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PREFACE 
 
This solution book provides solutions to exercises of the book of J.K.G. Dhont “An 
Introduction to Dynamics of Colloids” as published in the Interface Science Series, 
vol II, Elsevier press, 1996. As mentioned in the preface in the book, colloid science 
is the domain of both chemists and (theoretical) physicists. The first chapter in the 
book is therefore aimed to provide a minimum mathematical background for those 
who did not have a sufficient mathematical training. A single chapter can of course 
not fully cover this gap in the mathematical background between experimentalists 
and theoreticians, and might render the exercises still problematic for those who are 
not used to work with equations.  
 
The aim of this solution book is to bridge this gap, by providing the mathematics 
needed to solve the exercises in detail. We tried to give the solutions in a way that it 
is also accessible for those who are less trained in mathematics. Every step is 
worked out in detail. Some times we added remarks on the interpretation and 
physical implications of results. In this solution book, exercises are selected that are 
not purely concerned with mathematics, but where rather the understanding of 
physics is the aim. We hope that this exercise book will lower a possible activation 
energy concerned with the mathematics involved in exercises. 
 
 
 



The content of the book is focused on equations of motion for Brownian systems (in 
particular the Smoluchowski equation), hydrodynamics, light scattering, diffusion, 
sedimentation, critical phenomena, and phase separation kinetics. The effects of 
simple shear flow on various phenomena are presented throughout the various 
chapters.  
 
Some of the original figures in the book are re-arranged for illustration whenever 
helpful within the context of an exercise. We also added some text to further explain 
the physics on an intuitive level, and mentioned some typos in the book whenever 
relevant within an exercise. 
 
We sincerely hope that you enjoy solving the exercises with the help of this solution 
book.                                                          
 
                                Kyongok Kang (k.kang@fz-juelich.de) 
                               Jan Karel George Dhont (j.k.g.dhont@fz-juelich.de) 
 

                                             
 
                                                                                                 June-July, 2013  
                                                                                  Forschungszentrum Juelich,  
                                                                                           Juelich, Germany 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids

Exercises Chapter 1: INTRODUCTION

   

                 Looking down view of the surroundings at Les-Houches, France

1.1 The sedimentation velocity of a colloidal sphere in very diluted  suspensions 
is equal to,
                                                            

where         is the shear viscosity of the solvent, and          the external force acting on 
the colloidal sphere with a radius     . The gravitational external force, corrected for 
buoyancy, is equal to  (with      the specific mass of the colloidal particle, and      that 
of the solvent fluid)

The question is what the maximum size of a colloidal particle (silica) in water can be, such 
that the particle displacement due to sedimentation is not larger than its own radius, during 
an experiment of 1 sec. For the calculation, use that the viscosity of water is 0.001          , 
the specific mass of water is 1.0             and that of amorphous silica particle is ~ 1.8            . 

The gravitational force acceleration constant is                          .

Substitution gives,
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Solutions of Exercises in An Introduction to Dynamics of Colloids

The time during which sedimentation takes place over a distance equal to     is,

Hence

So that, putting in numbers

Solving for     thus gives

    

                                                                                           
Thus, the maximum size that the particle may have in order to sediment at most its own
radius during 1 s. is equal to 574 nm.

For higher concentrations, where particles interact through a (effective) hard-core potential, 
instead of using the free mobility, one might use eqn. (7.90) for the mobility instead. 
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Jan Dhont indicated that there is an error in this exercise; the time of 1 min, as 
stated in the book, should be 1 sec.
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Solutions of Exercises in An Introduction to Dynamics of Colloids

1.9 Interaction of two charged colloidal spheres (depicted in Fig. 1.1(a))

(a) Consider a small charged colloidal particle, located at the origin, in a solvent that contains 
free ions. The electrostatic potential             is related to the free charge density            by 
Poisson’s equation as

                                                           
where       is the dielectric constant of the solvent, which, for simplicity, is assumed to be the 
same as the colloidal particle. 

The charge density is composed of two terms; one is from the colloidal particle at the origin                  
             and the other is from the solvent that may have unequal locally unequal ion 
concentrations             . 

Then          

                                                       

For simplicity, the colloidal particle is regarded as a point-like, as mathematically described 
by the delta function. The ion concentrations        are related to the electrostatic potential by 
(assuming of point-like ions) 
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Fig. 1.1: The most common kinds of pair-interaction potentials for spherical
colloidal particles: (a) the screened Coulomb potential (which will be treated in 
this exercise), that is the DLVO potential with negligible van der Waals attraction, 
(b) an almost ideal hard-core interaction, (c) steric repulsion of long polymers in a 
good solvent, where the polymers are grafted to the particle’s surface, (d) short-
ranged attraction of colloids grafted with polymers in a marginal solvent. 
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Solutions of Exercises in An Introduction to Dynamics of Colloids 

with         the number density of that species outside the double layer, where the electrostatic 
potential          is zero. The local electrostatic energy of ions of species j is equal to                 
, which is the energy in the electrostatic field generated by the remaining ions and the 
colloidal particle. 

The resulting non-linear Poisson-Boltzmann equation

cannot be solved analytically. For sufficiently small potentials (where                 is small 
compared to         ), however, we can linearize the above equation. 

Note that this is always true for large distances from the colloid, and is only true for all
distances whenever the surface potential is sufficiently small. 

Also due to electroneutrality,                                        for large volumes of the system. 

Linearization leads to the so-called linear Poisson-Boltzmann equation 

This can be seen as follows
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Solutions of Exercises in An Introduction to Dynamics of Colloids 

It is convenient to use Fourier Transformation to solve the linearized Poisson-
Boltzmann equation (see exercise 1.5) 

Fourier inversion thus leads to

Using the identity, where the angular integration are performed explicitly,

it is found that

From the residue theorem it is found that

so that it is finally found that the electrostatic potential is equal to

                                                                  with

the inverse Debye-screening length.

(b) The Helmholtz free energy of a system of two particles and the free ions in the solvent is 
the colloid-colloid pair-interaction potential. The pair-interaction force between the two 
colloidal particles is                               , where U is the potential energy and S the entropy of 
free ions in solution. Within the linearization approximation discussed in (a), for particles with 
a given, fixed charge , the total electrostatic potential is the sum of each of the separate
colloidal particles

where           are the position coordinates of the colloidal particles. 
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The local electrostatic energy density is equal to                       , so that the total electrostatic 

energy can be written equally both in real space and Fourier space as (see Exercise 1.4b)

For the non-interacting ions, the entropy is 
           

where the probability distribution function (pdf) is equal to

with the configurational partition function equal to

Expansion the entropy up to quadratic order in the assumed small quantity 

thus leads to
                                                                                           

This can be seen from (here      is not the colloid charge, but the partition function)
            

by using the expansions 
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Solutions of Exercises in An Introduction to Dynamics of Colloids

Since we are interested in the change of the entropy with the relative position of the colloidal 
particles, i.e.,                , the thermodynamic entropy term                         can be omitted. 

Furthermore since                      is a constant, it is also does not contribute to the pair-
interaction force.                                                        
Therefore the relevant entropy is

The pair-interaction potential is thus equal to 

From the Fourier transform of the linearized solution of the Poisson-
Boltzmann equation in (a), it is found that

The pair-interaction potential for electrostatic interactions through double-layer overlap is 
equal to 

Where the integration is performed using the residue theorem. This is the screened Coulomb 
or Yukawa potential.
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Note that we assumed that the charge of the colloids is independent of their
separation. This is strictly true when the degree of ionization of the chemical
groups on the surfaces of the colloidal particles is close to 100%. For partial

ionization, the local electrostatic potential affects the ionization equilibrium and
thereby the charge on the colloidal particles. Then the appropriate condition is a

constant surface potential rather than a constant charge. 
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1.11 The effective interaction potential

The effective interaction potential                is defined, for isotropic and homogeneous 
systems, which are both translational and rotational invariant, as

where         is the pair-correlation function. In this exercise, it is shown that the gradient of 
this effective potential with respect the distance r between two colloids is equal to the 
interaction force between the two colloids, averaged over the positions of the remaining 
colloidal particles. 

From the definition of the pair-correlation function of    

and where

is the one-particle pdf for a homogeneous system.

Then the pair-correlation function becomes 

Now the effective potential can be expressed in terms of the volume and partition function as 

where the 1st and 2nd terms are independent of the position         and        .  

Thus with a space differentiation with respect to       gives 
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Solutions of Exercises in An Introduction to Dynamics of Colloids

Dividing both the numerator and denominator with the partition function        gives

Here the                                   is so-called the conditional probability distribution function 
of the particle coordinates                     , for given positions of particles, 1 and 2. 

                                        

Therefore                   is the force that particle 2 exerts on particle 1, averaged over the 
position coordinates of all other particles, 3, …, N.
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1.12 The pair-correlation function            for hard spheres

The hard sphere pair-interaction potential             is defined as with a , radius of the hard core.

Using the definition of the Mayer-function 
                 
                                                                                               

it can be verified that
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Fig. 1.10 (a) The pair-correlation function to first order in concentration for hard-spheres, 

          

with  , (b) a sketch for hard-spheres at larger concentrations, and (c) for
charged spheres with a long-ranged repulsive pair-interaction potential.            
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To see this, we can use the spherical coordinate system as depicted above

   
                                                             
Then the pair-correlation function for hard spheres for low concentrations is (see eqn. (1.56))

This function is displayed and plotted in the above figure, Fig. 1.10 (a) from the book.
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1.13 Number density fluctuations

A measure for the amplitude of the fluctuations of the microscopic density is its standard 
deviation  

where                                         is the microscopic number density. 

To show that
                           

use that the microscopic density is defined as

First of all, notice that, for identical particles

with           the macroscopic density. Similarly, by definition
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Substitution of the definition (1.52) in the book of the pair-correlation function immediately 
leads to

provided that N is large. 

Now define the phase function                      as 
           

which is the number of particles contained in the volume V. Suppose that the linear dimension 
of the volume V is much larger than the distance over which the pair-correlation function 
attains its limiting value of 1. 

Integration of the defining equation for the standard deviation gives

where N is now understood to be the above defined phase function. Hence by integration of 
the above expression for the standard deviation
          

Since by assumption V is large as compared to the range over which the pair-correlation 
function tends to unity, and                                               for a homogeneous system, this 
leads to

where                  is so-called “total correlation function” and                         is the average 
density. The total correlation function thus measures the amplitude of number fluctuations in 
large volumes. 

Note that the relative standard deviation                                   tends to zero for large systems.
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1.14 This exercise is related to Chapter 4, where equations of motion are discussed. 

The pdf                for the position coordinate of a non-interacting Brownian particle at time t
satisfies the following equation of motion (EOM),

The initial condition is                             , which specifies that the particle is located at the 
origin at time           .

In this exercise we evaluate the collective dynamic structure factor, defined as

The time-evolution operator for the particular case of non-interacting spheres under 
consideration here, according to the above equation of motion, is equal
to                 .

For           , we have

since 

where the last line defines the function            , which function, for large volumes, becomes 
equal to the delta function, which is zero for           .  The structure factor for non-interacting 
particles thus reduces to

For interacting particles, this will be defined later as the “self-dynamic structure factor”. 
For non-interacting particles the collective and self-dynamic structure factors are the same. 

Written in terms of the Cartesian coordinates x, y and z, the time-evolution operator reads

2
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It is readily verified that                                                               and similarly for y and z.

Hence

Repeating the operation n times leads to

so that

Hence from eqn. (1.67) with            ,                and                   , we find that

where it is used that the pdf for non-interacting particles is equal to 1/V.

Here is a summary of the equations and results of this exercise:

Remember that all this refers to a very dilute suspension of spheres, where inter-colloidal 
interactions are neglected.

" # " # " #2
0

ˆ exp exp
nnL ik r D k ik rE ! ) E

! !! !

" # 2
0ˆ 2

0
0 0

ˆ
! !

n n n D k tLt ik r n ik r ik r ik r

n n

t te e L e D k e e e
n n

: :
)E E E E

! !

I J
! ! ) !K L

M N
3 3

! ! ! !! ! ! !

2 2 2
0 0 01 1

1 1D k t D k t D k tik r ik r
sS dX e e e e dX e

V V
) ) )) E E! ! !9 9

! !! !! !

" # " # " # " #
" # " #

2
0

2
0

2
1 1 0

( , ) ( , )

ˆexp exp exp exp

( , ) exp ( 0) ( ) expS

P r t D P r t
t

Lt ik r D k t ik r

S k t ik r t r t D k t

T ! /
T

E ! ) E

I J! E ! ) ! )M N

! !

! !! !

! ! !

1ik rf e E!
! !

1ik rg e) E!
! !

" # " #2
2

2
x y z x y zi k x k y k z i k x k y k z

xe k e
x

6 6 6 6T ! )
T

" # " # " #2
0

ˆ exp expL ik r D k ik rE ! ) E
! !! !

1X r<
! !

15 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids 

1.15 For non-interacting particles, the static structure factor is identically equal to 1 
for           .     
           .                  
We will first show this from the defining equation

of the structure factor. Since for 

as already shown in exercise 1.14, only the terms with          survive, which immediately 
leads to                 for          .

The same result is recovered from the middle expression in eqn. (1.72)
      

Since

where           is the delta function, it follows that for               , again,                .

Note that the last equation in eqn.(1.72) is obtained from

where the last integral (between the square brackets) ranges over all orientations of     (that 
is, the spherical angular coordinates), and                  is the unit vector along       , and
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Exercises Chapter 2: 
BROWNIAN MOTION OF NON-INTERACTING PARTICLES

 

    A dragonfly with a drag force in the oily solvent, taken at Juelich in Germany

2.1 Newton’s equation of motion for a spherical Brownian particle is
                

Let us first integrate once to obtain an expression for the momentum        in terms of 
the fluctuating force         . In the first step, consider the equation of motion without 
the random force

the solution of which is a single exponential

where       is an integration constant. The method of “variation of constant” is based on 
making this constant a function of time (the “constant” is thus assumed to “vary with time”), 
in such a way that the full equation of motion is satisfied. Hence     
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so that

                    

and hence

This now immediately leads to

Since                                , a second integration is necessary to obtain an explicit expression 
for the position coordinate          . Integration of the above expression for the momentum 
coordinate leads to an expression for the position coordinate involving the double integral

The integration range in the            plane is indicated in Fig.2.7 by the dashed area. The 
vertical lines in the figure below indicate the new integration directions.

                                        
               
                              Fig. 2.7 The integration range in the (t’, t”) -plane

The integration ranges can be read-off the above figure. 
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It follows from this figure that an interchange of the order of integration leads to

                  

The final expression for the position coordinates in terms of the fluctuating force is 
therefore

This is the expression that is used in the book to calculate the mean squared displacement.

                      

" # " # " # " #" # " #" #/ / ( ')

0

0 10 1 ' ( ') 1
t

M t M t tp t
r t r t e dt f t eU U

U U
) ) )!

! ! 6 ) 6 )9
!

! !

" "( " ') ( " ')

0 0 0 '

( ')

0

" ' ( ') ' '' ( ')

' ( ') 1

t t t t tt t t t
M M

t

t t t
M

dt dt f t e dt dt f t e

M dt f t e

U U

U

U

!
) ) ) )

) )

!

I J
! )K L

M N

9 9 9 9

9

! !

!

19 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids

2.3 A spherical Brownian particle with a radius of 100 nm and a mass density of 1.8            
is immersed in water, with a viscosity of 0.001             . 

Use that the friction coefficient of a macroscopically large sphere is equal to                  , 
to calculate the momentum relaxation time constant               and its corresponding diffusive 
length scale       . Also calculate the time at which the mean squared displacement (MSD) is 
equal to the square of the radius of the Brownian sphere. 

                                                
                        

Plug into the numerical values of the given quantities

The temperature is taken equal to 300 K, and the value of the Boltzmann constant is 
                                 .   

Also, the specific mass is corrected for that of water, which is 1.0          . 

Since the mean squared displacement is given by

so that the time at which the MSD is equal to the squared radius of the colloid
is equal to

This numerical example illustrates the time-scale separation that was mentioned in the main 
text of the book.
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2. 4 Brownian motion in an external force field

A constant force field        is applied to a spherical Brownian particle, such as a gravitational 
force. The Langevin equation for this case reads

On the diffusive time scale, where                ,  we can 
neglect the inertial force, so that

The average, stationary velocity resulting from the force field       is equal to                     ,
thus the Langevin equation can be rewritten as

This is precisely the original Langevin equation in the absence of a field, where now the 
momentum is taken relative to the drift velocity. Since in this co-moving frame the equi-
partition theorem holds, exactly the same analysis as without a field leads to

It follows that also in the present case with a constant force field

In order to find the probability density function (pdf) for the position coordinate, using 
Chandrasekhar’s theorem, the above Langevin equation on the diffusive time scale is 
integrated once

Comparing this with eqn.(2.29) we have the identification with the quantities defined in 
section 2.4 on Chandrasekhar’s theorem

ˆlim ( ( ) ) ( ( ) )
t

Mp t p p t p I
!"#

$ % & $ % & '! ! ! !

 
 t

( )

( ) ( ) ( )

0

2ˆ' '

f t

f t f t I t t* +
!

'

' $

!

! !

F
!

2

2
d r drM F f
dt dt

*' $ , ,
! ! !!

1dr F f
dt *

- .' ,/ 0

! !!

F
!

/v F *% & '
!!

1 2 1 2d p p p p f
dt M

*$ % & ' $ $ % & ,
!! ! ! !

( ) ( ) ( )1 1 2ˆ( ) 'X t r t t F t t t H I *
* * !

' 3 ' 4 $ ' '
! ! ! "!

0

1 1( ) ' ( ')
t

r t F t dt f t
* *

' , 5
!!!

/t M *#

21 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids 

while the fluctuating force in eqn.(2.29) is      (note that our       is the constant external 
force, and should not be confused with the fluctuating force in eqn.(2.29)  which is also 
denoted by a capital F ). The matrix       in eqn. (2.33) is thus equal to

The determinant of this matrix is

and the inverse is

According to Chandrasekhar’s theorem (2.32)

it is thus found that

where

is Einstein’s  diffusion coefficient.  Note that we used here that                       .    
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2.5 Brownian motion in shear flow

We will calculate the mean position              and the mean squared displacement                      
for a Brownian particle in a simple shear flow from the Langevin equation. The particle has 
an arbitrary initial position       .

The local shear flow velocity is equal to

The Langevin equation reads

Exactly as in exercise 2.4, it is shown that the strength of the fluctuating force is unaffected by 
the flow, so that, again (see also the discussion in section 2.7)

On the diffusive time scale, in the overdamped limit, the Langevin equation reduces to

This differential equation is solved by the method of “variation of constants”, which was 
already discussed in detail in exercise 2.1. Integration with the neglect of the fluctuating force 
Gives

where      is an integration constant, and where the exponent of the matrix is defined as (see 
eqn.(2.58))
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From the definition of         it is easily verified that                 , and hence
for all           . It thus follows that

Hence

We now turn the vector       into a function of time, such that the full Langevin equation, 
including the fluctuating term, is satisfied. Substitution into the Langevin equation gives 
(use again that                )
         

The inverse of the matrix                   is equal to                   . It follows that

and hence

Finally, the position coordinate is found to be equal to

The average position coordinate is thus equal to

The interpretation of this result is that, on average, the particle is dragged along by the flow 
with a velocity equal to the local flow velocity

The mean squared displacement is equal to 
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Using that the fluctuating force is delta-correlated it follows that the mean squared 
displacement             in the co-moving frame is equal to

where                        is the Einstein diffusion coefficient, and

In matrix notation this reads                             

with                              the mean squared displacement in the absence of flow. 

The effect of flow is measured by the difference                                         , which is the 
matrix that is written explicitly in the above expression. All components of               where 
one of the indices refers to the z-direction are zero. This is the vorticity direction, which is 
both perpendicular to the flow and gradient direction.  Diffusion in the vorticity direction is 
thus unaffected, which is intuitively expected. Also the yy-components of            is
unaffected by flow. 

The probability to move upwards in the gradient direction is equal to that for a displacement
downwards, giving on average a zero net effect. That the xy- and yx-components are affected 
by flow can be understood as follows. 

As depicted in the figure, if the particle moves downward, to lower values of its position y in 
the gradient direction, the flow will induce an additional velocity to the left. When the particle 
moves upwards, it attains an equal change in velocity in the opposite direction. 

The product of these two displacements is equal, so that there is a non-zero contribution. That 
the xx-component of                is non-zero is easily understood: when the particle happens to 
be displaced in the y-direction, the displacement in the x-direction is very much enhanced 
since the particle is taken along with the flow, precisely as was already depicted in the figure.
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2.6 In this exercise we consider a Brownian particle when one can occupy only discrete 
positions                                                  that are indexed by integers.

Suppose that the probability per unit time for a single step to the left or the right side is equal 
to       .  Let               denote the conditional pdf for the position       of the Brownian particle,
given that at time          the position was equal to      . 

For simplicity of notation, we shall take            , and refrain from the explicit notation of the 
condition in the argument of the pdf. The equation of motion (EOM) is 

The interpretation of the various terms on the right is as follows. 

If a particle resides at position           , the probability that it jumps per unit time to the
neighboring position      is      , multiplied by the probability                      that the particle 
is at position          . The product                          is thus the rate of increase of                
due to jumps from           to     . 

This explains the first term on the right hand side, and similarly the second terms account for 
jumps from          to     . The last term of the right hand side accounts for jumps away from 
position     , to the left or right, giving rise to the factor 2. 

To calculate the average displacement              , both sides of the EOM are multiplied by ,
and then a summation over all positions is performed.

The left hand side gives,

The first term on the right hand side gives,

and similarly for the remaining terms. This leads to

Since                     at time          , time integration gives  

To calculate the mean squared displacement, multiply the EOM by        and sum over all     . 
The first term on the right hand side of the EOM, as an example, is equal to
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The following EOM for the mean squared displacement is found

Integration, using that the mean squared displacement is zero at time zero finally gives

The mean squared displacement is again found to be a linear function of time.

Comparing this with eqn. (2.21), the diffusion coefficient       is thus equal to        . 

Note that the factor of “2” in the above equation and that in eqn. (2.21) both relate to 
diffusion in a single dimension.
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2.7 Translational velocity of a rod

If the orientation        of the rod is not along or perpendicular to the external force       , the 
velocity that the rods attains is not co-linear with the external force, since the friction 
coefficients      and       for parallel and perpendicular motion are not equal. 

For stationary motion, we have

For long and thin rods

Inverting the friction tensor gives the velocity in terms of the force

The cosine of the angle       between the external force and the velocity is

where                    and                  are the unit vectors along the force and velocity, 
respectively. Hence, from the above expression for the velocity in terms of the force

Hence

This result is valid also for short rods. In case of very long and thin rods, where
               , the above result reduces to
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Solutions of Exercises in An Introduction to Dynamics of Colloids

When the force is parallel to the orientation of the rod,               , or when they are 
perpendicular,               , both equations give and angle equal to zero. That is, for these 
two orientations the rod’s velocity is parallel to the external force (see also the right figure 
below). 

For other orientations of the rod, relative to the external force, the angle is non-zero.

     

   
     

       Fig. 2.5: (a) Rotation and (b) translation of a cylindrically symmetric rod. 
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2.8 The diffusive angular time scale

The thermally averaged Langevin equation (2.129) reads,

where is the rotational velocity. The solution of this differential equation is

Consider a rod that at time zero is aligned along the x-direction and the angular velocity       at 
time zero is along the z-axis, as shown in the figure below.  

                                        

The direction of the angular velocity remains along the z-direction, and only its magnitude 
decreases with time (as can be seen from the above equation), due to friction with the solvent. 

The orientation of the rod is therefore always within the xy-plane. Hence we can write

with       the angle of the orientation with the y-axis (see the figure). Hence

where       is unit vector along the z-axis. Thus

Integration thus leads to
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The angular displacement during relaxation of the angular momentum is thus equal to
    

where we used that a typical value for       , according to eqn.(2.118) is equal to

Typical values are                         ,                      and                          , from which 
it is found that 

The angular displacement during relaxation of the angular momentum is thus
much smaller than a degree.
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2.9 For a fixed orientation of the rod along the z-direction, the Langevin equations 
(2.86,87), read, on the diffusive time scale where              can be set to zero

The friction tensor is equal to (see eqn.( 2.91))

                                                                                                       

                                                      
the inverse of which is,

so that the above over-damped Langevin equation reads

where it is used that

Integration thus gives
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For the x-component it is thus found that

with                 the x-component of the perpendicular fluctuating force.

Hence, from eqns. (2.107, 112)

Note that we used in eqn. (2.107), that we only consider here the x-component of the force, 
giving rise to the factor 2 instead of 4 in the fluctuation strength. The two other mean squared 
displacements follow similarly.
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3.3 In the evaluation of the scattered intensity, the following integral is encountered
                     

In order to perform the spherical integration, we rewrite this as

where                  with       the unit vector along      . The last integral is with respect to the 
orientation of the wave vector, that is, the two spherical angles. Since the integral is 
independent of the direction of the wave vector, the angular integral can be written as

Hence

Since the integrand is an even function of k, we can replace the integral from zero to infinity 
by half of the integral from minus infinity to plus infinity. Re-expressing the sinus as a sum 
of exponential, we thus arrive at

Consider the first integral, which can be evaluated by means of the residue theorem by closing 
in the upper part of complex half plane, as depicted in the left of figure 3.3. 
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     Fig. 3.3 The integration contours for the evaluation of the k-integral in eqn. (3.36).

According to the residue theorem we thus arrive (for              ) at

The second integral is evaluated similarly, and turns out to be equal to the first
integral. Hence

Now use that (with                      )

A second differentiation gives

Performing the differentiation with respect to R and adding the various contributions leads to 
eqn. (3.37).
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3.4 The scattered electric field strength is calculated for a fixed configuration of Brownian 
particles (see Fig.3.1), which is a valid procedure when the phase change of the scattered light 
due to Brownian motion is small during the time that light needs to propagate through the 
cuvette. The time required for light to travel over a distance of the typical size of 1 cm of the 
cuvette, with water as the solvent (for which the refractive index is 1.3), is equal to

A typical diffusion coefficient for a colloid is                              

The displacement of a single colloidal particle during 0.04 [ns] is therefore

A appropriate upper limit for the relative displacement of two colloids is therefore 
2l=0.03 nm. A typical value for the scattering vector is                              , where       
                      is the wavelength of the light in vacuum. 

The change in phase shift is therefore

This phase shift is very small, and can be therefore neglected. This validates the calculation of 
the phases as if the colloidal-particle configuration does not change during the time needed 
for light to propagate through the system.

Fig. 3.1: A schematic representation of the scattering of light by an assembly of point-like 
    particles. Each of the Brownian particles can comprise many of the point-like scatterers.
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3.6 Expressing the static structure factor in terms of the total pair-correlation function,
the integral

                            

with       the scattering volume, is replaced by the integral

for non-zero wave vectors. It is thus assumed that

We calculate the integral for two scattering geometries: (i) the scattering volume is a 
rectangular box, where the incident intensity within the box is constant, and is zero outside 
the box, and (ii) the more realistic case, where the incident intensity is Gaussian.

(i) The integral for the rectangular box is equal to

where l is the linear dimension of the box and                        is a typical value of the wave 
vector. Substitution of the typical values                   and                         shows that this 
integral is quite large:            . The above claimed smallness of the integral is thus completely 
false for the rectangular scattering volume.

(ii) In this case, the incident intensity reads                                      , where r is the radial 
distance from the center of the scattering volume, and       measures the overall (constant) 
intensity of the incident light. The integral is now equal to (see section 1.3.4 in the book)

We now find that the integral is extremely small.

The conclusion is that an unrealistically sharp edge of the scattering volume gives rise to very 
large Fourier components: the actual scattering pattern now contains very intensive scattering 
rings. For the realistic case of smooth edges, the above calculation justifies the neglect of the 
integral. 
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3.7 Small size polydispersity and static light scattering

(a)  The polydisperse form factor is defined as the intensity normalized to unity at zero 
wavevector, 

             
where

is the measured “polydisperse” Rayleigh ratio for a dilute suspension. Here a is the colloidal 
radius and        is the size-distribution function.

For optically homogeneous particles, 

where

is the optical contrast.
   

      
           Fig. 3.8: The instantaneous speckle pattern of the scattered light. 
                    The circular hole in the screen is the detector pinhole.
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In order to expand around the average radius            , we use,

where                 is  the form factor of a sphere with the average radius 

    
             

The standard deviation in size is defined as 

A Taylor expansion also gives

Using the above expansions we have

Further expansion in terms of the small quantity           leads to
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This polydisperse form factor is plotted in Fig.3.11 as a function of           for various relative 
standard deviations           . As a result of polydispersity, the minima in the scattering curves 
become less pronounced.

        

                  Fig. 3.11: The logarithm of the polydisperse form factor versus 

               
                  for various values of the relative standard deviation of          , as indicated 
                  by the numbers attached to the different curves
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(b) For small wavevectors, i.e.               , the polydisperse radius           is defined as 

                 

which is the radius that is experimentally obtained, assuming monodisperse optically 
homogeneous Brownian particles. In the following we will show that to leading order in the 
polydispersity

By using the result for           of  (a), and 

it is found that 

        
Thus, for sufficiently small wave vectors, the form factor is equal to
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3.8 Small polydispersity and dynamic light scattering: second cumulant analysis

The measured (or “polydisperse”) EACF is equal to (see eqn.(3.105))

where              is the scattering amplitude and            is the size probability density function. 
For narrow size-distribution functions, the a-dependent functions (other than         ) can be 
expanded around the average value      of     . First rewrite the above expression as

where the polydisperse diffusion coefficient will be defined later. For radii close to the 
average value, the polydisperse diffusion coefficient is close to            . Hence we can 
expand

so that

provided that the polydisperse diffusion coefficient is defined as
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The standard deviation in the diffusion coefficient is now defined as 

            
            

so that the above expression for the correlation function can be written as

In order to express the polydisperse diffusion coefficient in terms of the size-standard 
deviation, we employ the Taylor expansion

The term                  vanishes by definition upon integration. A similar expansion must be 
made for the denominator in the expression for        . Hence, to leading order in polydispersity

To leading order in the standard deviation      , only the term                                  ,
resulting after substitution of the above result into the defining expression for          
contributes. Since                       , we have 

from which it thus follows that           
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Using that for small wave vectors                   , we have                      and 
is a constant, independent of the average radius, the above expression for        
leads to

Performing the differentiations finally gives

Putting things together, we thus arrive at an expression for the measured, polydisperse 
correlation function in terms of the standard deviation in the radius

This result enables the determination of the average radius and its standard deviation from a 
so-called second-cumulant fit, where a term             in the exponent is included in the fit to 
experimental data. 

        

Fig. 3.12: The polydisperse diffusion coefficient, relative to the monodisperse diffusion 
coefficient             , versus          for various values of the relative standard deviation           ,
as indicated by the numbers attached to the different curves. The radius       is related to     ,
as discussed in section 3.9.1 (see especially eqn.(3.102)).
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3.11 Form factor of a thick rod

For static light scattering by thin rods, where                   the integral ranging over a cylinder 
with its geometrical center at the origin

            

was calculated in subsection 3.10.2.  Now suppose that          is not small. Here we evaluate 
the form factor for that case where the rod has an arbitrary orientation of the rod. 

The wave vector  is now decomposed in its component                     parallel to the rod, and 
                                     its component perpendicular to the rod’s long axis. We can now write

where                 is the unit vector along      . Note that the form factor only depends on the 
direction of the wave vector through its angle       with the z-axis (see the figure below). 

                                                              

The integral thus reads, in terms of cylindrical coordinates

The z-integral is relatively simple
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where the last identity defines the spherical Bessel function of zeroth order. 

For n=0 we have

so that

Now using that

it follows that

Since the volume of the cylinder is equal to

it is finally found that
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3.12 Form factor of a thin rod
            
(a) The square root of the form factor of a cylindrical rod as obtained in exercise 3.11 is

In case of a thin rod, for which                 this is easily seen to reduce to

where the last identity defines the Bessel function        , and it is used that                       . 

Since the orientationally averaged form factor is independent of the direction of the wave 
vector, it may be chosen along the z-direction. Hence

where the new integration variables                     and                    have been introduced. 

Contrary to the form factor of a sphere (see Fig.3.7), there is no scattering angle where total 
negative interference occurs. This is due to the fact that we have a system of “polydisperse 
scatterers”, each species corresponding to a different orientation of the rods. 
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(b) For               , that is, small scattering angles, the integrand in the integral in exercise (a) 
can be expanded as 

so that    

Re-exponentiation thus leads to the scattered intensity being approximately equal to

This is the equivalent of the Guinier approximation as discussed in detail in section 3.8.1 for 

spherical colloids. The slope of the Guinier plot for thin rods is thus equal to            .21
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3.13 Heterodyne dynamic light scattering

When the scattered light is mixed with incident light directed towards the detector, the 
detected electric field strength is 

where             is the field scattered by the particles, and           is so-called “local oscillator” 
field strength from the incident field that is mixed with the scattered light. The instantaneous 
detected intensity is now

The IACF for heterodyne light scattering is therefore equal to 

where                     is the intensity of the light that is mixed in with the scattered light. Since 
the average of the oscillating field strength is zero

and the average scattered intensity is equal to                                 ,while (see page 133-134 in 
the book)

and

with       the scattered intensity, this expression reduces to

Note that for                  this heterodyne IACF is approximately equal to the homodyne 
EACF.
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3.14 For a very dilute system of Brownian spheres, where interactions between the
colloids can be neglected, the pdf in the presence of a constant external field        is 
equal to (see exercise 2.4)

where       is the displacement during the time t. In case               , according to the previous 
exercise, the heterodyne correlation function becomes equal to

The normalized electric field auto correlation function (EACF) is equal to

Introducing the new integration variable                            , we arrive at 

where                 is the stationary velocity that the Brownian spheres attain under the action 
of the external force. According to the appendix in chapter 1, page 49, on integration of 
Gaussian functions, this leads to

the real part of which is equal to

The measured heterodyne IACF is thus equal to

This correlation function is a damped exponential as depicted in the figure.
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Setting          in the equation for the IACF in the previous exercise equal to zero, it is 
immediately found that the homodyne correlation function is not affected by the velocity 
of the Brownian particles  (since                              ).  

Heterodyne light scattering is required in order to be able to measure particle velocities.

 

                            Fig.: A sketch of the heterodyne IACF
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Exercises Chapter 4: FUNDAMENTAL EQUATIONS OF MOTION

4.2 The Brownian oscillator

Two identical Brownian spheres are connected to each other with a spring, corresponding to a 
potential energy

where      and      are the position coordinates of the two spheres, and C is the spring constant. 

Define the distance between the spheres                   and the center-of-mass position
                           . Now, for example,                                                                       

where             is  the matrix with components i and j equal to the i-th component of       and 
the j-th component of       , and similarly for         .    A similar calculation for the derivative 
with respect to       thus gives     
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Smoluchowski Equation: Free Diffusion
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The Smoluchowski equation in (4.40, 41) for two particles (with the neglect of hydrodynamic 
interactions) thus reads in terms of the new coordinates

as

Now substitute the separation variables                                           to obtain

Dividing both sides with                          and equalizing the independent terms depending only 
on     and     gives

The center-of-mass thus diffuses as a free single Brownian sphere with a diffusion coefficient 
equal to half of that of a single sphere. The interesting part of this result is the equation of 
motion for              . Comparing this equation of motion with eqn. (4.59) we have the 
identification

and               . The corresponding equations of motion in (4.58, 59) are

where, as inferred at the top of page189, 

The initial conditions are
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The solution for           is simply equal to

The solution of the equation of motion for        is obtained by “the method of variation of 
constant” (see also exercise 2.1). First solve the homogeneous equation,

The solution of which reads

where        is an integration constant. We now make this constant a function of time (hence the 
name “variation of constant”), such that the full inhomogeneous equation is satisfied. 
Substitution into the equation of motion gives

                                                                                

so that

and hence

We thus finally find that

where we used the initial condition, which implies that                 . The mean squared 
displacement is thus found to be equal to

Note that there is an erroneous factor of 2 in the exponent in the given solution in the book. 
Since the Hamiltonian of this Brownian spring is quadratic in R, since                          , it is 
expected that (see exercise 2.2)                                               , which is in accordance with 

the above result (rewritten in terms of          ).
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4.3 Diffusion in an inhomogeneous solvent

For very dilute homogeneous suspensions, the diffusion coefficient is equal to 

Now consider an inhomogeneous solvent, so that the diffusion coefficient is different at each 
position. Since there is now a direction that is associated with the inhomogeneities, the 
diffusion coefficient is not a scalar but rather a tensorial quantity. The flux is now equal to   
                                , so that the Smoluchowski equation is

The average velocity is

The integral can be rewritten, using Gauss’s integral theorem, with the neglect of surface 
contributions

Applying Gauss’s integral theorem once more gives

Hence, the velocity induced by the inhomogeneous solvent is equal to

As an example, consider a solvent that consists of a mixture of water and ethanol, where the 
composition changes in the x-direction, say. This leads to a spatial change of the viscosity. In 
this case

where      is the unit vector along the x-direction. To leading order in spatial gradients, in the 
evaluation of the average, the pdf can simply be taken as a constant, so that the velocity is 
equal to

Note that the particle moves from regions of high viscosity to regions of low viscosity.
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(a) For spherical particles, the hydrodynamic torques are zero in the absence of an external 
field. From eqn.(4.128)

Since the torque on the sphere is zero, this implies that

and hence

                                                                         ,

From the last equation it follows that the orientational velocities are equal to

Substitution into the above equation for the forces gives
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(b)  As a sphere translates through a fluid, they transfer energy to the fluid. Since energy E is 
“distance times force”, we have for the energy per unit time dissipated to the solvent

where the frictional force is the force that all the particles exert onto the solvent, which is 
minus       . Hence 

Since the velocity is equal to

it follows that

Introducing the abbreviations

and the 3Nx3N dimensional diffusion tensor

it is thus found that

for any            . A tensor with this property is referred to as “positive definite”.
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4.5 The direct torque on a rod

Consider a very thin and long rod, the core of which we approximate as a line. Let     be the 
contour variable,                          . The position of a line element on the core is given by      , 
where      is the orientation of the rod. 

Let                   be the force on line elements (either due to an external field and/or interactions
with other rods). When the orientation of the rod is changed by a small amount   , the 
accompanied change in potential energy is (see the figure)

Using that                                                                     and                                         it is easily 
verified that,

where    is the torque, which is equal to

The first equation defines the torque (with       the volume occupied by the core), while in the 
second equation its approximation for the very long and thin rod is given. 

On the other hand we have                          , where       is the gradient operator with respect to 
the Cartesian coordinates of       . Comparing to the above result we thus have

Since      is an arbitrary vector, but always lies in the plane perpendicular to      , the 
conclusion is that the components of          and              in that plane are equal. 

The vectors are thus equal when they do not have a component along    . For           this is 
immediately clear, since it is perpendicular to   . That         is also perpendicular to   
follows from                                        , since    is constrained to have a fixed length of unity.
Hence

Taking the outer product of both sides, noting that      is perpendicular to     , and using the 
above relation for an outer product of three vectors, leads to

with       the rotational operator. This is the rotational analogue of the translational result     
                   for the force.
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û1 û
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4.6 To evaluate              the following steps can be made

The components of the rotational operator are, by definition

where the partials denote differentiation,                      , that is,       is the differentiation with 
respect to the      component of      . Since

and     

                                                                                 

which follows from the above component-wise representation of the rotation
operator, we have

From the same component-wise representation, it also follows that

so that

The other components are calculated similarly, leading to                       .    
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For an arbitrary vector     the     component of             is

For the different values of  i , this is, according to the component-wise notation of the rotation 
operator

so that

                                                                                 
This concludes the proof of the three identities  

These and other identities are necessary for calculations of ensemble averages

a!

" # " #
3

ˆ ˆ
1

ˆ ˆ ˆ ˆ ˆ ˆi u i n u in
n

a Ru a u u a u u
!

E < E _/ ! _/I JM N 3! !

" # " #
" # " # " #
" # " # " #

1 2 3 3 2 2 3 3 2

1 3 2 3 1 3 1 1 3

1 2 2 1 3 1 2 2 1

ˆ ˆ ˆ ˆ1; 0 ( ) ( )
ˆ ˆ ˆ ˆ2; 0 ( )

ˆ ˆ ˆ ˆ3; 0 ( )

i a a u a u a u a u
i a u a a u a u a u
i a u a u a a u a u

! E 6 E 6 E ) ! E ) E

! E ) 6 E 6 E ! E ) E

! E 6 E ) 6 E ! E ) E

2 3 3 2

3 1 1 3

1 2 2 1

ˆ ˆ
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

a u a u
a R u a u a u a u

a u a u

E ) E' (
* +E ! E ) E ! _* +* +E ) E, -

! !

ˆ ˆa RuE!thi

2

2

ˆ2
ˆ ˆ ˆ2

ˆ ˆ ˆ

r r I
R u u
a R u a u

/ !

! )

E ! _

!!

! !

61 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids 

4.7 Small angle depolarized time resolved static light scattering by rods

In this exercise we consider a dilute suspension of a rigid, rod like Brownian particles which 
are strongly aligned in the z-direction by means of an external field. The external field is 
turned off at time           . After a long time the rods attain an isotropic distribution. We are 
considering here the kinetics of relaxation to the isotropic state after turning off the external 
field. Experimentally, the rotational relaxation kinetics can be measured by means of
depolarized light scattering. The polarization direction     of the incident light is chosen in the 
z-direction, which is along the direction of alignment of the rods at time zero. The polarization 
direction      of the detected light is chosen in the x-direction. 

We consider small angle light scattering such that             , where       is the wave vector and        
is the length of the rods. The ensemble averaged scattered intensity is given by eqn (3.131) for 
the anisotropic structure factor

For               , the Bessel functions are essentially equal to unity; while for non-interacting 
rods only the term where             survive. Hence

The scattered intensity is thus a strong function of the orientations. Since these change with 
time, the scattered intensity R is time dependent, which characterizes the relaxation of 
orientational order. 

The time dependence of this depolarized small angle scattered intensity is calculated form the 
Smoluchowski equation 

Since the quantity            is independent of the position coordinates of the rods, according to 
Gauss’s integral theorem, only the rotational contribution            in the Smoluchowski
operator         contributes. Multiplying both sides
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of the Smoluchowski equation by          , and integrating, we thus arrive at the following 
expression for the time dependence of the scattered intensity

where the integral ranges over all orientations of      , and we replaced the indices z by 3 and x
by 1 (and later we will replace y by 2). In the last line we used Stokes’s theorem in the form

Using the same steps as in exercise 4.6, we find with some effort that

The details of the derivation of this result are given at the end of this exercise. Here,       is the 
gradient operator with respect to the      component of       . It is thus found that

In order to explicitly solve this equation, we need an expression for              . This can be 
obtained similarly as the above expression, by multiplying both sides of the Smoluchowski
equation by        , and integrate

Again using the above expression for        , it is found that

This equation can be integrated by means of “variation of constants” (see exercise 2.1; details 
are also given at the end of exercise)

Substitution into the equation of motion for            , which can be integrated by “variation of 
constants”, to give (details are again given later in this exercise)
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This equation describes the time dependence of the depolarized, small angle scattered 
intensity during orientational relaxation.

Let us now discuss the mathematical details (i) for the derivation of the explicit result for the 
squared rotational operator, and (ii) on “variation of constants” for the integration of the 
equations of motion for                and                   .

The rotational operator is, by definition, equal to, 

and hence

Now

and similarly

                                                                                 
    

Adding these three terms leads to the expression that we used for the squared rotational 
operator (note also that                             )

Next consider the equation of motion
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2ûG R

2 2
2 2ˆ ˆ2 6r

d u D u
dt

I J! )M N

2 2 2
1 2 3ˆ ˆ ˆ 1u u u6 6 !

64 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids 

The homogeneous equation reads

the solution of which reads

The integration constant A is now considered a function of time (hence the name “variation of 
constants”), such that it satisfies the full equation of motion. One finds after substitution

Hence

Since at time zero we have                  it follows that the initial value of A is zero:
                             . Thus

Substitution of this result in the equation of the motion of                   gives

Again, first the homogeneous equation is solved

which gives

The integration constant is again considered now a function of time such that it satisfies the 
full equation of motion. Substitution into the equation of motion
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leads to

and thus

                                                                                 

Since                                 , this reduces to

         
We thus arrive at

This concludes the mathematical details in the derivation of the time dependence of the 
scattered intensity.
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Exercises Chapter 5: HYDRODYNAMICS

 

                                                                                                            San Francisco, CA, USA

5.4 The effective viscosity

On a length scale that is large in comparison to the size of the Brownian particles, a flowing 
suspension can be described as an “effective fluid” (see the figure). The Navier-Stokes on 
such a coarsened length scale is that of a mono-component fluid, where the viscosity is an 
“effective viscosity”. The stress tensor is thus written as

where       is the coarse-grained  suspension velocity and  P the pressure.

The effective viscosity       depends on the volume fraction of colloids and the type of inter-
colloidal interactions. In the present exercise we calculate the effective viscosity to leading 
order in concentration. 

 

! "# $ ! " ˆ( ) ( ) ( )
Teff effr U r U r P r I%& ' ( ' )*

! !! ! ! !

eff%

U
!

Free D
iffusion

Sm
oluchow

skiEquation: Free D
iffusion

67 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids

                           

Fig. 5.10: Left: The flowing suspension on a length scale large compared 
         to the size of a Brownian particle. Right: A blow up of a fictitious
         volume element, showing the flow on a length scale smaller than the size
       of the Brownian particles. The dotted straight line indicates the flow
       velocity gradient pertaining to the effective flow.

For non-interacting Brownian particles, the stress tensor at position       is equal to 

where       is the position coordinate of colloidal particle j, and                  is the stress 
generated by a single Brownian particle. For non-interacting colloids, the coarse-grained 
stress tensor is equal to

The stress tensor within the solvent is equal to

Here,      and      are the solvent velocity and pressure on the small length scale, much smaller 
than the size of the colloidal spheres. At this point, we have to make the distinction between 
volume elements within the solvent and the core. Let       denote the volume occupied by a 
single colloidal sphere with its center at the origin. The effective stress tensor is now written 
as
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The volume              is occupied by solvent, for which the above formula for the stress tensor 
is valid. The integral over the volume        occupied by the core can be cast into an integral 
over the surface area of the core, just inside the solvent. To this end we use the mathematical 
identity (summation over  n   is understood)     

From Gauss’s integral theorem we thus have (with         the surface of       )

The body force                 is zero in a stationary state, or more generally, on a time scale that is 
large to the elastic relaxation time of the material of the colloidal core. The last integral 
therefore vanishes, so that, apart from pressure contributions

The coarse-grained values of gradients of the suspension velocity       are, similarly to the 
coarse-grained stress tensor, defined as a spatial average of the corresponding microscopic 
flow velocity  

As before,       is the solvent velocity. Hence

where       is the unit normal vector pointing out of        . 
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By Gauss’s theorem

so that the above expression can be rewritten as

Let       be an arbitrary larger volume that contains       (see the figure), and consider 

The normal vectors are always assumed to point outwards the volumes. According to Gauss’ 
integral theorem, this integral is equal to

Since, as before,                           , and the stress tensor drops against the last terms (apart 
from pressure contributions), the integral is thus zero. This implies that we can use, instead of
        , any surface area           that encloses      . Hence
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Without loss of the generality, we can take           as a spherical surface with an arbitrary large 
radius and with the colloidal sphere at the origin.

Since the force on a single, non-interacting sphere is zero, it follows from eqn. (5.109) that

where       is the symmetric part of the velocity-gradient tensor

Since        is the surface area of a sphere with arbitrary large radius     , the surface area of 
which varies like      , all terms in this expression for the solvent flow velocity that vanish 
faster than      can be neglected. The relevant expression is therefore 

It follows that (again not denoting irrelevant terms)

which leads to

where it is used that       is traceless (                                    ). The effective stress tensor is 
thus found to be equal to

where the integral now ranges over the unit spherical surface (the spherical surface with unit 
radius). The angular integrations are evaluated, using that
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The final result is

so that the effective viscosity is equal to

In the last equation we introduced the volume fraction of colloids

There are two things to be noted about the above derivation:

- This formula is only valid for low concentrations, where inter-colloidal interactions are not 
important. In this case of non-interacting colloids, the mere presence of the core induces an 
additional stress that is proportional to the number of colloids. Interactions determine the 
second order in volume fraction dependence of the viscosity.
-It is also assumed that the core of the spherical colloid is not deformed by the applied shear 
forces, or by any other external field. An additional external field that exerts a torque on the 
sphere in-validates the above expression for the effective viscosity. In using eqn. (5.109) is 
has been assumed that the sphere is torque-free. In the presence of an external field that acts 
with a torque on the colloids, eqn. (5.109) must first be extended to a non-zero torque.
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5.5 Oseen’s approximation for hydrodynamic interactions

For point-like Brownian particles, the hydrodynamic force density is concentrated at the 
origin of the spheres

Let us start with the fluid flow velocity that is equal to

where        is the force per unit area that surface elements of particle j exert on the solvent. 

For            the above formula leads to divergence problems in case j=i when the delta-
representation in the first equation for point particles is directly substituted. We therefore 
isolate the term for j=i from the sum 

In the sum we can substitute the very first formula, omitting the term for j=i

The first integral in the above equation is rewritten in terms of a surface integral

where now           is the force per unit area which surface elements of particle i exert on the 
solvent. As shown that in appendix A (in Jan’s book) 

Now operate on both sides of the above expression for the flow velocity with the operator

According to the above mathematical identity we have
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Since for stick boundary conditions we have

the same integration of the velocity gives

We thus arrive at

which can be rewritten as

with

where it is used that the Oseen tensor is equal to

                                              

This is a good approximation for hydrodynamics interactions when the distance R between the 
spheres is much larger than their radius a (as sketched in the above figure).
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5.6 Sedimentation of two spheres

Consider two spheres in a fluid, which are subjected to a gravitational force that is equal for 
both spheres. We consider in this exercise the stationary velocities that the spheres attain. 
The velocities of the two spheres are equal to

where         is the hydrodynamic force on sphere j. In the stationary state the total force on the 
spheres is zero, so that the gravitational external force        is equal but opposite in sign to 
both      

Hence

Since

it follows that the velocities of the two spheres are the same: 

Within the Oseen approximation for the hydrodynamic interaction functions we have

The velocity is then given by

This expression can be inverted in order to express the force in terms of the velocity. We have 
to invert a tensor of the form                                . 
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Use the following Ansatz for the inverse tensor

Now use that                                              to evaluate

so that
              

Thus

In our case

so that, to leading order in

Using that                            , we thus find
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Consider now two particular configurations of the two particles:

(a)       and      are co-linear (see figure (a) below). In that case 

and hence 

The velocity is thus co-linear with the gravitational force, and the friction coefficient is less 
than              , so that the spheres sediment faster than a single sphere for a given external 
force field. 

 

(b) and       are perpendicular (see figure (b) below), so that                .
The force is now equal to

Again the spheres sediment faster than the single sphere, in the absence of other spheres. 

                             

In fact, since                                                      , where      is the smallest angle between      
and     , the friction coefficient is smaller than               for all configurations.

Note that the force balance equation used here assumes that the two spheres are at a 
sufficiently large distance, such that direct interactions (through a potential, for example due 
to surface charges) are absent.
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5.8 Hydrodynamic interaction of two unequal spheres

Consider two spheres,  i and  j , with unequal radii         and     , respectively. Let us discuss 
the first few terms in the reciprocal distance expansion of hydrodynamic interaction matrices.

(a) We will show that the Rodne-Prager matrix is given by
 

Everything that is done in the book is concerned with equally sized particles. Here two 
particles (i and j) are considered with different radii       and         (            ). Let     be the 
velocity of particle of i . It induces a velocity field, in the absence of particle  j , according to 
eqn. (5.36)

where       is the position coordinate of sphere i.  The velocity of sphere j that is at the 
position of        , is according to Faxen’s theorem, eqn. (5.60)

where        is the gradient operator with respect to      .  Using the identities

it is readily found that

where                    .
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Hence

Within this zeroth order reflection

so that it is found that

with

(b) The flow field of sphere i is reflected by sphere j . The reflected flow field               from 
sphere j back to sphere i is, according to eqn.(5.92), equal to

where

is the flow field that originates from the moving sphere i in an otherwise quiescent solvent. 
In the present case,            in eqn.(5.80)  for the calculation of             ,   is equal to        ( a 
moving sphere in an otherwise quiescent solvent is equivalent to a sphere at the origin in a 
solvent that uniformly flows in the opposite direction). Eqn.(5.80) then predicts the resulting 
flow velocity induced by the sphere when it is inserted at the origin in the uniformly flowing 
solvent.
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Since the velocity of the sphere is equal to                         , eqn. (5.80) gives the above given 
expression for               . Explicit evaluation of this expression, using the first entry in table 
5.1 and the defining expression

leads to the given expression for            in (a), as it should.

Next consider the evaluation of             . We are only interested in the leading order expansion 
with respect to             , so that only the leading order contributions of the connectors need to 
be considered. 

Since                              , it follows from table 5.1 on page 265 and the table 5.2 on page 299 
that, up to leading order (note that is Faxen’s theorem     will be taken equal to     ):

          

where                 . As can be seen from the table 5.1, the remaining terms are of higher order, 
and can therefore be omitted. Also, to leading order (see (a))

According to the equation that we had for              , we thus have to leading order in

Now, according to the formula for        on page 259, again to leading order, this results in a 
zero (note that the force         in the formula on page 259 does not contribute to          , and can 
therefore be omitted here). Since the leading terms cancel, we have to resort to the next higher 
order terms                  .
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Keeping the leading order terms in the connectors, and noting that 

                                                  
we thus arrive at

where the first line corresponds to          , the second line to          and the third to          . 

Since                          , the first term cancels against the last term.

Hence, to leading order we get
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the velocity of sphere I resulting from the reflected flow field is found to be
equal to (contraction with respect to          and     is taken here)

Keeping again only the leading order terms finally leads to

Hence, by definition we find that
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5.9 Friction of a rod in shear flow

(a) Consider a rod with its center at the origin and with an angular velocity     . Similar 
arguments as for a rotating rod in a quiescent fluid can be used to show that the force on a 
bead  i is proportional to its velocity relative to the local shear flow velocity          .

The friction forces parallel and perpendicular to the rod axis are proportional to the velocity
            relative to the local shear flow velocity          .  

The force           on bead j along the axis of rods is therefore

while the force perpendicular to the long axis is

The problem now is to determine the constants        and        . Since for long and thin rods  
                  , the total force is thus

According to eqn.(5.116) we have 

where            is again the flow that is generated by the remaining beads, in the absence of 
bead j. Again, the first term is the Stokes friction contribution to the force in an otherwise 
quiescent solvent, and the second term is due to the field generated by the other beads. The 
same reasoning to arrive at eq. (5.119) now leads to

Now the hydrodynamic torque is defined as
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Since                            , we have

where

In the case of              ,          must be equal to the constant C in eqn.(5.130), that is,         is 
nothing but the rotational friction coefficient in eqn.(5.134).

Alternatively the sums in the previous equation can be calculated, as in the book (see eqns.
(5.121, 5.122)
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(b) Consider a rod in uniform translational motion with a velocity      , without any rotation. 

The force on bead  i is again proportional to the relative velocity of that bead to the local 
imposed shear flow velocity. Similar to (a), the force is decomposed in a component parallel 
and perpendicular to the rod’s long axis leading to a total force equal to

In the second line we used that                       , where      is the position of the center of the 
rod. The total force on the rod is thus equal to

where

Without shear flow, it follows that        and       are nothing but the translational friction 
coefficients given in eqn. (5.125, 5.126). 

The translational velocity of a rod in terms of the hydrodynamic is found by inversion of the 
formula for the force in terms of the velocity

where the friction coefficients are those for motion in an otherwise quiescent solvent
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5.10 Friction of a long and thin rod, rotating around its long axis

Here we consider a rod rotating along its long axis (see the figure below), in an otherwise 
quiescent solvent. As before, the rotational velocity is denoted by       while its center is at the 
origin. For a rod rotating along its long axis, the angular velocity is parallel to the orientation      
   of the rod. The positions of all beads remain unchanged, and each bead rotates with the 
same angular velocity. 

                                 

To obtain the friction coefficient of this rotational motion, Faxen’s theorem for rotational 
motion of a single sphere can be used

where       is the hydrodynamic torque on bead j, and             is the flow velocity due to the 
remaining beads, in the absence of bead j. The fluid flow field that originates form a single 
rotating sphere is 

which is zero at the positions                  . The conclusion from this is that hydrodynamic 
interactions between beads are in this case not important. Only reflection terms come into 
play here, which are of lower order in the inverse aspect ratio. 

The fluid flow field            that bead j experiences due to the rotation the other beads is small, 
and tends to zero for large distances between the two beads. This implies that for long and 
thin rods, hydrodynamic interactions between the beads may be neglected, so that only the 
Stokes friction term (the first term) is of important. 

! "03
0

1 1
2

h
j j j ju r

D
#

$%
& ' ( ) * +
! " ! !

! "
3au r r

r
, -' &+. /0 1

!! ! !

ˆ~r u&
!! #

&
!

û
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Since hydrodynamic forces on the beads are thus equal to that of single rotating sphere, 
the torque on the rod is equal to the sum of individual bead-torques, and hence, 
according to Faxen’s theorem

where N=L/D is the total number of beads. Hence

with         the friction coefficient for parallel rotation

This friction coefficient is to be compared to the one for perpendicular rotation, as considered 
in the book

The ratio of the two is very small
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Exercises Chapter 6: DIFFUSION

 

                 Courtesy of Guy Fontdeville, Int. Graphics GmbH, Germany

6.1 Non-Gaussian behavior of displacements

For a Gaussian Brownian displacements, the self-dynamic structure factor
was shown to be related to the mean squared displacement               as 

To discuss the non-Gaussian contributions, we start with the definition of the structure factor 
(with                                 )

For an isotropic system, the pdf                depends only on the magnitude of the displacement        
,     , not on its direction. Integration with respect to the direction of         can be done as 
follows (with                  )
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Then use the series expansion of sin(x) as

to obtain

where

and where it is used that normalization implies 

Re-exponentiation of the above formula, using that                                  , it is found that, 
again up to order 

We will now show that for a Gaussian pdf, the terms          vanish. The Gaussian form reads

where     is related to the mean squared displacement.  Hence
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and

and therefore

This indeed shows that the higher order wave vector dependence vanishes for a Gaussian pdf.     

The experimental determination of the non-Gaussian terms goes as follows: 

Plotting                            as a function of       , which gives a straight line.

According to the above expression for the structure factor we have

The intercept of the straight line gives                  , while and the slope characterizes the non-
Gaussian contributions to the pdf.
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6.4 Gradient diffusion

Without hydrodynamic interaction, the first order in volume fraction coefficient is

where is the pair-correlation function to leading order in concentration.
              

In this exercise we consider the case where, in addition to hard-core interactions, there is an 
attractive square-well interaction potential

where       is the depth of the square-well, and        is its width.  

This potential is sketched in the left figure above. Note that            .

We need to evaluate the combination                                in order to evaluate the integral. 
Since

we have

where       is the hard-core part of the potential. Noting the right figure above (where we have 
                    ), 
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where     is the delta distribution. This result is obtained from the fact that the derivative of a 
function that makes a jump, is equal to the delta distribution at the coordinate where the jump 
occurs, multiplied by the height of the jump. The first contribution (equal to 8) is the hard-
core contribution, while the second term is due to the attractive square-well potential.

The equation of motion for the density thus reads

                                                                      with

Question: Is diffusion enhanced or slowed down due to attractive interactions? 
For           , that is                  , the attractive potential is seen to lower the diffusion
coefficient. Attractions generally diminish the diffusion coefficient. 

The combination                     can be made negative for strong attractions, which implies that 
the gradient diffusion coefficient is negative, so that gradients in the density increase their 
amplitude in time. Particles now diffuse from regions of low concentration, to regions of high 
concentration, which is commonly referred to as “uphill diffusion”. This is the case when the 
system is thermodynamically unstable. In that case, the system does not relax to the 
homogeneous state, but rather develops inhomogeneities. This is the initial stage of phase 
separation. 

Up to first order in concentration, a negative diffusion coefficient is nothing more than a 
formal result. When the first order in volume fraction contribution is now large in magnitude 
than the zero order term, the higher order terms in concentration cannot be neglected. This 
exercise can be a good practice for the calculation of the spinodal phase separation, which 
will be the part of the kinetics of the phase separation in Chapter 9. 
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6.5 An effective medium approach

To within an effective medium approach, it is tempting to identify an effective friction 
coefficient           , for dilute suspensions, which is defined as

                                                                         where 

This friction coefficient is interpreted as the friction coefficient of a sphere that includes 
interactions with other spheres. 

The true friction coefficient, to leading order in concentration, has been derived (see 
eqn.(6.129)), with the result

This is on odds with the first equation. Although the difference (2.50 instead of 2.11) is not 
large, there is a fundamental reason why the effective medium approach is wrong. 

The contribution          in the effective medium approach is independent of the type of 
interactions, and is fully determined by the stress that is generated by a single sphere in shear 
flow. The contribution         in the exact expression for the effective friction coefficient does
depend on the type in interactions (this particular value is for hard-sphere interactions). 

Effective medium approaches can be accurate for large concentrations, where inter-particle 
interactions are important for both the effective viscosity and the effective friction coefficient. 
A very early version of an effective medium theory is due to Brinkman.
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6.6 Long-time self-diffusion without hydrodynamic interaction

In this exercise we repeat the analysis of section 6.7 with the neglect of hydrodynamic 
interactions. This simplifies the calculation considerably.

The thermally averaged velocity of the probe particle number 1 is 

Without hydrodynamic interactions we have
                                                        

                                                                                                                      (1)

so that
                                                                                                             
                        
Since there is a force balance

the average velocity can also be written as

                                                                                                                       (2)

Note that, according to eq.1 with i=j , the first term                  is noting but                      ,
which corresponds to the statement in (a) in the book. In the present case, the above equation 
is written as
                                                                                                                       
                                                                                                                       (2b)

where
                                                                                                                        (2c)

In order to calculate the averages, we have to solve the Smoluchowski equation, which reads, 
neglecting hydrodynamic interactions
                                                                                                                   
                                                                                                                       (3)

Here, P is the pdf with respect to which the averages must be calculated. We make the same 
expansion as in the book of the pdf to leading order in the 
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external force

where                                    is the pdf without the external field (with V the volume of the 
system). Substitution into the Smoluchowski eqn. (3) gives

up to linear order in the external force. This is equivalent to
                                                                                                               
                                                                                                                      (4)

For hard-core interactions, where
                                                                       for

we thus have

Now let                          with                        , so that

and hence
     
           
In spherical coordinates this reads

and hence

With the trial function                      , where       is the constant, one finds after substitution that   
                    so that the Ansatz is a solution for         

                                                         
                                                                    
                                                                 for                                           (5) 
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The constant C has yet to be determined. This can be done through integration of eqn. (4)  
from                    to                    , where     is an arbitrary small length. To do this, note that 
there are terms in the Smoluchowski eqn.(4) that exhibit a delta-singularity at r=2a. These 
contributions give a finite contribution on integration, while continuous contributions, or 
terms that show a finite jump discontinuity, give a zero result for vanishing    . Note that, 
for hard-core interactions

(i)

(ii)

(iii)

Using these identities, integration of eqn.(4) from                    to                       for vanishing
   , leads to

From eqn. (5) it thus follows that                    , and hence

which is the result (b) in the exercise. 

Since we now have determined the pdf, we can calculate the averages in eqns. (2c). Since the 
interaction potential is the sum of pair-wise potential of two different particles as

and hence

it follows that
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with                . .

Substitution of the pdf that we found gives, for sufficiently large numbers of particles 
(                )

Since                                                                  , angular integrals render the first contribution 
as zero. The second terms gives (with                       ; note that         is along the z-direction)

Both integrals can be easily calculated, leading to the statement (c) in the book

where the volume fraction is defined as                        .
                       .

Last the Brownian velocity in eqn. (2c) is equal to
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Since              is constant (being proportional to the macroscopic density), and thus leads to 
the result (d) in the exercise

It is thus found form eqn. (2b) that the total averaged translational velocity is

By definition, the effective frictional coefficient is thus equal to 

and therefore, from Einstein’s relation                    the long-time self-diffusion coefficient is 
found to be equal to

This expression neglects quadratic and higher order terms in the volume fraction.
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6.11 Depolarization of light by scattering

The scattering amplitude        of an optically homogeneous, thin and long rod (like fd-viruses) 
is proportional to 

Suppose that the orientation     of the rod lies the x-z plane, which is spanned by the 
polarization directions      and        of the incident and scattered radiation, respectively (see 
the figure below). The polarization of the incident light is along the z-direction, and of the 
scattered light along the x-direction (see also Fig.6.18 in the book)

Let      be the angle between     and the x-axis (as depicted in the figure below).

The dipole that is induced in the core of the rod is proportional to            , which is in turn 
proportional the scattered electric field at large distance from the rod. The component of the 
detected scattered electric field is along          , that is, the detected scattered electric field 
strength is proportional to                  .

The scattered intensity is thus proportional to                       .  Note that there is a mistake in 
the exercise in the book, in that the square of the electric field is not taken to arrive at the 
intensity. From the above expression for the scattering amplitude we get

where      and       are the x- and z-components of     , respectively.

In terms of the angle     , these components are given by

so that
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The scattered intensity amplitude I is therefore

The maximum scattered intensity occurs for those angles such that the following conditions 
are satisfied

Performing the differentiations, this gives

and

The first condition gives the solutions                                  . Since                , the only relevant 
solutions are                                   . The second condition selects the solutions which 
correspond to a maximum in the scattered intensity (the remaining solutions of the first 
condition correspond to a minimum). The maximum scattered intensity thus occurs when
                              

                                                                     and      

These orientations are depicted in the figure below.
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6.12 Orientational relaxation of rods

Here we consider an assembly of interacting rods which are oriented along the z-axis at time
         , and calculate the average orientation 

after release of the constraint that keeps the rods aligned along the z-axis. Using eq.(6.243) 
immediately leads to

where it is used that                                     , and                     is the initial orientation. Note 
that there is a mistake in eqn (6. 243): the pre-facto                           is not correct, and should 
be omitted. Now use orthogonality of spherical harmonics

so that

According to eqn. (6.242), the coefficient         is equal to

From eqn. (6.240) and eqn (6.245), we get eqn. (6.246) as the mean-field approximation of 
this coefficient
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Substitution thus leads to

where a partial integration has been done. This is eqn.(6.247) where both p is 1 and q is 0.
Since

so that

Using again a similar mean-field approximation

Since the average         refers to free diffusion (just like the pdf        ), we have, according 
to eqn. (2.141)

and therefore

We thus obtain the following mean-field result for the orientation
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Introducing the new integration variable                   this gives

with 

where                          is the volume fraction of rods. Finally, introducing the function

the average orientation can be written as

Since G<0 , orientational relaxation is faster for higher concentrations. This is due to the 
repelling interactions between rods (note that the expression for the torque that we used is 
valid for hard-core interactions).

    Fig. 6.24: The z-component of the average orientation as a function of time.       
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Exercise Chapter 7: SEDIMENTATION

 

7.1 The deviatoric part of the force that the fluid exerts per unit area on the surface of a 
translating sphere in an unbounded incompressible fluid is equal to (see eqn.(5.6)) 

The fluid flow velocity is given in eqn. (7.19)

First we show that 
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According to the above expression for      , there are four different contributions 

A little effort shows that

Hence

which reduces for           to (summation over repeated indices is assumed here)

The deviatoric part of the force is thus equal to

This expression can be integrated over the angles, that is, over the surface of
the sphere, using that

                                                                    and

from which it follows that
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7.2 Sedimentation of “sticky spheres”

An attractive potential between colloids will change the average distance between them, and 
thereby the sedimentation coefficient. In this exercise we consider the effect of an additional, 
short-ranged attractive “square-well” interaction potential

where       is the depth of the square well and        is its width. This potential is in addition to 
the usual hard core interaction potential. For this attractive potential plus the hard-core 
potential, we have 

From eqns. (7.33-35)

and

while                             remains unaltered. Here we used the Rodne-Prager approximation 
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(see eqn.(7.12)) for the mobility functions. Hence, from eqn.(7.32), using that 

Defining the “stickiness parameter”

we can now take the corresponding “sticky-sphere” limit, 

and hence

Note that attractions lead to an enhancement of sedimentation. This is due to the fact that the 
particles are on average closer to each other. Each of the two particles “drags” the other one 
along through hydrodynamic interactions
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7.3 Sedimentation of superparamagnetic particles

Here we consider spherical Brownian particles with a magnetic moment. In general the 
anisotropy of the magnetic interaction results in a non-zero torque on the core, which is
mediated via the magnetic dipole moment. In case of superparamagnetic particles, however, 
where the magnetic dipole can frictionless rotate relative to the core-material, the torque 
acting on the core of each particle is zero. Superparamagnetic Brownian particles thus remain
torque free. This implies that the hydrodynamic interaction functions are the same as for 
colloids with spherically-symmetric interactions.

For the calculation of the sedimentation velocity of Brownian particles carrying a 
superparamagnetic core, the pair-correlation function is 

where               is the hard-sphere pair-correlation function, and                       is the pair-
potential of two magnetic dipoles                                       

We first verify that eqns.(7.32- 35) for the sedimentation velocity remains valid, except that 
the pair-correlation function is now replaced by 

In fact, this follows from the observation that the hydrodynamic functions are only functions 
of the distances between the spheres (no orientation of the dipoles are involved). Averaging 
over all degrees of freedom, also involving orientations, immediately leads to our original 
equations with the above expression for the correlation function.

Note that for permanent dipoles that couple mechanically to the cores of the Brownian 
spheres, the hydrodynamic interaction functions are different, also involving the orientations 
of the dipoles. For these systems the analysis below cannot be made.

For sufficiently weak magnetic interactions we can Taylor expand the
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the Boltzmann exponent, leading to

Note that from symmetry

Now using that

the angular integrations can be done, giving

This expression for the pair-correlation function can now be substituted into eqns. (7.32-35), 
that is,
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to obtain the following expressions for the two non-trivial contribution to the sedimentation 
velocity, with the abbreviation  

and

The sedimentation velocity is thus found to be equal to

The dipoles will on average align such that they attract each other (since this decreases the 
interaction energy), which leads to smaller distances between the spheres, which in turn leads 
to a faster sedimentation (“pairs” sediment faster as “singlets”), just like for the sticky spheres 
in the previous exercise.

The above analysis is valid up to a leading order expansion in the interaction-strength 
parameter

For larger values of this parameter, we need to retain the full Boltzmann exponent in the 
expression for the pair-correlation function
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The four-fold integration (with respective to       and        ) can be reduced to a three-fold 
integral as follows. Without loss of the generality,    can be chosen along the z-axis. The 
orientations can now be written in spherical coordinates

where        is the angle of         with the z-axis, and         is the azimuthal angle. Thus

Therefore

where

Introducing the new integration variables     
                                                 

this gives

Repeating the calculation of the sedimentation coefficient, just like for the small interaction 
parameter, we get

where f represents the integrals encountered in the expressions 7.32-35, with a pair-correlation 
function equal to

which is used for the numerical calculations of the sedimentation coefficient in Fig. 7.9.
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7.4 Superparamagentic particles in an external magnetic field

Let us now consider the sedimentation velocity in the presence of an external homogeneous 
magnetic field, which does not exert a force, but only exerts a torque, and tends to align the 
magnetic dipoles. 

                                                              
In case of a strong magnetic field (in the z-direction), the dipoles are perfectly aligned so that 
the pair-correlation function is equal to 

where     is the z-component of the distance    between the centers of two particles. This 
follows from the interaction potential given at the beginning of the previous exercise, with 
both dipole orientations along the z-direction.

Contrary to the case without an external field, the pair-correlation function is anisotropic, 
that is, it depends on the direction of     . The spherical-angular integrations with respect
to      in the expressions for 

must now be done explicitly. These integrations can be evaluated analytically for weak 
magnetic interactions, where                               . The pair-correlation function is then 
approximately equal to 

                                                                                                                         (1)
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The mathematical identities (where the integrals range over all orientations, that is, the two 
spherical-angular coordinates of    )

                                                  (2)

can be proven by using that

where    and       are the spherical-angular coordinates, which vary within the intervals        
                                ,   , while the integral over all orientations in terms of these coordinates 

is equal to

The evaluation of       ,       , and       can now be done to first order in the volume fraction, 
using                      (in eqn. (7.19)), and the expressions in eqn.(7.12)  for the hydrodynamic 
functions                     and                , and noting that                          .

This is a long but straightforward calculation (with the use of the identities eqn. (2)), and 
leads to 

                                                                                                                             (3)

Note that there is a typo in the Jan’s book (pp. 486): the “     ” on the left side should be “     ”. 
Eqn, (3) is for a magnetic field in the z-direction, while the direction of the gravitational force 
is along       .

The above result can be generalized to an arbitrary direction of the magnetic field       as 
follows. First note that,

with         the component of        in the x-direction, and similar for        and         .       
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Since       was chosen along the z-direction, we can replace

                                 and

Then we have

and therefore 

There are two special cases where             and                 , that is, the magnetic field is along, 
and the perpendicular to the gravitational force, respectively.

From the above result it is found that the corresponding sedimentation velocities are equal to

Thus, for the case of               sedimentation is enhanced, while for the case of               
sedimentation is reduced.
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7.5 Relation between the hydrodynamic mobility function and sedimentation

In a steady state where diffusion sedimentation equilibrium is reached, we have

From eqns. (7.79+81) for the two fluxes                          and                           , it follows that

The external force can be eliminated using eqn. (7.70), to obtain

and hence

Identifying                                (see chapter 6), and using eqn. (6.94), this leads to

The mobility is thus equal to

The numerator in eqn. (6.92) is nothing but                                                      , and hence      

Since the sedimentation flux is related to the sedimentation velocity as

so that

and

we finally find the sedimentation velocity is as                                     , which reproduces the 
expression (7.40), as it should.
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7.6 Do rods align during sedimentation?

Since the translational friction coefficient of a rod depends on its orientation, one may ask 
whether a rod will align during sedimentation. This question will be answered in this exercise. 
When there is a torque, the two possible stationary orientations are either of the two given in 
the figure below. As we will see, however, there is no torque, so that the rod remains in its
original orientation. The sedimentation velocity, however, is not co-linear with the external 
force.

                          

Since the creeping-flow equations (together with the boundary conditions) are linear, the 
sedimentation velocity is the sum of         and        , where         is the velocity due to the  
force        parallel to the rod’s long axis, and where         is the velocity due to perpendicular 
force      . The same holds for the hydrodynamic torque. The torque for an arbitrary 
orientation of the rod, can be decomposed in a torque      due to the component of the 
sedimentation velocity along the long axis of the rod (see the left-lower figure), and torque
      , resulting from the perpendicular velocity component (see the right-lower figure). The 
torque for an arbitrary orientation is simply the sum of these two torques:                     .

From symmetry, both of these torques are trivially equal to zero. Therefore the total torque, 
being the sum of them, is also zero. There is thus no rotation induced by sedimentation, 
provided that rods are not interacting with each other. Rod-rod interactions can lead to a finite 
torque, and therefore alignment can occur during sedimentation at finite concentrations.

From eqn. (5.120, 123,124), the velocity of rod with orientation        on which a force acts is 
equal to    
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where                                                                                                       
                                                                                                                             (2)

Averaging over all orientations, using that

where, as before,     is the identity matrix, leads to

Note that the orientationally averaged parallel velocity is twice as large as the perpendicular 
velocity

It follows from eqn. (1) that when            , for a fixed orientation, the sedimentation velocity 
is equal to 

while for                the velocity is equal to

For an arbitrary orientation the sedimentation velocity is not co-linear with the external force. 
Let                   , where     is the direction of the external force. Taking the inner product of 
both sides of eqn. (1) with       gives

where       is the angle between      and     . The magnitude of the sedimentation velocity is, 
according to eqn.(1), equal to

It follows from the two above equations that the angle      between the force and the 
sedimentation velocity is related to the angle     between the force and the orientation as
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7.9 Instead of a homogeneous initial density profile (that is already discussed in Figure 7.8 in 
the main text for interacting particles in the section 7.5), let us consider the evolution of the 
density starting with a situation where non-interacting particles are concentrated in a very thin 
layer located at height of     .

The concentration within the layer is assumed to be a constant (in the x- and y-directions) and 
is modeled as an infinitely thin layer. Mathematically this is formulated as

where      is the delta distribution and       is formally equal to the thickness of the layer 
multiplied by the volume fraction in that layer.

For non-interacting particles, substitution of the mobility,                              , and the osmotic 
pressure                    into eqn. (7.82) 

gives the following equation for the local volume fraction

                                                                                                                                       (1)

Note that the external force acts in the minus z-direction, so that the corresponding minus sign 
in eqn.(7.82) becomes a plus sign. The no-flux boundary condition at  z=0  reads

In order to solve the differential equation (1), subject to the above formulated initial condition 
and boundary condition, we introduce the auxiliary function u(z, t), defined as
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Substitution of this definition into eqn. (1) trivially gives

where it is used that 

The initial and boundary conditions in terms of  u(z, t) are

                                                                                                                            (2)
                                                                  
                                                                                                                           (3)

The above diffusion equation for u(z, t) is formally identical to the 1-dimensional free 
diffusion equation. Solutions of this free-diffusion equation are

Note that there is a mistake in the Jan’s book:              is in fact                     .

We will verify that the Ansatz

                                                                                                                                 (4)

solves the three above equations. Since any linear combination of                       solves the 
free diffusion equation, this expression for u(z,t) also solves that equation. We thus have to 
show that this Ansatz satisfies the initial condition (2) and the boundary condition (3).

Since

and                  , it immediately follows that the initial condition (2) is satisfied.
                                                                                                                      

" # " #
2

0 2, ,u z t D u z t
t z
T T!
T T

0

0

1
6

ext
Sv F

a$&
!

!!

" #

" # " #
0 0

0
0

( , 0) ,
1, , 0, 0
2 S

u z t C z z

D u z t v u z t for z
z

1! ! )
T 6 ! !
T

!

" #2
00

0 0
00

( , ) exp
44

z zCP z z t
D tD t$

' (;
; ! )* +* +, -

0 ( , )P z t 0 0( , )P z z t)

" #

" #
0

0 0 0 0

0 0

0 0
0 0

, ( , ) ( , )

' ( ', ) exp '
2

S S

z

u z t P z z t P z z t

v v
dz P z z t z z

D D

:

! ) 6 6

? @O O6 6 )A B
O OC D

9
! !

0 0( , )P z z t;

" #
" #

0 0 0 0

0 0

( , 0)
( ', 0) '

P z z t C z z
P z z t C z z

1
1

; ! ! ;

6 ! ! 6

00 z zP P

119 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids 

Since for  z=0

the boundary condition (3) is fulfilled when

where we used that                            for            is equal to                     .

A partial integration in the first integral leads directly to the verification of the boundary 
condition (3).

The volume fraction is thus found to be equal to

As a final step we introduce the integration variable

which gives
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Hence 

This density profile is plotted in Fig.7.10 (and re-plotted below). At small times, where the 
external force had no time to act, the profile is Gaussian, while at infinite time the barometric 
height distribution is attained.

Note : there is a typo in the book saying that                      , which should read
                         .

Fig. 7.10: Density profiles for non-interacting particles, initially centered in a thin 

        layer at            . The plot                 as a function of         for various values of

            , which are indicated in the figure. Here, the value of                             is 
    
       chosen equal to 10.

" #

" #
" #

W X
0

0

0

2
0

20 0
0

0
02

0 00 0

0

0 0
20

0 0

4

exp
4

( , ) exp
2 44

exp
4

exp exp
S

S S

S S

z z v t

D t

z z
D t v vCz t z z t

D DD t z z
D t

v vC z dx x
D D

H
$

$

:

6 )

? @' ()
O O)* +* + ? @O OO , - O O O! _ ) ) )A B A B

' (6O O O OC D6 )* +O O* +O O, -C D
' (
* +6 ) )
* +, -

9
!

! !

! !

0
0/ 1Sv t D! #

20
0/ 1Sv t D! #

0z z!
" #
0 0

,z t
C z
H

0

z
z

0
2
0

D t
z

0
00

0

ext
s

B

F zv z
D k T

!

!!

121 
 



Solutions of Exercises in An Introduction to Dynamics of Colloids

Exercise Chapter 8: CRITICAL PHENOMENA

                                                  Courtesy of St. Anton am Arlberg.com, Austria

8.1 Short-ranged character of the direct-correlation function

The Ornstein-Zernike equation for a homogeneous system reads

where we introduced the new variables                    and                    . The integral is 
of a convolution type. Fourier transformation thus gives

and hence

Note that                      for a homogeneous system. On approach of the critical point,   
                      , due to the long-ranged character of            . From the above formula we 
thus have

close to the critical point. The integral of           over     is therefore finite, contrary to the 
integral of         . This reflects the short-ranged nature of the direct correlation function as 
compared to that of the total-correlation functions. This short-ranged nature of the direct 
correlation (as sketched in Fig.8.6), is used to analyze the critical behavior of the structure
factor in the book.
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8.2 Order of magnitude estimation of 

Differentiating eqn. (8.33)

with respect to the density leads to

Near the critical point, where                , this results in

                                                                                                                        
                                                                                                                         (1)

For short-ranged attractions, superimposed on a hard-core potential, the derivative                 

is concentrated around                , so that                    within the integral. 

Replacing the factor         in front of                  in the above equation, by    , the following 

(crude) estimate of      is obtained

Thus

Note that this estimate is also valid whenever                      , that is

When this is the case, the two terms in the above expression for            almost cancel, so that
eqn. (1) is still valid.
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8.3 Introducing the short-ranged contribution to the diffusion eqn. (8.45) gives,

Fourier transformation, with the neglect of the shear contribution                           using 
that                  , gives,

                                                                                                                           
                                                                                                                              (1)

where              is the Fourier transformation of               , where “eq” stands for “equilibrium” 
(that is           without shear flow). Now consider Fourier transformation of the shear term,

Since                                    (with        the gradient operator with respect to      )

Hence, the full differential equation for          in the presence of shear flow reads,
                                                                                                                     

                                                                                                                               (2)

To eliminate the arbitrary short-ranged correlation function            , subtract eqn. (1) from 
eqn. (2) ,

Now use 
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Since                                 , this immediately leads to,

where

The solution of the above equation is given in eqns. (8.50-52) in the book, and is plotted in the 
figure below.

Fig. 8.11: The static structure factor as a function the wave vector components where     
             (upper) and            , for the dimensionless constant              and

                                 .

The most left side of the figure is the equilibrium Ornstein-Zernike static structure factor, 
and the most right figure is an experimental scattering pattern with             .
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8.4 Spinodal decomposition

The only difference with eqn. (8.45) and the appropriate equation relevant for spinodal 
decomposition, is that the non-stationary equation must be considered,

Without shear flow, Fourier transformation (see also exercise 8.3) leads to,

                                                                                                                  (1)

with the effective diffusion coefficient is equal to,  
                                                                                                                  
                                                                                                                  (2)

The solution of the above eqn.(1) is,
                                                                                                            
                                                                                                                   (3)

Those wavevectors for which                          are therefore unstable, or, from eqn. (2),

Hence, all wavevectors for which,

are unstable, where       is “the critical wavevector”. Sinusoidal concentration variations with a 
wavelength larger than             will grow in amplitude, leading to decomposition.

Not all wavelengths grow equally fast. The demixing rate is, according to eqn. (2) equal to    
             . The most fast growing wavevector       is found from,

leading to,
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The growth rate is plotted in the figure below, for two different quenches. For
a deep quench, far into the unstable part of the phase diagram, where 
is relatively large, the growth is fast, and the fastest growing wavelength is
relatively small.

    Fig. 9.4: A sketch of the growth rate of sinusoidal density variations as a 
    function of their wavevector. The dashed curve is for a deep quench; while 
    as the solid line is for a shallow quench. 

/d d%) h
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8.5 The turbidity of an unsheared system

(a) For an unsheared system in equilibrium, the static structure factor in the integral 
expressing the turbidity (see eqn. (8.68) in the book),

is a function of                only, where,

and

In case of                          , using that,

it is immediately found that,

                                                                                                                        (1)

For small particles, away from a possible critical point,                 over the entire scattering 
angle range (this is the case when                 ), and furthermore                                    , for all 
scattering wave vectors. Since,

it is found that,
                                                                                                                       
                                                                                                                       (2)

This equation offers the possibility to characterize the pair-interaction potential for small 
particles by means of turbidity measurements, since according to,
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the second order in concentration expansion of the osmotic pressure is given by

This expression can be explicitly evaluated for a square-well potential, superimposed on a 
hard-core potential, which is defined as,

where      is the depth of the attractive well, and       is the range of the attractive interaction 
potential. We now have,

so that,

where   is the delta function. The delta functions allow for the explicit evaluation of the 
integral,

For              , this reduces to,

We can now take the “sticky-sphere limit”, where                              such that,

                                                                                           finite

Hence,
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so that,

and hence,

It is finally found from eqn. (2) that,

up to order          where                         is the volume fraction. Note that this result is actually 
correct up to order         , since                      .

This equation applies to the colloidal system consisting of silica particles coated with stearyl
alcohol chains and dissolved in benzene, whose phase diagram is shown in Fig.8.1. Turbidity 
measurements on dilute samples can be employed to characterize the pair-interaction potential 
of these particles through the single parameter        . 

(b) Near the critical point,                                 , contrary to the case considered in (a) for a 
system of small particles. According to eqn. (8.36) we now have,

                                                                          
                                                                           for               .

Using this in eqn.(1) for the turbidity gives, 

where it is again assumed that the particles are sufficiently small to set the form factor equal 
to unity. Introducing the new integration variable,
                     

where                      , and hence,
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using that,

the integral reads,

The integral can be conveniently rewritten, once more, by introducing the yet new integration 
variable                    , leading to,

where                  . The integral is evaluated using the standard integrals,  

it follows that

where
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8.6 Self-diffusion near the critical point

According to eqn. (6.49), the short-time self-diffusion coefficient is given by,

                                                                                                                           (1)

where, according to eqn. (6.46), the leading order terms of the hydrodynamic interaction 
functions are,

Note that                    in eqn (1).  According to eqn. (8. 12),

                                                                                       for 

where, according to eqn. (8.15), 

Close to the critical point,                           , and

so that the pair-correlation function can also be written as,

or, in terms of the integration variable                   in eqn.(1),
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It follows that,

where

At the critical point,              , and hence

So that the short-time self diffusion coefficient          is well-behaved at the critical point.

*** Perform a partial integration, 

and use,

to find that,
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Exercise Chapter 9: PHASE SEPARATION

9.1 Stability and decomposition kinetics of a van der Waals fluid

(a) For a homogeneous system,                   is independent of the “box- numbering index “    .

Hence, from eqns. (9.105) and (9.106),

Since 

and (with                 ) this can be written as,

where, by definition,

The osmotic pressure         is equal to,

                                                                                                                 
which represents the van der Waals equation of state.
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(b) We start with the condition that the homogeneous system is (spinodaly) unstable,

Differentiation of the osmotic pressure       , as derived in (a), leads to,

                                                                                                                     (1)

or, with                (is a “volume fraction”, which varies between 0 and 1),

The function                                is plotted below. The minimum value of this function is        
            .

It follows that there is no unstable state when                    . The critical temperature        is the 

temperature for which                   , hence,                      .

For temperatures below this critical temperature, the system can be unstable
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(b) In a “small” box (numbering j), the volume fraction of spheres is proportional to      
           , where      is four times the core volume of a particle,        is the volume of 

the box, and         is the number of spheres in a box j.  Eqn (9.105) reads in terms of          , 

or,

The boxes are on the one-hand large enough to contain many particles, in order that each box 
can be considered as a thermodynamic system, and on the other hand  are small enough that 
     ’s change is only little between adjacent boxes.

The first requirement allows to equate the function                        to the free energy                
of the inhomogeneous system, while the second requirement allows to replace sums by 
integrals, where       plays the role of the box-number index j,

for well-behaved functions  f.  Hence, the free energy can be written as,

By taking                                          with             a small variation of the volume fraction, we 
thus have, upon expanding the first order in               ,
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It follows, by definition, that,

Hence, the chemical potential is equal to,

The mass flux is in turn equal to,

The equation of motion for             is thus (here we also denote the time dependence of             
explicitly) as,
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In the last term, we used Gauss’s integral theorem twice. Now consider the initial stage of 
spinodal decompositions, we write,        
        

with        the volume fraction of the initially homogeneous system, and                is the 
small deviation from homogeneity due to demixing. Substituting into the above the equation 
of motion, and linearization with respect to                      , leads to,

Note that                      is of second order, so that the first term in the original equation of 
motion does not contribute.

The Fourier transform of                     is equal to                        (with      the Fourier variable), 
while the integral is a convolution integral, so that its Fourier transform is equal to,

where

is the Fourier transform of          . Hence

Introducing the “effective diffusion coefficient” as,

The solution of this simple linear equation of motion reads to,

For the small spatial gradients that are present during the initial stage of spinodal 
decomposition, it is sufficient to expand              up to              ,
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where               is the unit vector along the wavevector      , and     is the identity tensor, and, 

Note that                   , since                   , being an attractive potential. The effective diffusion 
coefficient for small spatial gradients is thus equal to,

Hence,                             , when                              , or, since                 (with       the number

density of the homogeneous system),  

which reproduces the criterion eqn (9.107). Since                       , it follows that,

The term between the brackets is equal to                 (see eqn.(1) for the osmotic pressure), so 
that,

in accordance with the general expression in eqn (9.28). Comparing the general expression 
(9.28) for the effective diffusion coefficient shows that,

and hence,
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9.2 Fourier transformation of the Smoluchowski equation with respect to the displacement 
gives

                                                                                                                                           (1)

gives rise to the integral,

This integral is calculated as follows,

Now use that

so that,

where      is the gradient operator with respect to       , and,
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The integral thus reads,

Using this result in eqn.(1) leads to,

As explained in the book, expanding the (Bessel) j-functions with respect to the wave vector 
reproduces the classic Cahn-Hilliard theory for initial spinodal decomposition.
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9.4 Stability and demixing of confined suspensions

Consider a rectangular box where the sides have a length L. The question is at which 
temperature the system becomes unstable, as compared to a system of infinite extent. The 
criterion for instability is unchanged, and reads,

Since the maximum wavelength that fits into the box is L, the minimum wave vector is  
                    . The system contained in the rectangular container therefore becomes unstable 

when,

                                                                                                                      (1)

It is thus not sufficient that                     , like for an infinite system, but
should be sufficiently negative before the system becomes unstable in a system of finite 
extent. For an upper critical point, the temperature where the system becomes unstable in a 
system of finite extent is therefore lower as compared to a system of infinite extent. The 
critical temperature and the spinodal will therefore be lowered due to confinement.

Next, consider a square flat container (as depicted in the figure), with two long sides of length 
L and a small side of length l, with               .In such a case, upon slowly cooling, spinodal 
decomposition will occur first along the long dimension, when the instability condition in 
eqn.(1) is fulfilled. 

Similarly, spinodal decomposition in the direction of the shorter distance occur when,

Note that spinodal decomposition occurs only along the longer dimensions when,
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9.5 Porod’s law

The scattered intensity from an assembly of polydisperse and optically homogeneous spheres 
is proportional to,

where            is the distribution of the radius a of the spheres. For large wave vectors, where   
              , one can approximate, 

in the integral. Hence,

For wave vectors which are such that              , with      the width of the size distribution, we 
have,

so that,

and hence,

This is the famous Porod’s law that describes the scattering of sharp interfaces for large wave 
vectors.
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