Hauptseite > Publikationsdatenbank > GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs > print |
001 | 138003 | ||
005 | 20210129212144.0 | ||
024 | 7 | _ | |a 10.1007/978-3-642-40047-6_83 |2 DOI |
037 | _ | _ | |a FZJ-2013-04288 |
100 | 1 | _ | |a Adinets, Andrey |0 P:(DE-Juel1)157723 |b 0 |e Corresponding author |u fzj |
111 | 2 | _ | |a Euro-Par 2013 |c Aachen |d 2013-08-26 - 2013-08-30 |w Germany |
245 | _ | _ | |a GPUMAFIA: Efficient Subspace Clustering with MAFIA on GPUs |
260 | _ | _ | |a New York |c 2013 |b Springer New York |
295 | 1 | 0 | |a Euro-Par 2013 Parallel Processing |
300 | _ | _ | |a 838-849 |
336 | 7 | _ | |a Contribution to a conference proceedings |0 PUB:(DE-HGF)8 |2 PUB:(DE-HGF) |m contrib |
336 | 7 | _ | |a Contribution to a book |b contb |m contb |0 PUB:(DE-HGF)7 |s 1407160007_24848 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a bookPart |2 DRIVER |
336 | 7 | _ | |a BOOK_CHAPTER |2 ORCID |
336 | 7 | _ | |a Book Section |0 7 |2 EndNote |
336 | 7 | _ | |a INBOOK |2 BibTeX |
336 | 7 | _ | |a Output Types/Book chapter |2 DataCite |
490 | 0 | _ | |a Lecture Notes in Computer Science |0 PERI:(DE-600)2018930-8 |v 8097 |
500 | _ | _ | |a 10.1007/978-3-642-40047-6_83 |
520 | _ | _ | |a Clustering, i.e., the identification of regions of similar objects in a multi-dimensional data set, is a standard method of data analytics with a large variety of applications. For high-dimensional data, subspace clustering can be used to find clusters among a certain subset of data point dimensions and alleviate the curse of dimensionality.In this paper we focus on the MAFIA subspace clustering algorithm and on using GPUs to accelerate the algorithm. We first present a number of algorithmic changes and estimate their effect on computational complexity of the algorithm. These changes improve the computational complexity of the algorithm and accelerate the sequential version by 1–2 orders of magnitude on practical datasets while providing exactly the same output. We then present the GPU version of the algorithm, which for typical datasets provides a further 1–2 orders of magnitude speedup over a single CPU core or about an order of magnitude over a typical multi-core CPU. We believe that our faster implementation widens the applicability of MAFIA and subspace clustering. |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |f POF II |x 0 |
536 | _ | _ | |a 41G - Supercomputer Facility (POF2-41G21) |0 G:(DE-HGF)POF2-41G21 |c POF2-41G21 |f POF II |x 1 |
588 | _ | _ | |a Dataset connected to |
700 | 1 | _ | |a Kraus, Jiri |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Meinke, Jan |0 P:(DE-Juel1)132189 |b 2 |u fzj |
700 | 1 | _ | |a Pleiter, Dirk |0 P:(DE-Juel1)144441 |b 3 |u fzj |
773 | _ | _ | |y 2013 |a 10.1007/978-3-642-40047-6_83 |
856 | 4 | _ | |u http://link.springer.com/book/10.1007/978-3-642-40047-6/page/1 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/138003/files/FZJ-2013-04288.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:138003 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)157723 |
910 | 1 | _ | |a External Institute |0 I:(DE-HGF)0 |k Extern |b 1 |6 P:(DE-Juel1)137023 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)132189 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)144441 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-513 |2 G:(DE-HGF)POF3-500 |v Supercomputer Facility |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-411 |2 G:(DE-HGF)POF2-400 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |1 G:(DE-HGF)POF2-410 |0 G:(DE-HGF)POF2-41G21 |2 G:(DE-HGF)POF2-400 |v Supercomputer Facility |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2013 |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 0 |
980 | _ | _ | |a contb |
980 | _ | _ | |a VDB |
980 | _ | _ | |a contrib |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|