Home > Publications database > Supercomputers ready for use as discovery machines for neuroscience > print |
001 | 137379 | ||
005 | 20240313094956.0 | ||
037 | _ | _ | |a FZJ-2013-03826 |
100 | 1 | _ | |a Kunkel, Susanne |0 P:(DE-Juel1)151364 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a 10th Meeting of the German Neuroscience Society |g NWG 2013 |c Goettingen |d 2013-03-13 - 2013-03-18 |w Germany |
245 | _ | _ | |a Supercomputers ready for use as discovery machines for neuroscience |
260 | _ | _ | |c 2013 |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a CONFERENCE_POSTER |2 ORCID |
336 | 7 | _ | |a Output Types/Conference Poster |2 DataCite |
336 | 7 | _ | |a Poster |b poster |m poster |0 PUB:(DE-HGF)24 |s 1570523314_4405 |2 PUB:(DE-HGF) |x After Call |
520 | _ | _ | |a NEST is a widely used tool to simulate biological spiking neural networks [1]. The simulator is subject tocontinuous development, which is driven by the requirements of the current neuroscientific questions. Atpresent, a major part of the software development focuses on the improvement of the simulator'sfundamental data structures in order to enable brain-scale simulations on supercomputers such as theBlue Gene system in Jülich and the K computer in Kobe. Based on our memory-usage model [2], weredesigned the neuronal and the connection infrastructure of NEST such that networks of 10^8 neuronsand 10^12 synapses can be simulated on the K computer [3]. These improvements reduce the memoryfootprint without compromising on the simulator's general usability and user interface. Here, we describethe recent technological advances which enable NEST to achieve high performance and good scaling ofnetwork setup and simulation on the K computer and on the Blue Gene system. We demonstrate that theusability of these machines for network simulations has become comparable to running simulations on asingle PC. |
536 | _ | _ | |a 331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331) |0 G:(DE-HGF)POF2-331 |c POF2-331 |x 0 |f POF II |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |x 1 |f POF II |
536 | _ | _ | |a Brain-Scale Simulations (jinb33_20121101) |0 G:(DE-Juel1)jinb33_20121101 |c jinb33_20121101 |x 2 |f Brain-Scale Simulations |
536 | _ | _ | |a HASB - Helmholtz Alliance on Systems Biology (HGF-SystemsBiology) |0 G:(DE-Juel1)HGF-SystemsBiology |c HGF-SystemsBiology |x 3 |f HASB-2008-2012 |
536 | _ | _ | |a BTN-Peta - The Next-Generation Integrated Simulation of Living Matter (BTN-Peta-2008-2012) |0 G:(DE-Juel1)BTN-Peta-2008-2012 |c BTN-Peta-2008-2012 |x 4 |f BTN-Peta-2008-2012 |
536 | _ | _ | |a BRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921) |0 G:(EU-Grant)269921 |c 269921 |x 5 |f FP7-ICT-2009-6 |
536 | _ | _ | |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |x 6 |f SMHB |
536 | _ | _ | |a W2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12) |0 G:(DE-HGF)B1175.01.12 |c B1175.01.12 |x 7 |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 8 |
700 | 1 | _ | |a Schmidt, Maximilian |0 P:(DE-Juel1)145897 |b 1 |u fzj |
700 | 1 | _ | |a Eppler, Jochen Martin |0 P:(DE-Juel1)142538 |b 2 |u fzj |
700 | 1 | _ | |a Igarashi, Jun |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Masumoto, Gen |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Fukai, Tomoki |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Ishii, Shin |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Plesser, Hans Ekkehard |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Morrison, Abigail |0 P:(DE-Juel1)151166 |b 8 |u fzj |
700 | 1 | _ | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 9 |u fzj |
700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 10 |u fzj |
909 | C | O | |o oai:juser.fz-juelich.de:137379 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)151364 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)145897 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)142538 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)151166 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)144174 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 10 |6 P:(DE-Juel1)144806 |
913 | 1 | _ | |a DE-HGF |b Gesundheit |l Funktion und Dysfunktion des Nervensystems |1 G:(DE-HGF)POF2-330 |0 G:(DE-HGF)POF2-331 |2 G:(DE-HGF)POF2-300 |v Signalling Pathways and Mechanisms in the Nervous System |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-411 |2 G:(DE-HGF)POF2-400 |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2013 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 2 |
980 | _ | _ | |a poster |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
981 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|