001     137410
005     20210129212023.0
024 7 _ |a 10.1002/ctpp.201200097
|2 doi
024 7 _ |a 1521-3986
|2 ISSN
024 7 _ |a 0005-8025
|2 ISSN
024 7 _ |a 0863-1042
|2 ISSN
024 7 _ |a WOS:000318931200005
|2 WOS
037 _ _ |a FZJ-2013-03852
082 _ _ |a 570
100 1 _ |a Winkel, M.
|0 P:(DE-Juel1)140128
|b 0
|u fzj
|e Corresponding author
245 _ _ |a Spatially Resolved Electronic Correlations in Nanoclusters
260 _ _ |a Weinheim
|c 2013
|b Wiley-VCH
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1377695177_21222
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Recent experimental developments in the creation and diagnostic probing of metallic nanoclusters has made it possible to explore their interaction with electromagnetic radiation, thus revealing information on their electronic properties. Free electrons inside such clusters occupy a very small volume so their characteristics may exhibit significant differences to bulk matter in a similar thermodynamic state. Using high-resolution molecular dynamics simulation, we study electronic correlations of laser-excited, sodium-like nanoclusters. To cover a broad range from nano- to microscale, the momentum autocorrelation function is evaluated for systems ranging from 150 to more than half a million electrons. The Coulomb force computation is accelerated by utilizing the parallel Barnes-Hut tree code PEPC. Complex electronic resonances are found for finite-sized clusters which do not appear in bulk systems. Analysis of these oscillation modes with a new diagnostic technique show that these are located in different spatial regions within the clusters.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
536 _ _ |a PEPC - Pretty Efficient Parallel Coulomb Solver (PEPC-FZJ_010102)
|0 G:(DE-Juel1)PEPC-FZJ_010102
|c PEPC-FZJ_010102
|x 1
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Gibbon, P.
|0 P:(DE-Juel1)132115
|b 1
|u fzj
773 _ _ |a 10.1002/ctpp.201200097
|g Vol. 53, no. 4-5, p. 254 - 262
|p 254 - 262
|n 4-5
|0 PERI:(DE-600)2018082-2
|t Contributions to plasma physics
|v 53
|y 2013
|x 0863-1042
856 4 _ |u https://juser.fz-juelich.de/record/137410/files/FZJ-2013-03852.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:137410
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)140128
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132115
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21