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PREFACE

This solution book provides solutions to exercises of the book of J.K.G. Dhont “An
Introduction to Dynamics of Colloids” as published in the Interface Science Series,
vol ll, Elsevier press, 1996. As mentioned in the preface in the book, colloid science
is the domain of both chemists and (theoretical) physicists. The first chapter in the
book is therefore aimed to provide a minimum mathematical background for those
who did not have a sufficient mathematical training. A single chapter can of course
not fully cover this gap in the mathematical background between experimentalists
and theoreticians, and might render the exercises still problematic for those who are

not used to work with equations.

The aim of this solution book is to bridge this gap, by providing the mathematics
needed to solve the exercises in detail. We tried to give the solutions in a way that it
is also accessible for those who are less trained in mathematics. Every step is
worked out in detail. Some times we added remarks on the interpretation and
physical implications of results. In this solution book, exercises are selected that are
not purely concerned with mathematics, but where rather the understanding of
physics is the aim. We hope that this exercise book will lower a possible activation

energy concerned with the mathematics involved in exercises.



The content of the book is focused on equations of motion for Brownian systems (in
particular the Smoluchowski equation), hydrodynamics, light scattering, diffusion,
sedimentation, critical phenomena, and phase separation kinetics. The effects of
simple shear flow on various phenomena are presented throughout the various
chapters.

Some of the original figures in the book are re-arranged for illustration whenever
helpful within the context of an exercise. We also added some text to further explain
the physics on an intuitive level, and mentioned some typos in the book whenever

relevant within an exercise.

We sincerely hope that you enjoy solving the exercises with the help of this solution
book.

Kyongok Kang (k.kang@fz-juelich.de)
Jan Karel George Dhont (j.k.g.dhont@fz-juelich.de)

June-July, 2013

Forschungszentrum Juelich,

Juelich, Germany



Solutions of Exercises in An Introduction to Dynamics of Colloids

Exercises Chapter 1: INTRODUCTION

Looking down view of the surroundings at Les-Houches, France

1.1 The sedimentation velocity of a colloidal sphere in very diluted suspensions
is equal to,
1 -
Vg = Fe
6rn,a

where 7], is the shear viscosity of the solvent, and F** the external force acting on
the colloidal sphere with a radius a. The gravitational external force, corrected for
buoyancy, is equal to (with o, the specific mass of the colloidal particle, and p, that
of the solvent fluid)

rext —»4”
F =gTa3(pp_pf)

The question is what the maximum size of a colloidal particle (silica) in water can be, such
that the particle displacement due to sedimentation is not larger than its own radius, during
an experiment of 1 sec. For the calculation, use that the viscosity of water is 0.001 g / ml,
the specific mass of water is 1.0 Ny / »* and that of amorphous silica particle is ~ 1.8 g/ ml .

The gravitational force acceleration constant is | §| =9.8m/s”.

Substitution gives,

=0 1 rrext 1 [ 4z 3 j
Vg = F = —a -
5 6rna 67n,a £3 (p" P )
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The time during which sedimentation takes place over a distance equal to a is,

t=1[s]= —

=0
vs

Hence
a 1

= 1 4
= — Fwaz —a —
1[s] 6zna 67[770a(g 3 (p b = Pr )j

=0
s

So that, putting in numbers
a _2*9.8[m/sz]*a3[m3]*(0.8*10*3[kg/(cmf])
1[s] 3%3%(0.001[Ns/m*])* a[m]

>

Solving for a thus gives

9%0.001
a=
2%9.8%0.8%107 *10°

[m]

= 0.574*10"° [m] = 574 nm

Thus, the maximum size that the particle may have in order to sediment at most its own
radius during 1 s. is equal to 574 nm.

For higher concentrations, where particles interact through a (effective) hard-core potential,
instead of using the free mobility, one might use eqn. (7.90) for the mobility instead.

Jan Dhont indicated that there is an error in this exercise; the time of 1 min, as
stated in the book, should be 1 sec.
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1.9 Interaction of two charged colloidal spheres (depicted in Fig. 1.1(a))

Fig. 1.1: The most common kinds of pair-interaction potentials for spherical
colloidal particles: (a) the screened Coulomb potential (which will be treated in
this exercise), that is the DLVO potential with negligible van der Waals attraction,
(b) an almost ideal hard-core interaction, (c) steric repulsion of long polymers in a
good solvent, where the polymers are grafted to the particle’s surface, (d) short-
ranged attraction of colloids grafied with polymers in a marginal solvent.

(a) Consider a small charged colloidal particle, located at the origin, in a solvent that contains
free ions. The electrostatic potential @(7) is related to the free charge density o(7) by
Poisson’s equation as

ViO(F) = _p)
&

where & is the dielectric constant of the solvent, which, for simplicity, is assumed to be the
same as the colloidal particle.

The charge density is composed of two terms; one is from the colloidal particle at the origin
Q6(7) and the other is from the solvent that may have unequal locally unequal ion
concentrations pg(7) .

Then R
V)= ~ 202 5
& &

For simplicity, the colloidal particle is regarded as a point-like, as mathematically described
by the delta function. The ion concentrations P, are related to the electrostatic potential by
(assuming of point-like ions)

p,(F)= p] exp(~Pez, ®(F))
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with Pf the number density of that species outside the double layer, where the electrostatic
potential @(7) is zero. The local electrostatic energy of ions of species j is equal to ez (7)
, which is the energy in the electrostatic field generated by the remaining ions and the
colloidal particle.

The resulting non-linear Poisson-Boltzmann equation
[y 0 B 0. .
VAO(F) ==~ ez, p] exp(~fez, (7)) =< 5(7)
J

cannot be solved analytically. For sufficiently small potentials (where ez, ®(F) is small
compared to k,T ), however, we can linearize the above equation.

Note that this is always true for large distances from the colloid, and is only true for a//
distances whenever the surface potential is sufficiently small.

0

Also due to electroneutrality, ZeZ jpf = 7 ~0 for large volumes of the system.
j

Linearization leads to the so-called /inear Poisson-Boltzmann equation

Vo) = o) - 2 5(),
&

ey 2p!
P . ’
k,Te
q)(f)zieXp(_Kr)

dre r

This can be seen as follows

p, =Y ez, pexp(~fez, (7)) = ez, pj (1- ez, (7))

P z p_;) — Bez r
?_;ej . (1= Bez,0(7))
:Zezj%_z%ﬂ(ezj)z(D(F)ZO_Z%'B(er)Z(D(F)

which is valid for
ez, d(r)

— <1
k,T

|Bez @(F)| =
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It is convenient to use Fourier Transformation to solve the linearized Poisson-
Boltzmann equation (see exercise 1.5)

o)+ o(f)=2
(k)+x*@ (k) ==
Fourier inversion thus leads to

i
el 7

() = —2— [ dE ——2 K ke
(27!)38 kK +x? (272’)380 K +x’

Using the identity, where the angular integration are performed explicitly,
A 2z V4 T ! N 27[ . -
Gk’ = [dp[ dosinge" =27 [dre' =—=(e" ™)
o 0 b ikr

it is found that

. T k ik
(D(F)ZSHZQSir_'l;dkszer (ek I k)

From the residue theorem it is found that

+o0
d z sikr _ i o
] i) (z-i) O E

—0

so that it is finally found that the electrostatic potential is equal to

with

- Q e—Kr
*0) e

the inverse Debye-screening length.

(b) The Helmholtz free energy of a system of two particles and the free ions in the solvent is
the colloid-colloid pair-interaction potential. The pair-interaction force between the two
colloidal particles is F = —V[U -TS] , where U'is the potential energy and S the entropy of
free ions in solution. Within the linearization approximation discussed in (a), for particles with
a given, fixed charge O , the total electrostatic potential is the sum of each of the separate
colloidal particles

cp,(f)=q>(|f—1§l|)+q>(|f—1§2|)

where 1:’1,2 are the position coordinates of the colloidal particles.
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. L 1 2 )
The local electrostatic energy density is equal to 58|VCD,(F)| , so that the total electrostatic
energy can be written equally both in real space and Fourier space as (see Exercise 1.4b)

&
2027)

= Lfalso of -5 o]

For the non-interacting ions, the entropy is
S =—ky [ dr...[ dF\, P(,... F,)In (P(F,.... )
where the probability distribution function (pdf) is equal to

exp {—ﬁi ez, ® (7, )]

P(7,...., 1) =
(1 M) Q(Nla“'staVsT)

with the configurational partition function equal to

ON,,..,N,.V,T)= jda...jdfM exp(—ﬂfezjcb,(f)]
B ez O(F)
k,T

B

Expansion the entropy up to quadratic order in the assumed small quantity

thus leads to

kg Jow gy L]
S_V_M{V IH(V )+EV—M—5[2 ,
M i
Iizjdﬁ...jdfM(ﬂZez/d),(Fj)j, i=1,2
j=1

This can be seen from (here @ is not the colloid charge, but the partition function)

S =—ky [ dF..[ dF, PG, 7)) I0(P(F ..o Ty )

=k, [ ;.. dF,, eQﬂz (-AZ-Q),
0=V ~pLdR+ L f [T 4 V= ]dr o,

by using the expansions

exp(x) zl+x+%x2, —sz l+x+x* and ln(l—x)z—)c—%x2
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Since we are interested in the change of the entropy with the relative position of the colloidal
particles, i.e., ]_él — ]_é2 , the thermodynamic entropy term ln(VM ) can be omitted.

Furthermore since J-df'j(D,(I_’}) is a constant, it is also does not contribute to the pair-
interaction force.
Therefore the relevant entropy is

_Ts=%g;<2jdf<bf(f)= [ ak|@, (|

&£
2(2x)
The pair-interaction potential is thus equal to

&
227y

V(R -k|)=U-75= [dk (k2 + )|, ()

From the Fourier transform of the linearized solution of the Poisson-
Boltzmann equation in (a), it is found that

®1(E):

The pair-interaction potential for electrostatic interactions through double-layer overlap is
equal to

L 2 R ik(R-Ry)

V(|R' _R2|) :%(27[)3 '[dk ekz + K
e oA
iR A

Where the integration is performed using the residue theorem. This is the screened Coulomb
or Yukawa potential.

Note that we assumed that the charge of the colloids is independent of their
separation. This is strictly true when the degree of ionization of the chemical
groups on the surfaces of the colloidal particles is close to 100%. For partial
ionization, the local electrostatic potential affects the ionization equilibrium and
thereby the charge on the colloidal particles. Then the appropriate condition is a
constant surface potential rather than a constant charge.
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1.11 The effective interaction potential

The effective interaction potential }< () is defined, for isotropic and homogeneous
systems, which are both translational and rotational invariant, as

g(r)=exp(-pV (r))
where g(7) is the pair-correlation function. In this exercise, it is shown that the gradient of
this effective potential with respect the distance » between two colloids is equal to the
interaction force between the two colloids, averaged over the positions of the remaining

colloidal particles.

From the definition of the pair-correlation function of g(r)

P(R.5)2 P(R)P(7)g(7.B) = [ dr - [ i, Py (R, 7o )

.- - e
PN(’i’rZ’r}’“"rN) =
and where
1
B(r)=
is the one-particle pdf for a homogeneous system.

Then the pair-correlation function becomes
g(7.7)= szd@ --~Idi Py (77 By sy )
0

Now the effective potential can be expressed in terms of the volume and partition function as

A By
:eﬂ

_ﬁV@ff(?l,Fz):21nV—1nQ+1n(Id’§"'IdFN e_M)

where the 1st and 2nd terms are independent of the position 7 and % .

Thus with a space differentiation with respect to 7 gives
_V1Veﬂ(’_’;a’7z) — +kBT V1 ln(J'd,?3 J.d,—;N e*M(ﬁfz,Fz;--,FN))

— Id’% Idi [—V1¢]e*ﬁqﬁ(fl,;z’%’_'_j]v)
= J.d’—é J.di eiﬁﬂfl’a’;&“-i]\,)
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Dividing both the numerator and denominator with the partition function Q gives

VIV (5 Ry = Idg...deN [—V1¢]e”"”(”zfsf'-iw)/Q
-V, (’/i:rz) - J‘d‘;’.3 .[d;:N e_ﬁ¢(ﬁ’72”73"“’7N) /Q

_ J‘d’é J-dFN [_V1¢]PN (’71”72=’739"'5FN)
P(7.7)

Py (7T Fyyeees iy )
:Idf-sj.d}';N [_v1¢] N IPE]_{,S]_/;) N

:Id’é J.d;:N [—V1¢] 11(73,74,“',71\;

7.7 )

Here the P. (73,74, By |71, 72) is so-called the conditional probability distribution function
of the particle coordinates 7,7,,---,7, , for given positions of particles, 1 and 2.

Therefore vy is the force that particle 2 exerts on particle 1, averaged over the
position coordinates of all other particles, 3, ..., N.
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1.12 The pair-correlation function £(r) for hard spheres

1.5

0.5

“a

A

24

N
-

1
2 L
Fig. 1.10 (a) The pair-correlation function to first order in concentration for hard-spheres,

I, r=z4a
g.(N=g,(N+pg ()= 1+¢{83[1]+l[1] } 2a<r<4da
a 16\ a

0
with @ =0.1, (b) a sketch for hard-spheres at larger concentrations, and (c) for
charged spheres with a long-ranged repulsive pair-interaction potential.

r<2a

2

The hard sphere pair-interaction potential V), (r) is defined as with a , radius of the hard core.

{O, rZZa}
Vie(r)=

o, r<2a

Using the definition of the Mayer-function

) = efﬂV,ﬂ(V) 1= 0, orr > 261,
hs

=-1, forr<2a.
it can be verified that
2 cos'l(r/4a) 2a
[air (-7 (5-7))=2[ds [ a6 | drRR*sing
0 0 (r/2)cos@

1 2a 3
=47T_|. dx J. dR R’ =4T”a3|:8—3(1j+%(1j } for r<da
a a

rl4a (r/2)x

10
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To see this, we can use the spherical coordinate system as depicted above

2r 00571(7/44) 2a rlda 2a
2jd¢ j do j dRR*sin@ = —4r j dx j dR R
0 0 (r/2)cos@ 1 r/2x
1 R=2a 3 2
=4r | v lp _a7 s 8—2(1)—1%1 )
r/da R=r/2x 3 a) 8a 2 b

o))

Then the pair-correlation function for hard spheres for low concentrations is (see eqn. (1.56))

1, r>4a

2

a

2,0 (1) = 8,1+ Py (r) = 1+¢{s—3(£j+i(£”, ra<r<da
a 16

0, r<2a

This function is displayed and plotted in the above figure, Fig. 1.10 (a) from the book.

11
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1.13 Number density fluctuations
A measure for the amplitude of the fluctuations of the microscopic density is its standard
deviation

o (7,7 = ([ 2, (F) = (2, ()] (F) = (0 (F))])
where p ()= p(7, -, 7 |7) is the microscopic number density.
To show that

o’ (7,7") = p(F)8(F =7 ") + p(F) p(F ) [g(F, 7 ") ~ 1]
use that the microscopic density is defined as

- N e
()= 6G-7)
First of all, notice that, for identical particles
- N - - - -
<Py ()> =[di [ iy [ 3 8 =F)| PGseeeiF) = N R(F) = p(F)

with p(7) the macroscopic density. Similarly, by definition

(7,7 = [ d [ diy [, 8 =T)8(F 7))
—<p,(F)> Y S =F) =< p,(F) > S(F-F)

+<p,(F)>< p,(F) > 1P+, F)
Using that

[dr---[ diy, SG'=F) S(F ~F) P+, 7) = B(F,F)
for i# j | while
[ iy, 5= 7)O(F = 7) PR+, ) = R(F)S(F = F)
for i=J,and

[ [y < p,(7)> 3" 6G=7) PG 7y) =N < p, (7) > R(F)

and similarly for the other term, and using that the pdf for all position coordinates is
normalized, it is found that

o> (7,7 ) =N(N —=D)B,(F,7 ") + NB(F) 5(F —F)
~N <p,(F)> B(F)~N < p,(7) > BF)+ < p, () >< p, (7)) >

12
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Substitution of the definition (1.52) in the book of the pair-correlation function immediately
leads to

o’ (7,7") = p(F) 5(F =7 ") + p(F) p(F ) [g(F, 7 ") ~ 1]
provided that N is large.

Now define the phase function N(7#,---,7) as
NG, B) = [ dF p(Eooi 7 [P) =] dF p, (7)
14 14

which is the number of particles contained in the volume V. Suppose that the linear dimension
of the volume V' is much larger than the distance over which the pair-correlation function
attains its limiting value of 1.

Integration of the defining equation for the standard deviation gives
[dF[di o .7 = <Idf L2, = {p, N[ [ p,F) = (p, (7 ')>]>
Vv Vv Vv Vv
= < [N-<N >]2>

where N is now understood to be the above defined phase function. Hence by integration of
the above expression for the standard deviation

<(N—<N))2>:<N>+(<];/]>T.V[dfldf'[g(7,7')—l]

Since by assumption V' is large as compared to the range over which the pair-correlation
function tends to unity, and g(#,7'") = g(|17 -7 '|) = g(R) for a homogeneous system, this
leads to

2
(v=(w)))
(V)
where s =g —1 is so-called “total correlation function” and p =< N > /V is the average

density. The total correlation function thus measures the amplitude of number fluctuations in
large volumes.

=1+4;zﬁdeR2h(R)

Note that the relative standard deviation <( N-(N >)2 > /(N >2 tends to zero for large systems.

13
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1.14 This exercise is related to Chapter 4, where equations of motion are discussed.

The pdf P(7,7) for the position coordinate of a non-interacting Brownian particle at time t
satisfies the following equation of motion (EOM),

Qp(f, t)=D,V*P(7,1)
ot

The initial condition is P(#,t = 0) = 6(¥) , which specifies that the particle is located at the
origin at time =0 .

In this exercise we evaluate the collective dynamic structure factor, defined as

S (k,t—1,) :%<p*()—((lo)|’€)/’(y(’)|]€)>

= LS (exa [ () 0)])

ij=1

The time-evolution operator for the particular case of non-interacting spheres under
consideration here, according to the above equation of motion, is equal

o7 =pyv*-
For i+ j , we have

| <exp[ﬂ€ (F=0)- fj(t))]> - <exp[ﬂ€ (= 0)]><exp [ik- 5(;)]) )
since

(exn [ 70]) = - [ exp[ 8 7 ]= 2.0

where the last line defines the function J, (k) , which function, for large volumes, becomes
equal to the delta function, which is zero for k = 0. The structure factor for non-interacting
particles thus reduces to

S.(k.0) = {exp[ik - (7= 0) - £())])

For interacting particles, this will be defined later as the “self-dynamic structure factor”.
For non-interacting particles the collective and self-dynamic structure factors are the same.

Written in terms of the Cartesian coordinates x, y and z, the time-evolution operator reads

k-7 z 2 2 ik x+k, y+k.z
Leik-r :DO a_2+a_2+6_2 e(kx kyy+k. )
ox~ oy° Oz

14
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2 o
It is readily verified that _0_ p/{kw+hrcs)

ox?

(e, y+k.2)

= k2 and similarly for y and z.

Hence
Lexp (ilg . 7) = (—D0k2 )exp(ﬂ; . 17)

Repeating the operation » times leads to

so that

Hence from eqn. (1.67) with X = i, f= e and g= e, we find that
1 v —iki _~Dk*t k-7 — Dokt -1 ~Dok*t
Ss:—jdXe e ™ =0 IdX—:e i
V V

where it is used that the pdf for non-interacting particles is equal to /1.

Here is a summary of the equations and results of this exercise:

%P(?, t)= D, V’P(7,1)
exp (it) exp (il; : ;7) =exp (—Dokzt) exp (ilg . 7)

S, (k1) = <exp [ik - (7(r=0)- ?l(t))]> = exp(~Dykt)

Remember that all this refers to a very dilute suspension of spheres, where inter-colloidal
interactions are neglected.

15
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1.15 For non-interacting particles, the static structure factor is identically equal to 1
for £ 20 .

We will first show this from the defining equation

of the structure factor. Since for i # j
<exp[il€ . (Fl - 17])}> = <exp[i# . ﬂ><exp[il€ . ;7]}> =0

as already shown in exercise 1.14, only the terms with ; — j survive, which immediately
leadsto S(k)=1 forg «0.

The same result is recovered from the middle expression in eqn. (1.72)
S(ky=1+p [dR g(R)e""
Since J-df{ R = (27[)3 5(1?) =0
where 5(1?) is the delta function, it follows that for g(R) =1, again, S(k)=1-
Note that the last equation in eqn.(1.72) is obtained from
[dR g(R) e = Ta’R R’2(R) [<j>d1% eFRR ]
0

where the last integral (between the square brackets) ranges over all orientations of R (that
is, the spherical angular coordinates), and R = B/R is the unit vector along R , and

S T . ! ) kR —ikR in(kR
GdRe"" = [ dp [dOsin0e™ " =27 [ dv ™ =225 — =4z sin (kR)
0 0 -1 ikR kR

16
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Exercises Chapter 2:
BROWNIAN MOTION OF NON-INTERACTING PARTICLES

A dragonfly with a drag force in the oily solvent, taken at Juelich in Germany

2.1 Newton’s equation of motion for a spherical Brownian particle is

dp P, 7

L=y Lijo

dt M

Let us first integrate once to obtain an expression for the momentum p(¢) in terms of
the fluctuating force f(¢) . In the first step, consider the equation of motion without
the random force

the solution of which is a single exponential
7

B(r)=Ade M

where 4 is an integration constant. The method of “variation of constant™ is based on
making this constant a function of time (the “constant” is thus assumed to “vary with time”),
in such a way that the full equation of motion is satisfied. Hence

p__, P A0

a M

17
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so that R
dA(?) _
dt

2y
M

f(@)e
and hence

Aty =A@t =0)+ jdz IR e+ﬁtl

This now immediately leads to

)

ﬁ(t) =p(t=0) e_ﬁt + jdt 'j_i(t') e‘ﬁ(t—t'

Since p(¢r) = M dr(t)/dt , a second integration is necessary to obtain an explicit expression
for the position coordinate 7 (t) . Integration of the above expression for the momentum
coordinate leads to an expression for the position coordinate involving the double integral

j dt "tf dr'f(t") A
0 0

The integration range in the (¢',¢") plane is indicated in Fig.2.7 by the dashed area. The
vertical lines in the figure below indicate the new integration directions.

r}" . ,
A "=t
/
t
e
'/‘
rd
’/
e
—
G » 1’
t

Fig. 2.7 The integration range in the (t’, t”’) -plane

The integration ranges can be read-off the above figure.

18




Solutions of Exercises in An Introduction to Dynamics of Colloids

It follows from this figure that an interchange of the order of integration leads to

m

jdt"} drfye " = jdf [
0 0 0 t

- ﬂj i () {1 - eﬂz“”}
7%

R P
di"f(t"e ™

The final expression for the position coordinates in terms of the fluctuating force is
therefore

)= (r=0)+ P 1) Lar o)

This is the expression that is used in the book to calculate the mean squared displacement.
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2.3 A spherical Brownian particle with a radius of 100 #m and a mass density of 1.8 g/m/
is immersed in water, with a viscosity of 0.001 Ns/m’,

Use that the friction coefficient of a macroscopically large sphere is equal to ¥ = 671,a |

to calculate the momentum relaxation time constant Af/y and its corresponding diffusive
length scale /,, . Also calculate the time at which the mean squared displacement (MSD) is
equal to the square of the radius of the Brownian sphere.

a~100 nm

@ P, ~18g/ml

7=0.001Ns/m
water

Plug into the numerical values of the given quantities

(l.8—1.0)[g/ml]*(43ﬂa3j 0.8[g/ml]*(4;j*(100nm)2

t = = 18

4 67m,a 67 * (1 *107 [Ns / mz]) "
I, J3Mk,T _ 3Mk,T CL10°
a va 67n,a°

The temperature is taken equal to 300 K, and the value of the Boltzmann constant is
1.38x107 Nm/K .

Also, the specific mass is corrected for that of water, which is 1.0 g/ml.

Since the mean squared displacement is given by

k,T ;
n,a

MSD = <|7(;) (= 0)|2> — 6Dt =

so that the time at which the MSD is equal to the squared radius of the colloid
is equal to

rn,a’

ky T

t =T76ms

This numerical example illustrates the time-scale separation that was mentioned in the main
text of the book.
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2. 4 Brownian motion in an external force field

A constant force field F s applied to a spherical Brownian particle, such as a gravitational
force. The Langevin equation for this case reads

d’rv ar - -
=—y—+F+
- Tt
t
On the diffusive time scale, where 7> M /y, we can G—>
neglect the inertial force, so that
dar 1

@~ LF+7]

The average, stationary velocity resulting from the force field F isequalto <v>=F/y,
thus the Langevin equation can be rewritten as

%[i)—<ﬁ>]=—ﬁ[ﬁ—<ﬁ>]+}

This is precisely the original Langevin equation in the absence of a field, where now the
momentum is taken relative to the drift velocity. Since in this co-moving frame the equi-
partition theorem holds, exactly the same analysis as without a field leads to

lim((p0)-< 5 ) (0= < 5) =15

It follows that also in the present case with a constant force field
(F())=o0
=\ ~2
<f(t)f(t')>=1?7/5(z—t')

In order to find the probability density function (pdf) for the position coordinate, using
Chandrasekhar’s theorem, the above Langevin equation on the diffusive time scale is
integrated once

?(t):lﬁt+ljdt'j7(t')
4 7%

Comparing this with eqn.(2.29) we have the identification with the quantities defined in
section 2.4 on Chandrasekhar’s theorem

N

X (t)=7(t) &)(t):%ﬁt ‘P(t—t')z% H:i%
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while the fluctuating force in eqn.(2.29) is j? (note that our F is the constant external
force, and should not be confused with the fluctuating force in eqn.(2.29) which is also
denoted by a capital F'). The matrix M in eqn. (2.33) is thus equal to
=21
rB

The determinant of this matrix is

and the inverse is

According to Chandrasekhar’s theorem (2.32)
> 1 l/5 = . - -
P(X,t =—“exp(—— X-D(t))e M (1) (X -D(2 ]
)= a2 (F -8 0) 41 (- (X -0(0)

it is thus found that

- 2
Fr—Ft/
P(F,1) = ! — exp |r }/|
(47Dyt) 4Dyt
where
L kT
! yB  bmma

is Einstein’s diffusion coefficient. Note that we used here that F(t=0)= 0 .
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2.5 Brownian motion in shear flow
We will calculate the mean position (;7(1) and the mean squared displacement (F r (t))

for a Brownian particle in a simple shear flow from the Langevin equation. The particle has
an arbitrary initial position 7 .

The local shear flow velocity is equal to

N}
S
—_

=)
~

Il

=

L]

~)

=

Il

<
S O O
S O =
S O O

The Langevin equation reads
dp b _§ ~j 7
— =—y| =T |+
dt 4 ( M 4

Exactly as in exercise 2.4, it is shown that the strength of the fluctuating force is unaffected by
the flow, so that, again (see also the discussion in section 2.7)

This differential equation is solved by the method of “variation of constants”, which was
already discussed in detail in exercise 2.1. Integration with the neglect of the fluctuating force
Gives

F(t) =7 +exp{lt} A

where 4 is an integration constant, and where the exponent of the matrix is defined as (see
eqn.(2.58))

exp{ft}=> —1"¢"

n=0 n'
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From the definition of | it is easily verified that [.f> =, and hence T[” ={
for all 5 > 1 . It thus follows that

exp{Ity=l+T1

Hence o
F(t)=r +[1 +Tt]-4

We now turn the vector 4 into a function of time, such that the full Langevin equation,
including the fluctuating term, is satisfied. Substitution into the Langevin equation gives

(use again that T=[" =0 )

[f+ft]-w=f-?0 +lf(t)
dt 4

The inverse of the matrix [/ +T7] s equalto [[—T7] .1t follows that

dA(t) = . lps =7 =
7:1".;5+;[1—Ft}f(t)

and hence
t
Aty =T+7, t+ljdt'[f —ft’}f(t')
7%
Finally, the position coordinate is found to be equal to
- 16 - 1°¢ .-
F(1)=F, +TF, t+—'|.dt’f(t') +—jdt'(t—z') INNAD)
}/ 0 7/ 0
The average position coordinate is thus equal to
<F>() =T +TeFt

The interpretation of this result is that, on average, the particle is dragged along by the flow
with a velocity equal to the local flow velocity

The mean squared displacement is equal to

<O =7) (F(0) =7 >=(e i) (T ) 1° +i2jdt'jdt"< fanjan>
}/ 0 0
e L [ ey [Fe < Fun Fan > < oy Fany >+
7/ 0 0

+L2jdz'j[dt" (t=t)(t—1t") Do < F(t") f(1") > T
7 0 0
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Using that the fluctuating force is delta-correlated it follows that the mean squared
displacement W, (¢) in the co-moving frame is equal to

WA1) =< (F(t) =7, = Dol ) (F(1) — 7, = T+F 1) >
=2[Dyt + 2ED* + %00():3

where D, =1/yf s the Einstein diffusion coefficient, and

E:%[ﬂuﬁ] U=T-T"=T".T

In matrix notation this reads
AAREA AL VAL NN =

1.,, 1.
—yt —yt 0
3707
W, (t) =W,(t)+ 2Dt %;}t 0 0

c

0 0 O

V= TY T IV LN LNyt

with W,(¢)=21D,¢ the mean squared displacement in the absence of flow.

The effect of flow is measured by the difference AW (¢) = Wc(t) - Wo(t) , which is the
matrix that is written explicitly in the above expression. All components of AW () where
one of the indices refers to the z-direction are zero. This is the vorticity direction, which is
both perpendicular to the flow and gradient direction. Diffusion in the vorticity direction is
thus unaffected, which is intuitively expected. Also the yy-components of 7 (7) is
unaffected by flow.

The probability to move upwards in the gradient direction is equal to that for a displacement
downwards, giving on average a zero net effect. That the xy- and yx-components are affected
by flow can be understood as follows.

As depicted in the figure, if the particle moves downward, to lower values of its position y in
the gradient direction, the flow will induce an additional velocity to the left. When the particle
moves upwards, it attains an equal change in velocity in the opposite direction.

The product of these two displacements is equal, so that there is a non-zero contribution. That
the xx-component of AW(#) is non-zero is easily understood: when the particle happens to
be displaced in the y-direction, the displacement in the x-direction is very much enhanced
since the particle is taken along with the flow, precisely as was already depicted in the figure.
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2.6 In this exercise we consider a Brownian particle when one can occupy only discrete
positions » e { -,-3,-2,-1, 0,1,2,3,---} that are indexed by integers.

Suppose that the probability per unit time for a single step to the left or the right side is equal
toa . Let P (n, t) denote the conditional pdf for the position # of the Brownian particle,
given that at time s = ( the position was equal to 7, .

For simplicity of notation, we shall take #, = 0, and refrain from the explicit notation of the
condition in the argument of the pdf. The equation of motion (EOM) is

aP(n,t))

» =a{P(n+1L1)+P(n-1,1)-2P(n,t)}

The interpretation of the various terms on the right is as follows.

If a particle resides at position #n +1 , the probability that it jumps per unit time to the
neighboring position » is o, multiplied by the probability P(n+1,7) that the particle
is at position 7 +1. The product o P(n+1,¢) is thus the rate of increase of P (n,r)
due to jumps from p+1 to n.

This explains the first term on the right hand side, and similarly the second terms account for
jumps from n —1 to » . The last term of the right hand side accounts for jumps away from
position 7 , to the left or right, giving rise to the factor 2.

To calculate the average displacement <7 > | both sides of the EOM are multiplied by 7 ,
and then a summation over all positions is performed.

The left hand side gives,
a > nP(n,t):i<n >
d dt

n=—0

The first term on the right hand side gives,

0 ©

z nP(n-i—l,t): z (m—l)P(m,t)=<n>—1

n=—0 m=—0

and similarly for the remaining terms. This leads to

%<n>:a{<n>+<n>—2<n>}=0

Since <n>=0 attimes=0 ,time integration gives
<n>=0

To calculate the mean squared displacement, multiply the EOM by n* and sum over all 7 .
The first term on the right hand side of the EOM, as an example, is equal to
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n=—w m=—ow

= i (m* =2m+1)P(m,t)=<n®>-2<n>+1

The following EOM for the mean squared displacement is found

di<n2>=a{(<n2>—2<n>+1)+(<n2>+2<n>+1)—2<n2>}=2a
t

Integration, using that the mean squared displacement is zero at time zero finally gives
<n’>=2at

The mean squared displacement is again found to be a linear function of time.
Comparing this with eqn. (2.21), the diffusion coefficient p isthus equalto o .

Note that the factor of “2” in the above equation and that in eqn. (2.21) both relate to
diffusion in a single dimension.
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2.7 Translational velocity of a rod
If the orientation # of the rod is not along or perpendicular to the external force F | the
velocity that the rods attains is not co-linear with the external force, since the friction

coefficients 7, and?, for parallel and perpendicular motion are not equal.

For stationary motion, we have

F=T, T, =y iy, (1-a0)
For long and thin rods 2L
7 0
== =2y,
7 In(L/D) L=

Inverting the friction tensor gives the velocity in terms of the force

F=T)F [ = —diit + — (1 — i)

The cosine of the angle ® between the external force and the velocity is
cos{®} = F -V

where ff = F/F and § =7/ are the unit vectors along the force and velocity,
respectively. Hence, from the above expression for the velocity in terms of the force

Ve F =(i—LJ(ﬁ.ﬁ)2 +Lp
Va Ve

Hence

(1
cos{®} = hon 3
(lz —lz}ﬂ-ﬁf .
7 Va Ve

This result is valid also for short rods. In case of very long and thin rods, where
7. =2y,, the above result reduces to

1+ (61 F)>

cos{®} = |:1 +3(ﬁ-ﬁ')2 :| 1/2
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When the force is parallel to the orientation of the rod, 7;«# = 1, or when they are
perpendicular, ;. = (, both equations give and angle equal to zero. That is, for these
two orientations the rod’s velocity is parallel to the external force (see also the right figure
below).

For other orientations of the rod, relative to the external force, the angle is non-zero.

>

Fh : XHV (b)

Fig. 2.5: (a) Rotation and (b) translation of a cylindrically symmetric rod.
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2.8 The diffusive angular time scale
The thermally averaged Langevin equation (2.129) reads,

1 dQ =
— ML ——=-y,Q
12 dt
where ¢) is the rotational velocity. The solution of this differential equation is

1M

Q=0 exp{-t/r} =5 "

Consider a rod that at time zero is aligned along the x-direction and the angular velocity Qoat
time zero is along the z-axis, as shown in the figure below.

Q4%

The direction of the angular velocity remains along the z-direction, and only its magnitude
decreases with time (as can be seen from the above equation), due to friction with the solvent.
The orientation of the rod is therefore always within the xy-plane. Hence we can write

U, =cos(a) i, =sin(a)

with & the angle of the orientation with the y-axis (see the figure). Hence

- n du i
Q=axd_g|p P 5 B, da(t)
dt dt 7V dt dt
where €. is unit vector along the z-axis. Thus
do(t)
=Q exp{-t/t
dr 0 €Xp{ }

Integration thus leads to

a()=7Q,[1-exp{-t/1}] = tQ, t>r
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The angular displacement during relaxation of the angular momentum is thus equal to

? k,TML
AaerOzML 6,kaT= u
12y, VML 2y,

2

where we used that a typical value for €, according to eqn.(2.118) is equal to

Qoz\/<Q2>=6 ks T

MI?

Typical values are A ~10 "% kg, L~10°m and y, ~107 Nms , from which
it is found that

Aa =~ 3x10* radians ~ 0.02°

The angular displacement during relaxation of the angular momentum is thus
much smaller than a degree.
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2.9 For a fixed orientation of the rod along the z-direction, the Langevin equations
(2.86,87), read, on the diffusive time scale where dp/dr can be set to zero

AU

s fy=71.@)+ f,(0

The friction tensor is equal to (see eqn.( 2.91))

T, =y daa+y, [I-ai]

=
!
(2 F

the inverse of which is,
o 1 .. 1 _»~ ..
Ffl =—auu+—1I[1 —uu]
7 ya

so that the above over-damped Langevin equation reads

dr(f) _ 1

- 1 -
o Z/ﬁ(’)+7—”ﬁ|(t)

where it is used that
zh?-flzo [I—z)ﬁ]-flsz
L”n”t-fuzfH [[—ﬁﬁ]‘fHZO

Integration thus gives

F(t) = F(0)+J‘dt'{ii(ﬂ)+i]7”(t')}
0 an Y
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For the x-component it is thus found that
1 t
x(0)=x(0)=—[dt' 1., (")
V1%

with f,,(¢") the x-component of the perpendicular fluctuating force.

Hence, from eqns. (2.107, 112)

< (x(t) - x(0))* >= yiz j dt' j " < f. (") f., (") >=M5T’ =2D¢
Lo 0

1

Note that we used in eqn. (2.107), that we only consider here the x-component of the force,
giving rise to the factor 2 instead of 4 in the fluctuation strength. The two other mean squared
displacements follow similarly.
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Exercises Chapter 3: LIGHT SCATTERING
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3.3 In the evaluation of the scattered intensity, the following integral is encountered

e exp(ilg ~(F—F"))
1(k):jde

In order to perform the spherical integration, we rewrite this as

T 2 1 A S (7 n
1(k) = ! dick mg&dkexp(,kk.(r—r ))

where k =kk with & the unit vector along k - The last integral is with respect to the
orientation of the wave vector, that is, the two spherical angles. Since the integral is
independent of the direction of the wave vector, the angular integral can be written as

kexp(ikk-(7-7")) = qu;f d6 sin{0} exp(ikcos {0} 7 7))

1
= 27II dx exp(ikx|? - F"|)
-1

exp(ik|;7 - F"|) —exp (—ik|i” - F"|)
ik|F = 7"|
sin{ k|7 —7"[}
Pt U

k|7 =7

Hence

K sin{k[F —7"[}
I —(ky+ia)' k[ —F"

I(k)= 47{]0 dk

Since the integrand is an even function of &, we can replace the integral from zero to infinity
by half of the integral from minus infinity to plus infinity. Re-expressing the sinus as a sum
of exponential, we thus arrive at

k exp{iklF —F"} exp{-ik|[F-7"}
k* —(ky +ia)? |7 =7 [F =7

L
[(k):7_J;dk

Consider the first integral, which can be evaluated by means of the residue theorem by closing
in the upper part of complex half plane, as depicted in the left of figure 3.3.

There is just a single first order pole at & =k, +ic.
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R—oo

Fig. 3.3 The integration contours for the evaluation of the k-integral in eqn. (3.36).

According to the residue theorem we thus arrive (for &« — 0 ) at

ET K’ exp{ik|?—?"|}:£2m_ k, +ia expli(k,+ia)[F —7"|}
ik —(k+ia)  k[F-F i 2k, +ic) |7 =7

3 exp{zk|r r"|}

= W

The second integral is evaluated similarly, and turns out to be equal to the first
integral. Hence

=2 P
Fr

\:

Now use that (with R=[F —7"| )

v explik [F =7"|) _ #-7" d exp{ik,R}
F-7 ) [F-F"dR R

— —n

= *" [zk |r—r |—l]exp{zk |r—r"|}

F—r

A second differentiation gives

Vv(exp{ik |7—F"|j: 1 I:iko|7—7"|—1:|exp{iko|F_F"|}

=T ) T
G4 o)

Performing the differentiation with respect to R and adding the various contributions leads to
eqn. (3.37).
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3.4 The scattered electric field strength is calculated for a fixed configuration of Brownian
particles (see Fig.3.1), which is a valid procedure when the phase change of the scattered light
due to Brownian motion is small during the time that light needs to propagate through the
cuvette. The time required for light to travel over a distance of the typical size of 1 cm of the
cuvette, with water as the solvent (for which the refractive index is /.3), is equal to

t =1[em]/(300.000/1.3) [km / s] ~ 0.04[ns]
A typical diffusion coefficient for a colloid is D ~ 107* [m / s*].
The displacement of a single colloidal particle during 0.04 [ns] is therefore

[ =,/6Dt~0.015nm

A appropriate upper limit for the relative displacement of two colloids is therefore
21=0.03 nm. A typical value for the scattering vectoris 4z (n=1.3)/4, , where
Ay =600nm is the wavelength of the light in vacuum.

The change in phase shift is therefore

Ag ~0.03[nm]47x x1.3/600[nm] ~ 8 x10™* [rad] ~ 0.05°

This phase shift is very small, and can be therefore neglected. This validates the calculation of
the phases as if the colloidal-particle configuration does not change during the time needed
for light to propagate through the system.

Fig. 3.1: A schematic representation of the scattering of light by an assembly of point-like
particles. Each of the Brownian particles can comprise many of the point-like scatterers.
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3.6 Expressing the static structure factor in terms of the total pair-correlation function,
the integral

P | di g(7) exp ik+7}

with V; the scattering volume, is replaced by the integral
p[ di[g(7) ~ 1explike7}
v,
for non-zero wave vectors. It is thus assumed that

ﬁjdfexp{ﬂ}'-f} <1

Vs

We calculate the integral for two scattering geometries: (i) the scattering volume is a
rectangular box, where the incident intensity within the box is constant, and is zero outside
the box, and (ii) the more realistic case, where the incident intensity is Gaussian.

(1) The integral for the rectangular box is equal to

1/2 . 3
_ 50 sin{kl/2}
D T

172 3 .
ﬁ{ [ dvexp {ikx}} _ pExpiikn}
—1/2 lk
where / is the linear dimension of the box and & ~2*10”m ™" is a typical value of the wave
vector. Substitution of the typical values /=0.5mm and p~10" m~ shows that this
integral is quite large: ~ 10* . The above claimed smallness of the integral is thus completely
false for the rectangular scattering volume.

(ii) In this case, the incident intensity reads /(r) = I, exp{—(r/1)’} , where r is the radial
distance from the center of the scattering volume, and 7, measures the overall (constant)
intensity of the incident light. The integral is now equal to (see section 1.3.4 in the book)

272
p| dr 1) oxpifiei} = (27) Bl expd— 2
1, 2
We now find that the integral is extremely small.

The conclusion is that an unrealistically sharp edge of the scattering volume gives rise to very
large Fourier components: the actual scattering pattern now contains very intensive scattering
rings. For the realistic case of smooth edges, the above calculation justifies the neglect of the
integral.
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3.7 Small size polydispersity and static light scattering

(a) The polydisperse form factor is defined as the intensity normalized to unity at zero
wavevector,

P (k)= R" (k)/ R (k = 0)
where

R™ (k)= TdaE)(a)R(k,a)

is the measured “polydisperse” Rayleigh ratio for a dilute suspension. Here a is the colloidal
radius and £, is the size-distribution function.

For optically homogeneous particles,

R(k,a) = K *a® P(k) = K *a° {3 kacos(ka)—sin(ka)}

(ka)

where

K*="0 5|2~/

is the optical contrast.

lspe(kle

Fig. 3.8: The instantaneous speckle pattern of the scattered light.
The circular hole in the screen is the detector pinhole.
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In order to expand around the average radius @ =4, we use,

df(a)( C_l) 1 d’ f(a)( a_)z

a* P(k.a)= f(a)= /(@) + Ay
_¢ dP(k,a)

d(ap(k,
—(a ( a)):6a_5P(k,a_)+a
da da

d* (a®P(k, _ 2 —
(@ 5 a)):30 p(ka)+ 127 dP(k,a)  _¢d P(kz,a)
da da da

where P(k,a) is the form factor of a sphere with the average radius @

0

J.daP(a)a

o

The standard deviation in size is defined as

©

J.aP(a) a- a

0
A Taylor expansion also gives
2

a®~a’+6a (a—a)+15a‘(a—a)

Using the above expansions we have

T da P/(a)a’P(k,a)
Ppo/ (k) — 0

0 El

jdal%(a) a’

0 a 2 a )
[ da Py (a) 5613(1c,a)+1(a—a)2 30a* P(k,a)+12a° dpk,a) | zed P(k;“)
0 2 d(j da

~

TdaPO(a)[a" +15a"* (a—g)z}

Further expansion in terms of the small quantity o/a leads to
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— 2
1 {c‘z(’P(k,cT)+%02 [3054 P(ka)+12g° L8 | 7o d H
a

— 2
L) 152
da da a
1 —6 — 1 2 —4 —
=—1a P(k,a)+50' 30a P(k,a)+1
a

— 2 —
ygsdPk.a) e d P(kz,a)
2
=P(k,a)+%“—{1za

PPl (k) ~ —

da
=2
a

O'2 — —
da }—155—2a6p(k,a)}
dP(k,a) | d*P(k, a)}

da da*
o] 1 d&(a°Pk.a)) _
zP(k,a)+a—2{2a4T—15P(k,a)

This polydisperse form factor is plotted in Fig.3.11 as a function of ka, for various relative
standard deviations o /a . As a result of polydispersity, the minima in the scattering curves
become less pronounced.

nP" (k)
0 —

-10
0

Fig. 3.11: The logarithm of the polydisperse form factor versus kqa,

P (k)= R™ (k)/ R” (k =0)

for various values of the relative standard deviation of o /a , as indicated
by the numbers attached to the different curves
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(b) For small wavevectors, i.e. ka <1 , the polydisperse radius a”” is defined as

Ppal(k) ~ exp(_%kz (apol)zj ~ 1—%](2 (apol)2

which is the radius that is experimentally obtained, assuming monodisperse optically
homogeneous Brownian particles. In the following we will show that to leading order in the

polydispersity
2 2
a” =a 1+13(§j za{uﬁ(g”
a 2\a

By using the result for pret of (a), and

P(k,a)=1 —lkzaz
it is found that 3

PPal(k) ~ 1_%]{2 (apol)

- lea L g —lkz(Z‘_’))mz[_l"z(Z)
5 2a’ 5 5
=1—%k252 %f—{—%kz(24a_2)—lk2(2_2)
a
:1—%/{252 %‘_’—{ ?kzaz}
a
1 ,, 13, ,0°
zl—gkzaz——kzazg

Thus, for sufficiently small wave vectors, the form factor is equal to

2

P (k) zl—é(kﬁz)[l+l3f—2:| D ka<l
a
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3.8 Small polydispersity and dynamic light scattering: second cumulant analysis

The measured (or “polydisperse”) EACF is equal to (see eqn.(3.105))

TdaPO(a) B*(k.a)exp(-Dy(a)k’t)
81 (kyt) =2

]:da P,(a) B’ (k,a)

where B(k,a) is the scattering amplitude and F,(a) is the size probability density function.
For narrow size-distribution functions, the a-dependent functions (other than P, (a)) can be
expanded around the average value g7 of a . First rewrite the above expression as

Tdapo(a)Bz(k, a) exp([DOW' —Do(a)]kzt)
1" (k.t) =exp(-D,""k’t) 2

jdapo(a) B2(k,a)
0
where the polydisperse diffusion coefficient will be defined later. For radii close to the
average value, the polydisperse diffusion coefficient is close to D,(a). Hence we can
expand
ol 2.\ ~ ol 2 1 ol 2 2 2

exp([DOP - Dy(a) ]k t) ~1-[ D/ - D,(a) ]k t+E[DOP —Dy(@)] (k) +--

so that
gkt =

- Tda P(a)B’ (k,a)[l — (D" = Dy(@)) Kt + %(Do"”’ ~Dy(@) (K1) + }
exp (—DO"” k t) 0

Tda P,(a) B*(k,a)

- Tdal%(a)Bz(k,a){H;(DOP"’ ~Dy(@) (K1) +}
= exp(—DOP” k t) ¢

Tda P,(a) B’ (k,a)

provided that the polydisperse diffusion coefficient is defined as

Tda P,(a) B*(k,a)D,(a)
D (k) =4—
[ da P,(a) B’ (i, a)
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The standard deviation in the diffusion coefficient is now defined as

TdaPO(a)Bz(k, a)(Dy(a)- D" (k))2

2 _

O-D - 0
[ daP,(a)B’ (k,a)

so that the above expression for the correlation function can be written as
. 1 1
82 (k,t) = exp (—Dopa'kzt) [1 + Ek“tzo'Dz} =exp [—DO‘””lkzt + 5k4t20'D2)

In order to express the polydisperse diffusion coefficient in terms of the size-standard

deviation, we employ the Taylor expansion

B (k,a)Dy(a)
d 1 2 d?
o R2(] = — N\ Tp2p = — L=\ 4 mpag — —
~ B*(k,a)D,(a)+(a—a) = [ B*(k,@)D, (@) |+ > (a-a) — [ B (k,@)D,(@) ]
The term ~ (a -a ) vanishes by definition upon integration. A similar expansion must be
made for the denominator in the expression for p?”'. Hence, to leading order in polydispersity

B2 (k,@)D,(a) + 1o dzz (B*(k.@)D,(a))
2 la

Dy (k) = " 7
B*(k,a)| 1+ ———o0" — B*(k,a)
2B*(k,a) da
=)

_ Al a’ d? 0 _ _.d 5, . _
zDO(a)+(E) Wk,a){daz (B (k,a)DO(a))—DO(a)ﬁB (k,a)

2
s

To leading order in the standard deviation o , only the term ~ (DO (a)-D, (c_l))
resulting after substitution of the above result into the defining expression for o,
contributes. Since D,(a) ~1/a , we have

dDy(a) 3 Dy(a)
da a

from which it thus follows that
O-D
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Using that for small wave vectors ka <1/2 , we have B(k,a) ~a’ and aD,(a)
is a constant, independent of the average radius, the above expression for DF*'

leads to
D (k) zDo(a){%) %{j_ [‘6 Lian, (a)]j : aﬁ}

Performing the differentiations finally gives

D" (k) = Do(a){l - 5(%) }
a

Putting things together, we thus arrive at an expression for the measured, polydisperse
correlation function in terms of the standard deviation in the radius

87 (k — 0,1) = exp{ DO(E){I —s(gj :|k2t+lD§(5) (gj (kzt)z}
a 2 a

This result enables the determination of the average radius and its standard deviation from a
so-called second-cumulant fit, where a term ~ k** in the exponent is included in the fit to
experimental data.

pul

001 V
010--
0.9 0 kl;l _1|0

o

Fig. 3.12: The polydisperse diffusion coefficient, relative to the monodisperse diffusion
coefficient D (a) , versus ka, for various values of the relative standard deviation o/a ,
as indicated by the numbers attached to the different curves. The radius a, isrelatedto a ,
as discussed in section 3.9.1 (see especially eqn.(3.102)).
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3.11 Form factor of a thick rod

For static light scattering by thin rods, where kD < 0.2 the integral ranging over a cylinder
with its geometrical center at the origin

1 P
E—Idfexp(ik -r)
V %
was calculated in subsection 3.10.2. Now suppose that kD is not small. Here we evaluate
the form factor for that case where the rod has an arbitrary orientation of the rod.

The wave vector is now decomposed in its component k_ = k-4 parallel to the rod, and

= ~ its component perpendicular to the rod’s long axis. We can now write
ky = k1= (K -t/ k)

k-7F=kyJl—(k-0) +kz(k-0)

where ]2 =k / k is the unit vector along ]E . Note that the form factor only depends on the
direction of the wave vector through its angle @ with the z-axis (see the figure below).

The integral thus reads, in terms of cylindrical coordinates

2r L/2 D/2

= % j dé j dz j dppexp{i[kz(lé -0) + kpsin{gi1— (k - 4) }}
0 -L/2 0

The z-integral is relatively simple
(1.
L2 sin {2 Lk(k- u)} !
[ a exp{ikz(lé : 12)} —L—— =L}, (—Lk(ié : ﬁ))
L S k(- 2
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where the last identity defines the spherical Bessel function of zeroth order.

For n=0 we have
Jy(x) = liquﬁcos(xsinqé) =LTd¢ exp {ix sin ¢}
0 Ty 27 5,

so that
D/2 D/2

jdppzfd¢exp{ikpsin{¢}«/l—(lé-ﬁ)2}=27rj dppJ, (kp«/l—(lé-ﬁ)z)

Now using that
d
E(x‘ll (x)) =xJ,(x)

it follows that

D/2 %ka
[ dppd, kot Gy |- ———s [ dxws)
g (k«/l —(lé-ﬁ)z) g
%ka
. | dx%(le(x))

AEE

D/2 (1 - Azj
=== J|=Dk\1-(k-0)
kJ1-(k-a) \2 ‘

Since the volume of the cylinder is equal to

it is finally found that
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3.12 Form factor of a thin rod
(a) The square root of the form factor of a cylindrical rod as obtained in exercise 3.11 is

2z L/2 D/2

I= % [dg [ = [ dppexp {i[kz(lé.a) +kpsin{gh/l - (k - o)’ }}

0 -L/2 0

In case of a thin rod, for which kD < 0.2 this is easily seen to reduce to
R A

ox D B2 sin {Lk(k . u)}

IE—? _[ dzexp{ikz(l€~12)}:

1 =) [1Lk(l€~m)
L 5 Lk(E i) 2

where the last identity defines the Bessel function Jj, , and it is used that V = %DzL .

Since the orientationally averaged form factor is independent of the direction of the wave
vector, it may be chosen along the z-direction. Hence

(1 U o1 =
<]02 (ELk u)> =E<j.>du]02 (ELk ~uj
1 2z V4 1
- { d¢ ! d®sin{O®} j,° (E Lk cos {@}j
1, (1
=E:l.ldXJ0 (ELI{X)

kL/2

_2 j dz 'Z(Z)_ikazdz sinz )’
AR T S

. . . 1 .
where the new integration variables x = cos{®} and z = Eka have been introduced.
Contrary to the form factor of a sphere (see Fig.3.7), there is no scattering angle where total

negative interference occurs. This is due to the fact that we have a system of “polydisperse
scatterers”, each species corresponding to a different orientation of the rods.
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(b) For kL <1 | that is, small scattering angles, the integrand in the integral in exercise (a)
can be expanded as

so that

2 M2 (sinz) 2 M2 1,Y 1
= j dz(—) ~= dz(l——zzj ~1——(kL)* + O((kL)")
kL 3 z kL 3 6 36

Re-exponentiation thus leads to the scattered intensity being approximately equal to

I ~exp {—%Lz kz}

This is the equivalent of the Guinier approximation as discussed in detail in section 3.8.1 for

spherical colloids. The slope of the Guinier plot for thin rods is thus equal to —% .
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3.13 Heterodyne dynamic light scattering

When the scattered light is mixed with incident light directed towards the detector, the
detected electric field strength is

E"(1)=E" +E(?)
where E, (¢) is the field scattered by the particles, and E™ is so-called “local oscillator”

field strength from the incident field that is mixed with the scattered light. The instantaneous
detected intensity is now

i(t) ~ (E" + Eg(t))*(E"" + E§' (1))
=1" + E()E"" + EE, (1) + E,()E, ()
The IACF for heterodyne light scattering is therefore equal to
(i(1)i(0)) =< (1’“ +EG(1)E™" + E"E{ () + Es(t)E;(t))
* (11“‘ +E(0)E™" + E"EJ (0) + ES(O)ES*(O)) >
= (1) + 1 (EQO)) B + 1B (E{ (0)) + 1" (ES(0)E{ (0))
+(Es(DE(0)(E™ )2 + 1" (Ey(0ES (0) + 1" (E{ (1)E(0))

1" 1+ (ES(0ES (0ES(0)ES (0)

where [P - lE’”“ *is the intensity of the light that is mixed in with the scattered light. Since
the average of the oscillating field strength is zero

(Es()=0=(ES(0)

and the average scattered intensity is equal to J ~ < E.(0) ES*(O)> ,while (see page 133-134 in
the book)

(E(DE(0))=0
and

(EsE; (OE(O)E, (0) = I* +[(E(OE )

with [ the scattered intensity, this expression reduces to

g (k) =(1) +21 I+ I + 21" IRe (g, (k.0))+ I*

- 2
2, (k1)

Note that for jPc - 50 7 this heterodyne IACF is approximately equal to the homodyne
EACF.
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3.14 For a very dilute system of Brownian spheres, where interactions between the
colloids can be neglected, the pdf in the presence of a constant external field F is
equal to (see exercise 2.4)

2
F /4DOIJ

Pl

P(F'.t)=

1
R S
(4zDy)"” p{

where 7' is the displacement during the time ¢. In case [ > | , according to the previous
exercise, the heterodyne correlation function becomes equal to

1 7 oc 2 'oc ~ 7
gk, n=(1") +2r 1[1+Re(g5(k,t))]
The normalized electric field auto correlation function (EACF) is equal to

8, (k,0) = deP(F',t)exp(iE-F')

Introducing the new integration variable R =7'—(F/y)¢ , we arrive at

e (k,0)= exp (ilz . Vt) j dR exp (—R2 /4D0t) exp (ilg . ﬁ)

1
(4zDyt)"

where v = F'/y is the stationary velocity that the Brownian spheres attain under the action
of the external force. According to the appendix in chapter 1, page 49, on integration of
Gaussian functions, this leads to

g, (k,1) = exp(ﬂ; . Vt) exp(—DOkzt)

the real part of which is equal to
fe (k,t) = cos (l; : Vt) exp (—Dokzt)

The measured heterodyne IACF is thus equal to

gr = (110C )2 + 2[1””1{ 1+ cos(lg . \71) CXP(_Dokzt) }

This correlation function is a damped exponential as depicted in the figure.
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Fig.: A sketch of the heterodyne IACF

Setting jic in the equation for the IACF in the previous exercise equal to zero, it is
immediately found that the homodyne correlation function is not affected by the velocity
of the Brownian particles (since ‘exp (ik . vt) =1).

Heterodyne light scattering is required in order to be able to measure particle velocities.
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Exercises Chapter 4: FUNDAMENTAL EQUATIONS OF MOTION

Smoluchowski Equation: Free Diffusion

)
i
&

4.2 The Brownian oscillator

Two identical Brownian spheres are connected to each other with a spring, corresponding to a
potential energy

1 - -
CI):EC|r1—r2|2

where 7 and 7 are the position coordinates of the two spheres, and C is the spring constant.

Define the distance between the spheres R =7 —7, and the center-of-mass position
F=(F+7)/2 - Now, for example,

where (V_R) is the matrix with components i and j equal to the i-th component of V, and

"1 .. .. . L
the j-th component of p , and similarly for(Vrl? ) A similar calculation for the derivative
with respect to 7, thus gives

VVIZVR_*—lvr ’ r2 -

V.=V, 41V,
2
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The Smoluchowski equation in (4.40, 41) for two particles (with the neglect of hydrodynamic
interactions) thus reads in terms of the new coordinates

“ 2 sl ey ()i L)

Now substitute the separation variables P(R,7,7)= P(R,t)P(¥,f) to obtain

o . _ oP(F.t) _ _  0P(R,1)
5P<R,r,t):P(R,I)T+P(r,t)T

=D, {P(k,z) vi P(F,t)} + P(f,t)[z BCV -(RP(R, 1))+ 2v;P(R,z)]}

Dividing both sides with P(R,#)P(7,t) and equalizing the independent terms depending only
on 7and R gives

w =D, { [2 BCV,, - ( RP(R, t)) + 2v§P(1$,t)] }

aP(r’t) :lDOVVZP(Fat)

ot 2
The center-of-mass thus diffuses as a free single Brownian sphere with a diffusion coefficient
equal to half of that of a single sphere. The interesting part of this result is the equation of
motion for P(R,¢) . Comparing this equation of motion with eqn. (4.59) we have the
identification

A=-2D,pCI
B=-2D,1

and X =R . The corresponding equations of motion in (4.58, 59) are

d

< ji=-2D,C i,

7 W B

d

M =4D,1-4D,pC i

where, as inferred at the top of page189,

m(t) =< R > ()
M(t)=<(R-m)(R-m)> (1)

The initial conditions are m(r=0)=R, , M(t=0)=0
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The solution for 7(¢) is simply equal to
in(t) = <R>(;) =R, e ¢

The solution of the equation of motion for A7 is obtained by “the method of variation of
constant” (see also exercise 2.1). First solve the homogeneous equation,

d - .
—M=-4D BCM
0 Wb

The solution of which reads

M= F e Pbct

where & is an integration constant. We now make this constant a function of time (hence the

name “variation of constant”), such that the full inhomogeneous equation is satisfied.
Substitution into the equation of motion gives

d e dR@)

—4D,BCtK(t)e P!
” o WBC K (1)

=4D,[ -4D,C M =4D, [ —4D,fCK(t)e "’
so that
dK (1)

— 4D, [errpct
dt 0

and hence

K(t)=K(0)+4D, ijdt'e“”)ﬂﬁc" =K(0)+ %i[e“‘%ﬂa - 1]
0

We thus finally find that
7 _ I - —4D)BC1t
M(t) = ﬂ_CI |:1 —e :|

where we used the initial condition, which implies that () = () . The mean squared
displacement is thus found to be equal to

B BN(D_ D 1 -4D,pCt 5 5 —2D,pCt
<(R—R0)(R—RO)>(1)_%][1—e J+R(O0)R(0)[1-e ]
Note that there is an erroneous factor of 2 in the exponent in the given solution in the book.
Since the Hamiltonian of this Brownian spring is quadratic in R, since & =(C R*)/2, it is

expected that (see exercise 2.2) < RR, > (t —> o) = 50, /(BC) ,which is in accordance with

the above result (rewritten in terms of <ﬁﬁ>).
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4.3 Diffusion in an inhomogeneous solvent

For very dilute homogeneous suspensions, the diffusion coefficient is equal to

1 kT

By 6ma

0

Now consider an inhomogeneous solvent, so that the diffusion coefficient is different at each
position. Since there is now a direction that is associated with the inhomogeneities, the
diffusion coefficient is not a scalar but rather a tensorial quantity. The flux is now equal to
- Do(f) -V, P(¥#,f) »S0 that the Smoluchowski equation is

Qp(f 0 =V,-[D,(")-V,PFD]

ot 7 rLe T
The average velocity is

M:Idfng(F,t)zjd?FV, (By()-P.0)

The integral can be rewritten, using Gauss’s integral theorem, with the neglect of surface
contributions

Int = [dF 7V, [ Dy(F)-V,P(7,0) | = =[ dF [ D,(7)-V,P(F,0)|-(V, F)
=—[d@r[ Dy(¥)-V,P(F,0)]-(1) = -[ dF [ D,(#)-V,P(F.0)]
Applying Gauss’s integral theorem once more gives
Int =[d P(F,0)[V, - D, (7)]|=(V, D, (7))
Hence, the velocity induced by the inhomogeneous solvent is equal to
L) =(v, -5 @)
As an example, consider a solvent that consists of a mixture of water and ethanol, where the

composition changes in the x-direction, say. This leads to a spatial change of the viscosity. In
this case

vfMGFéi{ %szé ) g p, (TR

“de\6mn,(x)a ) 6mn,(x)a dx x d

where €, is the unit vector along the x-direction. To leading order in spatial gradients, in the
evaluation of the average, the pdf can simply be taken as a constant, so that the velocity is
equal to

dInn,(x)

V(x)=—é_D,(x) e

Note that the particle moves from regions of high viscosity to regions of low viscosity.
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(a) For spherical particles, the hydrodynamic torques are zero in the absence of an external
field. From eqn.(4.128)

=RT =RR

Fy _(7” 7] iy

K Vi
F"X; 7—;7"1‘ }7TR \-;N
6 - }7RT 77RR ﬁl
and hence 0 QN
F' v, Q, 0 v, Q,
__j;TT _}7TR . E __}7RT j;RR
E! Vy Q,) "’ 0 Vy Q,

T _(77RR )’1 R

!
3
t
=
Il
|
St
3
+
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(b) As a sphere translates through a fluid, they transfer energy to the fluid. Since energy E is
“distance times force”, we have for the energy per unit time dissipated to the solvent

dis tan ce

ij—f = (frictional force) *( ) = (frictional force)* (velocity)

time

where the frictional force is the force that all the particles exert onto the solvent, which is
minus ﬁ]ﬁ . Hence

N
d—E=—ZF;”~17i>0
dt p

Since the velocity is equal to
N - —
V== szf F}
Jj=1

it follows that

Introducing the abbreviations

and the 3Nx3N dimensional diffusion tensor

D11 . DIN
i T z
DNI . DNN
it is thus found that
X-D-¥>0

for any ¥ #0 . Atensor with this property is referred to as “positive definite”.

58




Solutions of Exercises in An Introduction to Dynamics of Colloids

4.5 The direct torque on a rod

Consider a very thin and long rod, the core of which we approximate as a line. Let ; be the
contour variable, —L/2</<L/2. The position of a line element on the core is given by /7 ,
where 7 is the orientation of the rod.

Let f(? =1I1) be the force on line elements (either due to an external field and/or interactions
with other rods). When the orientation of the rod is changed by a small amount §;; , the
accompanied change in potential energy is (see the figure)

L/2
S50 = j di f(lay-(154)
-L/2
Using that @ x (b x¢)=(a-¢)b—(a-b)é, it LS, and a-(bx&)=¢-(axb), it is easily
verified that,

L/2 L/2 Nt
oD =~ [ dil f(i)-(x(saxi))=—(saxa)- [ dli(faa)xa) ”
-L/2 -L/2
=(stxi)-7 =0 (ix7) ol =1a'-1q =154 !

where 7 is the torque, which is equal to
~ L/2 -
‘fsjdf?xf(?)zz}x j di [lix F(1#)]
Vs

-L/2

The first equation defines the torque (with 7, the volume occupied by the co;e), while in the
second equation its approximation for the very long and thin rod is given.

On the other hand we have 6® =64 -V, @ , where V, is the gradient operator with respect to
the Cartesian coordinates of 7 . Comparing to the above result we thus have

SO =50-V,®=50-(4xT)

Since du is an arbitrary vector, but always lies in the plane perpendicular to # , the
conclusion is that the components of V,® and § x7 in that plane are equal.

The vectors are thus equal when they do not have a component along 7. For  x 7 this is
immediately clear, since it is perpendicular to ;. That v @ is also perpendicular to 4
follows from ;;.v. @ = J®/d|4| =0 »since i is constrained to have a fixed length of unity.
Hence '

]

VO=ux?

u

Taking the outer product of both sides, noting that 7 is perpendicular to §; , and using the
above relation for an outer product of three vectors, leads to

Ff=—ixV,®=—-RD

with R the rotational operator. This is the rotational analogue of the translational result
F =—vd for the force.
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4.6 To evaluate V2 77 the following steps can be made

The components of the rotational operator are, by definition

u,05 —u;0,
R=axV, =| u0, - u,0,
u,0, —u,0,

where the partials denote differentiation, 0 ;= (V,; ),— , that is, aj is the differentiation with
respect to the j” component of ;. Since

n=1 n=1
and u,0, — 1,0, 0
Ru, =| u,0,-u,0, |u, =| u,
0,0, —,0, —Uu,

which follows from the above component-wise representation of the rotation
operator, we have

3
Ra, =Y R,(R,4)=R-0+R, i, ~ R -,
n=1
From the same component-wise representation, it also follows that

A

R, 'LA’3 = (ﬁ3al —ﬁ183)-ﬁ3 = _ﬁl

R, "’22 = (ﬁ162 _12281)'122 = 121
so that

A
A

2 A A oA
R4 = —u, —u, = 20,

The other components are calculated similarly, leading to  R2j; = —25; .
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For an arbitrary vector 5 the ;” component of - R# is

a-Ri

[a-(axvﬁ)]ﬁﬁian (axV,) 4,
n=1

For the different values of i, this is, according to the component-wise notation of the rotation
operator
i=L a-0+a,- (i) +a, -(—122) =a, (i) —a, (122)

i=2 a-(-iy)+a,-0+a,-(d)=a,-(@)—a, (i)

3 a-(a,)+a, - (—i)+a,-0=a,-(4,)—a, - ()
so that

a, i, —a, -1,
a-Ri=|a,-6,—a -0, |=daxi

ay Uy —a, -y

This concludes the proof of the three identities

V7 =2]

R =-24

a-Ru=axu

These and other identities are necessary for calculations of ensemble averages

61




Solutions of Exercises in An Introduction to Dynamics of Colloids

4.7 Small angle depolarized time resolved static light scattering by rods

In this exercise we consider a dilute suspension of a rigid, rod like Brownian particles which
are strongly aligned in the z-direction by means of an external field. The external field is
turned off at time 7 =0 . After a long time the rods attain an isotropic distribution. We are
considering here the kinetics of relaxation to the isotropic state after turning off the external
field. Experimentally, the rotational relaxation kinetics can be measured by means of
depolarized light scattering. The polarization direction 7, of the incident light is chosen in the
z-direction, which is along the direction of alignment of the rods at time zero. The polarization
direction 5, of the detected light is chosen in the x-direction.

We consider small angle light scattering such that 7 <1, where k isthe wave vector and 7,
is the length of the rods. The ensemble averaged scattered intensity is given by eqn (3.131) for
the anisotropic structure factor

1 N .
R~ S@9 (| :_2 ]0(
) N

i.j=1 x

For kL <1 ,the Bessel functions are essentially equal to unity; while for non-interacting
rods only the term where ;= j survive. Hence

R~ (a2 @)

The scattered intensity is thus a strong function of the orientations. Since these change with
time, the scattered intensity R is time dependent, which characterizes the relaxation of
orientational order.

The time dependence of this depolarized small angle scattered intensity is calculated form the
Smoluchowski equation

%p(f,a,t):ﬁ;p(:a,t),

()= DV () + DFRE () + ADV, .[ﬁﬁ_%f}.vr(...)

Since the quantity @’ %7 is independent of the position coordinates of the rods, according to
Gauss’s integral theorem, only the rotational contribution D,R* in the Smoluchowski
operator [{ contributes. Multiplying both sides
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of the Smoluchowski equation by 3?72, and integrating, we thus arrive at the following
expression for the time dependence of the scattered intensity

diR DngAﬁfﬁfﬂ%P(ut) DnguP(ut)&R @2 4?)

where the integral ranges over all orientations of # , and we replaced the indices z by 3 and x
by / (and later we will replace y by 2). In the last line we used Stokes’s theorem in the form

i 1 (@)R*g (@) = pdS (@R £ (@)

Using the same steps as in exercise 4.6, we find with some effort that

A

R () = {(fé +ﬁ32)a]2 +(1212 +ﬁ32)6§ +(l712 +ﬁ§)a§
= 2[i,,0,0, + 1,11,0,0; + 1,1,0,0, |
~2[0, + 1,0, +,0,] }(-+)

The details of the derivation of this result are given at the end of this exercise. Here, 0, is the
gradient operator with respect to the j” component of # . It is thus found that

Saar) = p,[-20(aa) +2(1-(i2)]

In order to explicitly solve this equation, we need an expression for <#; > . This can be
obtained similarly as the above expression, by multiplying both sides of the Smoluchowski
equation by #; , and integrate

( 2)=D,§di i %P (a,1) = D, i P (4, 1) R*i;
Again using the above expression for 9% | it is found that

lE)=n[2-6(@)]

This equation can be integrated by means of “variation of constants” (see exercise 2.1; details
are also given at the end of exercise)

(iz)=3(1-e")

Substitution into the equation of motion for #; 4, , which can be integrated by “variation of
constants”, to give (details are again given later in this exercise)

R~ <122122> = L+Le*6Drf _ie—20D,,t
5 01 35
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This equation describes the time dependence of the depolarized, small angle scattered
intensity during orientational relaxation.

Let us now discuss the mathematical details (i) for the derivation of the explicit result for the

squared rotational operator, and (ii) on “variation of constants” for the integration of the

equations of motion for <4; > and <24’ > .

The rotational operator is, by definition, equal to,

u,0, — u;0,
R=| u,0, - 4,0,

ﬁlaz - ’2261
and hence i 5
R =DRN, =(4,0,-,0,)(,0, - i1,0,)
n=1 n n A A
+(u381 —u183)(u361 —u163)
(64,0, — 1,0, ) (80, — 1,0,
Now

(11,05 — 1150, ) (1,0, — 11,0, ) = 1,°0;” — 1,05 (11,0, ) — 0, (11,05 ) +11,°0,°

_~A2a2 A A A A A A A2~ 2
=i, 0y, —i,0, —U,11,0,0, — 11,0, —1;11,0,0, + 11,0,

and similarly
(4,0, —11,0, ) (1,0, — 1,0, ) = ,°0," — 11,0, —11511,0,0, — 11,0, —14,11,0,0, + 1,05
(4,0, —1,0,) (4,0, —11,0,) =11,°0," —,0, —,11,0,0, — 11,0, —14,14,0,0, +1,°0,"

Adding these three terms leads to the expression that we used for the squared rotational
operator (note also that 4’ + 742 +4; =1 )

A

R®> () 2{(1222 _,_[,32)612 +([112 +ﬁ32)5§ +(ﬁ12 +LAJ§)6§
—2[0,0,0,0, +,0,0, +,7,0,0,]

_2[ﬁ161 +1,0, +ﬁ363] }()

Next consider the equation of motion

(i) =0 [2-o(2)]
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The homogeneous equation reads
the solution of which reads

The integration constant 4 is now considered a function of time (hence the name “variation of
constants”), such that it satisfies the full equation of motion. One finds after substitution

d

= A(H)=2D, e"?!
7 ® 8

Hence

1 +6D,t
A(t)= 4, +§(e " -1)

Since at time zero we have <[t§> =0 it follows that the initial value of 4 is zero:
A(t=0)=4,=0 . Thus

(i2)=3(1-¢")
Substitution of this result in the equation of the motion of < #; @) > gives
%@5@2) = [20(ii)+2(1-(a3))]
=-20D. <z)§ﬁf>+§D, (1+%ew"j
Again, first the homogeneous equation is solved
d A2 A2
E<u3 u, > =-20D, <u3 u, >

which gives
(207) = Be™"

The integration constant is again considered now a function of time such that it satisfies the
full equation of motion. Substitution into the equation of motion
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leads to

i B(f)= ﬂ D, (1 +l e 6D | g*2001 _ i D, ™00 z D, ot
dt 3 2 3 3

and thus

B)=B,+ 3D, (e —1)+ 2D, —(e™ 1)

37720D, "14D,
_ 1 20D, 1 1 +14D,1
—BO+E(e —1)+i(e -1)
— BO +ie+200,1 +ie+14D,t _ L_’_L

15 21 15 21
=B, +ie+200,./ +Le+14Dr/ _ i

15 21 35

Since B(f=0)= B, =0, this reduces to

B(t)=ie+20D” +Le+14D,t _(i
15 21 35

We thus arrive at

<1232ﬁ12> :L+L676Drt _ieme,t
15 21 35

This concludes the mathematical details in the derivation of the time dependence of the
scattered intensity.
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Exercises Chapter S: HYDRODYNAMICS

San Francisco, CA, USA

5.4 The effective viscosity
On a length scale that is large in comparison to the size of the Brownian particles, a flowing
suspension can be described as an “effective fluid” (see the figure). The Navier-Stokes on

such a coarsened length scale is that of a mono-component fluid, where the viscosity is an
“effective viscosity”. The stress tensor is thus written as

Ze/f(;:) :77’#/ {VU(?’)+(VU(F))T}—P(F)i

where U is the coarse-grained suspension velocity and P the pressure.
The effective viscosity 7 depends on the volume fraction of colloids and the type of inter-

colloidal interactions. In the present exercise we calculate the effective viscosity to leading
order in concentration.
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O Lene
L
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P e
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" - " " . .
effective — — — microscopic

Fig. 5.10: Left: The flowing suspension on a length scale large compared
to the size of a Brownian particle. Right: A blow up of a fictitious
volume element, showing the flow on a length scale smaller than the size
of the Brownian particles. The dotted straight line indicates the flow
velocity gradient pertaining to the effective flow.

For non-interacting Brownian particles, the stress tensor at position 7' is equal to

Z(F A ) = 2 T (7 )

where 7, is the position coordinate of colloidal particle j, and Y, (?j |? ’) is the stress
generated by a single Brownian particle. For non-interacting colloids, the coarse-grained
stress tensor is equal to

Z"f"(ﬂ:%ldf'io(f')

The stress tensor within the solvent is equal to
- - — T - ~
2, () =mn, {Vuo(r )+ (V”O(r ')) } — D (r ')I

Here, %4, and Po are the solvent velocity and pressure on the small length scale, much smaller
than the size of the colloidal spheres. At this point, we have to make the distinction between
volume elements within the solvent and the core. Let ¥, denote the volume occupied by a
single colloidal sphere with its center at the origin. The effective stress tensor is now written
as

ZO =g [T [ @)

V'\V,
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The volume ¥ \V, is occupied by solvent, for which the above formula for the stress tensor
is valid. The integral over the volume ¥, occupied by the core can be cast into an integral
over the surface area of the core, just inside the solvent. To this end we use the mathematical
identity (summation over » is understood)

L0, )=V, (Z,,,G)7) (Y, ', 7))

From Gauss’s integral theorem we thus have (with 0¥ the surface of 7 )
[ S0, F0 = s, (o, )n )= [di (9, %, )r
VO aVO VD
The body force V,'2,,; is zero in a stationary state, or more generally, on a time scale that is

large to the elastic relaxation time of the material of the colloidal core. The last integral
therefore vanishes, so that, apart from pressure contributions

z;ff(f):%{cﬁdS"'(Zo,n,-(F')ri’)+ | df'zo,;/(f')}

o, ",
N 1 7 1 ] - . _ -, T
v 450’5‘" <20’”j(r )" )+77° J. dr {V" ”o,j(r )+ (vi ”o,j(’” )) }
4 R V'\Wy
The coarse-grained values of gradients of the suspension velocity {J are, similarly to the

coarse-grained stress tensor, defined as a spatial average of the corresponding microscopic
flow velocity

{VU(F') +(VO(F '))T} = %jdf’ {Vﬁ(? N+ (Vﬁ(?'))T}

:%{ J Vi@ (V@Y |+ [ '{Vﬁ(f')+(va(;'>)r}}

v\,

As before, % is the solvent velocity. Hence

S (7,0 =n, {VU(?,t) + (VU(F,t))T}+ % pas'(ay (7))

A
A

N s ! L >l
o {9 () + (v, (7))
VD
where 7 is the unit normal vector pointing out of ¥, .

69




Solutions of Exercises in An Introduction to Dynamics of Colloids

By Gauss’s theorem

jdf'v,. i, (F) = quSy ', (F)

Vy v,

so that the above expression can be rewritten as
> F0=n {VU(F.0)+ (VU (70) |
N - N A Ay (= = A
+7<ﬁdS'{r '(Zo(r')-n')—ﬂo (n'uo (r')+uo (r')n')}

o,

Let V" be an arbitrary larger volume that contains ¥, (see the figure), and consider

(95—95 JdS'{f'(ﬁ'-Zo@'))—no{ﬁ'ﬁ()(?')moﬁ'(f')}}

ot v,

The normal vectors are always assumed to point outwards the volumes. According to Gauss’
integral theorem, this integral is equal to

[ di (P (V) + ZoF) =0 {V (P + (Vi (F )

VA

Since, as before, V'*2o(7") =0 and the stress tensor drops against the last terms (apart
from pressure contributions), the integral is thus zero. This implies that we can use, instead of
0V, , any surface area 5p7* that encloses 7, . Hence

> =n{VU(F.0)+ (VU (7))
G ) ) 5 ) (7))

70




Solutions of Exercises in An Introduction to Dynamics of Colloids

Without loss of the generality, we can take 0V as a spherical surface with an arbitrary large
radius and with the colloidal sphere at the origin.

Since the force on a single, non-interacting sphere is zero, it follows from eqn. (5.109) that

_ o 5((aY (aY\(F & F). (a) & -
iy (Fy=—=||—1| —-| — —E-—|F—-|—| E-F
2(\r r r r r
where E is the symmetric part of the velocity-gradient tensor
E—l{vz}(f')Jr(vU(F'))T}
2

Since gp* is the surface area of a sphere with arbitrary large radius R , the surface area of
which varies like R? , all terms in this expression for the solvent flow velocity that vanish
faster than 7 can be neglected. The relevant expression is therefore

o o2y

It follows that (again not denoting irrelevant terms)

- rr.r.
v, ﬁosli(f):—gEnm a vi( ”r”; f)

which leads to

where it is used that £ is traceless ( Tr(E ) =E, 05, =0 ). The effective stress tensor is
thus found to be equal to

S )=, {VU(?') +(VOF '))T}

+ 5%770 cﬁ@dn' (Sﬁ'fl'(ﬁ'-E.ﬁ')_fl'<ﬁ',E))

where the integral now ranges over the unit spherical surface (the spherical surface with unit
radius). The angular integrations are evaluated, using that
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qu"fzifz'ﬁ' A =4—’5[[5,.5 +8,8,+6,5,]

LA ) 1 Jopre PJq q-Jp
. ¥4
(j)dn'nln —9,
P 3 P

The final result is

- 5Nirx - - T
A (7Y — A P4 -
> (r)_n0(1+2 3 ){VU(r)+(VU(r ) }
so that the effective viscosity is equal to
5Nz 5
eff: 1+——— 3 = 1+—=
n 770( Xz 3a) 770[ 2¢j

In the last equation we introduced the volume fraction of colloids

NAar
=——aq

¢_V3

There are two things to be noted about the above derivation:

- This formula is only valid for low concentrations, where inter-colloidal interactions are not
important. In this case of non-interacting colloids, the mere presence of the core induces an
additional stress that is proportional to the number of colloids. Interactions determine the
second order in volume fraction dependence of the viscosity.

-It is also assumed that the core of the spherical colloid is not deformed by the applied shear
forces, or by any other external field. An additional external field that exerts a torque on the
sphere in-validates the above expression for the effective viscosity. In using eqn. (5.109) is
has been assumed that the sphere is torque-free. In the presence of an external field that acts
with a torque on the colloids, eqn. (5.109) must first be extended to a non-zero torque.
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5.5 Oseen’s approximation for hydrodynamic interactions

For point-like Brownian particles, the hydrodynamic force density is concentrated at the

origin of the spheres
N

J?ext(;;u):_Zijh 5(,—;!_}-,;)

J=1

Let us start with the fluid flow velocity that is equal to
i(F) = [di ' T (F=7") f(F")
N - —
:Z Idr'T(r—r')-j‘j(r')
j=1
where ]7/ is the force per unit area that surface elements of particle j exert on the solvent.

For 7 =7 the above formula leads to divergence problems in case j=i when the delta-
representation in the first equation for point particles is directly substituted. We therefore
isolate the term for j=i from the sum

a(f):jdf'f(f—f')-ﬁ(f')+z jd?’f(f—f')-jj(f')

In the sum we can substitute the very first formula, omitting the term for j=i
S [P (=770 =% T )
i i

The first integral in the above equation is rewritten in terms of a surface integral

J#i

i(F)= g ds'T(F=7") f(F)=Y T(F=7)-F/

where now /;(7) is the force per unit area which surface elements of particle i exert on the
solvent. As shown that in appendix A (in Jan’s book)

ngs'T(f—f')=i32—“, forFedV,

av; 770

Now operate on both sides of the above expression for the flow velocity with the operator

1
— bds--
dra’ i )
According to the above mathematical identity we have

L $ds ds'T(F-7)-f,G)=- L g,

dra o 6zn,a
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Since for stick boundary conditions we have
i(F)=v,+Q,x(F-7), FedV,
the same integration of the velocity gives

1

dsu(r)=v,
47ra2§'E
We thus arrive at
N
V= L pre T(F-7)-F
67n,a Jj#i ‘
which can be rewritten as
S
Vi = _'BZDi/ j
j=1
with
. kT .
D,=—2—I1=D,1
67n,a
. a(» .
Dl.j=kBTT(rl—rj)=—D0r—([+ AANEEY:
i

A\ 4

This is a good approximation for hydrodynamics interactions when the distance R between the
spheres is much larger than their radius « (as sketched in the above figure).
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5.6 Sedimentation of two spheres
Consider two spheres in a fluid, which are subjected to a gravitational force that is equal for

both spheres. We consider in this exercise the stationary velocities that the spheres attain.
The velocities of the two spheres are equal to

‘71 = _ﬂbll 'Flh _ﬁDIZ 'F'zh
‘72 = _IBDZI 'Fih _ﬂﬁzz 'F;h

where th is the hydrodynamic force on sphere j. In the stationary state the total force on the

spheres is zero, so that the gravitational external force }7"/.” is equal but opposite in sign to
both F*

Fl+F =0 (j=12) F*=mg
Hence v, = ,B[Dn (:2)+D12 (:2)].}7@(:

Since

D, (_’_’{2) =D, (;:21) =D, (;:21)
it follows that the velocities of the two spheres are the same: v =V, =V,

Within the Oseen approximation for the hydrodynamic interaction functions we have

- - k. T - A
D, =Dy, =——1=D,1
67n,a
- - P 3. a(: . .
D12:D21:kBTT(rlz):ZDor_(I""izrlz)’
2

The velocity is then given by

ﬁ:ﬂDO |:(1+§i]f+%ifiz ’%2:|'ﬁex{

This expression can be inverted in order to express the force in terms of the velocity. We have
to invert a tensor of the form M = CI+C,rr .
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Use the following Ansatz for the inverse tensor
M =D/ 1+D,i?

Now use that (7#7)-(77)=7(7-7)F =77 to evaluate

M-M'=1=CDI+[CD,+C,D +C,D, |##

so that
CD =1
[CD,+C,D, +C,D, |=0
Thus
D1=L and D2=—g !
C C C+C,
In our case

I+=—
"
3a
IBDofi
D - 4, 1 1 Ea{l_gi
, =
D, 4 4
ﬂDo[1+3ajﬂDo[l 30] BD, 4 1, 4t
ha ha
v 1 3a
BD, 41,

Using that D, =1/67n,a, we thus find

Fwexf — 672'770a|:(1 _giji _%iflz i;lzi|‘_;

" N
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Consider now two particular configurations of the two particles:

(a) 7, and ¥ are co-linear (see figure (a) below). In that case
hyliy -V =7y |‘7|:‘7

and hence

The velocity is thus co-linear with the gravitational force, and the friction coefficient is less
than 677,a , so that the spheres sediment faster than a single sphere for a given external
force field.

(b) 7, and v are perpendicular (see figure (b) below), so that 7, -v =0
The force is now equal to

F*' = 6mn,a (1 - %i] v

N

Again the spheres sediment faster than the single sphere, in the absence of other spheres.

(a) (b)

<l

? v v

In fact, since |;712 7, -\7| = |1712 ~17| = |17|COS 6< |\7 , where 6 is the smallest angle between 7,
and v , the friction coefficient is smaller than 67z7,a for all configurations.

<

Note that the force balance equation used here assumes that the two spheres are at a
sufficiently large distance, such that direct interactions (through a potential, for example due
to surface charges) are absent.
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5.8 Hydrodynamic interaction of two unequal spheres

Consider two spheres, i and j, with unequalradii a; and 4;, respectively. Let us discuss
the first few terms in the reciprocal distance expansion of hydrodynamic interaction matrices.

(a) We will show that the Rodne-Prager matrix is given by

=  k,T a;|3r~ . lai2+afA o
b= i) S )

i

Everything that is done in the book is concerned with equally sized particles. Here two
particles (i and /) are considered with different radii o, and a; (a;#a,). Let V; be the
velocity of particle of i . It induces a velocity field, in the absence of particle j, according to
eqn. (5.36)

where 7 is the position coordinate of sphere i. The velocity of sphere j that is at the
position of j , is according to Faxen’s theorem, eqn. (5.60)
J

~ I =, ~ /oy 1 _ (=
v, =—%Eh+uo(%)+gaf‘ V3 (7))

where V, is the gradient operator with respect to 7, . Using the identities

it is readily found that

-7

where 7,
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Hence

2 2 2 2\ = —
— . a. +a; A a. +a; V.. V.

v, =- ! th+§ﬂ I, 1a it jed (IR A A
67,4, 2,1\ 2 6 2 v v

Within this zeroth order reflection

so that it is found that
with TR— F!-BD,-F'
67n,a,

5 o kT 3a l+la,.2+af. il 1_a,.2+a]2. s
"obma2n|\2 6 5 ) 20 5 )y

(b) The flow field of sphere i is reflected by sphere j . The reflected flow field #"” (7) from
sphere j back to sphere i is, according to eqn.(5.92), equal to

where

is the flow field that originates from the moving sphere i in an otherwise quiescent solvent.
In the present case, i,(7) in eqn.(5.80) for the calculation of i, (7 ) , isequalto —v, (a
moving sphere in an otherwise quiescent solvent is equivalent to a sphere at the origin in a
solvent that uniformly flows in the opposite direction). Eqn.(5.80) then predicts the resulting
flow velocity induced by the sphere when it is inserted at the origin in the uniformly flowing
solvent.
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Since the velocity of the sphere is equal to —Fl_h /67m,a , eqn. (5.80) gives the above given
expression for #© (7) - Explicit evaluation of this expression, using the first entry in table
5.1 and the defining expression

H" = (V)" 1
p

leads to the given expression for #,(7) in (a), as it should.

Next consider the evaluation of 3" (7). We are only interested in the leading order expansion
with respect to a/r; , so that only the leading order contributions of the connectors need to
be considered.

Since H™ () ~ """ | it follows from table 5.1 on page 265 and the table 5.2 on page 299
that, up to leading order (note that is Faxen’s theorem 7 will be taken equal to 7; ):

- a, 1 .1
g® (7—7.) — L RVV—+al—
J 4 R R

3
. a; 7
U(3) (’7_*‘) _)__»/RZVVVl—a.3IVl
6 R 7 R

. a,; T G
u® (7—;7.)—>4R2VVLI+4ILI
4 12 R 3 R
3 5
- a A 7
U(S)(f—f’])—)— J RZVVVLI— J [Vl]
6*5!1 R ! R

where R =7 — 7, . As can be seen from the table 5.1, the remaining terms are of higher order,
and can therefore be omitted. Also, to leading order (see (a))

According to the equation that we had for ;" (7) , we thus have to leading order in a,/R

7 (;:) — 0(2)(R') o) [{)'j(_l) _ 5(0)(7})]

Now, according to the formula for \751) on page 259, again to leading order, this results in a
zero (note that the force th in the formula on page 259 does not contribute to D, , and can

therefore be omitted here). Since the leading terms cancel, we have to resort to the next higher
order terms ~ (a /R)* .
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Keeping the leading order terms in the connectors, and noting that

(V )n —-(0)( ) (a /R)n+l

we thus arrive at
_ a, 1 1 1 o)
i = { LRPVV — 2 ta IR}o[gajviu”’(rj)}
L9 provy Ly ivllolv i)+ v #G )
+ V= O[ VTG + (Vi) ]

a vl; a .1 .
j +S it lolvvaoai
vy i i o[v Y )

where the first line corresponds to ' , the second line to U® and the third to 7 .

Since 1:V,V;=V] , the first term cancels against the last term.

Hence, to leading order we get

i (7) = - WR)@[V iF)+ (Vi) ]
g vvv}e +a31V OV, @"F)+ (Vi (F)) ]

Using the identities

1R
— U
Vime=——7%
T T
1 Vialip by
ij.a i B iy
ViVisV, — (5a r, +5 7 "'5/;7’”,,;,) 15—
i rzy Ty

and
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(w0 () (05 ) |- | T2 7
ij ij

the velocity of sphere I resulting from the reflected flow field is found to be
equal to (contraction with respect to S and 7 is taken here)

_

S _
i 3
871, Ty By

Vz,a
~15 V;j’a ’/;j,ﬂ ’;'jx}/ —0-3 I’;/
r5 J

3
b T

Keeping again only the leading order terms finally leads to

o 4 1057w
! 87y, 6 ’;‘jé l
Hence, by definition we find that
3
- k,T 15aa; .
=t 7.7,
Y 6mma 4 oY
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5.9 Friction of a rod in shear flow
(a) Consider a rod with its center at the origin and with an angular velocity Q) . Similar
arguments as for a rotating rod in a quiescent fluid can be used to show that the force on a

bead i is proportional to its velocity relative to the local shear flow velocity [".7 .

The friction forces parallel and perpendicular to the rod axis are proportional to the velocity
Qx5 relative to the local shear flow velocity T -7 .

The force F”

"y on beadj along the axis of rods is therefore

/H ——C u- [Qxf/. —F-?j]
while the force perpendicular to the long axis is
Fly==C, (I-aa)-[QxF7 -T7 ]

The problem now is to determine the constants C; and C, . Since for long and thin rods
F, =jDi » the total force is thus

F F"+F"

Jdl

According to eqn.(5.116) we have

Fl' ==3an,D[¥, -7, |- 37,D [ (E)+2—LD2V§%(@)}

where %, (’7 ) is again the flow that is generated by the remaining beads, in the absence of
bead j. Again, the first term is the Stokes friction contribution to the force in an otherwise
quiescent solvent, and the second term is due to the field generated by the other beads. The
same reasoning to arrive at eq. (5.119) now leads to

- - 3 2 1 1 -
F'=3znD|v, -T-F |+=a4 - |-F"
g s“”g{if—ﬂ 6|,~_H |
305 an 1 1 1 .
+=(I-44a)- - _|'F
8( uu) ;I:|l—j| 12|i—j|3:| i

Now the hydrodynamic torque is defined as
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where 1 (LY
yr=CLD22j2=CLD2_(_)

Inthe case of '=0 , C, must be equal to the constant C in eqn.(5.130), thatis, 7. is
nothing but the rotational friction coefficient in eqn.(5.134).

Alternatively the sums in the previous equation can be calculated, as in the book (see eqns.
(5.121, 5.122)

ZZ {lz—fl 6|z—lf|} (5)

i
2’

111 3 (Lj
=In| —
{|"f| 12Il—fl} D
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(b) Consider a rod in uniform translational motion with a velocity v , without any rotation.

The force on bead i is again proportional to the relative velocity of that bead to the local
imposed shear flow velocity. Similar to (a), the force is decomposed in a component parallel
and perpendicular to the rod’s long axis leading to a total force equal to

F'=—Cgii-(v-T-7)-C [1-aa]-(v-T"7)

=—Cgii-(v =17 —iDT"-#t)~C [ I — @ |- (v~ -7 —iDI" )

<>
Tl

In the second line we used that 7 =7 +iD# , where 7. is the position of the center of the
rod. The total force on the rod is thus equal to

where

Without shear flow, it follows that 7i and 7. are nothing but the translational friction
coefficients given in eqn. (5.125, 5.126).

The translational velocity of a rod in terms of the hydrodynamic is found by inversion of the
formula for the force in terms of the velocity

y=T" 1

ﬁﬁ-ﬁ"—i(i—ﬁ
7|| /4

<>

)

=~

where the friction coefficients are those for motion in an otherwise quiescent solvent

J = 2zn,L _ Azmp,L
"“(z/p) ad 7T D)
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5.10 Friction of a long and thin rod, rotating around its long axis

Here we consider a rod rotating along its long axis (see the figure below), in an otherwise
quiescent solvent. As before, the rotational velocity is denoted by Q while its center is at the
origin. For a rod rotating along its long axis, the angular velocity is parallel to the orientation
4 of the rod. The positions of all beads remain unchanged, and each bead rotates with the
same angular velocity.

To obtain the friction coefficient of this rotational motion, Faxen’s theorem for rotational
motion of a single sphere can be used

= 1
—h - (=
Qj =——7277 D3 Tj +5V}.X1/l0 (Vl)
0

where 7 ;7 is the hydrodynamic torque on bead j, and i, (F,) is the flow velocity due to the
remaining beads, in the absence of bead ;. The fluid flow field that originates form a single
rotating sphere is

ﬁ(f):(ﬁjsﬁxf

r

which is zero at the positions 7 ~ Q) ~ 3 . The conclusion from this is that hydrodynamic
interactions between beads are in this case not important. Only reflection terms come into
play here, which are of lower order in the inverse aspect ratio.

The fluid flow field #,(7;) that bead j experiences due to the rotation the other beads is small,
and tends to zero for large distances between the two beads. This implies that for long and
thin rods, hydrodynamic interactions between the beads may be neglected, so that only the
Stokes friction term (the first term) is of important.
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Since hydrodynamic forces on the beads are thus equal to that of single rotating sphere,
the torque on the rod is equal to the sum of individual bead-torques, and hence,
according to Faxen’s theorem

n/2 n/2
=3 f=-znD Y Q=-73D'NQ
j=-n/2 Jj=—nl2

where N=L/D is the total number of beads. Hence

h = ¥y

with 7, the friction coefficient for parallel rotation

Vg =7 LD

This friction coefficient is to be compared to the one for perpendicular rotation, as considered
in the book

_anl
i T 3L/ D)

The ratio of the two is very small

2
ri =—1 (ij >1
Y,y 3In(L/DY\ D
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Exercises Chapter 6: DIFFUSION

Courtesy of Guy Fontdeville, Int. Graphics GmbH, Germany

6.1 Non-Gaussian behavior of displacements

For a Gaussian Brownian displacements, the self-dynamic structure factor S (k,t)
was shown to be related to the mean squared displacement < R* > as

S, (k,1) = exp (_%kz <R2>j

To discuss the non-Gaussian contributions, we start with the definition of the structure factor
(with A7 =F(¢)—F(0) )
S (k.t) = <exp[ﬂ€ (F(t=0)- f(r))]>
= [daF P(AF,)e ™
For an isotropic system, the pdf P(A? ,t) depends only on the magnitude of the displacement

|437 , not on its direction. Integration with respect to the direction of A7 can be done as
follows (with R =|[A7| )

Sy (k,t) = [ dAF P (A7, 1) e ™

1 i 2” T : —ikR cos
:E}[dRsz;dqﬁ.([dGsmHP(R,t)e reosd
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o 1
S (k1) = %de R*P(R,1)[ dce™
0

-1

8

= | dR RZP(R,t)M

T dR Rsin(kR)P (R, 1)

= o

Then use the series expansion of sin(x) as

. 1 5 15
smx:x—gx +—x 4

5!
to obtain
© 3 5
Ss(k,t)zl_[dRR kg - B GR)Y Vp(R.i)
kA 6 @ 120
2 4
=1—k—<R2>+k—<R4>+"O(k6)"
6 120
where

(a7

> = TdR R* P(R, 1)
0

and where it is used that normalization implies
1= j dR R*P(R, 1)
0

Re-exponentiation of the above formula, using that ¢* =1+ x +l x2 ..., it is found that,
again up to order f* 2

st ) ) )

We will now show that for a Gaussian pdf, the terms ~ k£* vanish. The Gaussian form reads
o 3/2
P(R,t)=Ne™™™ | N= (—)

T

where @ is related to the mean squared displacement. Hence
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<R>>= Nj dR R*¢™® = 4xN j dR R*e %
0

=4zN O T e |=4zN| = Lo \/7 N\/7 e
oa’ 2 8a’
e—aRzJ

and

© 3 o
<R* >=4ﬂNIdR Rée ™ = —47Z'N( o 3
oa’

1 & 157 n
=—47zN TN
. (26 oG J Jra

2
3<R4>—5<R >2_3(15—”N\/_ 7/2] (%N\/;as/zj
457 (a"” 4572 ()
(e - g

4 \r V.4

and therefore

This indeed shows that the higher order wave vector dependence vanishes for a Gaussian pdf.
The experimental determination of the non-Gaussian terms goes as follows:
Plotting 61n S (kJ ) as a function of &° , which gives a straight line.

k2
According to the above expression for the structure factor we have

—6h1S]:2(k’t) <R2>+6 k“[3< - 5<R2>2J

The intercept of the straight line gives — < R* > , while and the slope characterizes the non-
Gaussian contributions to the pdf.
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6.4 Gradient diffusion
Without hydrodynamic interaction, the first order in volume fraction coefficient is

dV(ax)

o, = —ﬂ‘l.:dxﬁg(o) (ax) e

where g = exp(— ¥ V) is the pair-correlation function to leading order in concentration.

In this exercise we consider the case where, in addition to hard-core interactions, there is an
attractive square-well interaction potential

0, 0<r<2a
Vi(ry=<-¢, 2a<r<22a+A
0, r>22a+A

where ¢ is the depth of the square-well, and A is its width.

Vir) 4

4
=N

2a i
2a 2a+A

This potential is sketched in the left figure above. Note that & > 0.

We need to evaluate the combination g (r)dV (r)/dr in order to evaluate the integral.
Since

g(o) (r) dV(l") _ e_ﬂV dV(l") z_ld(efﬂV(r))
dr dr p dr

we have

, dexp {—,B[th (ax)+V" (ax):l }
dx

a, = fowdxx

where V), is the hard-core part of the potential. Noting the right figure above (where we have
V=V, +V")
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a2

=[Seﬂg —(2+%)3 (e —1)} =8 (e —1){(2+%}3 —8}

where o is the delta distribution. This result is obtained from the fact that the derivative of a
function that makes a jump, is equal to the delta distribution at the coordinate where the jump
occurs, multiplied by the height of the jump. The first contribution (equal to &) is the hard-
core contribution, while the second term is due to the attractive square-well potential.

The equation of motion for the density thus reads

gp(f,t)zowp(f,t) with D =D, (1+ay )

Question: Is diffusion enhanced or slowed down due to attractive interactions?
For ¢ >0, thatis ¢#¢ _1> (, the attractive potential is seen to lower the diffusion
coefficient. Attractions generally diminish the diffusion coefficient.

The combination 1+« ¢ can be made negative for strong attractions, which implies that
the gradient diffusion coefficient is negative, so that gradients in the density increase their
amplitude in time. Particles now diffuse from regions of low concentration, to regions of high
concentration, which is commonly referred to as “uphill diffusion”. This is the case when the
system is thermodynamically unstable. In that case, the system does not relax to the
homogeneous state, but rather develops inhomogeneities. This is the initial stage of phase
separation.

Up to first order in concentration, a negative diffusion coefficient is nothing more than a
formal result. When the first order in volume fraction contribution is now large in magnitude
than the zero order term, the higher order terms in concentration cannot be neglected. This
exercise can be a good practice for the calculation of the spinodal phase separation, which
will be the part of the kinetics of the phase separation in Chapter 9.
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6.5 An effective medium approach

To within an effective medium approach, it is tempting to identify an effective friction
coefficient ye for dilute suspensions, which is defined as

€] €] 5
7ff = 671'77ﬂa = 677770‘1(1"‘5(0) where 77€f/ =1y (1+§¢J

This friction coefficient is interpreted as the friction coefficient of a sphere that includes
interactions with other spheres.

The true friction coefficient, to leading order in concentration, has been derived (see
eqn.(6.129)), with the result

o _ kT 1
D, 1-2.119+0(p

2)=y0[1+2.11(p+0((p2)}

This is on odds with the first equation. Although the difference (2.50 instead of 2.11) is not
large, there is a fundamental reason why the effective medium approach is wrong.

The contribution (5/2)¢ in the effective medium approach is independent of the type of
interactions, and is fully determined by the stress that is generated by a single sphere in shear
flow. The contribution 2.11¢in the exact expression for the effective friction coefficient does
depend on the type in interactions (this particular value is for hard-sphere interactions).

Effective medium approaches can be accurate for large concentrations, where inter-particle
interactions are important for both the effective viscosity and the effective friction coefficient.
A very early version of an effective medium theory is due to Brinkman.
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6.6 Long-time self-diffusion without hydrodynamic interaction

In this exercise we repeat the analysis of section 6.7 with the neglect of hydrodynamic
interactions. This simplifies the calculation considerably.

The thermally averaged velocity of the probe particle number 1 is

(7)=-(30, 7

j=1

Without hydrodynamic interactions we have

D, =6,D,1 M

so that <‘71>:_ﬂD0<ﬁ1h>

Since there is a force balance
F' -V, ® —k,TV,InP+F* =0
the average velocity can also be written as

(v,)=BD, {F“’ —(V,®) -k, T(V,In P>} Q)

Note that, according to eq.1 with i=j , the first term gD, F*" is noting but /3 <1311>~F e
which corresponds to the statement in (a) in the book. In the present case, the above equation
is written as

(%)= BD, F*' + (3 )+ (3”) (2b)

where <171’> =—pBD, (V,®)

(ﬁ") =-D,(V,InP) 2o

In order to calculate the averages, we have to solve the Smoluchowski equation, which reads,
neglecting hydrodynamic interactions

O:V-[2VP+2ﬂPVV(r)—ﬁPF”’] 3)

Here, P is the pdf with respect to which the averages must be calculated. We make the same
expansion as in the book of the pdf to leading order in the
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external force
P(F) =P (r)[1+BaL(r)F F]

:%e‘ﬂm) [1+,BaL(r)f~F'e’”:|

where P© (r)=e " /y? is the pdf without the external field (with V' the volume of the
system). Substitution into the Smoluchowski eqn. (3) gives

0= V-[Zﬁa \% (e’ﬂV(’)L(r) FoEe ) +2p%ae”"L (r)f s (VV (r)) - ,Be’ﬁV(’)ﬁ'ex’J
up to linear order in the external force. This is equivalent to
O:V~e"gV(’)[ZaV(L(r)ﬂF”’)—F”’J “
For hard-core interactions, where

e =1 for y>24

we thus have _
V2 (L(r)f-Fe’“)=O; r>2a

Now let Fet — pe é. with e, =(0,0,1) , so that

AT A A z
r.Fext z(r'ez)Fext =_Fext zcoseFext
r
and hence

\%& (L(r)cos@Fex’)=0; r>2a

In spherical coordinates this reads

2
lcos Hd—z(rL(r)) +L(r) L (sin 0 dcosé’} =0

r dr 2 sin 6 060 do
and hence
d’L dL
p ) o A0 o) g
dr dr

With the trial function L (” ) =C/7" where C is the constant, one finds after substitution that
n? —n—2 =0 so that the Ansatz is a solution for n =2

for r>2a (&)

L(r)=

<
}"2
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The constant C has yet to be determined. This can be done through integration of eqn. (4)
from . =2a—¢ to . =2a + ¢ , where & is an arbitrary small length. To do this, note that
there are terms in the Smoluchowski eqn.(4) that exhibit a delta-singularity at r=2a. These
contributions give a finite contribution on integration, while continuous contributions, or
terms that show a finite jump discontinuity, give a zero result for vanishing & . Note that,
for hard-core interactions

@ Fever 0 =g Lo _pe A v per 059 5(r - 24)
Oz Oz dr
(i1) —2a V(L(r) P F&Xt) Vel — o4 [i(L(r) cos OF " ):lieﬂll(r)
di" )
=2aF“" cos @ M5(r —2a)
dr

(iii) 2ae " V? (L (r)7- F”’) =0
Using these identities, integration of eqn.(4) from » =2a—¢ to 7, =2a+¢& for vanishing
€ ,leads to

u dL(r)
dr

1-2 =0

r=2a
From eqn. (5) it thus follows that C=-2a’ , and hence

L(r)= 'Z[j_jJ

which is the result (b) in the exercise.

Since we now have determined the pdf, we can calculate the averages in eqns. (2c). Since the
interaction potential is the sum of pair-wise potential of two different particles as

O=3V(,) » h,=

n<m

-7

and hence N
V@ = VIV,

m=2

it follows that
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1]
|
ey
Lo
=
|
=
5
—
S
~
=~
o
<
<
=

with F=F-F -

Substitution of the pdf that we found gives, for sufficiently large numbers of particles
( N>1)

(%'y=-pD, % [di " VY (r) = praD, %F [ dr FL(r)e O VY (r)

Since ¢ ”""VV(r)=Ve """ =#5(r—2a) ,angular integrals render the first contribution
as zero. The second terms gives (with ¢ =(0,0,1) ; note that g is along the z-direction)

(%) =-paD, %F (—% [ dF%L(r)Ve'”V‘” J

N ext V
= fab, - F Ude(r)%%é‘(r—%z))

= paD, %FW ([dF L(rycos® 05 (r—2a))

= pD, %aﬁ”’ 27rj d@sin @ cos’ der rL(r)S(r—2a)
0 0

Both integrals can be easily calculated, leading to the statement (c) in the book
<‘7[1> =-pD, 2¢Fex’

where the volume fraction is defined as Ndr |
=——a
V3

Last the Brownian velocity in eqn. (2¢) is equal to
(7Y =-D,(V,InP)
=_D0Idﬁ"~IdFNP(71:"'7N)V1 InP(7, 7, )
=_D()Id;i “.J.dFNVI lnP(’_ﬂ;’...FN)
=—D0J-dﬁV1P(}_’;)
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Since P(7) is constant (being proportional to the macroscopic density), and thus leads to
the result (d) in the exercise
(7)

It is thus found form eqn. (2b) that the total averaged translational velocity is

Il
(=1

<‘-;1> =ﬂD0 Fext +<‘—;11>+<‘713r> =ﬂD0 Fvext {1_2(,0}

By definition, the effective frictional coefficient is thus equal to

= 1
eff =\ _ ext eff _
y¥ v)=F = e P ——
< l> B D, {1 - 2¢}
. . . L kBT . . . . .
and therefore, from Einstein’s relation Dy =—~ the long-time self-diffusion coefficient is
v

found to be equal to

DsL =D, {1_2(”}

This expression neglects quadratic and higher order terms in the volume fraction.
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6.11 Depolarization of light by scattering

The scattering amplitude B of an optically homogeneous, thin and long rod (like fd-viruses)
is proportional to

B ~§i+Ag(fm—%ij

Suppose that the orientation # of the rod lies the x-z plane, which is spanned by the
polarization directions 7, and 7, ofthe incident and scattered radiation, respectively (see
the figure below). The polarization of the incident light is along the z-direction, and of the
scattered light along the x-direction (see also Fig.6.18 in the book)

ﬁo =(0,0,1)
ﬁS = (17 07 0)

Let g be the angle between # and the x-axis (as depicted in the figure below).

The dipole that is induced in the core of the rod is proportional to B-#, , which is in turn
proportional the scattered electric field at large distance from the rod. The component of the
detected scattered electric field is along 7, , that is, the detected scattered electric field
strength is proportional to Ay - B. A, -

The scattered intensity is thus proportional to (A, - B+A,)’ . Note that there is a mistake in
the exercise in the book, in that the square of the electric field is not taken to arrive at the
intensity. From the above expression for the scattering amplitude we get

—
A

ny-B-n.=Asu_u,
where %, and #. are the x- and z-components of 7 , respectively.

A

n,

In terms of the angle & , these components are given by 4, =sin@,4_=cos6

so that =
n,-B-n,~Agsinfcosd
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The scattered intensity amplitude / is therefore I ~ (sin & cos 8)*

The maximum scattered intensity occurs for those angles such that the following conditions
are satisfied

a(%-éﬁJzzo

20
g;@méaf<o

Performing the differentiations, this gives
sin @ cos 6 cos” 6 —sin’ 6 | = %sin (26)cos(26)
= isin (40)=0
and

cos(46) <0

The first condition gives the solutions 40 =0, z,2x,3x,--- . Since 0 < @ < 7, the only relevant
solutions are 6 =0,7/4,7/3,37/4 . The second condition selects the solutions which
correspond to a maximum in the scattered intensity (the remaining solutions of the first
condition correspond to a minimum). The maximum scattered intensity thus occurs when

_z 3z
¢ 4 and 0 e
These orientations are depicted in the figure below.
¢3
g=""
4
9 =
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6.12 Orientational relaxation of rods

Here we consider an assembly of interacting rods which are oriented along the z-axis at time
t=0 ,and calculate the average orientation

(].)d i, 1, P (1)

after release of the constraint that keeps the rods aligned along the z-axis. Using eq.(6.243)
immediately leads to

@a’ i, P(d,1)

= VES Y @) e ()7 (3)

1=0 m=—1

« [e-D,,I(M)z " ﬁDrJ.O dl'}’,,n(t .) e—D,,l(l+1)(t—t') :|

where it is used that u,. =~47/3Y" (i1), and & = (0,0,1) is the initial orientation. Note
that there is a mistake in eqn (6. 243): the pre-facto /(2/+1)/4x is not correct, and should
be omitted. Now use orthogonality of spherical harmonics

$diyy” (a)y (i) =5,5

'~ mm'

so that

<ﬁzl> — 4371' YIO* (é})[e—ZD,,t + ﬁDr.[; dtvym(tv) e—ZD,,(t—r') ]

—e Dy IBDVJ‘(: dt'y,, (") e 2060
According to eqn. (6.242), the coefficient 7, is equal to
710 IB(I)dulYO* ER [P(O) A t q.)d”z ”19“2)P(0)(u29t):|

From eqn. (6.240) and eqn (6.245), we get eqn. (6.246) as the mean-field approximation of
this coefficient

i, T, (6, ) PO (d,,1) = f(ﬁl,(ﬁz ),)

><e

1 2~ -2D,

=28"'DI* i 3o
i, xe,
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Substitution thus leads to

Y10 (t) ~2DI’ e_ZD'tédﬁ]Ylo* (ﬁl )9’;1,] '|:P(O) (l)],l‘)i)zl Zl X% j|
1

=-2Dr’ _ZD'(j.)dul{ (ul,t)ﬁﬂ&} R,y (a,)

i xe3|

where a partial integration has been done. This is eqn.(6.247) where both p is / and ¢ is 0.
Since

so that
RO (8,)= |, &,
4~
Using again a similar mean-field approximation
Y () =-2DL° e_ZD’t\/iquf’l PO (i, 1), |LA’| ><é3|
4r :

— 2pP e /icﬁdz}l PO (i, 1)i, 1-a)

~-2DL " / >ol- <4, >

Since the average ( : '>0 refers to free diffusion (just like the pdf P ), we have, according
to eqn. (2.141)

and therefore

}/10 (t) _ZDLZ 4Dt [

T

We thus obtain the following mean-field result for the orientation

A -2D, 2 — 3¢ . e —4D,r"
<u21>(t):e ’{1—2DL pD, /Ej.odte Nl—e
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Introducing the new integration variable x=D,¢' this gives

(i, ) (1) =™ [1 B CJ.ODJ dee1— e }

3 8 [3 L
C=2Dr /——=—,/——
47rp n \4r D(D

where ¢ = %D2L p is the volume fraction of rods. Finally, introducing the function

with

G(z)=- 8 . /i e Idx e \l-e™
7 \4r 0

the average orientation can be written as
~ aps, L
<“21(f)> =le "+ B(PG(DJ)

Since G<0, orientational relaxation is faster for higher concentrations. This is due to the
repelling interactions between rods (note that the expression for the torque that we used is
valid for hard-core interactions).

(G0
0.6
0.4+

0.2

Fig. 6.24: The z-component of the average orientation as a function of time.
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Exercise Chapter 7: SEDIMENTATION

7.1 The deviatoric part of the force that the fluid exerts per unit area on the surface ofa
translating sphere in an unbounded incompressible fluid is equal to (see eqn.(5.6))

F =y |V, (7)+[ Vi, (7)] |7

The fluid flow velocity is given in eqn. (7.19)

o 3als FET 1(as JFFT L
uo(r )= Z7|:]+ r'z :|+2(7) |:1_3 r'z :| '(VS_US)

First we show that

Fe ) == 1575, i)
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According to the above expression for i, , there are four different contributions

1 77 1 FF
P e S
A little effort shows that
1 7
V,—=-—+
r r
V rr __3 lrn rm é‘irlrmJr&imrn
i 3 5 3
r r r
1 7
Vims=-3-7%
r r
Hence v ’7’7__5”,-”" T 4 Ol Ol
i 5 7 5
r r r

3

3_a|:_Li35n _37’;7’;17’;" + é‘trtrm-i_é‘mtrn}
— — r r
V. i, (r) =

<Y

rm 3 Zn im

3
r. r.
+4 35 415k
[ rS nm 7"7 7’5

o,r, +0, r”}

which reduces for 7 =a to (summation over repeated indices is assumed here)

N _31 5 Bl (5 _ =
Vi uO,n (}") - 261 ‘: . 5nm + a} :|(Vs us )m

The deviatoric part of the force is thus equal to
7 =, Vi, (7)+ [va, (7)] -

3, » FF | .
I — —I — . j—
2a |: " a’ :| (%, ‘Y)

Q|

<

This expression can be integrated over the angles, that is, over the surface of
the sphere, using that
pasi=arai and fasii=2Lai

v, o, 3

from which it follows that
 dS £ (7) = ~4mn,a (¥ i)

o’
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7.2 Sedimentation of “sticky spheres”

An attractive potential between colloids will change the average distance between them, and
thereby the sedimentation coefficient. In this exercise we consider the effect of an additional,
short-ranged attractive “square-well” interaction potential

0, 0<r<2a
Vi(r)=1-&, 2a<r<2a+A
0, r>22a+A

where o is the depth of the square well and A s its width. This potential is in addition to
the usual hard core interaction potential. For this attractive potential plus the hard-core
potential, we have

0, x<2
A
glax)=4e’*, 2<x<2+=
a
I, x>22+—
a

From eqns. (7.33-35)

242
V'=3¢pv J dxx[g(ax)—l]=3¢)§so —jdxx+ Iax(eﬁg—l)
1 2

x>1
9 0 3 ol AY
:—5¢vs°+5¢>vs°(eﬂ —1){[%—) —4}

and

15(. AY' 9(. AY® 75( AJ*‘
=il (e -1)| = 2+=| —Z|2+=| ——=|2+=
PVs (e ){4( aj 8( aj 16 a

roulers| 2L LTS
Pvs 8 72 256

while 7"=(1/2)p V' remains unaltered. Here we used the Rodne-Prager approximation
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(see eqn.(7.12)) for the mobility functions. Hence, from eqn.(7.32), using that g = —(0‘730

Vg =iig + 9 +V 4V "+ W+ 0(¢7)
=7~ 64407,

2 -1 3 4
+(0\7S0(e/’g—1){—7,44+%(2+AJ +%(2+Aj —%[2+éj —%(2+AJ }
a a a a

Defining the “stickiness parameter”

o= 1im(eﬂf —1){(%3)3 —8:| = 1211m(e”f —1)é
E—>0 a ED>0

A0 A0 a

we can now take the corresponding “sticky-sphere” limit,

peare o 5] Bloet] o2
=(e” 1){ 7441+6(1+ J (_fj_@( 3%j 27556(1 zaﬂ
7

8
A 15
:Z( 1)[6—E 5 7} 5856 -1

and hence

Vg =" [1-(6.44-0.488 )|

Note that attractions lead to an enhancement of sedimentation. This is due to the fact that the
particles are on average closer to each other. Each of the two particles “drags” the other one
along through hydrodynamic interactions
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7.3 Sedimentation of superparamagnetic particles

Here we consider spherical Brownian particles with a magnetic moment. In general the
anisotropy of the magnetic interaction results in a non-zero torque on the core, which is
mediated via the magnetic dipole moment. In case of superparamagnetic particles, however,
where the magnetic dipole can frictionless rotate relative to the core-material, the torque
acting on the core of each particle is zero. Superparamagnetic Brownian particles thus remain
torque free. This implies that the hydrodynamic interaction functions are the same as for
colloids with spherically-symmetric interactions.

For the calculation of the sedimentation velocity of Brownian particles carrying a
superparamagnetic core, the pair-correlation function is

g(F.a,.10,)=g, (r)e:xp(—,BV(F,z}l,L?2 ))

where s (” ) is the hard-sphere pair-correlation function, and V(? U, ,122) is the pair-
potential of two magnetic dipoles my =mi,, i, =mi,

oy iy =3 (7)) (i)

2 3 , r=2a
Vs r

We first verify that eqns.(7.32- 35) for the sedimentation velocity remains valid, except that
the pair-correlation function is now replaced by

g(r)zﬁ(ﬁdﬁl i, g (7.i i,

In fact, this follows from the observation that the hydrodynamic functions are only functions
of the distances between the spheres (no orientation of the dipoles are involved). Averaging
over all degrees of freedom, also involving orientations, immediately leads to our original
equations with the above expression for the correlation function.

Note that for permanent dipoles that couple mechanically to the cores of the Brownian
spheres, the hydrodynamic interaction functions are different, also involving the orientations
of the dipoles. For these systems the analysis below cannot be made.

For sufficiently weak magnetic interactions we can Taylor expand the
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the Boltzmann exponent, leading to

g(r)=ghs(r)ﬁ<}5dﬁlg9dﬁz {1—/31/(?,&1,&2)%/321/2(f,al,az)}

B2 |(mm) Ll o g
ol stz g
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Note that from symmetry

Now using that

the angular integrations can be done, giving

g(r) =ghs(r){1+ﬂ72[[m;;‘°] Hx{%l : i+(ff:i)(ff:i)-gf.(i).(i).f}}

_ B(mm Y 1| (1., 2
_ghs(r){n 2 l[ 4r J r6] {3“ 3}}
B B2l (mu Y 1

"ghs(r){H 3 [[ 4 ] r*"”

This expression for the pair-correlation function can now be substituted into eqns. (7.32-35),
that is,

V'=30¥! I dxx[g(ax)—l],
x>1

_ 1 _

V":E(DV“?’

qu)ﬁgzdxng(ax)[AAs (ax) + A4, (ax) + 2AB, (ax) + 208, (ax)
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to obtain the following expressions for the two non-trivial contribution to the sedimentation

velocity, with the abbreviation « = 8 *m* i, /487

2 0
V'=3¢v! I dxx[g(ax)—l]:—3¢)\7§J.dxx+3(p\7§%jdxx%
2

x>1 1

2
9 o, 3 L« 9 =0 ﬂmzﬂo
=PV +— @V — ===V, + PV
ARV ACI I S OS] ey

and

W =iy [ dx x*g (ax)[ Ady (ax) + Ad. (ax) + 2AB; (ax) + 2AB. (ax) |
0
? 15 11 75 17
:_'dezli {__4_6_7__6}
(pvs‘! X |: +x6a6:|>< 4x +2)C + X X
2

4 8
2
— i°| —1.44 - 0.04| Bt
W{ (327[(13

The sedimentation velocity is thus found to be equal to

vy =(1-9)v) +I7'+I7"+W+O(¢)2)

3
a

2 2
— 5| 14| —6.44 + 0.96] Bt
s 32

The dipoles will on average align such that they attract each other (since this decreases the
interaction energy), which leads to smaller distances between the spheres, which in turn leads
to a faster sedimentation (“pairs” sediment faster as “singlets”), just like for the sticky spheres
in the previous exercise.

The above analysis is valid up to a leading order expansion in the interaction-strength
parameter
2
s = pm’ i,
32ra’

For larger values of this parameter, we need to retain the full Boltzmann exponent in the
expression for the pair-correlation function

g s(”) ~ N BV (F iy iy
g(r)zé’;T)z@dul(ﬁduze BV (7 i)

(
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The four-fold integration (with respective to #, and %, ) can be reduced to a three-fold
integral as follows. Without loss of the generality, 7 can be chosen along the z-axis. The
orientations can now be written in spherical coordinates

i, =(sin @, cos 4,,sin G, sin ¢, cos 6, )

A

i1, = (sin 6, cos ¢, sin 0, sin ¢, cos 4, )
where ¢ is the angle of #, with the z-axis, and ¢ is the azimuthal angle. Thus

4, -1, =sin 6, sin 6, [cos ¢, cos #, +sin ¢ sin ¢, |+ cos 6, cos 6,

=sin 6 sin 6, cos (¢, — ¢, ) +cos b, cos b,

Therefore

g =%Td’ﬂ]ﬁd@j‘d(cosHl)_i‘d(cosﬁz)

X exp {—Z [\/1 —cos’ 6, \/1 —cos’ 6, cos (¢ —¢,) —2cos 6, cos 492}}

7= (ﬁmzﬂso j(z_aj3
327a r

Introducing the new integration variables

where

®=(4-¢), x =cosb, x,=cosb,
this gives

g(r) =g’§—(r)2fd®j.dx1j.dx2 exp{—Z[\ll —x} 1= x; cos® —2x1x2:|}
T 0 -1 -1

Repeating the calculation of the sedimentation coefficient, just like for the small interaction

parameter, we get
2
5 =90 | 14| —6441+ 7| Z™H N | o4 0(o"
7, v{ [ /5t |e+ole)

where f represents the integrals encountered in the expressions 7.32-35, with a pair-correlation
function equal to

g =g, (F)G(ﬂmz% (2_aj3j

327za’ \ r
2z 1 1
G(2) :gi I d® J.dxl Idxz exp{—Z(qll —x) 1% cosp—2x, xz)}
4 0 -1 -1
which is used for the numerical calculations of the sedimentation coefficient in Fig. 7.9.
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7.4 Superparamagentic particles in an external magnetic field

Let us now consider the sedimentation velocity in the presence of an external homogeneous
magnetic field, which does not exert a force, but only exerts a torque, and tends to align the
magnetic dipoles.

In case of a strong magnetic field (in the z-direction), the dipoles are perfectly aligned so that
the pair-correlation function is equal to

= 2 1_3"2
()= (oo - L0135

where 7 is the z-component of the distance 7* between the centers of two particles. This
follows from the interaction potential given at the beginning of the previous exercise, with
both dipole orientations along the z-direction.

Contrary to the case without an external field, the pair-correlation function is anisotropic,
that is, it depends on the direction of 7. The spherical-angular integrations with respect
to 7 in the expressions for

V':'BJ- df[g(r)—l]ﬁo(;?’),

r>a

V":%azﬁi ar[ g (r) 1]V, () + 07
’ =(}i<Aﬁu>J.ﬂﬁm
[Ady () + M, ()~ ABy (r) - AB, ()] 77

NSO Lan, () a8 ) "

must now be done explicitly. These integrations can be evaluated analytically for weak
magnetic interactions, where ﬁmz 1y 132 ma’> < 1. The pair-correlation function is then
approximately equal to

o(F)~g. (r){l—mﬁ} m

4 r

112




Solutions of Exercises in An Introduction to Dynamics of Colloids

The mathematical identities (where the integrals range over all orientations, that is, the two
spherical-angular coordinates of 7 )

pdr(1-37)=0

(2)
172 0 0
ngf(l—sﬁz)W=16—” 0 1/2 0
: 15
0 0 -1

can be proven by using that
7 =(sin@cos ¢, sinGsin g, cosd)

where g and ¢ are the spherical-angular coordinates, which vary within the intervals
0<f<rm, 0<¢p<27, while the integral over all orientations in terms of these coordinates
is equal to

q')d,:(...) = Td@sin@zfdﬂ”‘)

The evaluation of V | 17", and W can now be done to first order in the volume fraction,
using i =—¢v, (ineqn. (7.19)), and the expressions in eqn.(7.12) for the hydrodynamic
functions A4 .(r) and ABg.(r)and noting that Fe =67y -

This is a long but straightforward calculation (with the use of the identities eqn. (2)), and
leads to

/2 0 0
5, = (1—6.44¢)i—1.87(p% 0 12 0[] (3
0 0 -1

Note that there is a typo in the Jan’s book (pp. 486): the “ 7 ” on the left side should be “¥; .
Eqn, (3) is for a magnetic field in the z-direction, while the direction of the gravitational force
is along ¥ .

The above result can be generalized to an arbitrary direction of the magnetic field B as
follows. First note that,

/2 0 0 () [0
0 12 0|7 =]]v,|-| 0
0 0 -l 0 ) (v

with Vs, the component of \7;) in the x-direction, and similar for Vs, and Vs .
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Since B was chosen along the z-direction, we can replace

0 d Vo
0 (=B85 |, |=[1-8B]
V. 0
Then we have
/2 0 0 1 L,
g 182 01 -v§=5[1— B]-vg—Bng:Evg—EBB-vg

and therefore

= B’y | o B’y (5 o\ A
Vg =|1-6.449-0.93 V) +2.80 B-v)B
g [ v Y 50ma | Y 32na (5%)

There are two special cases where B V¢ and Bl Ve , that is, the magnetic field is along,
and the perpendicular to the gravitational force, respectively.

From the above result it is found that the corresponding sedimentation velocities are equal to

~ m’py |
Vg, = {1 ~6.4490+1.87¢ gzﬂ“() } 7

3
a

2
B, =| 164400939 LT Ho | 5o
’ 32xa

Thus, for the case of B || vy sedimentation is enhanced, while for the case of Bl o
sedimentation is reduced.
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7.5 Relation between the hydrodynamic mobility function and sedimentation

In a steady state where diffusion sedimentation equilibrium is reached, we have

jdi + jsed = 6

From eqns. (7.79+81) for the two fluxes J, =-D,Vp and J, =Mp F* , it follows that

DyVp=MpF*

The external force can be eliminated using eqn. (7.70), to obtain Jar L )
_ Ld(p(7 T
DVszAlp[VAnp(nﬂ]—;;ngl l
and hence pLr Jous
DV:MdH(pEF)) kT —3
dp(7) S(k—0)

Identifying Dy =D’ (k - 0) (see chapter 6), and using eqn. (6.94), this leads to

poop HE=0) . KT
YN S(k—0) S(k—0)

The mobility is thus equal to

H(k—0)

M = (k,T) " DyH(k — 0) = = BD,H(k — 0)

0 d

The numerator in eqn. (6.92) is nothing but H(k — 0)=1-6.449p+0O ((/)2) , and hence

|M = BD,[1-6.440]|

Since the sedimentation flux is related to the sedimentation velocity as

so that jsed = p \73 = Mp F“f)"

\73 =M Fvexr
and

V) = D, F

we finally find the sedimentation velocity is as vV = 1750 [l - 6.44g0] , which reproduces the
expression (7.40), as it should.
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7.6 Do rods align during sedimentation?

Since the translational friction coefficient of a rod depends on its orientation, one may ask
whether a rod will align during sedimentation. This question will be answered in this exercise.
When there is a torque, the two possible stationary orientations are either of the two given in
the figure below. As we will see, however, there is no torque, so that the rod remains in its
original orientation. The sedimentation velocity, however, is not co-linear with the external
force.

7 71

Since the creeping-flow equations (together with the boundary conditions) are linear, the
sedimentation velocity is the sum of Vs f andvs | » where ¥ | is the velocity due to the
force FH parallel to the rod’s long axis, and where \7;’ | 1s the velocity due to perpendicular
force F, - . The same holds for the hydrodynamic torque The torque for an arbitrary
orientation of the rod, can be decomposed in a torque 7" due to the component of the
sedimentation velocity along the long axis of the rod (see the left-lower figure), and torque
7!, resulting from the perpendicular velocity component (see the right-lower figure). The
torque for an arbitrary orientation is simply the sum of these two torques: 7" =7, + 7" .

From symmetry, both of these torques are trivially equal to zero. Therefore the total torque,
being the sum of them, is also zero. There is thus no rotation induced by sedimentation,

provided that rods are not interacting with each other. Rod-rod interactions can lead to a finite
torque, and therefore alignment can occur during sedimentation at finite concentrations.

From eqn. (5.120, 123,124), the velocity of rod with orientation 7 on which a force acts is
equalto fpex _

0 Lrs <z
v, = - {fl( juu+fl(Dj[l—uu]}.F (D)
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where
L 3 L L 3 L
— |==In| —|, — |==In| —
JT'(D) 2 (Dj fl[D] 4 [Dj @
Averaging over all orientations, using that
1 1-
an)y=—~uodiun==1
< > 47r<j.> 3

where, as before, 7 is the identity matrix, leads to
()L (L)
3zn,L \D

Note that the orientationally averaged parallel velocity is twice as large as the perpendicular
velocity

=0 _ =0
|< Vg >=2<Vg, >|

It follows from eqn. (1) that when 7 // F , for a fixed orientation, the sedimentation velocity

is equal to
Vi, = l lfll (ij F* = ! In (ij Fe
© 3anL| 37\ D 2z, L\ D

while for ;; | F* the velocity is equal to

v, = 1 lfL(£) F' = ! ln(ijﬁ‘“’
3zn,L| 3 D 4rn, L \ D

For an arbitrary orientation the sedimentation velocity is not co-linear with the external force.
Let per — g, where ¢ is the direction of the external force. Taking the inner product of
both sides of eqn. (1) with ¢ gives

A =0

1 ext
-V =%{(f“—fi)cosz®+fl}F

where @ is the angle between é and # . The magnitude of the sedimentation velocity is,
according to eqn.(1), equal to

0 _ F* 2 2 2 2
VS_%\/(]] — f)cos" O+ f]

It follows from the two above equations that the angle ¢ between the force and the
sedimentation velocity is related to the angle ® between the force and the orientation as

e _ (=-S5 0+ /)
Vi U - oS @+ f}

cos¢ =
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7.9 Instead of a homogeneous initial density profile (that is already discussed in Figure 7.8 in
the main text for interacting particles in the section 7.5), let us consider the evolution of the
density starting with a situation where non-interacting particles are concentrated in a very thin
layer located at height of Z,.

The concentration within the layer is assumed to be a constant (in the x- and y-directions) and
is modeled as an infinitely thin layer. Mathematically this is formulated as

(o(z,t=0)=C0 5(2—20)

where O is the delta distribution and C, is formally equal to the thickness of the layer
multiplied by the volume fraction in that layer.

For non-interacting particles, substitution of the mobility, M () =1/67n,a, and the osmotic
pressure I1=pk,T into eqn. (7.82)

=V, -M(p(?,t)) {—p(?,t)ﬁm +(V}_p(7,t))

d“(p(ﬂt))}

dp(r)

gives the following equation for the local volume fraction ¢ = 4?7[513 P

a a rex
E(p(z,t)zDog[(p(z,t)ﬁP? ,

+i(p(z,t)}, z>0 @))
1074

Note that the external force acts in the minus z-direction, so that the corresponding minus sign
in eqn.(7.82) becomes a plus sign. The no-flux boundary condition at z=0 reads

g(p(z,l)+ p|Fe

(p(z,l) =0, forz=0

In order to solve the differential equation (1), subject to the above formulated initial condition
and boundary condition, we introduce the auxiliary function u(z, ¢), defined as

Vg 70
@(z,t)=u(z,t)exp —%(Z_ZO)_LLD

0

|2

t
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Substitution of this definition into eqn. (1) trivially gives

2
%u(z,z)zpoaaz_zu(z,t)

where it is used that

= 1 rrext
e

The initial and boundary conditions in terms of u(z, ¢) are
u(z,t=0)=C,5(z-2z,), ®)
0 1.
Dogu(z,t)+5|vg|u(z,t):0, for z=0 3)

The above diffusion equation for u(z, ) is formally identical to the 1-dimensional free
diffusion equation. Solutions of this free-diffusion equation are

2
t
R)(Zi- Zo,t) = Lexp _M
4Dyt 4Dt

Note that there is a mistake in the Jan’s book: Fy(z,?) is in fact B(z—z,,?) .

We will verify that the Ansatz

u(z,t) = By(z—zy,1) + By(z + 2y, 1)
—0 =0

L O 1
FJdZ P()(Z+Z,t)exp E(Z—ZO)

0 0

+

solves the three above equations. Since any linear combination of F,(z *z,,f) solves the
free diffusion equation, this expression for u(z,¢) also solves that equation. We thus have to
show that this Ansatz satisfies the initial condition (2) and the boundary condition (3).

Since PO(ZiZO,l‘=0)=CO5(ZiZo)
R(z+2,t=0)=C,5(z+z")

and 0<z< Zy > it immediately follows that the initial condition (2) is satisfied.
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Since for z=0

0
E[E)(z—zo,t)+PO(z+zo,t)] =0

the boundary condition (3) is fulfilled when

“2 =0
|§3|_[dz'%%(z',t)exp{%(z'_ ZO)}

n

=0
]

-0
ot 264 % ; ]
+ =V ——=—=expi——— 1 +—C, | dz' P,(z",t) exps —(z'- z, =0
2| s|{ (—47Z'D0t p{ Dy D, oz_[ 0 ) exp 2D0( 0)
0 . . 0
where we used that a—PO(Z +z',t) for z=0 isequalto FPo(Z', 1).
z z
A partial integration in the first integral leads directly to the verification of the boundary

condition (3).

The volume fraction is thus found to be equal to

Vel % Vg
p(z,1)= R)(z—zo,t)+R)(z+zo,t)+|FSO|COJ‘dz'R)(Z+z',t)exp{%(z'— ZO)}

7| ]
|V_S(Z_ZO)_VLt

*expi —
P12, 4D,

As a final step we introduce the integration variable

(z'+z)—|\7§|t

J4D,

which gives . |§0|
d-'P " *L(z-z,)t =
;[ z'P(z+z t)exp{ZDo (z Zo)}
—o? -0 »
T:reXp |Zsl|)0t_(z+2zl(;z|w| « I dx exp{-x")
z+zo—\721
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Hence
exp| — (Z - ZO) -0 -0
: 4Dt %] [
o(z,t) = X eXp ——(Z—ZO)——
4z Dyt ( (z+2,) ] 2D, 4D
+exp
4Dt
0 N O D z
+—="—exp|——z dx expi—x
\/; DO 0 z+zOJ.\7§t { }
N

This density profile is plotted in Fig.7.10 (and re-plotted below). At small times, where the
external force had no time to act, the profile is Gaussian, while at infinite time the barometric

height distribution is attained.

Note : there is a typo in the book saying that |\7;’| t/D, <1 which should read
|17;’|2t/D0 <1

Fig. 7.10: Density profiles for non-interacting particles, initially centered in a thin

o(z1)

z
as a function of z_ for various values of
Z,

rext
z, F |z .
0 =| o 1S

layer at z =z, . The plot

0“0

=0
—% , which are indicated in the figure. Here, the value of |"s
z

0 D, k,T

chosen equal to 10.
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Exercise Chapter 8: CRITICAL PHENOMENA

Courtesy of St. Anton am Arlberg.com, Austria

8.1 Short-ranged character of the direct-correlation function

The Ornstein-Zernike equation for a homogeneous system reads
h(7)= c(?)+p_[d?' c(F=7")h(F)

where we introduced the new variables 7 =7 —7, and 7'=7 -7 .The integral is
of'a convolution type. Fourier transformation thus gives

h(k)=c(k)+ p c(k)h(k)

and hence h(k
ol c(k) = p—()
1+ p h(k)

Note that /(k) = h(k) fora homogeneous system. On approach of the critical point,
h(k - 0) =0, due to the long-ranged character of / (7 . From the above formula we
thus have

pelk—>0)~1

close to the critical point. The integral of ¢ (#) over 7 is therefore finite, contrary to the
integral of A (7) . This reflects the short-ranged nature of the direct correlation function as
compared to that of the total-correlation functions. This short-ranged nature of the direct
correlation (as sketched in Fig.8.6), is used to analyze the critical behavior of the structure
factor in the book.
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8.2 Order of magnitude estimation of 3% /R’

Differentiating eqn. (8.33)

Vr"

Il = ka——_zjd' '3dd. g(r")

with respect to the density leads to

dn_k T_27[J.dl v3dV(r){2— (r1)+—2 g(r)}
dp dr' dp

Near the critical point, where d_H =0 , thisresults in
dp

Ar o e dV Y] 1 _dg(r)
3p!drr dr’{()+ dp} kT (1)

av(r"
dr'

For short-ranged attractions, superimposed on a hard-core potential, the derivative
15
- within the integral.

. 3
is concentrated around 7'~ R, ,sothat r' =
[} 14

g__ in the above equation, by I , the following

1
Replacing the factor 5 in front of

(crude) estimate of 2 is obtained

i

x|~
<l
S
%/‘\
- N
~
o
~
+
Dl
o |
NIE
~

4z %
—pldr'
37
Thus
BE/R~1/10

Note that this estimate is also valid whenever Z—l:[ < k,T ,thatis f Z—lj <1
P P

drl
When this is the case, the two terms in the above expression for —— almost cancel, so that

eqn. (1) s still valid. dp
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8.3 Introducing the short-ranged contribution to the diffusion eqn. (8.45) gives,

0=2D,V > { ﬁj—r_lh(f) - ﬂZth(F)} -V, -[T-7h(#) ]+ C(r)
2]

Fourier transformation, with the neglect of the shear contribution V -[ﬂ 7 h(?)} using
that VvV — ik , gives,

0=-2D, k* {ﬂj—lj—ﬁZkz}he"(kHC(k) (1
2]

where /“ (k) is the Fourier transformation of 4°“(r) , where “eq” stands for “equilibrium”
(that is p(7) without shear flow). Now consider Fourier transformation of the shear term,

I(k)= —jdfe’ik'f v, [F-7h(F)]= —ﬂE.jdfe*’“ [T-7h() ]
Since V . ek = _jpeT (with V. the gradient operator with respect to k )
I(k)= E-f-vkjdfe-’*‘fh(?) = ke eV h(k)
Hence, the full differential equation for 4(k) in the presence of shear flow reads,

0=-2D,V 2 {ﬂj—l}+ ,BZkz}h(k)+ Chy+k-Tov,nk) @
Yo

To eliminate the arbitrary short-ranged correlation function C(k) , subtract eqn. (1) from
eqn. (2),

O:—2D0Vf{ﬂj—q+ﬂ2k2}(h(k)—h"‘f(k))+l€-f.vkh(l€)
2]
Now use
010 5
keToV, =yKd 0 0 0V, =yk,—
ok,
000
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Since S(k)=1+ ph(k) ,this immediately leads to,

. 0 eff 2 eq
;/klaTS(k) = 2D (k)k* (S (k) - S (k)

2

where drl

DY (k)= Doﬁ{—_+2k2}
dp

The solution of the above equation is given in eqns. (8.50-52) in the book, and is plotted in the

figure below.
K, ‘
\/ K|
3l

=100

2=10

K,
\/ Kn.
3
Fig. 8.11: The static structure factor as a function the wave vector components where
K, =0 (upper) and K, =0 , for the dimensionless constant 4 =10, and

PE(R)_ L

R\ & 100
The most left side of the figure is the equilibrium Ornstein-Zernike static structure factor,
and the most right figure is an experimental scattering pattern with K, =0 .
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8.4 Spinodal decomposition

The only difference with eqn. (8.45) and the appropriate equation relevant for spinodal
decomposition, is that the non-stationary equation must be considered,

0, /(-
5/’1(1",1‘

7)=2D,V,? [ﬁf]—;h(aqy)—ﬂzvfh(f,qy')}v, [T-Fh(F)7)]

Without shear flow, Fourier transformation (see also exercise 8.3) leads to,

9
ot

h(l?,t):—zD"ff(k)kzh(E,t) (1
with the effective diffusion coefficient is equal to,
DY (k) = Doﬁ{d—l}+2k2} )
dp
The solution of the above eqn.(1) is,
h(k.t)=h(k.t=0)exp(-2D7 (k)k*) Q)
Those wavevectors for which D% (k) <0  are therefore unstable, or, from eqn. (2),

d—l:1+2k2<0
dp

k < /—d—lj/z =k
dp

are unstable, where k_ is “the critical wavevector”. Sinusoidal concentration variations with a
wavelength larger than 27 /k, will grow in amplitude, leading to decomposition.

Hence, all wavevectors for which,

Not all wavelengths grow equally fast. The demixing rate is, according to eqn. (2) equal to
DY (k)k*. The most fast growing wavevector k, is found from,

dro. >
%[Dﬁ(k)k 1=0

ko= |-y K
dp NG
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The growth rate is plotted in the figure below, for two different quenches. For
a deep quench, far into the unstable part of the phase diagram, where —dI1/dp
is relatively large, the growth is fast, and the fastest growing wavelength is
relatively small.

effy 2 - ‘T‘
- DEEP QUENCH N
D"k TN
7/ ! A
/ ! \
Y4 H
s ; “\l‘&
% |
% k.'“ \i
0 = - )% \5/ \i'
/ \
SHALLOW QUENCH \ k
1
\
|

Fig. 9.4: A sketch of the growth rate of sinusoidal density variations as a
function of their wavevector. The dashed curve is for a deep quench; while
as the solid line is for a shallow quench.
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8.5 The turbidity of an unsheared system

(a) For an unsheared system in equilibrium, the static structure factor in the integral
expressing the turbidity (see eqn. (8.68) in the book),

r= c,zfd(pfdesinep(k)s(1€|y’)f(e,¢)
0 0
is a function of k& = |I€| only, where,

1 (6,0) = (7, )+ (ﬁ¢-fz0)2 = (sin2 @ + cos’ g cos’ «9)

and

In case of § (12) = S%(k) , using that,
Td(p(sin2 @ +cos’ g cos’ 19) =

0
2z 2z
J desin’® ¢ + I depcos’ pcos’ 0 = %[27:(1 +cos’ 6’)} = (1 +cos’ 0)
0 0
it is immediately found that,
r:;zCTIdH(l+cos2 Q)SinHP(k)Seq (k) (1)
0
For small particles, away from a possible critical point, P(k)~1 over the entire scattering

angle range (this is the case when k,a <0.5), and furthermore §¢ (k)= S“(k=0) , forall
scattering wave vectors. Since,

kT
Seq k:O — B
(k=0) (dnj
it is found that, dp
1
7=aC.S (k) [dr(1+x*)= S?EC, S(k =0) :gﬂ'c kT
5

{35)

This equation offers the possibility to characterize the pair-interaction potential for small
particles by means of turbidity measurements, since according to,

_ 27 ¢ dv(r'
1= ,okBT——pzj-a’r'r'3 ava )g(r')
3 0 dr'

128




Solutions of Exercises in An Introduction to Dynamics of Colloids

the second order in concentration expansion of the osmotic pressure is given by

00 d _ V r
n=ﬁkBT+2—”ﬁ2kBTjdr'r'3—eXp( o)
3 0 dr'

This expression can be explicitly evaluated for a square-well potential, superimposed on a
hard-core potential, which is defined as,

o, r'<2a
V(irY=4—¢, 2a<r'<2a+A
0, r'>2a+A

where € is the depth of the attractive well, and A is the range of the attractive interaction
potential. We now have,

0, r'<2a
e =l Da<r'<2a+A
1, r'>2a+A

so that, '
dexp(—pV(r') _ ot

o 5(r'—2a)—(eﬂg—1)5(r'—2a—A)

where & is the delta function. The delta functions allow for the explicit evaluation of the
integral,

= ﬁkBT+27”ﬁszT£dr'r'3 [ 6(r=2a)~(e** ~1)8(r-2a-4)]
= ph T+ 2 kT [(2a) & - (20 8) (1))

For 2A <« 1, this reduces to,
a

= ,BkBT+2T”,52kBT(2a)3 |:1+<1—eﬂ5)3—A}

2a
We can now take the “sticky-sphere limit”, where &-—o, A —0 such that,

a=12 lim[exp(ﬁ‘s‘)—l]é — finite
£ a

A0

Hence,

. )\ 3A 1
kl_r)rol(l—eﬁ )Z=—§a

X
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so that,
_ 27 _ 1
M= pkBT+T”p2 (2a) kBT[l —ga}

and hence,

(d—lj) = kBT+8¢kBT[1—la}
dp 8

It is finally found from eqn. (2) that,

) 8
rq:CTT”[l—(s—am]

4r s . . . .
up to order ¢’ where Q= AP p is the volume fraction. Note that this result is actually
correct up to order () ,since’C, ~p~¢ -

This equation applies to the colloidal system consisting of silica particles coated with stearyl
alcohol chains and dissolved in benzene, whose phase diagram is shown in Fig.8.1. Turbidity
measurements on dilute samples can be employed to characterize the pair-interaction potential
of these particles through the single parameter &

(b) Near the critical point, S/ (k) # S“(k = 0) , contrary to the case considered in (a) for a
system of small particles. According to eqn. (8.36) we now have,

1 2
Sh=——— o k<2
BE1+(k&) R,
Using this in eqn.(1) for the turbidity gives,

r= ﬂCTTd0(1+cos2 0)sin 6 P(k) S (k)

0

2
=7zC. é—jd9(1+cos2 6’)5int9 ;2
BZ5 1+ (k&)

where it is again assumed that the particles are sufficiently small to set the form factor equal
to unity. Introducing the new integration variable,

k= 4—ﬂsin [g) =2k, sin (gj
A, 2 2

where k, =27z/2, ,andhence, dk=k, cos(gj do
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using that,

sin @ = 2sin (gj cos [g), cos 8 = cos’ (gj —sin? (gj, cos’ (g) =1-sin? (gj
2 2 2 2 2 2

the integral reads,

T=7C, 52 5 jodk k ~ 2—[£J +l(£]
Bk 1+(k§) k, 4\ k,

The integral can be ccz)nveniently rewritten, once more, by introducing the yet new integration
variable x =(k/2k,)", leading to,

! [2—4x+4x2]
fzﬂzkozzzjdx 1+x2°

where z =2k, . The integral is evaluated using the standard integrals,

1 1
Idx . =Z—21n(1+xzz)

1
jdx 1+);22 =Ziz—7ln(1+xzz)

2

J‘dx 1+x 2=Lﬁ[%(l+x22)2—2(1+x22)+ln(1+x22)}
xz° z

it follows that

T
=C., ———— G(2k
T rzﬂzkoz ( 06)

where

4427 44477 +27°
2 + 4
z z

G(z)=-

In{l+2z%}
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8.6 Self-diffusion near the critical point

According to eqn. (6.49), the short-time self-diffusion coefficient is given by,

D =D, {1+(/)dex2 g (ax)[ 4 (ax)+ 2B, (ax)]} ¢))

where, according to eqn. (6.46), the leading order terms of the hydrodynamic interaction

functions are,
1 ) 11 ’
As(rlj)z_i a| ya)
4 n; 2 n;

6
17
(o)1)
J

Note that x = (ﬂj in eqn (1). According to eqn. (8. 12),

n;

g(r)—1=(4R, for r>R,

) exp(—r/&)
r b
where, according to eqn. (8.15),
-1 -1
1 1 drl 1 1 drl
(AR))=——=—F||B—=| -ll*—=%|F =
4z p dp 4z p & dp

Close to the critical point, SdIl/dp <1 , and

any’_ &
(ﬂdﬁ] B

so that the pair-correlation function can also be written as,

1 exp(-r/¢)
4z pB X r

g(r)=1+

or, in terms of the integration variable ¥ =7/a ineqn.(1),

1 exp(—xa/ &)

ax)=1+
glan) 4z pafx X
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It follows that,

15 ¢ 15 1 K
DS=D{1-—op|dxx?-—=p| ————— || dxx exp(—xa/
s °{ 4 ¢£ 4 ¢[4ﬂﬁaﬂ2]£ p( 5)}

501
=D, {1—1.88¢—Zﬂ2/a2 H(a/g‘)},

h » _
where e Ja 2

At the critical point, £ — oo , and hence

T o1 1
H(alé=2)—> |dx—=—
(aéz)£x38

So that the short-time self diffusion coefficient D is well-behaved at the critical point.

*#** Perform a partial integration, _[deg'= fg|—jdzf'g

and use,

Idxenz ! (—en1+ajdx%j, n#l
X n—-1{ x X

ax 2 3
J-dxe_:lnx_ka_x_’_@_’_(ax) +
X I*11 2%*21  3%*31
to find that,

© - wdxe—zx
e

+§wdx e—zx e_zz Ze—Zz 22 [ _ zX + (Zx)2 (Zx)3 +Jw :l
x=2

1*11 2*21 3*3!

=¢ 2% 4 Z lmx
x 8 4 2 8
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Exercise Chapter 9: PHASE SEPARATION

Electric field-induced phase transition of the suspensions of fd-viruses

9.1 Stability and decomposition kinetics of a van der Waals fluid
(a) For a homogeneous system, N; =N 7 is independent of the “box- numbering index “ ; .

Hence, from eqns. (9.105) and (9.106),

2
A=k Tz —ln(A N— 5] Ap(nA]en2 +1N—2 w,..Az
v vl 2w ’

Since (Z consl} = const *(number of boxes) = const * (%)

i
and (with R — 7 _7") this can be written as,

Yo = [ dr [ diw(F=r|)=V [ dRw(R)=4zV T dR R*w(R)

r>d r>d r>d R>d

where, by definition,

2
A=-k,TN l+ln(V_N5) —lN—wo
N 2V

The osmotic pressure 1T is equal to,

w, = —4zV j dR R*w(R) > 0

R>d

which represents the van der Waals equation of state.

HZ_@A(N,V,T) T P 1,
ov
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(b) We start with the condition that the homogeneous system is (spinodaly) unstable,

olp.1) _,
op

Differentiation of the osmotic pressure IT , as derived in (a), leads to,

dan kT

AL 5, <0

or, with ¥~ po (is a “volume fraction”, which varies between 0 and 1),

VAL
o x (1 - x)
1
The function f(X)=———= is plotted below. The minimum value of this function is
X (1 - x)
27/4 -
50
fi(x
40 -
30
20
10
27/4
5 i ; . ;
0.00 0.25 0.50 075 1.00

13

It follows that there is no unstable state when 5% < 27 The critical temperature 7, is the

o 4
27
temperature for which Py 27 ,hence, T, = 2L
o 4 4 kyo

For temperatures below this critical temperature, the system can be unstable
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(b) In a “small” box (numbering j), the volume fraction of spheres is proportional to
@, =N,6/A ,where & is four times the core volume of a particle, A is the volume of
the box, and N ; is the number of spheres in a box j. Eqn (9.105) reads in terms of ¢, ,

‘P(f],...jN):—k‘iTTAZ{goj[lnA+ln(1—¢j)J—¢j[lnA—ln5+ln¢j]+go/.}
j
1(AY
+5(3j ;Wy‘ ¢’i¢j

or,

\}1(,717...’,71\]):_

k,T 1-9, 1(AY
A 1 Li+Ind+1|+=| —
4 ;(P{n[ ¢ J " } Z(CJ ij A

J
The boxes are on the one-hand large enough to contain many particles, in order that each box
can be considered as a thermodynamic system, and on the other hand are small enough that

®;’s change is only little between adjacent boxes.

The first requirement allows to equate the function ‘P(?l,~-~,FN) to the free energy A[(D(f )]
of the inhomogeneous system, while the second requirement allows to replace sums by

integrals, where 7 plays the role of the box-number index j,
SAf = j dr f(¥)
j

for well-behaved functions f. Hence, the free energy can be written as,
k,T - 1- ()
dfq)(r){ln(—q +In(5)+1
o I o(7) (%)

+$J'dfj'd?' w(lF =7 e (F) e (7)

Ap(F)]=-

By taking ?(7) = @(F)+30(F). with 5p(7) asmall variation of the volume fraction, we
thus have, upon expanding the first order in Sp(7) ,

Alp(F)+5p(F)|=4[o(7)]- kgT Id?5¢(7){ln(l;?;(;)j—l_;(’7) +1n(5)+1}

b [ w070 (7) + 0 (7) 30 ()]
Since

[dr [di w(|F =7 1) p(7)5p(F) = [ di [ dr* w([F - 7)o () Sp(7")
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It follows, by definition, that,
SA| p(F —o(F
[‘”E” |_ kT {h{l 4”}”]- L +ln(5)+1}
5 (F) 5 p(F) ) 1-9(F)

vz [ar w(lF -7 o ()

Hence, the chemical potential is equal to,

The mass flux is in turn equal to,

j=-DVu(¥)
=Dk, TVo(F )6(;(?){ [1;?7()}7)j—1_;(F)+1n(5)+1}
——jd"'[Vw( J ')
BE e U LA (I

o(7)(1-9(7))

The equation of motion for ¢(7) is thus (here we also denote the time dependence of ¢(7)
explicitly) as,

op(7.1)

=8V j(F,t
5 J(7,0)
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In the last term, we used Gauss’s integral theorem twice. Now consider the initial stage of
spinodal decompositions, we write,

@(7,t) =@ +5p(F,1)

with @ the volume fraction of the initially homogeneous system, and 5¢(F ,t) is the
small deviation from homogeneity due to demixing. Substituting into the above the equation
of motion, and linearization with respect to 5 (7,7)/@ , leads to,

2&p(f,t) = Dk,T& 1

. PRI KA A

e 2 . . . . .
Note that |V 5(/?(7” 4 )| is of second order, so that the first term in the original equation of
motion does not contribute.

The Fourier transform of V25¢(7 ,t) isequalto —k’5p k,t) (with k the Fourier variable),
while the integral is a convolution integral, so that its Fourier transform is equal to,

FTUdF' w(lF-71)v? 5¢(F',Z)] =—a(k)k* 5p(k.1),
where

(k) = [ di w(r)e™”

is the Fourier transform of @(r) Hence

%&o(lz,t):—Dkz %

07 + (k) |5p(k.1)

Introducing the “effective diffusion coefficient” as,

k,TS

DY (k) = D{ ~+ a)(k)}
?(1-9)

The solution of this simple linear equation of motion reads to,
Sp(k.t)=p(k,t =0)exp[ -D (k) it |

For the small spatial gradients that are present during the initial stage of spinodal
decomposition, it is sufficient to expand w(k) upto O(k?) ,

(k)= [diw(r)e ™" = dew(r)[l—il?-?—%(lz-?')z} =0, + k',
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where & = is the unit vector along the wavevector k , and I is the identity tensor, and,

| =

Wy = —jdfw(r) = —47rIdrr2w(r)

W, =— lgle:jdfffw(r)=— lé/é:%rf?[drr“w(r)=—2T”.([drr4w(r)

N | —
N | —

Note that @,,®, >0, since w(r)<0 , being an attractive potential. The effective diffusion
coefficient for small spatial gradients is thus equal to,

Deﬁ(k) =D _kB—sz—a)O +k2w2
?(1-9)
o k,To ) L ) _
Hence, D*(k=0)<0 ,when @,> _(1 _)2 ,or,since @ =po (with  Pthe number
pl-¢
density of the homogeneous system),
W, > %
p(1-p3)

which reproduces the criterion eqn (9.107). Since D/D, = S p , it follows that,

: k,T
DY (k=0)=D,B| —L—-aw,p
( ) Oﬂ{(l—ﬁé‘)z wopjl

The term between the brackets is equal to OI1/0p (see eqn.(1) for the osmotic pressure), so
that,

DY (k=0)=D,J3 6—1}
op

in accordance with the general expression in eqn (9.28). Comparing the general expression
(9.28) for the effective diffusion coefficient shows that,

D,fY=Dw, =D p w,

and hence,
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9.2 Fourier transformation of the Smoluchowski equation with respect to the displacement

gives

vzsp(m)+ﬁﬁv-jd”(vRV(R))

*[g(R)ap(f—R,t)W—dg;;R) 5,0[7—%11,)]

o . .
FT.A=dp(7.1)=D,

gives rise to the integral,

1(k)=ik-[di[dR[ V¥ (R)]f(R) op(F —aR,t)e ™, a= 1,%

This integral is calculated as follows,
1(K)=ik - [dF[dR[V,V (R)] £(R) op(F - aR,1)e e giokeh
= ,-/E.Id[g [VRV(R)]f(R)e—iaE-R J'd(?—aﬁ)&p(?—aﬁ,t)e*"m"’m
=op(k,t)ik - [dR[V ¥ (R)] f(R)e ™"

Now use that
dV(R) 5 R

[V/(R)]=R o R=%

so that,

ik - j dR[V .V (R)] f(R)e ™™

=ik - j dR R? % F(R) <j>d1% Re k%
0

=T dV(R) 1 N iakeRR
=ik | dR R* R V. ddR

’! ax T B g Vibdke
=i*-J.dRR2 dV(R)f(R) .l v, (4”s1nakRJ

0 dR —iaR akR

- 7 dV(R) |
=ik - [dR R R R’k (47 j(akR

i j e [(R) —— &Rk (47 j(akR))

where V, is the gradient operator with respect to f , and,

xcos(x)—sin(x)

()= 2L

X

140

(1)




Solutions of Exercises in An Introduction to Dynamics of Colloids

The integral thus reads,

1(k) =~3p(7,t)4na kZTdR R’ % 7(R) j(akR)

Using this result in eqn.(1) leads to,

ggp(;;,t):_peff (k)& dp(k.1).,

. _t s dV(R o _dg“(R) .(1
D ()= 1208 o]k %(zg (R),(kR)wgd_/;),(szm

As explained in the book, expanding the (Bessel) j-functions with respect to the wave vector
reproduces the classic Cahn-Hilliard theory for initial spinodal decomposition.
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9.4 Stability and demixing of confined suspensions

Consider a rectangular box where the sides have a length L. The question is at which
temperature the system becomes unstable, as compared to a system of infinite extent. The
criterion for instability is unchanged, and reads,

Deff(k)zDOﬂ{d—I:[+Zk2}<0
dp

Since the maximum wavelength that fits into the box is L, the minimum wave vector is

k., =2n /L. The system contained in the rectangular container therefore becomes unstable
when,
2
d_I;I<_2kr2nin :_2[2_7[) (1)
dp L

It is thus not sufficient that 4[1/ dp <0 like for an infinite system, but JdI1/dp

should be sufficiently negative before the system becomes unstable in a system of finite
extent. For an upper critical point, the temperature where the system becomes unstable in a
system of finite extent is therefore lower as compared to a system of infinite extent. The
critical temperature and the spinodal will therefore be lowered due to confinement.

Next, consider a square flat container (as depicted in the figure), with two long sides of length
L and a small side of length /, with L >/ .In such a case, upon slowly cooling, spinodal
decomposition will occur first along the long dimension, when the instability condition in
eqn.(1) is fulfilled.

Similarly, spinodal decomposition in the direction of the shorter distance occur when,

2
d_H < _2(2_7[]
dp I

Note that spinodal decomposition occurs only along the longer dimensions when,
2 2
- (z_ﬂ-j < d_lj <= (2_”)
/ dp L

k=—
L

— |

A
A J
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9.5 Porod’s law

The scattered intensity from an assembly of polydisperse and optically homogeneous spheres
is proportional to,

ka cos (ka) —sin (kaz)]2

1(k)~ j:daa(a)[ 5

where P (a) is the distribution of the radius a of the spheres. For large wave vectors, where
ka1 ,one can approximate,

ka cos(ka)—sin (ka) . cos (ka)
(ka)’ (ka)’

in the integral. Hence,

ka cos (ka) —sin (ka)J2
(ka)’

~ k"“j: daa™ By(a) cos® (ka)

I(k) ~ j: daPO(a)[

For wave vectors which are such that k0 > 1 with O the width of the size distribution, we
have,

[ da a™* B(a)cos® (ka) ~ [ da a™* P(a)sin® (ka)
0 0

so that,
I(k) ~ k™ %Ida a™* P(a)[ cos’ (ka) +sin® (ka) |
0

and hence,

Iky~k*<a’>

This is the famous Porod’s law that describes the scattering of sharp interfaces for large wave
vectors.
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