000137774 001__ 137774
000137774 005__ 20210129212109.0
000137774 0247_ $$2doi$$a10.1016/j.biotechadv.2013.08.019
000137774 0247_ $$2ISSN$$a0734-9750
000137774 0247_ $$2ISSN$$a1873-1899
000137774 0247_ $$2WOS$$aWOS:000332051500006
000137774 0247_ $$2altmetric$$aaltmetric:2710440
000137774 0247_ $$2pmid$$apmid:24012600
000137774 037__ $$aFZJ-2013-04090
000137774 041__ $$aEnglish
000137774 082__ $$a570
000137774 1001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes Auke$$b0
000137774 245__ $$aDynamic root growth and architecture responses to limiting nutrient availability: linking physiological models and experimentation
000137774 260__ $$aAmsterdam$$bElsevier Science Publ.$$c2014
000137774 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1392902878_25164
000137774 3367_ $$2DataCite$$aOutput Types/Journal article
000137774 3367_ $$00$$2EndNote$$aJournal Article
000137774 3367_ $$2BibTeX$$aARTICLE
000137774 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000137774 3367_ $$2DRIVER$$aarticle
000137774 500__ $$3POF3_Assignment on 2016-02-29
000137774 520__ $$aIn recent years the study of root phenotypic plasticity in response to sub-optimal environmental factors and the genetic control of these responses have received renewed attention. As a path to increased productivity, in particular for low fertility soils, several applied research projects worldwide target the improvement of crop root traits both in plant breeding and biotechnology contexts. To assist these tasks and address the challenge of optimizing root growth and architecture for enhanced mineral resource use, the development of realistic simulation models is of great importance. We review this research field from a modeling perspective focusing particularly on nutrient acquisition strategies for crop production on low nitrogen and low phosphorous soils. Soil heterogeneity and the dynamics of nutrient availability in the soil pose a challenging environment in which plants have to forage efficiently for nutrients in order to maintain their internal nutrient homeostasis throughout their life cycle. Mathematical models assist in understanding plant growth strategies and associated root phenes that have potential to be tested and introduced in physiological breeding programs. At the same time, we stress that it is necessary to carefully consider model assumptions and development from a whole plant-resource allocation perspective and to introduce or refine modules simulating explicitly root growth and architecture dynamics through ontogeny with reference to key factors that constrain root growth. In this view it is important to understand negative feedbacks such as plant–plant competition. We conclude by briefly touching on available and developing technologies for quantitative root phenotyping from lab to field, from quantification of partial root profiles in the field to 3D reconstruction of whole root systems. Finally, we discuss how these approaches can and should be tightly linked to modeling to explore the root phenome.
000137774 536__ $$0G:(DE-HGF)POF2-242$$a242 - Sustainable Bioproduction (POF2-242)$$cPOF2-242$$fPOF II$$x0
000137774 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000137774 7001_ $$0P:(DE-Juel1)129402$$aSchurr, Ulrich$$b1
000137774 7001_ $$0P:(DE-Juel1)143649$$aFiorani, Fabio$$b2$$eCorresponding author
000137774 770__ $$aPlant Biotechnology 2013: "Green for Good II".
000137774 773__ $$0PERI:(DE-600)2016279-0$$a10.1016/j.biotechadv.2013.08.019$$gp. S0734975013001535$$n1$$p53–65$$tBiotechnology advances$$v32$$x0734-9750$$y2014
000137774 8564_ $$uhttps://juser.fz-juelich.de/record/137774/files/FZJ-2013-04090.pdf$$yRestricted$$zPublished final document.
000137774 909CO $$ooai:juser.fz-juelich.de:137774$$pVDB
000137774 9141_ $$y2014
000137774 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000137774 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000137774 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000137774 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000137774 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000137774 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000137774 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000137774 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000137774 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000137774 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000137774 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000137774 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000137774 915__ $$0StatID:(DE-HGF)1120$$2StatID$$aDBCoverage$$bBIOSIS Reviews Reports And Meetings
000137774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000137774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129402$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000137774 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143649$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000137774 9132_ $$0G:(DE-HGF)POF3-589H$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vAddenda$$x0
000137774 9131_ $$0G:(DE-HGF)POF2-242$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Bioproduction$$x0
000137774 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000137774 980__ $$ajournal
000137774 980__ $$aVDB
000137774 980__ $$aUNRESTRICTED
000137774 980__ $$aI:(DE-Juel1)IBG-2-20101118