000137505 001__ 137505
000137505 005__ 20210129212039.0
000137505 0247_ $$2doi$$a10.1137/110859749
000137505 0247_ $$2ISSN$$a0196-5212
000137505 0247_ $$2ISSN$$a1095-7162
000137505 0247_ $$2ISSN$$a0895-4798
000137505 0247_ $$2WOS$$aWOS:000325092700010
000137505 0247_ $$2altmetric$$aaltmetric:711252
000137505 037__ $$aFZJ-2013-03942
000137505 082__ $$a510
000137505 1001_ $$0P:(DE-HGF)0$$aFrommer, A.$$b0$$eCorresponding author
000137505 245__ $$a2-Norm Error Bounds and Estimates for Lanczos Approximations to Linear Systems and Rational Matrix Functions
000137505 260__ $$aPhiladelphia, Pa.$$bSoc.$$c2013
000137505 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1377848213_19454
000137505 3367_ $$2DataCite$$aOutput Types/Journal article
000137505 3367_ $$00$$2EndNote$$aJournal Article
000137505 3367_ $$2BibTeX$$aARTICLE
000137505 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000137505 3367_ $$2DRIVER$$aarticle
000137505 520__ $$aThe Lanczos process constructs a sequence of orthonormal vectors $v_m$ spanning a nested sequence of Krylov subspaces generated by a hermitian matrix $A$ and some starting vector $b$. In this paper we show how to cheaply recover a secondary Lanczos process starting at an arbitrary Lanczos vector $v_m$. This secondary process is then used to efficiently obtain computable error estimates and error bounds for the Lanczos approximations to the action of a rational matrix function on a vector. This includes, as a special case, the Lanczos approximation to the solution of a linear system $Ax = b$. Our approach uses the relation between the Lanczos process and quadrature as developed by Golub and Meurant. It is different from methods known so far because of its use of the secondary Lanczos process. With our approach, it is now possible in particular to efficiently obtain upper bounds for the error in the 2-norm, provided a lower bound on the smallest eigenvalue of $A$ is known. This holds in particular for a large class of rational matrix functions, including best rational approximations to the inverse square root and the sign function. We compare our approach to other existing error estimates and bounds known from the literature and include results of several numerical experiments.
000137505 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000137505 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000137505 7001_ $$0P:(DE-HGF)0$$aKahl, K.$$b1
000137505 7001_ $$0P:(DE-Juel1)132179$$aLippert, Th.$$b2$$ufzj
000137505 7001_ $$0P:(DE-HGF)0$$aRittich, H.$$b3
000137505 773__ $$0PERI:(DE-600)1468407-x$$a10.1137/110859749$$gVol. 34, no. 3, p. 1046 - 1065$$n3$$p1046 - 1065$$tSIAM journal on matrix analysis and applications$$v34$$x1095-7162
000137505 909CO $$ooai:juser.fz-juelich.de:137505$$pVDB
000137505 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000137505 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000137505 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000137505 9141_ $$y2013
000137505 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000137505 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000137505 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000137505 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137505 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137505 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000137505 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137505 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000137505 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000137505 980__ $$ajournal
000137505 980__ $$aVDB
000137505 980__ $$aUNRESTRICTED
000137505 980__ $$aI:(DE-Juel1)JSC-20090406