000137380 001__ 137380
000137380 005__ 20240313094957.0
000137380 037__ $$aFZJ-2013-03827
000137380 1001_ $$0P:(DE-Juel1)151364$$aKunkel, Susanne$$b0$$ufzj
000137380 1112_ $$a10th Meeting of the German Neuroscience Society$$cGoettingen$$d2013-03-13 - 2013-03-16$$gNWG 2013$$wGermany
000137380 245__ $$aSupercomputers ready for use as discovery machines for neuroscience
000137380 260__ $$c2013
000137380 29510 $$aProceedings of the 10th Meeting of the German Neuroscience Society
000137380 300__ $$aT26-8B
000137380 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib
000137380 3367_ $$2DRIVER$$abookPart
000137380 3367_ $$2ORCID$$aBOOK_CHAPTER
000137380 3367_ $$07$$2EndNote$$aBook Section
000137380 3367_ $$2BibTeX$$aINBOOK
000137380 3367_ $$2DataCite$$aOutput Types/Book chapter
000137380 520__ $$aNEST is a widely used tool to simulate biological spiking neural networks [1]. The simulator is subject to continuous development, which is driven by the requirements of the current neuroscientific questions. At present, a major part of the software development focuses on the improvement of the simulator's fundamental data structures in order to enable brain-scale simulations on supercomputers such as the Blue Gene system in Jülich and the K computer in Kobe. Based on our memory-usage model [2], we
redesigned the neuronal and the connection infrastructure of NEST such that networks of 10^8 neurons and 10^12 synapses can be simulated on the K computer [3]. These improvements reduce the memory footprint without compromising on the simulator's general usability and user interface. Here, we describe the recent technological advances which enable NEST to achieve high performance and good scaling of network setup and simulation on the K computer and on the Blue Gene system. We demonstrate that the usability of these machines for network simulations has become comparable to running simulations on a single PC.
000137380 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0
000137380 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1
000137380 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x2
000137380 536__ $$0G:(DE-Juel1)BTN-Peta-2008-2012$$aBTN-Peta - The Next-Generation Integrated Simulation of Living Matter (BTN-Peta-2008-2012)$$cBTN-Peta-2008-2012$$fBTN-Peta-2008-2012$$x3
000137380 536__ $$0G:(DE-Juel1)HGF-SystemsBiology$$aHASB - Helmholtz Alliance on Systems Biology (HGF-SystemsBiology)$$cHGF-SystemsBiology$$fHASB-2008-2012$$x4
000137380 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x5
000137380 536__ $$0G:(DE-HGF)B1175.01.12$$aW2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)$$cB1175.01.12$$x6
000137380 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x7
000137380 7001_ $$0P:(DE-Juel1)145897$$aSchmidt, Maximilian$$b1$$ufzj
000137380 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b2$$ufzj
000137380 7001_ $$0P:(DE-HGF)0$$aIgarashi, Jun$$b3
000137380 7001_ $$0P:(DE-HGF)0$$aMasumoto, Gen$$b4
000137380 7001_ $$0P:(DE-HGF)0$$aFukai, Tomoki$$b5
000137380 7001_ $$0P:(DE-HGF)0$$aIshii, Shin$$b6
000137380 7001_ $$0P:(DE-HGF)0$$aPlesser, Hans Ekkehard$$b7
000137380 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b8$$ufzj
000137380 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b9$$ufzj
000137380 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b10$$ufzj
000137380 8564_ $$uhttps://www.nwg-goettingen.de/2013/upload/file/Proceedings_NWG2013.pdf
000137380 909CO $$ooai:juser.fz-juelich.de:137380$$pVDB
000137380 9141_ $$y2013
000137380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151364$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000137380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145897$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000137380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000137380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000137380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000137380 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000137380 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000137380 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000137380 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000137380 920__ $$lyes
000137380 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000137380 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000137380 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lIAS-6$$x2
000137380 980__ $$acontrib
000137380 980__ $$aVDB
000137380 980__ $$aUNRESTRICTED
000137380 980__ $$acontb
000137380 980__ $$aI:(DE-Juel1)INM-6-20090406
000137380 980__ $$aI:(DE-Juel1)JSC-20090406
000137380 980__ $$aI:(DE-Juel1)IAS-6-20130828
000137380 981__ $$aI:(DE-Juel1)IAS-6-20130828
000137380 981__ $$aI:(DE-Juel1)JSC-20090406
000137380 981__ $$aI:(DE-Juel1)IAS-6-20130828