate nuclear coherent scattering from spin-incoherent scattering in soft 
condensed matter? 

2. How to obtain the magnetic scattering cross section via the XYZ-method? Which 
necessary corrections need to be done for a precise separation? 
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1 Introduction

Aim of the experiment is to study the dynamics of a polymer chain in solution with Neutron
Spin Echo spectroscopy (NSE), the technique which offers the highest energy resolution in
neutron scattering. The technique is well suited for soft matter systems where the molecules or
nanoscopic structures like membranes or micelles exhibit fluctuating Brownian motions, driven
by the thermal energy. NSE is able to analyze these fluctuations on the nanosecond and nanome-
ter time- and lengthscale.

In this neutron course experiment PEP (poly(ethylene propylene)) with a molecular weight of
70 kg/mol is dissolved in deuterated decane with a concentration of 3 %. The dynamics of the
polymer in solution will be studied here at room temperature. The results will be interpreted in
terms of the Zimm model which allows to draw conclusions about the internal motions of the
polymer chains.

2 Neutron Spin Echo Spectroscopy

The neutron spin echo technique uses the neutron spin as an indicator of the individual velocity
change the neutron suffered when scattered by the sample. Due to this trick the instrument
accepts a broad wavelength band and at the same time is sensitive to velocity changes down to
10−5. However the information carried by the spins can only be retrieved modulo an integer
number of spin precessions as intensity modulation proportional to the cosine of a precession
angle difference. The measured signal is the cosine transform I(Q, t) of the scattering function
S(Q,ω). All spin manipulations only serve to establish this special type of velocity analysis.
For details see Reference [1].

Due to the intrinsic Fourier transform property of the NSE instrument it is especially suited for
the investigation of relaxation-type motions that contribute at least several percent to the entire
scattering intensity at the momentum transfer of interest. In those cases the Fourier transform
property yields the desired relaxation function directly without numerical transformation and
tedious resolution deconvolution. The resolution of the NSE may be corrected by a simple
division.

For a given wavelength the Fourier time range is limited to short times (about 3 ps for the FRM
II-setup) by the lower limit of the field integral and to long times by the maximum achievable
field integral J =

∫
Bdl. The lower limit results from the lowest field values that are needed as

“guide” field in order to prevent neutrons from depolarization effects. The upper limit results
either from the maximum field that can be produced by the main solenoid, powersupply and
cooling combination or by the maximum field integral inhomogeniety (→ variation of preces-
sion angle between different paths within the neutron beam) that can be tolerated respectively
corrected for, depending which condition applies first. The Fourier time is proportional to J ·λ3.
The J-NSE may achieve a J = 0.5 Tm corresponding to t = 48 ns at λ = 8 Å.

The instrument itself (see Figure 1) consists mainly of two large water-cooled copper solenoids
that generate the precession field. The precession tracks are limited by the π/2-flippers in front
of the entrance respectively exit of the first and second main solenoids and the π-flipper near
the sample position. The embedding fields for the flippers are generated by Helmholtz-type coil
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pairs around the flipper locations. After leaving the last flipper the neutrons enter an analyzer
containing 60 (30 x 30 cm2) magnetized CoTi supermirrors located in a solenoid set. These
mirrors reflect only neutrons of one spin direction into the multidetector. By the addition of
compensating loops the main coils and the analyzer coil are designed such that the mutual
influence of the different spectrometer components is minimized.

Fig. 1: Working principle of the NSE spectrometer [2].

Depending on its velocity, each neutron undergoes a number of precessions in the first solenoid
before hitting the sample. The second solenoid after the scattering process rewinds exactly these
precessions for elastically scattered neutrons, whereas inelastically scattered neutrons collect a
different phase angle of rotation, ΔΨ � Δv/v2 γ J , with γ = 2π×2913.06598×10−4 s−1 T−1.

The distribution of velocity changes Δv of the neutrons suffer during scattering at the sample
–in terms of it’s cos-Fourier transform– is measured as polarization of the neutron beam at the
end of the second solenoid after the last π/2-flipper. The small velocity changes are propor-
tional to the small energy changes �ω, ω being the frequency of the Fourier transform. The
time parameter (Fourier time) is proportional to λ3J and here in first instance is controlled by
the current setting of the main coils (i.e. J). The polarization then is determined by scanning
the magnetic field in one of the main coils slightly with the so called phase coil. If first and
second arm are symmetric, a maximum of the polarization is measured, if the phase of the spins
is shifted by 180 degree by variation of the field of one coil, one gets to a minimum of intensity.
With a 360 degree variation one gets to the next maximum and so on. These oscillations are
shown in Figure 2. The amplitude of this echo is normalized to the difference between maxi-
mum intensity (up-value), where all flippers are switched off, and the minimum intensity where
only the π-flipper is switched on (down-value). Assuming that this normalization accounts for
all imperfections of the polarization analysis in the instrument, the result yields the desired de-
gree of polarization reduction due to inelastic/quasielastic scattering of the sample. Since the
thus determined polarization reduction also contains the effects due to field integral inhomoge-
niety a further renormalization step is needed, which is equivalent to a resolution deconvolution
in a spectroscopic instrument as e.g. the backscattering spectrometer. In order to be able to
perform this resolution correction the same experimental and data treatment procedure has to
be carried out with an elastic scatterer.
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The scattering vector Q is determined by the angle 2θ of the second arm of the spectrometer with
respect to the first one by Q = 4π/λ sin(θ). The Fourier time t is proportional to the magnetic
field of the main solenoids. At a given scattering vector Q, the magnetic field is successively
increased and an echo group is recorded for each setting to obtain I(Q, t) as a function of t.

Fig. 2: Echo group measured with the NSE instrument.

2.1 Separation of coherent and incoherent scattering

By the use of polarized neutrons it is possible to separate the coherent and spin incoherent part
of the scattering, since the incoherent scattering changes the polarisation to −1/3. For different
scattering vectors Q the scattering intensity is measured, once in the spin-up configuration and
once in the spin-down setup. In the spin-up configuration all spin flippers are switched off and
the longitudinal, in forward direction (i.e. parallel to the magnetic field) polarized beam can
pass through the spectrometer. The analyzer in front of the detector transmits those polarized
neutrons. The measured intensity at the detector in this configuration is the maximum possible
intensity. In the spin-down configuration only the π flipper at the sample position is switched on,
which rotates the neutron spin orientation by 180◦. The spin direction is now against the mag-
netic field direction and in the ideal case the analyzer completly absorbs the neutrons, so that
the minimal possible detector intensity is measured. Omitting background effects and assuming
perfect flipping ratio (ratio spin-up/spin-down = ∞ in the direct beam) coherent and incoherent
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scattering contributions can be separated as follow (with Up: detector intensity in the diffrac-
tion run with all flippers off, Down: detector intensity in the diffraction run with only π flipper
at sample position on, Icoh: coherent scattered intensity, Iinc: incoherent scattered intensity)

Up+Down = Icoh + Iinc (1)

Up−Down = Icoh − 1/3 ∗ Iinc (2)

which gives
Up = Icoh + 1/3Iinc (3)

Down = 2/3Iinc (4)

respectively

Iinc = 3/2Down (5)

Icoh = Up− 1/2Down (6)

To include nonideal flipping ratio and background count rate the calculation is more difficult.

3 Polymer dynamics

There are different models to describe the dynamics of large molecules. A nice overview is
given in the book ”Neutron Spin Echo in Polymer Systems”, which is also available online [3].

The conformation of a linear polymer chain follows a random walk, this means a chain segment
of length l can move freely around the neighboring segment (within the limitation of chemical
bonds). With a set of segment vectors rn = Rn − Rn−1, where Rn is the position vector of
segment n, the distance between segments which are n steps apart follows a Gaussian distribu-
tion [3]:

Φ(R, n) =

(
3

2πnl2

)3/2

exp

(
− 3R2

2nl2

)
(7)

with l the segment length.

By summing up the scattering amplitudes of the centres of the segments of a polymer chain
with the correct phases, one obtains the scattering function of the polymer chain (see Lecture
on Dynamics of Macromolecules for more details):

I(Q, t) = 〈
N∑

n,m=1

exp[iQ · (Rn(t)−Rm(t))]〉 (8)



J-NSE 7

0

0.2

0.4

0.6

0.8

1.0

0 1 2 3

Q

S
(Q

,t)

τ=0 (Debye−Fktn.)

τ = 0.005
τ = 0.010
τ = 0.020
τ = 0.040
τ = 0.080
τ = 0.160
τ = 0.320
τ = 0.640
τ = 1.280
τ = 2.560

τ= (Gauss−Fktn.)

e
(−D

CM
Q

2
t)

Fig. 3: Time development of I(Q, t)/I(Q, 0) (here denoted S(Q, t) for a Gaussian chain in the
Rouse model.

A snapshot of the chain, i.e. the static structure factor, is obtained for t = 0. One gets the well
known Debye funktion:

I(Q) = NfDebye(Q
2R2

g) (9)

fDebye(x) =
2

x2
(e−x − 1 + x) (10)

with Rg the radius of gyration of the chain. In Figure 3 the Debye function and its time evolution
is displayed.

3.1 Rouse dynamics

In the Rouse model the Gausssian polymer chain is described as beads connected by springs.
The springs correspond to the entropic forces between the beads and the distance between the
beads corresponds to the segment length of the polymer. The polymer chain is in a heat bath.
The Rouse model describes the movement of the single chain segments of such a polymer chain
as Brownian movement. Thermally activated fluctuations (by the stochastic force fn(t) with
< fn(t) >= 0), friction force (with friction coefficient ζ) and the entropic force determine the
relaxation of polymer chains.

The movement of the chain segments is described by a Langevin equation:

ζ
dRn

dt
+

∂U

∂Rn

= fn(t) (11)
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Fig. 4: Polymer chain in the Rouse model [3] as Gaussian chain with beads connected by
springs.

The Langevin equation can be solved and one can calculate with equation 8 the intermediate
scattering function, which is measured by NSE (for details, see the lecture on “Dynamics of
Macromolecules”):

I(Q, t) = exp(−Q2Dt)Iintern(Q, t) (12)

with a diffusive part with a relaxation rate proportional to Q2 and the part describing the internal
relaxation, which can be written for QRG >> 1:

Iintern(Q, t) =
12

Q2l2

∫ ∞

0

du exp(−u−
√
(ΓQt)h(u/

√
(ΓQt))) (13)

with the relaxation rate
ΓQ =

kBT

12ζ
Q4l2 (14)

and
h(u) =

2

π

∫
dx cos(xu)(1− e−x2

)/x2 (15)

Note that the local relaxation rate depends on Q4. When I(Q, t)/I(Q, 0) is plotted against the
Rouse variable

√
ΓQt, all curves collapse onto a master curve if the Rouse model holds.

With this model e.g. the dynamic of short polymers in the melt can be described. With increas-
ing molecular weight other effects like the constraints imposed by mutual entanglements of the
polymer chains become important, which are described in the reptation model by DeGennes
(Nobel prize 1991). In this experiment polymers in solution, not in the melt, are considered.
The Rouse model then needs to be extended by hydrodynamic interactions as will be described
in the following section.
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3.2 Zimm dynamics

Polymers in solution can be described by the Zimm model, where hydrodynamic interaction
between the chain segments mediated by the solvent are dominant. Moving chain segments
exert forces on other segments due to the flow of the surrounding solvent. Within some approx-
imations the system can be described by a Langevin equation analogous to that of the Rouse
model which includes the friction coefficient ξ = 6πηaseg with η the viscosity of the solvent.
The diffusion of a chain segment depends on its hydrodynamic radius aseg. More details can be
found in literature [3].

In general the intermediate scattering function for polymers in solution is

I(Q, t)

I(Q, 0)
= F

(
kB T Q3 t

6 π η

)
(16)

with a function F (x) which depends on the polymer conformation and the quality of the sol-
vent. The relaxation rate ΓQ = kB T Q3/(6 π η) is mainly determined by the viscosity of the
solvent. Internal dynamics is dominant at higher scattering vectors Q, where also the typical Q3

dependence of the relaxation rate can be observed. At smaller scattering vectors the contribution
from the center of mass diffusion is more prominent so that rather a Q2 dependence of the relax-
ation rate is expected (see below). For not too small Q values and long polymer chains, where
the end-to-end distance of the chain segments follow Gaussian statistics (Gaussian chain), the
function F (x) can be written as:

F (x) =

∞∫
0

exp
(
−u− x2/3 2

π

∞∫
0

cos(y u x−2/3)

y2

×
[
1− exp

(
− y2/3√

2

)]
dy

)
du (17)

This more complex function can be approximated by a stretched exponential function over a
wide Q range:

F (x) � exp
(
−
( x

b

)β )
(18)

with the parameters b � 1.354 and β � 0.85. For the evaluation of this experiment this
approximation of F (x) can be used.

3.3 Center of mass diffusion

With NSE spectroscopy the movements on length scales in the order of nanometer and time
scales in the order of nanoseconds can be observed. This matches e.g. the center of mass dif-
fusion of macromolecules in solution or micelles. The mean square displacement of a particle
is < r2(t) >= 6D0t with the diffusion constant D0 = kBT/(6πηRG), where RG is the hydro-
dynamic particle radius and η the viscosity (Stokes-Einstein-relation). The dynamic structure
factor which is measured by NSE is then

I(Q, t)/I(Q, 0) = exp
(−1/6 < r2(t) > Q2

)
= exp

(−D0tQ
2
)

(19)

A simple diffusion therefore has a quadratic dependence on the scattering vector Q.
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4 Preparatory Exercises

1. How fast do neutrons with a wavelength of 8 Å fly?

2. What is the value of the earth’s magnetic field?

3. What is the magnetic field at the surface of a common permanent magnet?

4. How many mm fall neutrons on their way from the entrance of the spectrometer to the
detector (about 7 m) due to gravity?

5. How many precessions does a neutron of λ = 8 Å perform in the main coils if the Fourier
time is set to 20 ns? (Angle Ψ = γ/v

∫
Bdl with γ = 2π · 2913.06598× 104(s · T )−1.

5 Experiment Procedure

5.1 The experiment itself

First, the function of the key components of the neutron spin-echo spectrometer will be
explained and demonstrated.

The generation of the ”Spin Echo” will be demonstrated with an auxiliary phase coil, wound
around one of the main precession coils with a simple wire. With a laboratory DC-powersupply
connected to this coil, the magnetic field inside this main coil is slightly varied. A fully
symmetrical setup with identical magnetic path integrals in both main coils results in a
maximum count rate at the detector. Increasing the current in the auxiliary coil from this point
results in an additional phase shift of the neutron spin and thus the intensity varies from the
maximum to a minimum and further to the next maximum and so on. In this way, the echo
group is scanned.

The experimental sample under investigation is a polymer chain (PEP, polyethylenepropylene)
with a molecular weight of 70 kg/mol in solution (deuterated decane). The PEP concentration
is 3 wt %. The first experiment with the sample is to measure the elastic scattering by recording
the spin-up and spin-down intensity at the detector.

• The coherent and incoherent scattering of the sample shall be extracted from this reading
and plotted versus the scattering vector Q.

The dynamics of the sample is measured. For some selected scattering vectors Q, a series of
Fourier times is measured for the sample, for a background sample containing everything but
the objects under investigation, in this case the pure deuterated solvent (d-decane), and for an
elastic scatterer as reference.
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5.2 Data reduction

Each Fourier time is determined by measuring 2-3 oscillations of the echo bunch and fitting the
theoretical curve (a cosine oscillation with a gaussian envelope) to the points. In short, the nor-
malized amplitude of the fitted curve is the degree of polarization wanted in this measurement.
This procedure is done with a program called echodet, which creates the files containing the
intermediate scattering function I(Q, t).

5.3 Data evaluation

The I(Q, t) vs. t is contained in the files b XXXXX as ascii-data.

• Read in the data with some data treatment program (e.g. qtiKWS9).

• Fit the data with a model function. First use a simple exponential function I(Q, t) =
A exp (−Γt) and determine the relaxation rate Γ. For diffusion like behaviour with the
Stokes-Einstein diffusion coefficient, Γ = DQ2 should be valid. Plot Γ/Q2 to check the
validity of the model. It also allows for the determiation of the hydrodynamic radius of
the particle assuming a viscosity of d-decane of η = 0.954× 10−3 kg/(m s).

• Use a stretched exponential function as model function: I(Q, t) = A exp (−[Γt]β) and
determine the relaxation rate Γ and the stretching exponent β. The Zimm model would
predict that the rate depends on the viscosity η as Γ = kBT/(6πη)Q

3. Which is the
viscosity of d-decane? Does the Q-dependence of the model describes that of the data
correctly (i.e. is Γ/Q3 = const.)?

6 Experiment-Related Exercises

Data evaluation (the bullet points in section 5):

1. Separate coherent and incoherent scattering from elastic scan (diffrun) and plot it.

2. Evaluate the data containing I(Q, t) vs t with the models as described in the previous
section and discuss the results.

General questions:

1. Why are no iron yoke magnets used in the construction of a NSE spectrometer?

2. What is the maximum field inside the main precession coils of the J-NSE?

3. What determines the resolution of the spin echo spectrometer?

4. How does the signal look like if the scattering is spin-incoherent? (Hint: in this case 2/3
of all neutron spins get flipped in the scattering process.)



12 O. Holderer, M. Zamponi and M. Monkenbusch

5. What is the measured effect of the spin echo spectrometer?

6. What is measured finally?
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Fig. 1: Representation of the protein
lysozyme, which has a very compact form.

Fig. 2: Molecular dynamics conforma-
tion of poly ethylene oxide in solution.

1 Introduction

The objective of this lab course is to clarify the essential concepts of small-angle neutron scat-
tering. Structures are only visible by a scattering experiment if there is an appropriate contrast.
For neutrons one often uses the exchange of 1H by 2H, i.e. deuterium. The contrast of this lab
course is achieved by using heavy water (D2O) as solvent. The materials (solutes) are natural
ones having normal protons.

The globular, compact lysozyme (Fig. 1) appears in chicken eggs and has anti-bacterial function.
The molecule is charged, which leads to repulsive interactions. So there is a short range order,
and the distance between the molecules can be determined.

The other molecule is the synthetic poly ethylene oxide (Fig. 2) with the chemical formula
of [-CH3-CH3-O-]n. It is one of the simplest water soluble polymers. The hydrogen bonds
of the oxygen are responsible for attractive interactions between water and the polymer. The
molecules form rather dilute coils in solution and the overall dimension of the coil will be
determined by SANS. Furthermore, the fractal structure of the coil will be determined.

2 Preparing solutions in Water

A lysozyme solution of 0.02g per ml of water must be prepared. We will weigh 0.02g of
Lysozyme and put it into a new Packard glas. With an Eppendorf pipette we will add exactly 1
ml D2O. These pipettes are extremely accurate with respect to the volume. From the solution
about 0.5 to 0.6ml are transferred to Hellma quartz cuvettes, which are 1mm thick. For the later
evaluation we need a highly accurate concentration. So all weights need to be written down as
exactly as possible.

For the poly ethylene oxide solution we chose the same concentration. Since the polymer exists
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in small platelets the tiny amount of polymer will not be that accurately prepared. Corrections
can be either done by chosing a different volume of heavy water or by just writing down the
exact weights. However, stay below 0.04g/ml for the concentration!

3 The Measurement at KWS-1 and/or KWS-2

These two solutions are now being measured in the small-angle neutron scattering instrument
KWS-1 (or KWS-2). The wavelength of neutrons is set to 7Å. The collimation is fixed to 8m.
The samples are placed as close as possible to the detector, to measure the largest Q values
possible. Both samples will be measured at detector distances 2m and 8m. The offset between
the sample position and the detector of about 30cm leads to effective detector distances of about
1.7m and 7.7m.

The sample holder will be filled with the two samples. In addition, the empty beam and a
plexiglass plate are measured for absolute calibration. For a good statistical measurement the
following times are set: 8m detector distance for 20min, and 2m detector distance 10min. The
total measuring time for the 4 positions will be about 2 hours. The measurement is typically
started before lunch, and can be evaluated in the afternoon. It is quite likely that an internal
employee will start separate measurements during the afternoon until the next morning in order
to use the valuable measuring time overnight.

4 Evaluation of the Scattering Data: Absolute Calibration

The measured data is raw data at first and describes the intensity on the detector. The data has
to be corrected for the effectiveness of the different detector channels. Then the empty beam
measurement is subtracted to account for the zero effect of the instrument. Then the intensities
are expressed as absolute units using Eq. 5.5 and are radially averaged, because for the isotropic
scattering samples, the intensity does not depend on the polar angle. To perform all these
steps we will be using a software available in our institute, called QtiKWS. However, since the
understanding of the Eq. 5.5, as such, is more important than the exact technical understanding
of the evaluation, the results are produced relatively quickly by the software, namely, dΣ/dΩ as
a function of the scattering vector Q for our samples. This data will be provided for the students
to do the final evaluation. In the following, this evaluation is described.

5 Evaluation of Lysozyme Scattering Curves

The position of the maximum Qmax provides information on the typical distance of the pro-
teins in solution. This can be calculated to � = 2π/Qmax. Knowing the weight of the protein
in water (0.02g/cm3) there is an alternative way to calculate the average distance. The mo-
lar mass of the protein is 1.43 × 104g/mol. The number density of the protein is therefore
n/V = 0.02g/cm3/(1.43 × 104g/mol) = 1.40 × 10−6mol/cm3 = 8.42 × 10−7Å−3. For a sim-
ple cubic packing the typical distance is given by � = 3

√
V/n. For a hexagonal packing the
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typical distance is � = 6
√

27/256 3
√

V/n. This distance is the minimum distance of the planes
important for the scattering experiment, and the next neighbor distance of the hexagonal lattice
is
√

8/3 � = 6
√
2 3
√

V/n. Both calculated distances of the cubic and hexagonal structure are to
be compared with the measured one.

6 Evaluation of the Polymer Scattering

In a first step we have to prepare the scattering data for background subtraction. We plot the
original data of the two detector distances in a log-log plot, i.e. log10(dΣ/dΩ) → log10 Q. After
this, we will see a plateau at high Q which indicates the constant incoherent scattering. Taking
the average of the last (say 10) points will give us the estimate of the background. A new
column with the background subtracted will be generated for the 8m and 2m measurements.
Finally, the two data sets should be combined to yield a single data set.

Now, we will aim at the overall appearance of the chain, i.e. we will determine the chain di-
mension. For this purpose the Guinier approximation can be applied. The general appearance
of the Gunier scattering law was already given in eq. 5.35 and reads:

dΣ

dΩ
(Q→0) =

dΣ

dΩ
(0) · exp

(
−1

3
Q2R2

g

)
(1)

For this purpose we plot the logarithm of the background corrected intensity against the square
of the scattering vector, i.e. ln(dΣ/dΩ) → Q2. The highest Q will lead to large values that
we are not interested in. So the plot has to be truncated to the rather small Q, say Q2 =
0..4× 10−4Å−2. Here, we do a linear regression and take the slope S as a result only. It has the
units Å2. From this we can calculate the radius of gyration using Rg =

√−3S. From previous
measurements we know that it is roughly 60Å large.

For the fractal structure we plot the data in a log-log plot again (background corrected). There
is the Gunier region indicated by flat scattering at low Q. At high Q the data will have very
large noise, and maybe negative values might appear from the subtraction. In the middle, the
scattering should be linear, indicating a power law characteristic for fractal structures. Again,
we use a linear regression to determine the slope α. From the ideal polymer without interactions
we learned that the exponent would read α = 2 (see eq. 5.50). When taking the attractive
interactions of the solvent into account, the exponent would be rather α = 1.70. The reciprocal
value α−1 is called Flory exponent and takes the ideal values of 0.5 or 0.588 for non-interacting
chains and chains in a good solvent, respectively. Please make your own judgement!
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7 Preparatory Exercises

(I) Lysozyme in D2O

The first sample of the Neutron Lab Course at the SANS instrument KWS-1 (KWS-2) will
be Lysozyme in heavy water (D2O). This protein is rather globular (diameter ca. 5 nm). The
Coulomb interactions of this charged molecule lead to liquid-like short-range-ordering. This
will be observed in the SANS scattering experiment by a correlation peak. Simple estimations
will be made now:

1. Give the connection between the number density φ and the unit cell parameter assuming
a simple cubic lattice!

2. The chemical concentration c is usually given in g/L or mg/ml. The molar mass of the
molecule is 14307g/mol. What is the connection between the chemical concentration and
the number density?

3. The correlation peak appears at a scattering vector Qmax. How would it relate to the unit
cell parameter of a simple cubic lattice? What is the dependence of Qmax as a function of
the chemical concentration c?

4. Please rationalize the relations of the hexagonal packing with respect to the cubic pack-
ing! The spacing of the planes is shorter by a value of rougly 0.69 (larger Q value com-
pared to cubic). The nearest neighbor has a larger distance of ca. 1.12 times the cubic
packing.

(II) Polymer in Solution

We will look on the overall dimension of the chain and on the fractal structure of the chain.

1. The Appendix B derived the Guinier scattering law for any shape of particles while in the
main manuscript the first application was the compact sphere. How has the compactness
of a polymer in a good solvent to be seen? Is there any restriction for the Gunier scattering
for polymers?

2. At large Q we observe a constant background from incoherent scattering. The hydro-
gen atom has a incoherent cross section of 80 × 10−24cm2, and the deuterium atom
2 × 10−24cm2. The concentration of hydrogen from the polymer is roughly 50 times
smaller than the concentration of deuterium from the heavy water. On the basis of these
numbers estimate the ratio of background from the polymer and the solvent!

3. The fractal structure means that looking inside a coil still finds the situation of the con-
nectivity of a chain on smaller length scales compared to the overall chain. The chain
is self-similar on length scales (between the overall coil dimension and the monomer di-
mension). The different exponents α of 2 and 1.7 for ideal chains and polymers in a
good solvent describe different compactness of the structure. Rationalize the difference
between a non-interacting chain and a chain that “feels” its own presence!



KWS-1 & KWS-2 7
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1 Introduction 

 

 Ultra small angle (USANS) and small angle neutron scattering (SANS) experiments are 
performed by two different types of instruments to cover a combined Q-range from 10-5Å-1 up 
to 1Å-1. Double crystal diffractometers are used for USANS experiments, whereas the 
"standard" SANS experiment is performed using a pinhole camera. In principle, the Q-range 
of both instrument classes overlaps. Typical USANS instruments like S18 (ILL) or PCD 
(NIST) may reach maximum Q-vectors of 5�10-3Å-1. The disadvantage of these instruments is 
that they do not allow taking a full area image on a 2D position sensitive detector. On the 
other hand, the well-known pinhole instrument D11 at Institut Laue-Langevin (France) 
reaches a minimum Q-vector of 3�10-4Å-1 by use of largest possible wavelength 22Å and 
sample-to-detector distances (>40 m). But the required instrumental settings push both types 
of instruments to their limits, mainly due to signal-to-noise level and the reduced flux at 
sample position. The use of neutron lenses as additional elements of a pinhole SANS 
instrument has been tested to overcome this intensity problem [1].  
 An alternative design is realized by the KWS-3 instrument [2]. The principle of this 
instrument is a one-to-one image of an entrance aperture onto a 2D position-sensitive detector 
by neutron reflection from a double-focusing elliptical mirror. It permits to perform SANS 
studies with a scattering wave vector resolution between 10-4 and 10-3Å-1 with considerable 
intensity advantages over conventional pinhole-SANS instruments and double crystal 
diffractometers. Therefore it perfectly bridges the "Q-gap" between USANS and SANS: Very 
Small Angle Scattering (VSANS). The increasing need for these intermediate Q-vectors arises 
from the growing interest in biological and colloidal samples, which partially deal with length 
scales in the ?m range. An investigation of the multilevel structures in partially crystalline 
polymer solutions performed using a combination of those three above depicted types of 
SANS instruments can be found in [3]. 
 
 

 
Figure 1: Focused VSANS fills space between USANS (double crystal diffractometer) 
and classical SANS instruments. 
 The main innovation and challenge of KWS-3 was to build a large mirror having a shape 
as close as possible to an ellipsoid and with a surface roughness less than 5 Å. The mirror is a 
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1.2 m long, 0.12 m wide and 0.05m thick toroidal double focusing mirror of 11 m focal 
length. At such a short mirror length with respect to the focal length, the toroidal shape is a 
good enough approximation to an elliptical shape. The reflection plane has been chosen to be 
horizontal, reducing the deterioration of the image due to gravity. A photo of the mirror is 
given in Figure 1. 
 

Figure 2:(left) layout of KWS-3;(right) toroidal mirror installed in vacuum its  chamber. 
 
 
 KWS-3 is optimized for very small angle scattering range from 10-4 to 3·10-3Å-1. For last 
cold source filling and instrument configuration the flux at the sample position (and detector) 
is near 11500 counts per full sample area by use 12.5Å wavelength with 20% wavelength 
spread, 2x2 mm2 entrance aperture and 20x100 mm2 beam size sample-to-detector distance at 
9.5 meters. 

2 VSANS applications 

 All applications of the classical SANS could be investigated by VSANS by taking into 
account Q-resolution of VSANS. The conventional fields of application of very small angle 
scattering studies are: 

1 particles in solution [protein aggregates, polymers, micelles, ceramics];    
1 porous materials [cement, paste, rocks, coal etc.]; 
1 inhomogeneous metallic alloys; 
1 bulk samples with artificial regular structure [phase gratings]; 

and other inhomogeneities on a size range from 50 nm to 5 �m, often in addition to SANS 
spectra, but also diffraction, reflection and refraction studies on surfaces. 

3 Preparatory Exercises 

1. The contrast variation (CV) is a very important feature of the neutron scattering. What 
is the scattering length density (SLD) 0? How to calculate the SLD? What is the 
definition of the scattering contrast �0? How to carry out the contrast variation 
experiment in case of an aqueous solution of particles?  
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2. The standard Q-range of KWS-3 is from 10-4 to 3·10-3Å-1. What the size of particles 
could be investigated in this Q-range? What are the form factor P(Q) and structure 
factor S(Q)? In which case the scattering intensity d@/d
(Q) could be represented as a 
product of the structure factor and form factor d@/d
(Q)= d@/d
(0)�P(Q)�S(Q)? What 
is the physical “content” of the forward scattering d@/d
(0) [I(0)]? 

3. The standard wavelength at KWS-3 is 12.5Å. What are disadvantages of this 
wavelength? What should we correctly select before sample preparation? 

4. What is the difference between pine-hole SANS and focused SANS? Why the beam 
size at KWS-3 is 20cm2?  

4 Experiment Procedure 

Within the frame of this practicum we will explore aquaeous solution of monodisperse 
polystyrene (PS) microspheres with diameter 8000Å and the initial concentration 1% of 
particles in H2O. In future, this sample will be used at KWS-3 as “a standard sample” to check 
the performance of instrument, absolute calibration, instrument resolution.   
 In Table 1 there is collected information about PS microspheres obtained from the 
producer; additionally all necessary information about H2O and D2O is listed there.  
 
Table 1. Parameters of used components 

 Polystyrene Spheres H2O D2O 

Scattering Length Density [Å-2] 1.41·10-6 -0.56·10-6 6.50·10-6 

Density, 20°C [g/cm3] 1.05 1.0 1.05 

Radius [Å] 4000±45   

 
 The contrast variation is proposed to proceed simply by step-by-step adding of D2O to the 
initial H2O solution of spheres. To estimate how much of D2O we should add, the simulation 
of the forward scattering should be done as function of D2O concentration: 

d@
d


0� � 	 ASpheresVSpheres 0Spheres � 0Water� �2, 
where VSpheres is volume of PS spheres, 0Spheres SLD of PS spheres, 0Water SLD of D2O/H2O 
mixture, ASpheres volume fraction of PS spheres in D2O/H2O mixture. We could rewrite the 
above-mentioned equation in terms of A0 and AD2O, the volume fraction of PS spheres in the 
initial H2O solution and volume fraction of D2O in D2O/H2O mixture respectively: 

d@
d


0� � 	 A0(1�AD2O )
1�A0AD2O

VSpheres 0Spheres � 0H 2O �AD2O (0D2O � 0H 2O )B C2. 

In Figure 3 the forward scattering d@ d
 0� � as a function of AD2O and A is plotted. At the 
starting point of the experiment (AD2O=0) we have PS spheres in pure H2O and maximal 
volume fraction of spheres ASpheres = A0 = 1%. Minimum of the plotted curve corresponds to 
the matching point of PS spheres in water. In Table 2 seven points around matching 
concentration are labeled with “CV” mark. In case of CV, from the scattering curves of 
above-mentioned samples we need to extract only “integral” parameter forward scattering to 
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extract information about minimum of the forward scattering, and plot it as function of D2O 
content. 
 
  

  
Figure 3. Forward scattering as a function of AD2O and A. 

 

 
Figure 4: Expected results. (Left) the scattering signal in case of AD2O=0.04 and 0.76. In 
the amplified inset is the small angle part of the calculated scattering curves. In case of 
AD2O=0.04 there is clear suppression of the forward scattering due to the hard sphere 
interactions. Calculated scattering curve in case of the sample with AD2O= 0.76 shows no 
interaction term. Red curve is pure form factor of PS spheres without taking into account 
instrumental resolution function. (Right) Ration between AD2O=0.04 and AD2O=0.76 is 
plotted here. So the forward scattering and form factor of both sample are the same, and 
in case of AD2O=0.76 sample S(Q) =1, therefore this ratio is the structure factor of 
AD2O=0.04 sample. 

 

Next step is the investigation PS spheres in case of sample with D2O content 76% [PS content 
0.25%]. This point is located at the local maximum (see Figure 3). At this level of the dilution 
the structure factor is definitely undetectable. Please read carefully caption of Figure 4 to 
understand the logic of planned experiment. 
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Table 2. Samples for practicum; CV: samples for the contrast variation; FF, SF: sample for 
form and structure factor determination. 

AD2O 0 CV 3.6FF, SF 10 CV 20CV 30CV 40CV 50CV 60CV 76 FF 

ASpheres 1.00 0.96 0.9 0.8 0.7 0.6 0.5 0.4 0.24 

I(0)[104cm-1] 103 75.2 38 6.5 0.47 12.01 33.2 55.9 75.2 

 

5 The experiment and data reduction 

All samples listed in Table 2 we will measure with (Sample) and without (Sample-DB) 
beamstop. The first one should be measured much longer than the second one. Additionally 
the empty cell [with (EC)  and without (EC-DB) beamstop] and the black current  (BC) run 
will be measured and used for data reduction of all datasets.  

What to measure?  
 ISample, ISample-DB, IEC, IEC-DB, IBC [counts per current pixel, normalized by monitor] 
Sample transmission:  
 T 	 ISample�DB IEC �DB   

Empty cell and black current subtraction:  
 I 	 (ISample � IBC ) �T� (IEC � IBC )  
Absolute calibration:  

 
d@
d


Q� � 	 I(Q)
d� T� DD � IEC �DB �
(Q)  

where d sample thickness, T sample transmission, DD detector efficiency,  �
 solid angle per 
current pixel, <IEC-DB> counts on sample. 

 

6 Experiment-Related Exercises 

 
Within our “one-day-experiment” at KWS-3 it would be nice to get as much as possible 
information about above mentioned sample, like: 

a) the form factor P(Q) of PS spheres from sample with AD2O=0.76; “real” radius R and 
polydispersity of the PS microspheres; 

b) the structure factor S(Q) in case of AD2O=0.04 and decide about the interactions 
between spheres: could we neglect the structure factor S(Q) during data analysis? 
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c) the scattering length density of PS spheres by H2O/D2O contrast variation. At 
matching point, the SLD of microspheres and water are equal. Polystyrene in 
microspheres is amorphous or crystalline?      
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Fig. 1: Sketch of the reflectometer TREFF@NOSPEC in top view.

1 Introduction

The neutron reflectometry TREFF@NOSPEC at the neutron guide NL5-S is part of the neutron
guide laboratory at the research reactor FRM II in Garching. TREFF is a joint facility of JCNS
and the neutron optics group of FRM II. It is used for the investigation of magnetic layered
structures as well as neutron optical components for the installation and improvement of neutron
scattering instruments.

Figure 1 depicts the neutron reflectometer TREFF in the neutron guide hall of the FRM II re-
search reactor. Essentially, it consists out of a double monochromator, the collimation path, the
sample table with several stages of translation and rotation and, finally, the scattering arm with
a position sensitive detector. The distance between the collimation slits is 1820mm and 450mm
between the second slit and the centre of rotation of the sample table. For this experiment the
wavelength is set to λ=4.73 Å.

2 Preparatory Exercises

The following questions will be asked during the practical course at TREFF:

1. In the sketch (Figure 1 of the instrument you will find a Be-filter and a NG (neutron
guide) between the MC1 and MC2. What are they used for?
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Fig. 2: This drawing should help you to solve question 5.

2. In the introduction the used wavelength was given with λ=4.73 Å. Which other wave-
length are possible and how do you achieve these?

3. Depict a reflectivity curve of a substrate only

4. Depict a reflectivity curve of a substrate plus a layer

5. Calculate the divergence of a beam passing two slits S1 and S2 in a distance of L (see
Figure 2)

6. Calculate the angle of collimation of the neutron beam to sufficiently resolve reflectivity
oscillations of a 80nm thick monolayer on a substrate. What slit sizes follow for this
reflectometer

3 Experiment Procedure

The aim of this experiment is the investigation of a nickel monolayer deposited on a glass
substrate with unknown composition. Using neutron reflectometry the thickness of the nickel
layer should be determined.

1. Perform a reflectivity experiment on the sample’s back side and analyse the critical angle.
To get sufficient collimation of the neutron beam, 0.6mm slit size for S1 and S2 should
be taken.

2. Take the reflectivity curve of the Ni-monolayer system with the suitable collimation an-
gles, so speaking the slit size for S1 and S2 calculated in the section before

3. Do like 3) but with a slit size of 3mm for S1 and S2.

3.1 The experiment itself

We (in the end it will be you) will mount the sample on the sample table and pre-align it with
an appropriate tool (what could it be) parallel to the neutron beam. After some alignment scans
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with the neutron beam we will measure the reflectivity curve step by step of the sample (see
chapter Experiment Procedure).

3.2 Data reduction

The instrument saves the number of counts as a function of scattering angle.

3.3 Data evaluation

For systems such as multilayers the scattered intensity is determined by the difference in the
potential of each layer (contrast). The potential is given by the scattering length density
ρsld =

∑
j bjρj with the scattering lengths bj and the particle number densities ρj . The index

j runs over all kind of atoms of the layer. The scattering length density is comparable to the
optical density in light optics.
The refraction index of each layer is given by

n � 1− λ2

2π
ρsld = 1− δ

.
With the angle of total external reflection Θc ∼

√
2δ, which is usually small, it follows

kc,z = k sin(qc) � kqc =
2π

λ

√
2
λ2

2π
ρsld =

√
4πρsld

for the critical wave vector. For a monolayer system the reflected amplitude of each interface
rf,1 and rf,2 can be calculated by the Fresnel formulae (Equation 16 in chapter 12 of the
lectures book).
Neglecting roughness at the sample surface and at the interface between layer and substrate,
for the amplitude at the surface one gets

rf,1 =
kz,vac − kz,lay
kz,vac + kz,lay

and at the interface rf,2 =
kz,lay − kz,sub
kz,lay + kz,sub

with

kz,vac = k sin(q) , kz,lay =
√

k2
z,vac − 4πρsld,lay and kz,sub =

√
k2
z,vac − 4πρsld,sub

.
The superposition of both amplitudes yields the reflected amplitude of a monolayer sample

R = [rf,1 + rf,2 exp(2ikz,layd)]
exp(−2ikz,vacd)

[1 + rf,1rf,2 exp(2ikz,layd)]

with the film thickness d. The reflected intensity is given by re mean square of R. For
kz,vac > 3kc,z the intensity can be calculated in Born approximation by

|R|2 � π2

k4
z,vac

[
ρ2sld,lay + (ρsld,lay − ρsld,sub)

2 + 2ρsld,lay(ρsld,lay − ρsld,sub) cos(2kz,vacd)
]
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4 Experiment-Related Exercises

1. calculate from the reflectivity curve of the glass substrate the scattering length density
ρsld,sub

2. Describe the differences and explain them between the measurement of the Ni monolayer
with the 3mm slit and the slit size you have calculated.

3. Calculate the scattering length density ρsld,sub of the Ni monolayer using:
molar volume VNi=6.59 cm3 mol−1

Avogadro number NL=6.02 1023 mol−1

coherent scattering length bNi=10.3 fm

4. Determination of the thickness d of the Ni monolayer using the reflectivity formula in
Born approximation. At first, estimate d based on the distance of the fringes of the reflec-
tivity (see Data evaluation chapter).
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Phone: 089/289-10709

e-Mail: s.mattauch@fz-juelich.de

Denis Korolkov
Phone: 089/289-10722

e-Mail: d.korolkov@fz-juelich.de

Andreas Ofner

Neutronenoptik Gruppe
Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II)

Phone: 089/289-14677

e-Mail: andreas.ofner@tum.de





TOFTOF
Time-of-flight spectrometer

G.G.Simeoni

Forschungsneutronenquelle Heinz-Meier-Leibnitz (FRM II)
Technische Universität München

Manual of the JCNS Laboratory Course Neutron Scattering



2 G.G.Simeoni

Contents
1 Introduction 3

1.1 Liquid systems and Neutron scattering . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Liquid systems: open questions . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Neutron Spectroscopy 7
2.1 The neutron source FRM II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The time-of-flight spectrometer TOFTOF . . . . . . . . . . . . . . . . . . . . 7
2.3 Principle of a scattering experiment . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 The dynamic structure factor: elastic, quasi-elastic and inelastic contributions . 11

3 Experiment 12
3.1 The system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 The experimental set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 The jump-diffusion model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Questions 16

5 Supporting material: Theory of liquid systems 17
5.1 Equation of state and phase diagrams . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 Dynamics: What is a liquid? . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Cage effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.4 Relaxation mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5 Q-dependence: the dynamical regimes . . . . . . . . . . . . . . . . . . . . . . 22
5.6 Frequency-dependence: the visco-elasticity . . . . . . . . . . . . . . . . . . . 22
5.7 The pair distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.8 The pair correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.9 Diffusive mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

References 28

Contact 30



TOFTOF 3

1 Introduction

These notes have been written bearing in mind two complementary scopes.
On one side they are intended to introduce you to the experiment at TOFTOF, on the
other side they are intended to guide you throughout a critical elaboration of the scientific
concepts during and after the experiment at TOFTOF. This means that you are expected
to read in advance only the first part of this text.
By the way, your background knowledge should be sufficient for reading the whole text in
advance. The second part is therefore left to your time availability and to your curiousity.

With this experiment we will understand what is typical for a liquid dynamical behaviour, how
this can be experimentally investigated and then theoretically interpreted.
Specifically, the present introduction together with the measurements at TOFTOF are intended
to answer the following questions:

• Which are the macroscopic physical observables (what can be measured?)

• How does the experimental technique work (how can they be measured?)

• Which is the relationship between microscopic and macroscopic properties (how the ex-
perimental data can be described by a theoretical model?)

• Which is the interplay between dynamics and thermodynamics when moving on the phase
diagram (which is the influence of the thermodynamic parameters pressure and tempera-
ture on what we measure?)

1.1 Liquid systems and Neutron scattering

Liquid systems belong to the common experience of everyday life [1]. Their thermo-physical
properties have been deeply investigated over the last century, due to their relevance for a broad
range of applications:

• biology, biophysics, biochemistry, life sciences

• liquid metals and alloys

• geo- and planetary physics (supercritical fluids, interior of planets, seismic propagation,
volcanoes, rock formation)

• energy (batteries, fuel elements, plasma physics)

• industry (pharmaceutics, solvents, refrigeration media, components of glues, resins, etc)

Nonetheless, an exhaustive microscopic description is far from having been achieved up to now
and often relies on phenomenological models. As a consequence, a satisfactory description of
the liquid dynamics is still missing.
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Fig. 1: P-T phase diagram showing the four condensed states of simple substances, with em-
phasis on the sub- and supercritical fluid regions.

The development of the physics of liquids is intimately connected with the development of neu-
trons scattering and statistical mechanics [2–6]. The success of this fruitful scientific synergy
is mostly due to the charge-neutrality of these subatomic particles. Indeed neutrons interact
directly with the nuclei, differently from X-rays which are scattered by the surrounding elec-
trons. Thus the atomic positions can be unequivocally identified by those of the nuclei, without
invoking the second Born-Oppenheimer approximation typical for X-ray scattering (the so-
called adiabatic approximation). The atoms are described by (un)deformable (say hard or soft)
spheres, just like statistical mechanics does. In the cold-thermal region (λ > 1 A), their energy
(< 0.1 eV) is not sufficient to promote electronic excitations (few eV), whereas is comparable
with the elementary atomic ones (like acoustic and optical phonons). This way the measured
intensity, i.e. the double differential cross section, can be correlated to the dynamic structure
factor S (q,ω) and other quantities relevant for the statistical mechanisms.

1.2 Liquid systems: open questions

Despite its formal simplicity, the thermodynamic description of certain phases of the matter is
not trivial at all and still contains some fundamental open questions.
Fig. 1 represents a typical P-T phase diagram. We identify the sublimation curve (coexistence
of solid and gas), the melting curve (coexistence of liquid and solid) and the boiling curve
(coexistence of liquid and gas). The latter is also referred to as vapour-pressure curve or liquid-
vapour coexistence line. Both melting and boiling curve branch off from the triple point, where
the three phases are simultaneously in equilibrium. While no experimental evidence of an upper
limit to the extension of the fusion curve has been recorded sofar (even though theoretically
predictable), it is well-known that the liquid-vapour coexistence curve ends at the critical point.
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This has been often described with two distinct phases at the same density mixing and spreading
into each other. It means that liquids and gases can continuously convert one into each other
without volume change: this is a second order phase transition. Any distinction between liquid
and gas falls down and the equation of state (both for the ideal case as well as in the Van der
Waals formulation) looses its validity [7–12].

On one side, it is nowadays clear that the investigation of the condensed matter cannot be lim-
ited to the description provided by the so-called equilibrium-thermodynamics. Indeed many
scientific research fields (chemistry, optics, biology, cosmology, informatics etc.) often deal
with irreversible processes and entropy production. Physical systems (more or less) far away
from the thermodynamic equilibrium, if put under external perturbation, can reach new static-
dynamical configurations. This happens when the system experiences local fluctuations of some
macroscopic quantity, able to affect the thermal and mechanical stability of the system. For liq-
uids, this is the case of the density (Fig. 2). Apparently (=over a large scale) the system is under
equilibrium, but in reality (=over a short scale) it experiences a lot of local fluctuations. One
distinguishes between a linear regime (like diffusion and thermoelectricity) and a non-linear
regime (like the information theory, the biological evolution and other irreversible processes).
When far away from the equilibrium, small changes of an external condition (like the pressure)
can produce sudden, non-linear response by the system, which leads to instability and bifor-
cation. This represents the essence of what the Nobel-price Ilya Prigogine called dissipative
structures [13, 14].
On the other side, whereas the supercritical fluid phase is considered thermodynamically ho-
mogeneous, the same does not apply to the dynamics. Recently a dynamical crossover, i.e. a
qualitative change in the dynamical properties, has been detected by means of inelastic X-ray
scattering. For the first time, the evidence of a liquid-like-to-gas-like transition has been pro-
vided [15, 16]. The supercritical fluid phase turned out to be parted into two distinct dynamical
regions, reminiscent of the subcritical fluid partition. These findings triggered a lot of scientific
discussion about the nature of the supercritical fluid and the boiling curve, with the publication
of numerous theoretical works, the revival of past concepts and the introduction of new ones.
The need of dynamical investigations and dynamical lines has been more and more claimed
over the last two years [17, 18]. Specifically, at the moment the discussion is focused on the
origin (and the name) of the dynamical line separating the two supercritical regions. Other cru-
cial point is wheater it does emanate out from the critical point, as natural continuation of the
boiling curve, or just lies nearby: the theoretical interpretation could differ significantly, with
important consequences also for the thermodynamic description. All this stressed once again
the lack of a satisfactory theoretical model for the liquid collective excitations, and of a system-
atic investigation of the pressure-behaviour even in the subcritical region [19]. It should be now
clear why a deeper understanding of the classical liquid dynamics is required first.
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Fig. 2: DENSITY FLUCTUATIONS
2D schematic approximation of a typical liquid microscopic structure with macroscopic average
density ρ = N/S (N number of particles, L the edge of the surface, S = L2 area of the system).
The ratio S/N defines a grid of smaller squares with area l2 = S/N and edge l = L/

√
N .

Each small square is occupied in average by just one atom, in agreement with the value of the
macroscopic density: N/S = 1

S/N
= 1/l2. When looking the system over the rescaled distance

’l’, however, we get sensitive to the local fluctuation of the atomic position with respect to centre
of the small square. Red circles suggest a different ’grid’: their radius ’l’ is compatible with
the binning of the squared grid, but the local density is different: empty regions coexist with
crowded regions (up) and this changes as a function of time (down)
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2 Neutron Spectroscopy

The main conceptual difficulty in performing a scattering experiment is probably its formalism,
developped in the conjungated space. Differently from the investigated systems, where one
spontaneously thinks in terms of space and time, the natural variables for the Neutron Spec-
troscopy are Q and ω. Beside the formal elegance of the Fourier transforms connecting the two
spaces, one could ask why and if this is really necessary.
The main reason is that most of the neutron spectrometers are literally built along the scattering
triangle formed by the incident and scattered neutron. Moreover, a scattering experiment must
satisfy the conservation of momentum and energy, which can be expressed by simple linear
equations only in the (Q,ω) space.

2.1 The neutron source FRM II

In general there are two techniques in order to “produce” neutrons – spallation and nuclear
fission. During spallation, huge nuclei (e. g. lead) are bombarded with protons, subsequently
split and, among others, emit neutrons. The FRM II is a nuclear reactor used as a neutron source.
Here 235U captures a thermal neutron and thereby becomes unstable. The nucleus fissures and,
among others, emits three fast neutrons.

These fast neutrons must be slowed down (moderated) to thermal energies, that is room tem-
perature, in order to initiate a new fission. The moderated neutrons are further needed for the
neutron scattering experiments. The moderation occurs in D2O of about 300 K which encloses
the core.

In order to further slow down the neutrons, and thereby match their energies to the ones of
atomic motions, a tank containing liquid D2 at 25 K is located close to the fuel element. From
this cold source several neutron guides lead the neutrons to the instuments. Inside these guides,
the neutrons are transported by total reflection at the outer walls. The time of flight spectrometer
TOFTOF is located at the end of neutron guide 2a in the neutron guide hall.

2.2 The time-of-flight spectrometer TOFTOF

The cold neutrons move with a velocity of several hundred m/s. Hence one can determine
the kinetic energy of the neutrons comfortably by a time of flight (TOF) measurement along a
certain distance. If one sets the initial energy of the neutrons before the scattering event to a
well-known value and measures the final energy (or velocity) after the scattering process, the
energy transfer can be determined. Since the position of the detectors is fixed, the scattering
angle is also known.

During time of flight spectroscopy the energy transfer is measured by a time of flight measure-
ment of the neutrons. The advantage of the time of flight technique is that a huge range of
momentum and energy transfer can be captured simultaneously.

TOFTOF is a multi chopper time of flight spectrometer with direct geometry [20]. This means
that all neutrons have (more or less) the same energy before interacting with the sample. After
being scattered by the sample, the energy transfer can be determined. Both, the tuning of the
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Fig. 3: Adaptive Optics: depending on the curvature of the neutron guide, it’s possible to shift
the position of the focus

energy of the incident neutrons (their wavelength) and the determination of the energy of the
scattered neutrons is done by time of flight.

The neutrons are directed to the spectrometer through a neutron guide, which has a supermirror
coating. The last part of the neutron guide, the so-called exchange guide, allows to switch
between two options:

• a linearly-tapered neutron guide, slightly focusing the beam over a sample area of about
2.5 x 4 cm2 (width x height)

• a non-linearly tapered, focusing neutron guide, able to squeeze the beam over a sample
area smaller then 1 cm2. An increased neutron flux over a reduced sample area is fun-
damental for the investigation of small samples, like those under extreme-environmnent
conditions. Recently installed at the instrument, it couples the leading-edge supermirror
coating with the Adaptive Optics technology (Fig. ). It represents the first device in the
world of such category suitable for Neutron Spectroscopy, and came already successefully
routinely into operation with several complex set-ups (high pressure cells, electrostatic-
and electromagnetic levitators, high temperature furnaces) [21].

The primary spectrometer consists of seven rotating chopper discs which are placed in evacuated
vessels (colored green on the cover page). The discs are made of carbon fibre composites and
are coated with neutron-absorbing boron. On opposing sides, slits have been manufactured into
the discs through which neutrons can pass. The first and last pair of choppers rotate in opposite
direction each.

The incoming white neutron beam is pulsed by the first pair of choppers (pulsing choppers).
The short neutron pulse consists of fast and slow neutrons. Thus the pulse spreads along the
way to the last chopper pair. These last two choppers (monochromating choppers) select a
narrow range of wavelengths out of the pulse. The third and fourth chopper filter out higher
orders (higher order removal choppers).
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Fig. 4: Schematic drawing of TOFTOF. Following the neutron guide, first are choppers 1 & 2
which work together with 6 & 7 as velocity selector. Choppers 3 & 4 remove higher orders, 5
is the frame overlap chopper. The time needed for the neutrons to get from the sample to the
detectors encodes their energy.

The fifth chopper is the frame overlap chopper. After the scattering process some neutrons fly
towards the detectors. It is essential that all scattered neutrons of one pulse are detected before
the neutrons from the next pulse arrive. The overlap of slow neutrons from a pulse with fast
neutrons of the following pulse inside the secondary spectrometer is called frame overlap. The
frame-overlap-chopper blocks out several pulses, in order to avoid such an overlap.

A good energy resolution can be achieved with a high rotational speed of the chopper discs (up
to 22000 revolutions/minute). The energy resolution of the spectrometer can be changed con-
tinuously in the range from roughly 5μeV to 5 meV (Fig. 5). By defining the energy uncertainty
one can modify the time of observation in the range from roughly 1 ps to 1 ns.

The intensity of the incident neutron beam is recorded with a monitor, which is located between
the primary spectrometer and the sample. A ionization chamber is used as a monitor, filled with
fissile matter (235U). The incoming neutrons trigger a fission and the high-energy nuclear fission
products generate a clear voltage pulse, due to their high ionization density.

After passing the monitor, the neutrons hit the sample. Most of the neutrons are transmitted
and reach the beamstop, but about 10 % of the neutrons are scattered in all possible directions.
Some neutrons move towards the detectors and enter the flight chamber, which occupies the
space between the sample and detectors. The chamber is filled with argon in order to avoid
unwanted scattering with air molecules.

Altogether 1000 3He-detectors (40 cm long and 3 cm in diameter) are placed tangential to the
Debye-Scherrer-circles and also tangential to an imaginary spherical surface with a radius of
4 m around the position of the sample. Thus the flightpath from the sample to the detectors
is 4 m long. The scattering angle 2θ covers a region from 7.5◦ to 140◦. The detection of the
scattered neutrons inside the 3He-detectors occurs via a (n,p)-reaction. Hereby the neutrons are
registered and tagged with a time stamp. The amount of detected neutrons is saved in time of
flight bins for each detector in raw data files.



10 G.G.Simeoni

Fig. 5: Calculated energy resolution of the TOFTOF spectrometer shown for several chopper
rotation speeds as function of the initial neutron wavelength. The chopper rotation speeds are
given in rounds per minute (rpm) [20].

2.3 Principle of a scattering experiment

For the mathematical formulation of the double differential scattering cross section we rely on
the theoretical lectures given by R. Zorn.
Here we summarize only a few key concepts directly related with the geometry of a time-of-
flight spectrometer.
The quantities directly measured during the experiment are the scattering angle 2θ and the time
of flight of the scattered neutrons. From them, two important quantities are derived (Fig. 6).

• The scattering vector Q is defined as the difference between the wave vector kf of the
scattered wave (f as “final”) and the wave vektor ki of the incident wave (i as “initial”).
The momentum gained or lost during the scattering process can be calculated by

Δp = �Q = �(kf − ki) . (1)

However, the momentum transfer is commonly not noted. Instead, the scattering vector
is commonly stated in units of inverse Ångstrom.

• The energy transfer ΔE is defined as the energy of the neutron after Ef and before Ei the
scattering process:

ΔE = �ω = �(ωf − ωi) =
�
2(|kf |2 − |ki|2)

2mn

. (2)

The energy transfer is measured in meV. Often, ω is written incorrectly instead of �ω.

The absolute value of the wave vectors k is defined as |k| = 2π/λ, with an refractive index
n ≈ 1 (which is a very good approximation for neutrons). However, the scattering vector
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Fig. 6: Schematic representation of a scattering experiment. ki,f,t are the wave vectors of the
initial (incoming), final (scattered) and transmitted neutrons, respectively. Q is the scattering
vector.

cannot be measured directly, only the wave vector of the incident and scattered neutrons. Using
the law of cosine one obtains a general equation for converting ki and kf to Q:

|Q|2 = |ki|2 + |kf |2 − 2|ki||kf | cos(2θ) . (3)

In the case of elastic scattering, the energy transfer is zero. Hence |ki| = |kf | simplifies the
equation to

Q =
4π

λ
sin

(
2θ

2

)
(4)

where Q = |Q|.

2.4 The dynamic structure factor: elastic, quasi-elastic and inelastic con-
tributions

As underlined in the previous section, the double differerential cross section represents the
probability that an incident neutron with energy Ei and wavevector ki, after the interaction with
the sample, possesses energy Ef and wavevector kf .
Differently from a triple-axis spectrometer, at a time-of-flight spectrometer like TOFTOF it is
possible to cover a broad energy and Q-range during a single measurement. The boundaries are
set by the energy of the incoming neutrons and the extension of the detector bank, and define
the so-called dynamical range.
Depending on the property of the neutron or on the property of the sample which one wishes to
underline, different distinctions for the neutron scattering are possible:

• coherent vs. incoherent

• elastic, quasi-elastic, inelastic

• single-particle vs. collective

• static vs. dynamic
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These distinctions are quite useful during the theoretical description, but strictly speaking one
cannot force the system to exhibit only one (or a few) of them. Whether they happen depends
only on the physics of the sample and often, during one experiment, they happen all simultane-
ously. However, in many cases it is possible either to tune the settings of the instrument or to
play with the isotopic substitution for enhancing just some of them.
When dealing with spectroscopic techniques, both with light and neutrons, the first natural dis-
tinction is given by the energy-position with respect to the elastic line:

• elastic, when inside the instrumental energy resolution

• quasi-elastic, when exceeding the instrumental energy resolution but still centered around
the elastic line (E = 0)

• inelastic, when not centered at E = 0. This is the direct consequence of being a many-
body excitation. They can be represented by quantized quasi-particles, and therefore lead
to the presence of two peaks, whose energy shift is symmetric with respect to the elastic
line. (We note that, due to the kinematic limitations, the accessible dynamical range is
asymmetric with respect to the elastic line. As a consequence, quite often only one of the
two inelastic peaks can be experimentally observed)

This definition does not independent on the choice of the sample.
However, their coherent or incoherent nature, as well as their physical meaning, do.
In the case of liquids, the dynamical structure factor contains always a superpositon of:

• coherent elastic scattering, related to the static structure factor and therefore to the pair
distribution function (one can imagine a TOF machine like a quite expensive powder
diffractometer with excellent time-of-flight resolution and relaxed Q-resolution, able to
remove great part of the background contributions with respect to standard diffractome-
ters)

• incoherent quasi-elastic scattering, related to the diffusion mechanisms, cluster and nan-
odomain formation or confinement in complex structures

• coherent inelastic scattering, related to acoustic and optical waves

3 Experiment

3.1 The system

As you will be learning during the experiment, liquid partake of both solid and gaseous nature,
and present therefore both single-particle and collective features:

• Diffusion, a typical single-particle phenomenon, which in dense simple fluids (=liquids)
is generally accounted by the jump model and described by the Arrhenius’ law.

• Visco-elastic acoustic propagation, which represents the behaviour of the fundamental
collective excitations.
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We note that diffusion and acoustic propagation are intimately connected by the fluctuation-
dissipation theorem.
Water is far from being what is generally considered a simple liquid, since it exhibts so many
anomalies as probably no other liquid substance does. Most of them are at the origin of the life
on the Earth.
However, as long as only the diffusive dynamics is concerned, it represents a good candidate
for testing the validity of the Arrhenius’ law and the jump-diffusion model.
The diffusion represents a quite general phenomenon in which single particles, not constrained
on an equilibrium position, move freely across a medium, disturbed only by the numerous
collisions with the other particles. In this experiment we consider only the thermal diffusion,
where entire atoms or molecules move. However, diffusive processes are possible also for other
species like electrons, ions, holes.
Depending on the way the collisions affect the temporal propagation of the single particle,
one distinguishes between normal, sub- and superdiffusion. The Brownian motion is an exam-
ple of normal diffusion. It is intuitive to understand that the same temporal evolution on the
macroscopic scale can be originated by different temporal evolutions on the microscopic scale.
Indeed, atoms could move constantly at the same drift velocity or could slow down for a while
and then suddenly accelerate. The first case corresponds to the linear diffusion, described by
the Fick’s law, whereas the second case is accounted by the jump-diffusion model. Why such
different behaviours can appear on the microscopic scale depends on the specific atomic local
structure (for more details, see the Supporting materials).
Independently from the model, the thermal diffusion is promoted by the thermal energy and the
diffusion coefficient will increase accordingly to the temperature. The mathematical formula-
tion of this physical evidence leads to the well-known Arrhenius’ law:

D(T ) = D0exp
(− Ea

kBT

)
(5)

A huge advantage of investigating liquid water is due to the fact that, by isotopic substitution
(D2O in spite of H2O), an excellent incoherent-to-coherent contrast can be achieved. This
allows the measurement of the incoherent quasi-elastic scattering and of the coherent elastic
scattering S(Q) [22]. Consequently, We are going to investigate the influence of both pressure
and temperature on the diffusion coefficient, as well as on the position of the first diffraction
peak of S(Q).

3.2 The experimental set up

There are different ways of generating pressure on a sample. In the case of liquids, pressures
in the range of a few kbar are sufficient for determining considerable alterations of the atomic
structures. Technically speaking this is a great advantage, because gas- or hydraulic pressure
cells can be used.
The pressure cell itself is made by a particular Al-alloy whose tensile properties, combined with
the particular technical design, allow to support strains up to a 7 kbar. After filling the liquid
sample inside the cell, a thin capillary connects it to an hydraulic piston, which contains the
pressure trasmitting medium. In the case of water the experiment is particularly easy, because
the pressure transmitting medium is also the sample: by compressing the water in the capillary,
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one generates pressure on the water in the pressure cell. One can control with great precision
the pressure in-situ, since it corresponds to the pressure read on the hydraulic piston.

3.3 Data analysis

The instrument saves the number of counts as a function of scattering angle and time-of-flight,
N(2θ, tof). Therefore a data reduction is required for applying corrections and transform the
raw data, thus converting them into a scattering function S(Q,ω). Data reduction (and later on
also data evaluation) is done with the program FRIDA [23], and includes the following steps:

1. sum of separated runs performed under the same thermodynamic conditions

2. removal of signal originated by electronic disturbance on the detectors

3. normalization to the neutron flux

4. normalization to the detector efficiency

5. proper handling of the frame-overlap chopper

6. conversion to the (Q,ω) space (without forgetting the Jacobian of the transformation
time-to-energy...)

7. correction for the Debye-Waller factor and the the term ki/kf

8. correction for the Bose-Einstein thermal population factor

For simplicity, we disregards the multiple scattering correction within this experiment.

After the data reduction performed with FRIDA different sets of data, collected on different
samples and under different thermodynamic conditions, will be compared. In the H2O sample
the QENS broadening will be fitted with the standard diffusion model as well as with the jump
diffusion model, to get the pressure- and/or temperature-dependence of the diffusion coefficient
and check the validity of the Arrhenius’ law. In the D2O sample, on the contrary, we will focus
on the position of the first diffraction peak and correlate the change in the atomic distances with
the change in the thermal diffusivity.

3.4 The jump-diffusion model

The jump-diffusion model is based on the image of the cage.

”The incoherent inelastic scattering cross section of slow neutrons from liquids is calculated
using a simple model in which the liquid is assumed to have a appreciable short range order in
a quasi-crystalline form. Diffusive motion takes place in large discrete jumps, bewtween which
the atoms oscillate like in a solid. The model predicts a definite, easily calculable cross section
which is not dominated by diffusion effects as when continuous diffusion is assumed, but shows
a characteristic variation with angle which could be looked for experimentally. The related pair



TOFTOF 15

correlation functions are dominated at small r and t by vibrational effects” [24] The model is
basically that proposed by Frenkel for liquids close to the melting point in which he assumes
that the liquid has locally a lattice-like structure.
The motion of the single atom is then characterized by two time scales [24–27]:

• τ0, which represents the time spent by the atom confined in the cage

• τ1, which is the time needed by the atom for moving freely out from one cage and inside
a new one

(τ1 << τ0)

If now one compares the assumptions of the standard diffusion (Brownian motion) with the
those of the jump diffusion model, one always obtains a Lorentzian shape for the quasi-elastic
broadening, but two different functional shape for the Q-dependence of the diffusion coefficient.
In the case of the standard diffusion which obeys the Fick’s law, one obtains:

Sdiffusion(Q,ω) =
1

π

|Γd(Q)|
ω2 + Γd(Q)2

, (6)

whose full-width at half maximum |Γd(Q)| corresponds to

|Γd(Q)| = 2�D ·Q2 (7)

D is the diffusion coefficient and is normally given in (m2/s).

In the case of the jump diffusion model, i.e. if we assume the atoms to be often trapped into the
cage of the neighbouring atoms, |Γd(Q)| can be described also as:

|Γd(Q)| = 2�f(Q) (8)

where

f(Q) =
1

τ0

(
1− 1

(1 + (Ql0)2)2
)

(9)

In the limit of small Q, i.e. big distances, we are no more sensitive to the local presence of the
cage. In that limit, the jump diffusion model reproduces the standard diffusive behaviour, being:

D =
2l0

2

6τ0
(10)

τ0 corresponds to the time which the atom spends trapped into one cage.
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ΔE = Ef −Ei

Q = | �Q|

4 Questions

Here some questions for familiarise with the practical details of a TOF experiment.
Please read them in advance and start thinking about. During the the time you’ll spend at
TOFTOF there will be also the opportunity to discuss and answer them together.

1. do you expect QENS contribution from the D2O sample?

2. Why is the sample container made of aluminum?

3. To calculate the energy of neutrons in meV with a well-known wavelength given in Å,
one can use a formula

E ≈ a

λ2
. (11)

Determine a numerical value for a. How big is the initial energy Ei of the neutrons in the
current experiment?

4. What is the maximal energy transfer from the neutron to the sample?

5. What is the maximal energy transfer from the sample to the neutron?

6. Draw at least six scattering triangles (as shown in Fig. 6) for these points in the dynamical
range:

• Elastic scattering with a scattering angle of 7.5◦; with a scattering angle of 140◦ (the
first & last detector at TOFTOF)

• Same scattering angles with neutron energy gain

• Same scattering angles with neutron energy loss

7. Locate those points in this dynamic range plot:

and determine which area in this plot is accessible in the current scattering experiment

8. would it be possible to measure the acoustic phonons in water at TOFTOF? (the typical
sound speed for longitudinal phonons is about 1500 m/s).

9. assuming a jump-diffusion model, how does the pair correlation function look like?

10. under a physical point of view, which is the microscopic difference between the origin of
the Debye-Waller factor and the diffusion?
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Fig. 7: 3D equation of state with its projection onto the P-T plane

5 Supporting material: Theory of liquid systems

5.1 Equation of state and phase diagrams

One of the major merits of the thermodynamics is its capability of describing the collective
behaviour of a many-body system by means of just a few macroscopic variables.
An equation of state is a functional relationship between these thermodynamic variables (pres-
sure, temperature and density), which defines the locus of all (P,T, ρ) points corresponding to a
state of equilibrium. A phase diagram is nothing that the projection of this surface onto one of
the three planes generating its tridimensional (P,T, ρ) space (Fig. 7). Specifically, the P -T phase
diagram turns out to be the most useful diagram for visualizing the thermodynamic boundaries
of all phases of the matter. The solid lines define the P -T range of stability of each phase, on the
lines themselves two distinct phases coexist and upon crossing one solid line a phase transition
takes place. These are the so-called first oder phase transitions and are always accompanied by
a discontinuity of an extensive quantity (such as volume or entropy).
Considering that the most relevant thermodynamic quantities (specific heats, compressibility,
thermal conductivity and other thermodynamic response functions) are defined as derivatives
of extensive quantities, the discontinuity of the latter at the phase transition determines a dis-
continuity in the thermodynamic quantities (their left and right derivatives differ). Here some
examples:

CV = (
∂Q

∂T
)T = T (

∂S

∂T
)V (12)

CP = (
∂Q

∂T
)P = T (

∂S

∂T
)P (13)

KT = − 1

V
(
∂V

∂P
)T =

1

ρ
(
∂ρ

∂P
)T (14)

KS = − 1

V
(
∂V

∂P
)S =

1

ρ
(
∂ρ

∂P
)S (15)
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being ρ the mass density and S the entropy of the system.

Thus thermodynamic response functions are generally monitored when looking for whatever
phase transition. Experimentally it is impossible to quantify the absolute internal energy of the
sample, it is often difficult (and not necessary) to observe its structure, but it is quite easy to
measure quantities like the specific heats as a function of changes of pressure or temperature.

5.2 Dynamics: What is a liquid?

The most appropriate answer is probably: An intermediate phase between solid and gas.
With respect to their atomic structure, liquids share with gases features like the atomic mobility
and the absence of long-range order, but are characterized by high packing fraction and density
values comparable with those of solids.
”The central problem in an attempt to understand the nature of the liquid from first principles
is that of accounting for its bulk macroscopic properties in terms of the structure, motion, and
mutual interactions of the molecules of which it may be presumed to be composed. Even leaving
out of account still more difficult questions concerned with liquid’s characterisitic fluidity, and
asking only about those of its properties that characterize it in a state of equilibrium (its density,
specific heat, compressibility, and so forth), we are yet far from convincing and comprehensive
account of the connection between the macroscopic and microscopic levels.” [28]

With respect to the dynamics, the liquid motions result by the superposition of solid-like, lat-
tice vibrations around equilibrium positions and gas-like, ballistic-collisional diffusive motions.
These two contributions couple so strongly to each other that its impossible to develop a theory
treating one of the two as simple perturbation.
At this point it’s worth to mention the Mode-Coupling Theory (MCT) for viscous liquids, de-
veloped by W. Goetze and coworkers in Mn̈chen (TUM -Department of Physics) [29–31].

5.3 Cage effect

The result of the combination of solid-like and gas-like character is generally depicted by the
so-called cage effect.
Let’s observe one single atom (Fig. 8):

1. for very short times, corresponding to distances shorter that the interatomic ones, it
behaves like a free-particle and experiences pure ballistic motion

2. for intermediate times, it collides with the neighbours but, due to the high packing frac-
tion, cannot escape their cage. It remains therefore confined in a certain area, resembling
a lattice vibration

3. for long times, the continuous collisions and the corresponding energy transfer with the
surrounding succeed in relaxing the cage for a while, and the atom can escape the con-
finement (this is often referred to as jump-diffusion model)
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Fig. 8: Schematic description of the cage effect and its temporal evolution: trapping by the
neighbouring atoms and escape

The image of the cage fits quite well with the traditional distinction in solids, liquids and gases
based on energetic considerations. The dynamics of a physical system is namely determined by
its free energy, which accounts for the competition between potential energy |Upot| and kinetic
energy Ekin (and other thermodynamic potentials, if applicable):

• solids: |Upot| >> Ekin

• liquids: |Upot| ≈ Ekin

• gases: |Upot| << Ekin

Following a statistical-mechanics approach, the potential energy represents the confinement by
the cage and the kinetic energy the probability of escaping the cage after several collisions. This
is clearly a thermally activated process: the higher the temperature, the higher the kinetic energy
and the atomic velocity, the higher the frequency of the collisions and the energy transfer to the
surroundings in the unit of time. Macroscopically, this is described by the Arrhenius’ law for
the diffusion coefficient and the viscosity.
The immage of the cage is only the simplest microscopic description of a disordered medium,
but it turned out to be often sufficiently successeful in describing the effects of the short-range
order on the macroscopic phenomena.

5.4 Relaxation mechanisms

Just like people, physical systems don’t like to be disturbed. When perturbed, they will react to
the best of their possibilities in order to minimize the disturbance. Sometimes this will restore
the initial equilibrium, sometimes will lead to a new one. Depending on the specific atomic
structure, this implies either the propagation of the disturbance, or its local dissipation or a
combination of both (damped propagation). As a matter of fact, the system will:

• either transfer the disturbance to another region of the system (something similar to a
domino effect)
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Fig. 9: COOPERATIVE REARRANGEMENTS
Due to the real dimensions of the atoms, to their kinetic energy and short-range Coulombian
repulsion, it’s impossible the double occupancy of a small square l2 by two atoms simultane-
ously. An atom can enter another area only forcing a group of atoms to collectively rearrange
themselves. Assuming to be able to label each atom, they will finish in different areas, but the
single occupancy will be satisfied.
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• or promote a local structural rearrangement (like changing place in the bus when it starts
getting to crowded close to the entrance)

• or generate heat dissipation (when one has no other alternative...)

The second option, however, is possible only in dense disordered systems (liquids and super-
critical fluids), where the interplay between the high density and the atomic mobility introduces
additional decay channels. Let’s consider a longitudinal collective wave (say a phonon). This
will involve a coordinated motion of a great amount of atoms, and is therefore possible only as-
suming that the wave possesses enough energy for inducing it. In disordered systems, however,
the same amount of energy can be spent for promoting a local rearrangement of the atoms: when
the wave arrives, they change their spatial configuration in spite of propagating the input to their
neighbours. When this happens, the perturbation is considerably damped or even stopped over a
short-range scale. This is something analogous to the invenction of the wheel, which can lower
the friction by converting a linear motion into a rotational one. These mechanisms are called
relaxations and are characterized by relaxation times. Generally speaking, a density fluctuation
will always force the atoms to move somewhere else. This translates into a velocity disturbance,
which can relax through collision or heat dissipation, with the latter producing a temperature
disturbance. Any disturbance determines a relaxation of the system towards a more equilibrated
situation (which could differ from the original one). How these relaxations happen depends on
the shear and bulk viscosity (velocity disturbance), and on the thermal conductivity (tempera-
ture disturbance).
This provides a sintetic description of the Linear Hydrodynamics:

• τth, the time required for thermal diffusion to take place

• τα, related to collective rearrangement of the local structure

In the case of complex liquids, exhibiting additional microscopic degrees of freedom, also a
third relaxation is to be considered:

• τβ , due to microscopic intramolecular rearrangement and normally called instantaneous,
since the characteristic timescale is much shorter than that generally investigated.

For the purposes of the current experiment at TOFTOF, let’s focus on τα, the so-called structural
relaxation. Every time that an atom exits the cage, the local density fluctuates from its equi-
librium value, and the local structure becomes unstable under the pressure of the high packing
fraction. The atoms are therefore forced to reorganize themselves towards another, more homo-
geneous, spatial configuration (Fig. 9). This can be represented by a local density gradient and
its corresponding particle flux (mass transport, Fick’s law). Moreover, the cage is not isolated
but embedded in a system of other ”cages & escaping particles”, all interacting with each other
at a certain degree (depending on the density value). This is a collective (many-body) process,
which involves the simultaneous, cooperative rearrangement of the particles : it cannot be eas-
ily decomposed in the sum of several independent pair contributions. It represents quite well
the essence of a typical complex system and it’s probably at the origin of the difficulty of its
collective description.
The time required by the cage for relaxing and releasing the energy accumulated during the
collisions corresponds to τα, and the phenomenon has been often modeled as the charge and
discharge of a condensator (Fig. 10)
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Fig. 10: Response to an external perturbation: Charge and discharge of a condensator as
model for the relaxation mechanisms

5.5 Q-dependence: the dynamical regimes

Dense disordered systems, like liquids and glasses, are characterised by the absence of long-
range order. Still, some short-range correlations persist, and their physics strongly depend on
the length scale taken into consideration.
When averaging the dynamic properties over the whole system (i.e. in the continuum limit),
the typical textbook hydrodynamic behaviour is observed. When looking at the interatomic
scale, however, one appreciates the local deviations from the average behaviour: indeed, one
could either observe the collisions between two atoms or the motion of one atom between two
collisions (Fig. 2). The typical length scale, over which the system is observed, is inversally
proportional to the momentum Q transferred by the probe (photons or neutrons) to the sample.
The values of Q are considered small or big with respect to the position of the first diffraction
peak of the static structure factor S(Q). Let’s call it Q1. As shown by Fig (Fig. 11) we can
distinguish three different regimes [32]:

• Collective regime for Q < Q1 (as shown in next paragraph, this includes different acous-
tic regimes, accessible by tuning the frequency of the probe)

• Kinetic single-particle regime for Q > Q1, where phenomena due to the motions of
single particles are observed

• Free particle regime for Q >> Q1, where Q corresponds to a length scale shorter than
the typical interatomic scale and single particles can be regarded as isolated

5.6 Frequency-dependence: the visco-elasticity

An acoustic wave is a pressure wave which propagates across a medium by generating a spatial-
time periodic deviation of the local density with respect to its equilibrium value: rarefaction and
compression zones alternates. In the case of liquids, this interacts with their continuous intrinsic
atomic rearrangements (vibrations, diffusion, cage effect, relaxation mechanisms).
The frequency of the acoustic wave introduces a characteristic experimental observation time.
As a consequence, entering the high-frequency dynamical regime the response of the system
deviates from the pure hydrodynamics, and starts getting sensitive to the complexity of the
atomic structure. This rules both for single-particle and collective properties and defines the
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Fig. 11: Static structure factor

realm of the Generalized Hydrodynamics, where thermodynamic constants are replaced by Q-
dependent thermodynamic functions. This is the case also for the diffusion coefficient, where
the typical hydrodinamic values are approached only in the limit of Q = 0. Let’s call ω the
frequency of the investigated excitations: then τ = 1/ω will be the corresponding experimental
observation time. By comparing τ with τα two scenarios are possible:

• liquid-like, viscous behaviour: τ > τα, and the local structure has enough time for reor-
ganizing itself, thus damping the wave propagation

• solid-like, elastic behaviour: τ < τα, and the wave propagates undisturbed, seeing the
local atoms as froozen

The sound speed is defined as the slope of the dispersion curve, which roughly correponds to
the ratio between the frequency ω of the acoustic excitations and its momemtum tranfer Q at
small Q values. Due to the presence of relaxation mechanisms, activated at low propagation
frequencies but froozen at high propagation frequencies, the high-frequency regime is then
caracterized by an enhancement of the apparent sound speed with respect to the low-frequency
regime. Roughly speaking: if one calculates the slope of the acoustic phonons measured
by Brillouin light spectroscopy and does the same with data taken by x-ray or neutron
spectroscopy, the values are different and much higher in the second case.

This phenomenon is called positive sound dispersion or fast sound, and is commonly considered
the dynamical fingerprint of a liquid-like behaviour [33].
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5.7 The pair distribution function

Differently from solids, where the atoms are well localized around the lattice equilibrium po-
sitions, in liquids only a probabilistic approach can be developed. As long as the typical su-
percritical density values are not reached, the pairwise interaction among particles is a good
approximation. The pair distribution function g(r) describes the probability of finding two par-
ticles at a distance r. It is nothing but a way of measuring and testing the spatial distribution
of the particles in a given plane (no tridimensional information is provided). It is an oscillating
function of r, whose amplitude decreases as r increases. Being a density of probability, the
maxima correspond to the most probable interparticle distances, while negative values denote
the impossibility to found two particles a particular distance r. A liquid an isotropic system,
thus r can be replaced by r.
The shape of the g(r) reflects that one of the interatomic potential energy. Let us now consider
for simplicity, without loosing generality, a Lennard-Jones interatomic potential. The maxima
of g(r) correspond to the minimum of the potential V(r) (i.e. the equilibrium position), while
the minima of the g(r) arise from the small-r repulsive part of V(r). Since the amplitude of g(r)
is more and more damped whit increasing r, the oscillations do not extend indefinitely but tend
to the asymptotic unitary value. The number of distinguishable maxima provides the number of
(not) direct neighbours with which a particle holds somewhat spatial correlation along a given
direction. At this point we remember that the so-called static structure factor S(Q) is related to
the pair distribution function by a Fourier transform:

S(Q) = 1 + n

∫
dr[g(r)− 1]exp(iQ · r) (16)

Since Q is the conjugated variable of r, S(Q) embodies the counterpart of the pair distribution
function in the Q-space. Powder diffractometers are the typical instruments dedicated to the
investigation of the S(Q). However, without carrying out the entire mathematical calculations,
we can observe that coherent elastic scattering responsible for the diffraction pattern is mea-
sured also within an experiment at time-of-flight spectrometer [34]
The double-differential cross section can be separated as:

( ∂2σ

∂Ω∂E ′
)
=

( ∂2σ

∂Ω∂E ′
)
coh

+
( ∂2σ

∂Ω∂E ′
)
incoh

(17)

( ∂2σ

∂Ω∂E ′
)
coh.

=
( ∂2σ

∂Ω∂E ′
)
coh.el.

+
( ∂2σ

∂Ω∂E ′
)
coh.inel.

(18)

For the elastic case, using the formal definition of the coherent cross section:

( ∂2σ

∂Ω∂E ′
)
coh.el.

= N〈b〉2 S(Q,ω)coh.el. (19)

and integrating over the whole energy range (in the experiment this roughly corresponds to the
energy resolution):

( ∂σ
∂Ω

)
textcoh.

= N〈b〉2S(Q) (20)
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Fig. 12: Left: distinct pair correlation, right: self pair correlation. In the case distinct, the
second particle may be a different one than the first one but it doesn’t have to.

5.8 The pair correlation functions

We observe that the asymptotic unitary value of g(r) is typical of a structureless system. This
is reasonable, considering that it corresponds to the macroscopic level, where the matter can
be considered as a continuum. Owing to that, it is also often introduced the pair correlation
function G(r), which weights the degree of correlation of the fluid:

G(r) = g(r)− 1 (21)

.

In the case of a gas, G(r) is identically null.

Aiming at describing the dynamics of the system, the time-dependent pair correlation functions
are fundamental. When introducing the temporal evolution, it’s possible to follow either one sin-
gle particle or the correlations between different particles. For this reason, the time-dependent
pair correlation function G(r, t) can be dividided into a distinct and a self contribution.

The distinct pair correlation function GD(r, t) gives the probability to find a particle j at time
t at the place r if this or another particle i was at time t = 0 at the origin r = 0, as shown in
Fig. 12. The pair correlation function is

GD(r, t) =
1

N

N∑
i=1

N∑
j=1

∫
〈δ{r̃−Ri(0)} · δ{r̃+ r−Rj(t)}〉 dr̃ , (22)

with the number of particles N , an integration variable r̃ and the place Rj(t) of particle j at
time t. The angle brackets 〈〉 denote an ensemble average.

The self pair correlation function or auto-correlation function GS(r, t) gives the probability to
find one particle at time t at place r if this very particle was at time t = 0 at the place r = 0,
see again Fig. 12. It is defined as

GS(r, t) =
1

N

N∑
i=1

∫
〈δ{r̃−Ri(0)} · δ{r̃+ r−Ri(t)}〉 dr̃ . (23)

In the following, we will assume that the samples are powder samples (i. e. not single crystals,
so for example liquids) and will therefore use the absolute value of r, r, instead of the vector.
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It is possible to calculate the distinct and self pair correlation functions from the scattered
intensities. Roughly, the calculation is as follows.

Looking at the momentum and energy change of the neutrons during the scattering process,
one obtains the double differential scattering cross section which can be seen as the sum of a
coherent and an incoherent part:

∂2σ

∂Ω∂E ′ =
kf
ki

N

4π

(
σcohScoh(Q,ω) + σincSinc(Q,ω)

)
. (24)

It denotes the probability that a neutron is scattered into the solid angle dΩ with an energy
change dE ′, with N the number of scattering nuclei.

The Fourier transform in time and space of the coherent scattering function Scoh(Q,ω) is nothing
but the distinct pair correlation function GD(r, t) and the Fourier transform in time and space of
Sinc(Q,ω) is the self correlation function GS(r, t).

If a scatterer performs several motions simultaneously (but independently from each other), the
resulting scattering function is a convolution in energy space of the single scattering functions,
for example

Stotal(Q,ω) = Sdiffusion(Q,ω)⊗ Sinternal motion(Q,ω) . (25)

If two scatterers perform two motions independently from each other and both cause scattering,
the recorded total scattering function is simply the sum of the two scattering functions, for
example

Stotal(Q,ω) = Ssolute(Q,ω) + Ssolvent(Q,ω) , (26)

Due to the limited number of supporting points it is not possible to anti-transform the exper-
imental data for getting the pair correlation functions. Therefore, one proceeds the other way
round: after inventing a plausible correlation function, one performs a Fourier transform of this
theoretical function to a scattering function and checks if this can describe the data.

The hereby obtained theoretical scattering function Stheor(Q,ω) is fitted to the measured scatter-
ing function Smeas(Q,ω) after convolving the theoretical scattering function with the measured
instrumental resolution. The instrumental resolution is often determined using a vanadium sam-
ple which is a static, incoherent scatterer.

5.9 Diffusive mechanisms

All them belong to those transport phenomena accounted by the linear thermodynamics. As far
as the direct correlations are concerned, the motion is described by the Green-Kubo equations:

• Fourier’s law (thermal conductivity)

• Fick’s law (thermal diffusivity)

• Ohm’s law (electrical conductivity)

The crossed effects (like the thermo-conductivity), on the other side, are described by the On-
sager’s equations.
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Under a microscopic point of view, the thermal diffusion is ruled by the Langevin equation,
which describes the motion of a particle in a viscous medium:

m
dv

dt
= −αv + η(t) (27)

The friction coefficient α embodies the collective action of the surrounding medium on the
moving particle, whereas η(t) accounts for thermal fluctuation and is generally called noise. The
noise is a function which contains information about the microscopic structure of the system,
its spatial correlations and local temperature (the so-called thermal bath).
Let us consider first the case of the Brownian motion: this is purely markovian (random walk),
and the noise presents no spatial-temporal correlation.

We define with r(t) = (x(t), y(t), z(t)) the instantaneous position of a molecule, and considere
an isotropic medium where r can be replaced by r. Then, in absence of an external force:

< δr >= r(t)− < r >= 0 (28)

The same doesn’t apply to the mean squared displacement < δr2 >, whose time-behaviour
reflects the microscopic structure of the system.

The most general definition of the diffusion coefficient is:

D =
1

2
lim
t→0

d

dt
< dx2 > (29)

whose extension to the three-dimensional space leads to:

D =
1

6
lim
t→0

d

dt
< dr2 > (30)

(in an isotropic medium < dx2 >=< dy2 >=< dz2 >= 1
3
< dr2 >)

In the case of normal diffusion (say Brownian motion), the experimental observation time de-
termines two distinct regimes [35]:

• short-time ballistic regime, where the transient component dominates: < δr2 >= KT
m
t2

• long-time viscous regime: < δr2 >= 6KT
α

t

In the case of normal diffusion D is a constant and the long-time behaviour can be rewritten as:

< δr2 >= 6Dt (31)

In the case of other mechanisms affecting the single-particle propagation, a different functional
relationship between the diffusion coefficient and the observation time could appear. According
to this, three different options are possible: normal, sub- and super-diffusion.
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Up to now we focused on the equation of motion of the single particle. An alternative descrip-
tion is based on the equation of motion of the spatial correlations (i.e. the temporal evolution)
of the particle itself.
This leads to the Fokker-Planck equation

∂P (x, t)

∂t
= D

∂2P (x, t)

∂2x
− F

∂P (x, t)

∂x
(32)

which represents something analogous to the Langevin equation for a quite general distribution
of probability P(x,t). It can be demostrated that the self pair correlation function GS(r, t) is
solution of this equation. This provides an excellent connection between experimental observ-
ables (like the diffusion coefficient) and theoretical calculations (like the correlation functions).
F describes whatever external force acting on the diffusing particle, in analogy with the tempo-
ral correlations of the noise η(t). In absence of external force, i.e. when the noise η(t) is totally
uncorrelated (Markovian process), the Fokker-Planck equation reduces to the Fick’s law:

∂P (x, t)

∂t
= D

∂2P (x, t)

∂2x
(33)
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