001     137875
005     20220930130023.0
024 7 _ |a 10.1093/cercor/bhu334
|2 doi
024 7 _ |a 1047-3211
|2 ISSN
024 7 _ |a 1460-2199
|2 ISSN
024 7 _ |a WOS:000374246700019
|2 WOS
037 _ _ |a FZJ-2013-04185
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Qi, Guanxiao
|0 P:(DE-Juel1)131702
|b 0
245 _ _ |a Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells
260 _ _ |a Oxford
|c 2016
|b Oxford Univ. Press
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1457964785_8491
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Excitatory connections between neocortical layer 4 (L4) and L6 are part of the corticothalamic feedback microcircuitry. Here we studied the intracortical element of this feedback loop, the L4 spiny neuron-to-L6 pyramidal cell connection. We found that the distribution of synapses onto both putative corticothalamic (CT) and corticocortical (CC) L6 pyramidal cells (PCs) depends on the presynaptic L4 neuron type but is independent of the postsynaptic L6 PC type. L4 spiny stellate cells establish synapses on distal apical tuft dendrites of L6 PCs and elicit slow unitary excitatory postsynaptic potentials (uEPSPs) in L6 somata. In contrast, the majority of L4 star pyramidal neurons target basal and proximal apical oblique dendrites of L6 PCs and show fast uEPSPs. Compartmental modeling suggests that the slow uEPSP time course is primarily the result of dendritic filtering. This suggests that the dendritic target specificity of the 2 L4 spiny neuron types is due to their different axonal projection patterns across cortical layers. The preferential dendritic targeting by different L4 neuron types may facilitate the generation of dendritic Ca2+ or Na+ action potentials in L6 PCs; this could play a role in synaptic gain modulation in the corticothalamic pathway.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Feldmeyer, Dirk
|0 P:(DE-Juel1)131680
|b 1
|e Corresponding Author
773 _ _ |a 10.1093/cercor/bhu334
|g p. bhu334
|0 PERI:(DE-600)1483485-6
|n 4
|p 1569-1579
|t Cerebral cortex
|v 26
|y 2016
|x 1047-3211
856 4 _ |u https://juser.fz-juelich.de/record/137875/files/Cereb.%20Cortex-2016-Qi-1569-79.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/137875/files/Cereb.%20Cortex-2016-Qi-1569-79.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/137875/files/Cereb.%20Cortex-2016-Qi-1569-79.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/137875/files/Cereb.%20Cortex-2016-Qi-1569-79.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/137875/files/Cereb.%20Cortex-2016-Qi-1569-79.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/137875/files/Cereb.%20Cortex-2016-Qi-1569-79.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:137875
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)131702
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131680
913 0 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-331
|2 G:(DE-HGF)POF2-300
|v Signalling Pathways and Mechanisms in the Nervous System
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|2 G:(DE-HGF)POF3-500
|v Connectivity and Activity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CEREB CORTEX : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b CEREB CORTEX : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21