001     138004
005     20250314084109.0
024 7 _ |a 10.1007/s00450-013-0245-5
|2 doi
037 _ _ |a FZJ-2013-04289
082 _ _ |a 004
100 1 _ |a Knobloch, Michael
|0 P:(DE-Juel1)132163
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Mapping fine-grained power measurements to HPC application runtime characteristics on IBM POWER7
260 _ _ |a Berlin
|c 2014
|b Springer
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1406541154_29473
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Optimization of energy consumption is a key issue for future HPC. Evaluation of energy consumption requires a fine-grained power measurement. Additional useful information is obtained when performing these measurements at component level. In this paper we describe a setup which allows to perform fine-grained power measurements up to a 1 ms resolution at component level on IBM POWER (IBM and POWER are trademarks of IBM in USA and/or other countries.) machines. We further developed a plug-in for VampirTrace that allows us to correlate these power measurements with application performance characteristics, e.g. obtained by hardware performance counters. This environment enables us to generate both power and performance profiles. Such profiles provide valuable input to develop future strategies for improving workload-driven energy usage per performance. We show in comparison with power profiles of coarser granularity that these fine-grained measurements are necessary to capture the dynamics of power switching.
536 _ _ |a 41G - Supercomputer Facility (POF2-41G21)
|0 G:(DE-HGF)POF2-41G21
|c POF2-41G21
|f POF II
|x 0
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 1
536 _ _ |0 G:(DE-Juel-1)ATMLPP
|a ATMLPP - ATML Parallel Performance (ATMLPP)
|c ATMLPP
|x 2
700 1 _ |a Foszczynski, Maciej
|0 P:(DE-Juel1)136752
|b 1
|u fzj
700 1 _ |a Homberg, Wilhelm
|0 P:(DE-Juel1)132142
|b 2
|u fzj
700 1 _ |a Pleiter, Dirk
|0 P:(DE-Juel1)144441
|b 3
|u fzj
700 1 _ |a Böttiger, Hans
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1007/s00450-013-0245-5
|0 PERI:(DE-600)2410154-0
|n 3-4
|p 211-219
|t Computer science - research and development
|v 29
|y 2014
|x 1865-2034
856 4 _ |u https://juser.fz-juelich.de/record/138004/files/FZJ-2013-04289.pdf
|y Restricted
909 C O |o oai:juser.fz-juelich.de:138004
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132163
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)136752
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132142
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)144441
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-513
|2 G:(DE-HGF)POF3-500
|v Supercomputer Facility
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-41G21
|2 G:(DE-HGF)POF2-400
|v Supercomputer Facility
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a No Peer Review
|0 StatID:(DE-HGF)0020
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21