001     137505
005     20210129212039.0
024 7 _ |a 10.1137/110859749
|2 doi
024 7 _ |a 0196-5212
|2 ISSN
024 7 _ |a 1095-7162
|2 ISSN
024 7 _ |a 0895-4798
|2 ISSN
024 7 _ |a WOS:000325092700010
|2 WOS
024 7 _ |a altmetric:711252
|2 altmetric
037 _ _ |a FZJ-2013-03942
082 _ _ |a 510
100 1 _ |a Frommer, A.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a 2-Norm Error Bounds and Estimates for Lanczos Approximations to Linear Systems and Rational Matrix Functions
260 _ _ |a Philadelphia, Pa.
|c 2013
|b Soc.
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1377848213_19454
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The Lanczos process constructs a sequence of orthonormal vectors $v_m$ spanning a nested sequence of Krylov subspaces generated by a hermitian matrix $A$ and some starting vector $b$. In this paper we show how to cheaply recover a secondary Lanczos process starting at an arbitrary Lanczos vector $v_m$. This secondary process is then used to efficiently obtain computable error estimates and error bounds for the Lanczos approximations to the action of a rational matrix function on a vector. This includes, as a special case, the Lanczos approximation to the solution of a linear system $Ax = b$. Our approach uses the relation between the Lanczos process and quadrature as developed by Golub and Meurant. It is different from methods known so far because of its use of the secondary Lanczos process. With our approach, it is now possible in particular to efficiently obtain upper bounds for the error in the 2-norm, provided a lower bound on the smallest eigenvalue of $A$ is known. This holds in particular for a large class of rational matrix functions, including best rational approximations to the inverse square root and the sign function. We compare our approach to other existing error estimates and bounds known from the literature and include results of several numerical experiments.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Kahl, K.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lippert, Th.
|0 P:(DE-Juel1)132179
|b 2
|u fzj
700 1 _ |a Rittich, H.
|0 P:(DE-HGF)0
|b 3
773 _ _ |a 10.1137/110859749
|g Vol. 34, no. 3, p. 1046 - 1065
|p 1046 - 1065
|n 3
|0 PERI:(DE-600)1468407-x
|t SIAM journal on matrix analysis and applications
|v 34
|x 1095-7162
909 C O |o oai:juser.fz-juelich.de:137505
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132179
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21