000137385 001__ 137385
000137385 005__ 20240313103111.0
000137385 0247_ $$2doi$$a10.1186/1471-2202-14-S1-P163
000137385 0247_ $$2Handle$$a2128/11525
000137385 037__ $$aFZJ-2013-03832
000137385 082__ $$a610
000137385 1001_ $$0P:(DE-Juel1)151364$$aKunkel, Susanne$$b0$$eCorresponding author$$ufzj
000137385 1112_ $$aAnnual CNS Meeting 2013$$cParis$$d2013-07-13 - 2013-07-18$$wFrance
000137385 245__ $$aFrom laptops to supercomputers: a single highly scalable code base for spiking neuronal network simulations
000137385 260__ $$aLondon$$bBioMed Central$$c2013
000137385 300__ $$aP163
000137385 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter
000137385 3367_ $$033$$2EndNote$$aConference Paper
000137385 3367_ $$2DataCite$$aOutput Types/Conference Poster
000137385 3367_ $$2DRIVER$$aconferenceObject
000137385 3367_ $$2ORCID$$aCONFERENCE_POSTER
000137385 3367_ $$2BibTeX$$aINPROCEEDINGS
000137385 500__ $$3POF3_Assignment on 2016-02-29
000137385 520__ $$aOver the last couple of years, supercomputers such as the Blue Gene/Q system JUQUEEN in Jülich and the K computer in Kobe have become available for neuroscience research. These massively parallel systems open the field for a new class of scientific questions as they provide the resources to represent and simulate brain-scale networks, but they also confront the developers of simulation software with a new class of problems. Initial tests with our neuronal network simulator NEST [1] on JUGENE (the predecessor of JUQUEEN) revealed that in order to exploit the memory capacities of such machines, we needed to improve the parallelization of the fundamental data structures. To address this, we developed an analytical framework [2], which serves as a guideline for a systematic and iterative restructuring of the simulation kernel. In December 2012, the 3rd generation technology was released with NEST 2.2, which enables simulations of 108 neurons and 10,000 synapses per neuron on the K computer [3]. Even though the redesign of the fundamental data structures of NEST is driven by the demand for simulations of interacting brain areas, we do not aim at solutions tailored to a specific brain-scale model or computing architecture. Our goal is to maintain a single highly scalable code base that meets the requirements of such simulations whilst still performing well on modestly dimensioned lab clusters and even laptops. Here, we introduce the 4 th generation simulation kernel and describe the development workflow that yielded the following three major improvements: the self-collapsing connection infrastructure, which takes up significantly less memory in the case of few local targets, the compacted node infrastructure, which causes only negligible constant serial memory overhead, and the reduced memory usage of synapse objects, which does not affect the precision of synaptic state variables. The improved code does not compromise on the general usability of NEST and will be merged into the common code base to be released with NEST 2.4. We show that with the 4g technology it will be possible to simulate networks of 10 9 neurons and 10,000 synapses per neuron on the K computer.
000137385 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0
000137385 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x1
000137385 536__ $$0G:(DE-Juel1)BTN-Peta-2008-2012$$aBTN-Peta - The Next-Generation Integrated Simulation of Living Matter (BTN-Peta-2008-2012)$$cBTN-Peta-2008-2012$$fBTN-Peta-2008-2012$$x2
000137385 536__ $$0G:(DE-Juel1)HGF-SystemsBiology$$aHASB - Helmholtz Alliance on Systems Biology (HGF-SystemsBiology)$$cHGF-SystemsBiology$$fHASB-2008-2012$$x3
000137385 536__ $$0G:(EU-Grant)269921$$aBRAINSCALES - Brain-inspired multiscale computation in neuromorphic hybrid systems (269921)$$c269921$$fFP7-ICT-2009-6$$x4
000137385 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x5
000137385 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x6
000137385 536__ $$0G:(DE-HGF)B1175.01.12$$aW2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)$$cB1175.01.12$$x7
000137385 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x8
000137385 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000137385 7001_ $$0P:(DE-Juel1)145897$$aSchmidt, Maximilian$$b1$$ufzj
000137385 7001_ $$0P:(DE-Juel1)142538$$aEppler, Jochen Martin$$b2$$ufzj
000137385 7001_ $$0P:(DE-HGF)0$$aPlesser, Hans E$$b3
000137385 7001_ $$0P:(DE-HGF)0$$aIgarashi, Jun$$b4
000137385 7001_ $$0P:(DE-HGF)0$$aMasumoto, Gen$$b5
000137385 7001_ $$0P:(DE-HGF)0$$aFukai, Tomoki$$b6
000137385 7001_ $$0P:(DE-HGF)0$$aIshii, Shin$$b7
000137385 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b8$$ufzj
000137385 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b9$$ufzj
000137385 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b10$$ufzj
000137385 773__ $$0PERI:(DE-600)2041344-0$$a10.1186/1471-2202-14-S1-P163$$gVol. 14, no. Suppl 1, p. P163 -$$nSuppl 1$$pP163 -$$tBMC neuroscience$$v14$$x1471-2202$$y2013
000137385 8564_ $$uhttps://juser.fz-juelich.de/record/137385/files/art_10.1186_1471-2202-14-S1-P163.pdf$$yOpenAccess
000137385 8564_ $$uhttps://juser.fz-juelich.de/record/137385/files/art_10.1186_1471-2202-14-S1-P163.gif?subformat=icon$$xicon$$yOpenAccess
000137385 8564_ $$uhttps://juser.fz-juelich.de/record/137385/files/art_10.1186_1471-2202-14-S1-P163.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000137385 8564_ $$uhttps://juser.fz-juelich.de/record/137385/files/art_10.1186_1471-2202-14-S1-P163.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000137385 8564_ $$uhttps://juser.fz-juelich.de/record/137385/files/art_10.1186_1471-2202-14-S1-P163.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000137385 909CO $$ooai:juser.fz-juelich.de:137385$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000137385 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000137385 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137385 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000137385 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000137385 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000137385 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137385 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137385 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000137385 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000137385 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000137385 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000137385 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000137385 9141_ $$y2013
000137385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151364$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000137385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145897$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000137385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142538$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000137385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000137385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000137385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000137385 9132_ $$0G:(DE-HGF)POF3-579H$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vAddenda$$x0
000137385 9132_ $$0G:(DE-HGF)POF3-519H$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vAddenda$$x1
000137385 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0
000137385 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1
000137385 920__ $$lyes
000137385 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000137385 9201_ $$0I:(DE-Juel1)IAS-6-20130828$$kIAS-6$$lIAS-6$$x1
000137385 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x2
000137385 9801_ $$aFullTexts
000137385 980__ $$aVDB
000137385 980__ $$aposter
000137385 980__ $$aI:(DE-Juel1)INM-6-20090406
000137385 980__ $$aI:(DE-Juel1)IAS-6-20130828
000137385 980__ $$aI:(DE-Juel1)JSC-20090406
000137385 980__ $$aUNRESTRICTED
000137385 981__ $$aI:(DE-Juel1)IAS-6-20130828
000137385 981__ $$aI:(DE-Juel1)IAS-6-20130828
000137385 981__ $$aI:(DE-Juel1)JSC-20090406