001     138003
005     20210129212144.0
024 7 _ |a 10.1007/978-3-642-40047-6_83
|2 DOI
037 _ _ |a FZJ-2013-04288
100 1 _ |a Adinets, Andrey
|0 P:(DE-Juel1)157723
|b 0
|e Corresponding author
|u fzj
111 2 _ |a Euro-Par 2013
|c Aachen
|d 2013-08-26 - 2013-08-30
|w Germany
245 _ _ |a GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs
260 _ _ |a New York
|c 2013
|b Springer New York
295 1 0 |a Euro-Par 2013 Parallel Processing
300 _ _ |a 838-849
336 7 _ |a Contribution to a conference proceedings
|0 PUB:(DE-HGF)8
|2 PUB:(DE-HGF)
|m contrib
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1407160007_24848
|2 PUB:(DE-HGF)
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
490 0 _ |a Lecture Notes in Computer Science
|0 PERI:(DE-600)2018930-8
|v 8097
500 _ _ |a 10.1007/978-3-642-40047-6_83
520 _ _ |a Clustering, i.e., the identification of regions of similar objects in a multi-dimensional data set, is a standard method of data analytics with a large variety of applications. For high-dimensional data, subspace clustering can be used to find clusters among a certain subset of data point dimensions and alleviate the curse of dimensionality.In this paper we focus on the MAFIA subspace clustering algorithm and on using GPUs to accelerate the algorithm. We first present a number of algorithmic changes and estimate their effect on computational complexity of the algorithm. These changes improve the computational complexity of the algorithm and accelerate the sequential version by 1–2 orders of magnitude on practical datasets while providing exactly the same output. We then present the GPU version of the algorithm, which for typical datasets provides a further 1–2 orders of magnitude speedup over a single CPU core or about an order of magnitude over a typical multi-core CPU. We believe that our faster implementation widens the applicability of MAFIA and subspace clustering.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
536 _ _ |a 41G - Supercomputer Facility (POF2-41G21)
|0 G:(DE-HGF)POF2-41G21
|c POF2-41G21
|f POF II
|x 1
588 _ _ |a Dataset connected to
700 1 _ |a Kraus, Jiri
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Meinke, Jan
|0 P:(DE-Juel1)132189
|b 2
|u fzj
700 1 _ |a Pleiter, Dirk
|0 P:(DE-Juel1)144441
|b 3
|u fzj
773 _ _ |y 2013
|a 10.1007/978-3-642-40047-6_83
856 4 _ |u http://link.springer.com/book/10.1007/978-3-642-40047-6/page/1
856 4 _ |u https://juser.fz-juelich.de/record/138003/files/FZJ-2013-04288.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:138003
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)157723
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-Juel1)137023
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132189
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144441
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-513
|2 G:(DE-HGF)POF3-500
|v Supercomputer Facility
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-41G21
|2 G:(DE-HGF)POF2-400
|v Supercomputer Facility
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a contrib
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21