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We study networks representing the dynamics of elementary 1D cellular automata (CA) on finite
lattices. We analyze scaling behaviors of both local and global network properties as a function of system
size. The scaling of the largest node in-degree is obtained analytically for a variety of CA including
rules 22, 54, and 110. We further define the path diversity as a global network measure. The coappearance
of nontrivial scaling in both the hub size and the path diversity separates simple dynamics from the more
complex behaviors typically found in Wolfram’s class IV and some class III CA.
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As physical theories widen into the biological and social
realms, the problem of characterizing complex dynamical
systems becomes increasingly important. Even elementary
systems, such as cellular automata (CA), originally pro-
posed by von Neumann [1], often exhibit dynamical pat-
terns that pose conceptual challenges and serve as test beds
for techniques to study more realistic phenomena. To date,
attempts to classify the behavior of dynamical systems
such as CA have been based on various definitions of
complexity and have largely focused on patterns generated
in space and time (see, e.g., Refs. [2–6]). Here we take a
different approach, focusing on statistical properties of
state space networks.

The trajectories of a discrete dynamical system form a
directed network in state space, wherein each node, repre-
senting a state, is the source of a link that points to its
dynamical successor [7]. For deterministic systems, each
node has a single outgoing link (each out-degree is equal to
1). For irreversible systems, states may have different
numbers of preimages and thus different in-degrees. In
this Letter, we present analytical and numerical studies
of state space networks of various one-dimensional CA.
This network perspective reveals previously unrecognized
scaling behaviors and suggests a new measure of an aspect
of complexity that we term ‘‘path diversity.’’ Since the CA
we study are known to produce a wide variety of different
dynamical behaviors, our results are relevant for under-
standing discrete dynamical systems in general.

We examine 1D binary CA with nearest neighbor inter-
actions and periodic boundary conditions. Wolfram put
these CA into four complexity classes [8] based on the
qualitative appearance of spatiotemporal patterns produced
from random initial conditions for large lattice size L. The
four classes are (I) the system almost always evolves
quickly to a unique fixed point, (II) it almost always
evolves quickly to one of many attractors with a small
period, (III) it generates seemingly random patterns with
small-scale structures, and (IV) it shows a mixture of order
and randomness with long characteristic times. One
class IV CA, rule 110 (defined below), has been shown

to emulate a universal Turing machine [9]. One shortcom-
ing of this classification is that the border between
classes III and IV is ill-defined. In fact, the classification
of some rules (such as rule 54) is still disputed, and mis-
classifications can happen due to, e.g., subtle and slow dy-
namics hidden beneath clear chaotic behavior. Examples
include rule 18, where annihilating random walks are
embedded in a random pattern with small-scale structure
[10], and rule 22, which shows random patterns with a slow
but (highly) statistically significant decrease of entropy
with time and with L [11]. Other classifications have
been suggested, but a definitive criterion for complex
dynamics has not yet emerged [12–14].

In the present Letter, we report numerical and analytical
results showing that class IV and some class III CA exhibit
highly heterogeneous state space networks, unlike the net-
works corresponding to the simple CA in classes I and II.
The heterogeneity is reflected in local properties and their
distributions, including broad in-degree distributions and
finite-size scaling of the largest in-degree. We show, how-
ever, that this type of local heterogeneity can also occur in
CA with simple dynamics. On the other hand, a global
measure, termed the path diversity, by itself cannot distin-
guish simple from complex CA either. However, it tends to
show trivial behavior in simple CA where the local mea-
sures are nontrivial. In fact, the complex rules show non-
trivial scaling behavior both in the local measures and in
the path diversity. On the basis of these observations, we
speculate that network heterogeneity at multiple levels
may be a generic property of the state space of complex
dynamical systems.

Let R denote the CA rule. The binary value st�1
i of site i

at time t� 1 is set equal to R�sti�1s
t
is
t
i�1� evaluated at the

previous time t. We use periodic boundary conditions so
that spatial indices are taken modulo L. To label the CA
rules, we use Wolfram’s scheme that identifies each
rule with the number R�000�� 2R�001�� 22R�010��
23R�011�� 24R�100�� 25R�101�� 26R�110�� 27R�111�.
Hence, for example, rule 18 is the one for which R�100� �
1 and R�001� � 1 and R�s1s2s3� � 0 for all other triples.
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A binary CA of size L hasN � 2L different states S�a� �
�s�a�0 . . . s�a�L�1�, a � 0; . . . ; N � 1. These may be viewed as
the nodes of a directed network, where a link from S�a� to
S�b� indicates that R maps S�a� to S�b�. When such a link
exists, we say that S�a� is a preimage of S�b�, and the
number of preimages of S�b� is its in-degree k�S�b��. The
network typically consists of disconnected clusters, each
containing transient states and a recurrent dynamical at-
tractor. Garden of Eden (GOE) states are transient states
with zero ‘‘in-degree.’’ Pictures of some state space clus-
ters are shown in Fig. 1; for more, see [7].

These state space networks can be analyzed by a variety
of statistical measures—e.g., their degree distribution,
clustering coefficients, etc. [15,16]. Many real-world net-
works (e.g., regulatory networks [17], the World Wide Web
[18], and earthquakes [19]) differ markedly from random
graphs (where degree distributions are Poissonian and
clustering is absent), displaying ‘‘fat-tailed’’ or even
scale-free degree distributions. In the following, we show
similar results also for state space networks.

Figure 2 demonstrates that several CA networks exhibit
clean scaling for a particular local property, the in-degree
of the largest hub kmax � N

�. Scaling sets in already for
rather small lattices and holds also for the second, third,
etc., largest hub (data not shown). The rules shown in Fig. 2
were chosen to cover the entire spectrum of known behav-
iors for 1D elementary CA.

This scaling, including the value of �, can be derived
exactly, provided one knows the structure of the hub state
H . The latter can be guessed easily for all CA shown in
Fig. 2, while it is less obvious for others. For all elementary
CA, the hub state is either periodic or—if the period does
not match the lattice size—periodic with a few defects.

For rule 18, e.g., one finds numerically that H �
�00 � � � 00� for all L. According to the definition of CA
18 given above, all sequences that do not contain 001 or
100 as substrings are preimages of H .

The number of distinct strings of length ‘without ‘‘001’’
or ‘‘100’’ is equal to the number of walks with ‘� 2 steps
on the graph shown in Fig. 3. The number of periodic
strings of length L is then given by TrTL � Nlog2�1 , where
T is the matrix shown on the right in Fig. 3, and �1 is its
largest eigenvalue. This gives kmax � N

�, with � �
log2�1 � 0:6942, in perfect agreement with the numerical
results.

Similar analytic arguments hold for all of the other CA
that exhibit scaling in Fig. 2. When the hub state contains
both ‘‘0’’s and ‘‘1’’s, one has to introduce two transfer
matrices T�0� and T�1�, where T�s� maps each pair sti�1s

t
i

onto the pair stis
t
i�1, iff st�1

i 	 R�sti�1s
t
is
t
i�1� � s. The

labeling of rows and columns is as in Fig. 3. The in-degree
of any state S is then

 k�S� � Tr�T�s0� � � �T�sL�1��: (1)

The resulting exponents � are cited in the caption of Fig. 2.
The same scaling (with the same exponents) holds also for
the second, third, etc., largest hub.

 

Rule 4Rule 30

Rule 22Rule 110

FIG. 1 (color online). One connected cluster out of each state
space network for different CA, plotted with the program PAJEK

[21]. All arrows point from leaves towards the center. Sizes are
L � 10–13. For rule 4, the network heterogeneity resides en-
tirely in the size distribution of the different clusters making the
state space network.
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FIG. 2 (color online). The largest in-degree kmax as a function
of N � 2L. Except for class III rules 30, 45, and 150, all CA
shown here exhibit clear scaling of the largest hub size kmax with
the total number of nodes in the network N. Rule 160 is class I, 4
and 50 are class II, and 110 is class IV. Rules 18, 22, and 54 are
between III and IV, as they have large structures masked by
small-scale chaos (18 and 22) or structures on intermediate
scales (54). The analytic values of � are 0.8114, 0.6942,
0.5515, 0.4057, 0.3471, 0.4057, and 0.6942 for rules 4, 18, 22,
50, 54, 110, and 160, respectively. These values are in perfect
agreement with the numerical results.
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Another interesting property of rules giving large hubs is
the scaling of the in-degree distribution function P�k� with
system size. Figure 4 shows the data collapse for rules 4,
22, and 110 found using the multiscaling ansatz [20]

 logP�k� � logNf�logk= logN�: (2)

It is significantly better than the usual finite-size power-law
scaling, which would produce straight lines in Fig. 4. To
decide whether the apparent curvature is a finite-size effect
or a true indication of multiscaling is, in general, not easy,
but it can be done analytically for the simple CA, rule 4.

For rule 4, the sequence . . . 11 . . . has no preimage, and
the sequence . . . 1 . . . has the unique preimage . . . 010 . . . .
T�1� can then be written as e>2 e3, where e2 � �0; 1; 0; 0�
and e3 � �0; 0; 1; 0�. The in-degree of any state S can then
be expressed as

 

Y
i

w�mi� �
Y
i

e3
T�0��mie>2 ; (3)

where

 T �0� �

1 1 0 0
0 0 0 1
1 1 0 0
0 0 1 1

0
BBB@

1
CCCA; (4)

the product runs over all ‘‘1’’s in S, andmi is the number of
‘‘0’’s following the ith ‘‘1’’ in S.

For large m, we have w�m� � a�m, where � � 1:754 88
is the largest eigenvalue of T�0� and a � 0:234 487 � �e2 �
u��v � e3�, u and v being the right and left eigenvectors,
respectively, corresponding to �, normalized to v � u � 1.
Any state containing n isolated 1s will then have an in-
degree kn �

Qn
i�1 a�

mi � an�L�n. Although occurrences
of small mi can be neglected only for n� L, we find
empirically that this formula reflects the qualitative be-
havior for larger n. To find P�k�, we now need to find
��n�, the number of states with n isolated 1s and no pairs
‘‘11’’ and transform its dependence on n into a dependence
on k. On a periodic lattice of length L, one has ��n� �
C�L� n; n� � C�L� n� 1; n� 1�, where C�‘;m� �
‘!=
m!�‘�m�!�. To obtain an approximation for P�k�,
we first invert the above relation between kn and n, giving
n�k� � �L ln�� lnk�=
ln��=a��, then use P�k� �
2�L��n�jdn=dkj.

The scaling ansatz shown in Fig. 4 is indeed recovered
by this approximation. To see this, we define

 x 	 lnk= lnN; y 	 lnP�k�= lnN: (5)

With this choice, we have

 

n
L
�

ln�� x ln2

ln��=a�
: (6)

Neglecting a term lnln��=a�=�L ln2� in y, using Stirling’s
formula, and taking the large L limit of ln
��n��=L for
fixed x, we get

 y � �1� x� log2

�
�1� ��1��

���1� 2��1�2�

�
: (7)

Here � 	 n=L is a function of x through Eq. (6).
Equation (7) is shown as a solid line in Fig. 4. The curva-
ture of this line clearly indicates that no substantial range
exists over which the distribution is a power law. Using a
Fourier method based on recursion relations, we have also
determined numerically the exact distribution for L �
10 000. It shows slightly enhanced curvature for small x
and is for large x in excellent agreement with the above
approximation. Hence, we conclude that the apparent
curvature seen in Fig. 4 for rules 4 and 110 is not simply
a finite-size effect but more likely an indication of
multiscaling.

As Fig. 1 indicates, rule 4 does not exhibit heterogeneity
beyond the single node level. All transients have length 1,
all attractors are simple fixed points, and the only ‘‘com-
plex’’ aspect is the broad in-degree distribution of the
latter. Clearly, the in-degree distribution of any set of
nodes, being a distribution of a strictly local property,
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FIG. 4 (color online). In-degree distribution functions col-
lapsed for simple and complex rules using a multiscaling ansatz
for rules 4, 22, and 110 for different system sizes. The black
solid line is Eq. (7). The distributions were shifted by 0.5 units
each for clarity. Rule 22 is consistent with a power law P�k� �
k��, with � � 2:8.

 T =

1 0 0 0
0 0 1 1
0 1 0 0
0 0 1 1

FIG. 3. Walks on the graph shown on the left generate all
preimages of the hub state H for rule 18. Each step corresponds
to an element of the matrix T shown on the right, with rows and
columns labeled in the order 00, 01, 10, 11.
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cannot by itself distinguish complex CA from trivial ones.
To make this distinction, we introduce a new quantity, the
path diversity D. It measures fluctuations in the set of
different paths connecting the GOE states to attractors. If
one projects all attractor states into a single node, then the
state space network of a CA becomes a rooted tree.
Roughly, D counts the number of nonequivalent choices
encountered by following each path from an attractor (root)
to a GOE state (leaf). Path diversity bears resemblances to
tree diversity [3] and topological depth [4].

We first define the path diversity D for each transient
node: A GOE state has diversity one, a transient state with a
single preimage has the same diversity as its unique pre-
image, and the diversity of a node with more than one
incoming link is the sum of all distinct diversities of its
preimages plus one. Thus, if a node has, e.g., in-degree 5
and three of its preimages have diversity 2, one has diver-
sity 6, and the last has diversity 17, then that node’s
diversity is 2� 6� 17� 1 � 26. Finally, the path diver-
sity D of the entire CA is computed by joining all attractor
states (in all disconnected components, if there are several)
into one single ‘‘metastate’’ and applying the above
scheme to the metastate.

In Fig. 5, D is shown for several CA. It is sensitive to
aspects of the network’s structure that are different from
the node degree distribution. As a result, it clearly sepa-
rates rules 4 (where D � 2 for all L) and 150 (where D
seems to remain bounded) from other CA. The most inter-
esting rules are those which show clear scaling D� N�

with � close to 1, e.g., � � 0:88
 0:01 (rules 22 and 110),
0:85
 0:01 (rule 54), 0:75
 0:04 (rule 18), and 0:72

0:03 (rule 30). For the system sizes studied, rules 50 and
160 appear to show scaling with smaller �, though both
would be classified as simple (class I or II) by Wolfram. An
analytical calculation of upper bounds on transient lengths
shows, however, that D actually grows slower than any
positive power of N for rules 50 and 160. The oscillations
seen in Fig. 5 for some rules are due to the global constraint

imposed by periodic boundary conditions. In the most
extreme case, rule 45 has nontrivial transients for odd L
but none at all for even L.

In general, we neither expect that a single observable can
reliably distinguish ‘‘complex’’ from other behavior nor
that a few discrete classes can do justice to the multifarious
ways in which a system can display complexity. This is
supported by our analysis. Neither the scaling of the hub
sizes with system size (or the scaling of the in-degree
distribution) nor the scaling of the path diversity can by
itself distinguish between ‘‘simple’’ (Wolfram classes I and
II) and complex (class IV and some class III) dynamics.
Combined together, they fare already much better. We note
also that, within the class of CA for which D scales, those
with largest � (CA 110 and 22) are also those which have
been considered most complex by previous authors [9,11].

In summary, we have studied networks formed by states
of elementary 1D CA on finite lattices. We find that some
of them exhibit nontrivial scaling with system size, and this
scaling behavior can be computed analytically in certain
cases. Taken together, the scaling and distribution of in-
degrees (a local property) and the path diversity (a global
property) give a good indication of dynamical complexity.
Including additional measures for network heterogeneity at
intermediate scales could further refine this approach.
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FIG. 5 (color online). The path diversity D of different CA.
Straight lines indicate scaling D� N�. Fitted values of � are
0.88, 0.88, 0.85, 0.75, and 0.72 for rules 110, 22, 54, 18, and 30,
respectively.
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