000013753 001__ 13753
000013753 005__ 20240712101031.0
000013753 0247_ $$2DOI$$a10.5194/acp-10-12233-2010
000013753 0247_ $$2WOS$$aWOS:000285581000013
000013753 0247_ $$2Handle$$a2128/10032
000013753 037__ $$aPreJuSER-13753
000013753 041__ $$aeng
000013753 082__ $$a550
000013753 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000013753 1001_ $$0P:(DE-Juel1)7363$$aFuchs, H.$$b0$$uFZJ
000013753 245__ $$aTechnical Note: Formal blind intercomparison of HO2 measurements in the atmosphere simulation chamber SAPHIR during the HOxComp campaign
000013753 260__ $$aKatlenburg-Lindau$$bEGU$$c2010
000013753 300__ $$a12233 - 12250
000013753 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000013753 3367_ $$2DataCite$$aOutput Types/Journal article
000013753 3367_ $$00$$2EndNote$$aJournal Article
000013753 3367_ $$2BibTeX$$aARTICLE
000013753 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000013753 3367_ $$2DRIVER$$aarticle
000013753 440_0 $$09601$$aAtmospheric Chemistry and Physics$$v10$$x1680-7316
000013753 500__ $$aThis work was supported by the EU FP-6 program EUROCHAMP (grant no. RII3-CT-2004-505968) and ACCENT (Priority 1.1.6.3. Global Change and Ecosystems, grant no. GOCE-CT-2004-505337).
000013753 520__ $$aHydroperoxy radical (HO2) concentrations were measured during the formal blind intercomparison campaign HOxComp carried out in Julich, Germany, in 2005. Three instruments detected HO2 via chemical conversion to hydroxyl radicals (OH) and subsequent detection of the sum of OH and HO2 by laser induced fluorescence (LIF). All instruments were based on the same detection and calibration scheme. Because measurements by a MIESR instrument failed during the campaign, no absolute reference measurement was available, so that the accuracy of individual instruments could not be addressed. Instruments sampled ambient air for three days and were attached to the atmosphere simulation chamber SAPHIR during the second part of the campaign. Six experiments of one day each were conducted in SAPHIR, where air masses are homogeneously mixed, in order to investigate the performance of instruments and to determine potential interferences of measurements under well-controlled conditions. Linear correlation coefficients (R-2) between measurements of the LIF instruments are generally high and range from 0.82 to 0.98. However, the agreement between measurements is variable. The regression analysis of the entire data set of measurements in SAPHIR yields slopes between 0.69 to 1.26 and intercepts are smaller than typical atmospheric daytime concentrations (less than 1 pptv). The quality of fit parameters improves significantly, when data are grouped into data subsets of similar water vapor concentrations. Because measurements of LIF instruments were corrected for a well-characterized water dependence of their sensitivities, this indicates that an unknown factor related to water vapor affected measurements in SAPHIR. Measurements in ambient air are also well-correlated, but regression parameters differ from results obtained from SAPHIR experiments. This could have been caused by differences in HO2 concentrations in the sampled air at the slightly different locations of instruments.
000013753 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000013753 588__ $$aDataset connected to Web of Science
000013753 650_7 $$2WoSType$$aJ
000013753 7001_ $$0P:(DE-Juel1)16306$$aBrauers, T.$$b1$$uFZJ
000013753 7001_ $$0P:(DE-Juel1)16317$$aDorn, H.-P.$$b2$$uFZJ
000013753 7001_ $$0P:(DE-HGF)0$$aHarder, H.$$b3
000013753 7001_ $$0P:(DE-Juel1)5628$$aHäseler, R.$$b4$$uFZJ
000013753 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, A.$$b5$$uFZJ
000013753 7001_ $$0P:(DE-Juel1)16342$$aHolland, F.$$b6$$uFZJ
000013753 7001_ $$0P:(DE-HGF)0$$aKanaya, Y.$$b7
000013753 7001_ $$0P:(DE-HGF)0$$aKajii, Y.$$b8
000013753 7001_ $$0P:(DE-HGF)0$$aKubistin, D.$$b9
000013753 7001_ $$0P:(DE-Juel1)VDB46831$$aLou, S.$$b10$$uFZJ
000013753 7001_ $$0P:(DE-HGF)0$$aMartinez, M.$$b11
000013753 7001_ $$0P:(DE-HGF)0$$aMiyamoto, K.$$b12
000013753 7001_ $$0P:(DE-HGF)0$$aNishida, S.$$b13
000013753 7001_ $$0P:(DE-HGF)0$$aRudolf, M.$$b14
000013753 7001_ $$0P:(DE-Juel1)VDB26256$$aSchlosser, E.$$b15$$uFZJ
000013753 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b16$$uFZJ
000013753 7001_ $$0P:(DE-HGF)0$$aYoshino, A.$$b17
000013753 7001_ $$0P:(DE-HGF)0$$aSchurath, U.$$b18
000013753 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-10-12233-2010$$gVol. 10, p. 12233 - 12250$$p12233 - 12250$$q10<12233 - 12250$$tAtmospheric chemistry and physics$$v10$$x1680-7316$$y2010
000013753 8567_ $$uhttp://dx.doi.org/10.5194/acp-10-12233-2010
000013753 8564_ $$uhttps://juser.fz-juelich.de/record/13753/files/acp-10-12233-2010.pdf$$yOpenAccess
000013753 8564_ $$uhttps://juser.fz-juelich.de/record/13753/files/acp-10-12233-2010.gif?subformat=icon$$xicon$$yOpenAccess
000013753 8564_ $$uhttps://juser.fz-juelich.de/record/13753/files/acp-10-12233-2010.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000013753 8564_ $$uhttps://juser.fz-juelich.de/record/13753/files/acp-10-12233-2010.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000013753 8564_ $$uhttps://juser.fz-juelich.de/record/13753/files/acp-10-12233-2010.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000013753 909CO $$ooai:juser.fz-juelich.de:13753$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000013753 9141_ $$y2010
000013753 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000013753 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000013753 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000013753 9131_ $$0G:(DE-Juel1)FUEK491$$aDE-HGF$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000013753 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$gIEK$$kIEK-8$$lTroposphäre$$x0
000013753 970__ $$aVDB:(DE-Juel1)125442
000013753 9801_ $$aUNRESTRICTED
000013753 9801_ $$aFullTexts
000013753 980__ $$aVDB
000013753 980__ $$aConvertedRecord
000013753 980__ $$ajournal
000013753 980__ $$aI:(DE-Juel1)IEK-8-20101013
000013753 980__ $$aUNRESTRICTED
000013753 981__ $$aI:(DE-Juel1)ICE-3-20101013