001     137751
005     20210129212104.0
024 7 _ |2 DOI
|a 10.1016/j.future.2013.09.005
024 7 _ |2 WOS
|a WOS:000336770700031
037 _ _ |a FZJ-2013-04072
082 _ _ |a 004
100 1 _ |0 P:(DE-Juel1)132139
|a Holl, Sonja
|b 0
|e Corresponding author
|u fzj
245 _ _ |a A New Optimization Phase for Scientific Workflow Management Systems
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2014
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1398774710_20156
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Scientific workflows have emerged as an important tool for combining computational power with data analysis for all scientific domains in e-science, especially in the life sciences. They help scientists to design and execute complex in silico experiments. However, with rising complexity it becomes increasingly impractical to optimize scientific workflows by trial and error. To address this issue, we propose to insert a new optimization phase into the common scientific workflow life cycle. This paper describes the design and implementation of an automated optimizationframework for scientific workflows to implement this phase. Our framework was integrated into Taverna, a lifescience oriented workflow management system and oers a versatile programming interface (API), which enables easy integration of arbitrary optimization methods. We have used this API to develop an example plugin for parameter optimization that is based on a Genetic Algorithm. Two use cases taken from the areas of structural bioinformatics and proteomics demonstrate how our framework facilitates setup, execution, and monitoring of workflow parameter optimization in high performance computing e-science environments.
536 _ _ |0 G:(DE-HGF)POF2-412
|a 412 - Grid Technologies and Infrastructures (POF2-412)
|c POF2-412
|f POF II
|x 0
536 _ _ |0 G:(DE-HGF)POF2-411
|a 411 - Computational Science and Mathematical Methods (POF2-411)
|c POF2-411
|f POF II
|x 1
700 1 _ |0 P:(DE-Juel1)132307
|a Zimmermann, Olav
|b 1
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Palmblad, Magnus
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Mohammed, Yassene
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Hofmann-Apitius, Martin
|b 4
773 _ _ |0 PERI:(DE-600)2020551-X
|a 10.1016/j.future.2013.09.005
|p 352-362
|t Future generation computer systems
|v 36
|x 0167-739X
|y 2014
856 4 _ |u https://juser.fz-juelich.de/record/137751/files/FZJ-2013-04072.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:137751
|p VDB
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132139
|a Forschungszentrum Jülich GmbH
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132307
|a Forschungszentrum Jülich GmbH
|b 1
|k FZJ
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Center for Proteomics and Metabolomics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
|b 2
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Center for Proteomics and Metabolomics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
|b 3
910 1 _ |0 I:(DE-HGF)0
|6 P:(DE-HGF)0
|a Fraunhofer Institute for Algorithmsand Scientific Computing (SCAI) Schloss Birlinghoven, 53754 Sankt Augustin, Germany
|b 4
913 2 _ |0 G:(DE-HGF)POF3-512
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Data-Intensive Science and Federated Computing
|x 0
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 1
913 1 _ |0 G:(DE-HGF)POF2-412
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Grid Technologies and Infrastructures
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21