000137894 001__ 137894 000137894 005__ 20210129212129.0 000137894 020__ $$a978-3-642-10768-9 000137894 0247_ $$2altmetric$$aaltmetric:20556101 000137894 037__ $$aFZJ-2013-04204 000137894 1001_ $$0P:(DE-HGF)0$$aEgger, V.$$b0$$eCorresponding author 000137894 245__ $$aElectrical Activity in Neurons 000137894 260__ $$aBerlin Heidelberg$$bSpringer-Verlag$$c2013 000137894 29510 $$aNeurosciences - From Molecule to Behavior: a university textbook 000137894 300__ $$a113-143 000137894 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1384496678_6215 000137894 3367_ $$2DRIVER$$abookPart 000137894 3367_ $$2ORCID$$aBOOK_CHAPTER 000137894 3367_ $$07$$2EndNote$$aBook Section 000137894 3367_ $$2BibTeX$$aINBOOK 000137894 3367_ $$2DataCite$$aOutput Types/Book chapter 000137894 500__ $$3POF3_Assignment on 2016-02-29 000137894 520__ $$aTo exchange and process information cells rely mostly on biochemical signalling pathways. Since these pathways are not well suited to rapidly transmit signals over larger distances, neurons use electrical activity in addition, exploiting the energy stored in the electrical gradients across cellular membranes. These gradients result from the uneven distribution of ions between the intra- and extracellular space due to the ongoing activity of ion transporters and pumps and the fact that the membrane is semipermeable for certain ions. The resulting membrane potential allows for fast flow of ions across cellular membranes via specialized classes of membrane-spanning proteins, namely ion channels. In neurons, some of these channels are voltage-gated, creating an electrical feedback loop that can generate stereotyped, regenerative depolarizing responses. Voltage-gated channels mediate the generation and conduction of action potentials and the release of transmitters at the synapse. 000137894 536__ $$0G:(DE-HGF)POF2-331$$a331 - Signalling Pathways and Mechanisms in the Nervous System (POF2-331)$$cPOF2-331$$fPOF II$$x0 000137894 7001_ $$0P:(DE-Juel1)131680$$aFeldmeyer, Dirk$$b1 000137894 8564_ $$uhttp://link.springer.com/book/10.1007/978-3-642-10769-6/page/1 000137894 909__ $$ooai:juser.fz-juelich.de:137894$$pVDB 000137894 909CO $$ooai:juser.fz-juelich.de:137894$$pVDB 000137894 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131680$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000137894 9132_ $$0G:(DE-HGF)POF3-579H$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vAddenda$$x0 000137894 9131_ $$0G:(DE-HGF)POF2-331$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vSignalling Pathways and Mechanisms in the Nervous System$$x0 000137894 9141_ $$y2013 000137894 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0 000137894 980__ $$acontb 000137894 980__ $$aVDB 000137894 980__ $$aUNRESTRICTED 000137894 980__ $$aI:(DE-Juel1)INM-2-20090406