Institute for Advanced Simulation (IAS)
Julich Supercomputing Centre (JSC)

GPU-accelerated Segmentation of
high-resolution Human Brain Images
acquired with Polarized Light Imaging

Anna Maria Westhoff

Member of the Helmholtz Association

#) JOLICH

FORSCHUNGSZENTRUM

Berichte des Forschungszentrums Julich 4365

GPU-accelerated Segmentation of
high-resolution Human Brain Images
acquired with Polarized Light Imaging

Anna Maria Westhoff

Berichte des Forschungszentrums Jilich; 4365
ISSN 0944-2952

Institute for Advanced Simulation (IAS)

Julich Supercomputing Centre (JSC)

Jul-4365

Vollstandig frei verfligbar im Internet auf dem Jilicher Open Access Server (JUWEL)
unter http://www.fz-juelich.de/zb/juwel

Zu beziehen durch: Forschungszentrum Jilich GmbH - Zentralbibliothek, Verlag
D-52425 Julich - Bundesrepublik Deutschland
= 02461 61-5220 - Telefax: 02461 61-6103 - e-mail: zb-publikation@fz-juelich.de

Abstract

High-resolution three-dimensional polarized light imaging (PLI) is an approach pur-
sued by the Institute of Neuroscience and Medicine at Forschungszentrum Jiilich to
map nerve fibers and their pathways in human brains. Sections of cut post-mortem
brains are imaged with a microscopic device. A section is moved during the imag-
ing within the microscope so that a mosaic of about 30 x 30 image tiles is created
for a gross histological human brain section. These up to 900 tiles per section and
about 1500 sections in total have to be handled in the 3D reconstruction of the
brain. A way to accelerate this process is a previous segmentation of the image tiles
which leads to black-and-white masks marking the brain and background pixels of
the original tiles. Hence, all non-brain parts of the tiles can be ignored during the
reconstruction.

A region growing segmentation is developed and implemented for the PLI data.
The challenge to adapt this algorithm to the given dataset is to automatize the choice
of seeds needed as starting points for the growing process. Therefore, an automated
method of seed determination has to be developed. It uses statistics of the whole
brain based on the joint intensity histogram. This approach leads to a minimal fixed
amount of required manual input which is independent of the number of image
tiles to be segmented. The software is parallelized for the GPU cluster JUDGE,
i.e. it combines two levels of parallelism, namely a multi-core implementation and
the data parallel execution of appropriate subtasks on a GPU. This leads to a well
scaling application that achieves the expected segmentation results.

Zusammenfassung

Die Technik des hochauflosenden, dreidimensionalen Polarized Light Imaging (PLI)
ist ein am Institut fiir Neurowissenschaften und Medizin des Forschungszentrums
Jiilich entwickelter Ansatz, um den Verlauf von Nervenfasern im menschlichen Ge-
hirn zu kartografieren. Schnitte eines Post-Mortem-Hirns werden mit einem Mikro-
skop aufgenommen. Jeder Schnitt wird fiir die Aufnahme innerhalb des Mikroskop-
Aufbaus bewegt, sodass ein Mosaik aus etwa 30 x 30 Kacheln fiir einen histologi-
schen Schnitt des menschlichen Gehirns entsteht. Diese bis zu 900 Kacheln pro
Schnitt und 1500 Schnitte pro Gehirn miissen wihrend der 3D-Rekonstruktion des
Hirns verarbeitet werden. Um dieses Verfahren zu beschleunigen, wird zunichst ei-
ne Segmentierung der Kacheln durchgefiihrt. Diese erzeugt zu jeder Kachel eine
Schwarz-Weill-Maske, in der fiir jedes Pixel kenntlich gemacht wird, ob es Hirnge-
webe oder Hintergrund zeigt. Auf diese Weise konnen in der Rekonstruktionsphase
die Bildbereiche ignoriert werden, die kein Gewebe darstellen.

Fiir die PLI-Daten wurde eine Region Growing Segmentierung entwickelt und
implementiert. Die Herausforderung in der Anpassung des Algorithmus besteht dar-
in, die Wahl der Seeds zu automatisieren, die als Startpunkte fiir den Growing-
Prozess dienen. Die entwickelte, automatisierte Seed-Wahl basiert auf Statistiken
des gesamten Gehirns, denen das gemeinsame Intensitits-Histogramm aller Ka-
cheln zugrunde liegt. Dieser Ansatz fiihrt zu einem manuellen Aufwand, der un-
abhingig ist von der Anzahl der zu verarbeitenden Bilder. Die Software ist paral-
lelisiert fiir den GPU-Cluster JUDGE. Es werden zwei Ebenen der Parallelisierung
kombiniert, zum einen eine Implementierung fiir ein Mehrprozessor-System, zum
anderen eine Daten-parallele Ausfithrung geeigneter Teilaufgaben auf einer GPU.
Dies resultiert in einer gut skalierenden Anwendung, die die erwarteten Segmentie-
rungs-Ergebnisse erzielt.

CONTENTS I

Contents

1 Introduction

2 Polarized Light Imaging (PLI)

2.1 Motivationfor PLI
2.2 PreparationofaBrain.
2.3 Rotating Polarimeter and Imaging

2.4 3D Reconstruction of the Polarimeter Images

2.5 Requirements for the Segmentation

3 Choice of the Algorithm

3.1 Segmentation Methods
3.1.1 Thresholding
3.1.2 Region-Based Segmentation
3.1.3 Boundary-Driven Techniques
3.1.4 Classification Methods
3.2 Comparison of Segmentation Tools
3.2.1 Images used for the Comparison
3.2.2 Processof Testing
3.2.3 Results and Evaluation
3.2.4 Summarizing Evaluation

4 Seeded Region Growing Segmentation

4.1 Abasic Algorithm
4.2 Adaption of Seeded Region Growing
4.2.1 Automated Choice of Seeds
4.2.2 Similarity Criterion
4.2.3 Choice of the Growing Operator
4.3 Processing Pipeline
4.4 Review of the Requirements
4.5 Optimization of the Runtime Behavior
4.5.1 Multi-core Application
4.5.2 Data Parallelismand GPUs
4.5.3 Evaluation of the Parallelization

5 Conclusion and Outlook
Bibliography

A JUDGE Configuration

II LIST OF FIGURES

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
3.1
3.2
33
34
3.5
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16

Preparation Steps required before the Imaging
Measurement Setupof PLI
Rotating Polarimeter
Reconstruction Pipeline
Smooth Edges in Image Tiles
Image Artifacts: AirBubbles00
Counter-Example: Thresholding
Images used for the Tool Comparison
Result: Thresholding (GIMP)
Seeds for Region Growing with Fiji
Result: Region Growing (Fiji)
Result: Region Growing (ITK Connected Threshold)
Result: Region Growing (ITK Neighborhood Connected) part 1

Result: Region Growing (ITK Neighborhood Connected) part 2

Result: Region Growing (ITK Confidence Connected) part 1 .
Result: Region Growing (ITK Confidence Connected) part2
Result: Region Growing (ITK Isolated Connected)
Result: Boundary-Driven (MiaLite)
Seeds for ITK-SNAP
Result: Boundary-Driven (ITK-SNAP)
Result: Boundary-Driven (Fiji Level Sets) part 1.
Result: Boundary-Driven (Fiji Level Sets) part2.
Training Data forilastik 0.
Result: Classification Methods (ilastik)
Structure Chart: Seeded Region Growing by Adams and Bischof . .
Joint Histogram of 10 Sections
Structure Chart: Computation of the Joint Histogram
Joint Histogram of 10 Sections with Local Minima
Average Smoothing Filter
Weighted Average Smoothing Filter
Used Smoothing Filter
Initial Brain Measures L Lo
Initial Background Measures
Structure Chart: Final Choiceof Seeds
Comparison of Initial and Final Brain Measures
Regions connected ataCorner
Processing Pipeline of Seeded Region Growing
Result: Segmentation Masks
Result: Segmentation Masks - Extracted Edges
Structure Chart: Dilation,

LIST OF TABLES III

4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26
4.27
4.28

Result: Effect of the Dilation 62
Runtime of the StepsonaCPU 63
Structure Chart: Parallelized Computation of the Joint Histogram . . 64
CUDA: Grid of Thread Blocks 66
Speedup: Histogram 70
Speedup: Seeded Region Growing (CPU) 70
Communication Structure usedon JUDGE 71
Optimal Size of Thread Block (perStep) 72
Optimal Size of Thread Block (summedup) 72
Comparison: Runtime of the Steps ona CPU and GPU 73
Comparison: Per-Section Runtimes with and without GPUs 74
Speedup: Seeded Region Growing (GPU) 75

List of Tables

3.1 Start Parameters: ITK Connected Threshold 21
3.2 Start Parameters: ITK Neighborhood Connected 23
3.3 Start Parameters: ITK Confidence Connected 25
3.4 Start Parameters: ITK Isolated Connected 27
3.5 Comparison of thetested Tools 37
Listings
4.1 CUDA KerneloftheDilation 67
4.2 Invocation of the Dilation Kernel 68

IV LISTINGS

1 Introduction

Perhaps one of the greatest challenges research faces today is the question how the
human brain works. A lot of projects are dedicated to this topic like the Helmholtz
Portfolio Theme “Supercomputing and Modeling for the Human Brain™!, the Hu-
man Brain Project? or the US-American equivalent BRAIN initiative®. To answer
this question, the anatomical structure of the human brain on the level of single
nerve fibers has to be understood. A group of the Institute for Neuroscience and
Medicine (INM-1) at Forschungszentrum Jiilich has taken on the task to understand
the connectivity of brain regions on the one hand and to study neurodegenerative
diseases on the other hand. They develop and improve the technique of Polarized
Light Imaging (PLI) that allows to study sections of post-mortem brains with a res-
olution at sub-millimeter scale.

This comparably high resolution causes the problem that the amount of data to
be processed digitally is immense. A lot of processing steps of PLI can be acceler-
ated and their results may be improved if this amount of data can be limited to the
parts of interest. Therefore these parts of the images are masked out which do not
show the brain tissue. This provides additional advantages for visualization issues.

One way to cut out the background pixels of the original images is to use a
segmentation. This task of image processing creates a mask defining which pixels
of the original image show background and which show the object, so in this case
the brain tissue. The topic of this thesis is the development and implementation of
a segmentation for brain images acquired with PLI.

The concept of Polarized Light Imaging is outlined in chapter 2. The preparation
of the brain tissue, the imaging process and the 3D reconstruction of the images
are briefly presented. Afterwards, the requirements and further constraints on the
segmentation induced by the PLI image data are worked out in section 2.5.

Based on these requirements, a segmentation approach has to be chosen since
there is a bunch of different ways how to segment images. This process is described
in chapter 3. Already existing representatives of the most widespread segmentation
methods, which are presented in section 3.1, are applied to a small, representative
example data set in order to evaluate the fulfilling of the requirements (see sec-
tion 3.2). Summarizing the results it becomes apparent that the region growing
approaches create the comparably most reasonable masks while fulfilling the re-
quirements best. However, it is important to find a way to automatize this algorithm
in so far that the amount of manual input is independent of the number of images
to be processed since the tool has to deal with hundreds of thousands of images per

"http://www.fz-juelich.de/JuBrain/EN/Helmholtz%20Portfolio.html, accessed at 13/06/2013

>The Human Brain Project is a European Flagship Project. http://www.humanbrainproject.eu/,
accessed at 13/06/2013

3Short for Brain Research through Advancing Innovative Neurotechnologies,
http://www.nih.gov/science/brain/, accessed at 13/06/2013

2 INTRODUCTION

human brain.

It figured out that an application based on [AB94] achieved the best results
among all tested region growing tools creating reasonable masks. The adaption
of this seeded region growing method to the needs of the given PLI brain images is
presented in chapter 4. An important task is here to automatize the choice of seeds
so that the amount of required manual input is fixed and thus independent of the
number of images to be processed. A joint intensity histogram of all brain images
is used for this purpose.

After the image processing pipeline has been worked out (see section 4.3), the
formerly established requirements are reviewed to prove that the developed and im-
plemented tool fulfills all of them (see section 4.4). The runtime behavior of the tool
is analyzed (see section 4.5) because the processing time is the most important con-
straint that has to be kept in mind besides the requirements. In order to minimize the
runtime consumption, an optimal scaling, two-level parallelization is developed for
the segmentation. A porting into a multi-core application is installed and followed
by a data parallel execution of some selected steps on a GPU.

2 Polarized Light Imaging (PLI)

2.1 Motivation for PLI

Understanding the anatomical structure of the human brain on the level of single
nerve fibers is one of the most challenging tasks nowadays. The mapping of the
three-dimensional course of nerve fibers in the human brain is important to under-
stand the function of the brain on the one hand and to treat diseases successfully on
the other hand. [Bral3]

There are several techniques to image a brain like magnetic resonance imaging
which lack the required resolution to extract information on the level of single nerve
fibers. Polarized Light Imaging is a technique applied to histological sections of
postmortem brains which allows “the study of brain regions [...] in unprecedented
detail” [AAG™ 11]] with a resolution at sub-millimeter scale. It is based on an optical
property of myelin referred to as birefringence which surrounds the axons of nerve
fibers.

To capture the images with PLI, the brain is cut into more than 1500 sections
using a freezing microtome. Each section is then imaged with a specific polarime-
ter developed at the INM-1. Afterward the images of the different sections have
to be analyzed and reconstructed to gain three-dimensional information about the
course of nerve fibers. These different steps are briefly described in the following
paragraphs. [AAG™ 11, PAG™10]

2.2 Preparation of a Brain

Before the imaging can take place, the postmortem brain has to be prepared in some
steps which can be seen in figure 2.1.

After the brain has been removed!, it is fixed in formalin to prevent it from
decomposition. Since PLI captures images from sections of the brain, it has then to
be prepared for the sectioning. For that purpose it gets cryoprotected. The frozen
brain is cut into slices with a thickness of about 70um. Cryo-sectioning turned out
to be the preferred technique to preserve the birefringent myelin structures.

The brain is deformed non-linearly during the sectioning because the gray and
white matter react differently to the cutting and mounting on glass slides. Hence
a reference of the non-deformed brain is needed for the three-dimensional recon-
struction. Therefore a colored image of the surface of the frozen brain block is
taken before each cut. These are the so-called blockface images.

'The human postmortem brains are from legal body donor programs of collaborating universities
in Germany.

4 POLARIZED LIGHT IMAGING (PLI)

The sections are mounted on glass slides, embedded in Aquatex and finally
cover-slipped. During this process the tissue is deformed non-linearly once again
and individually for each section because the mounting is done manually. Also
artifacts like air bubbles are added unintentionally.

Each mounted section is imaged with the PLI technique at two different resolu-
tions. At the standard resolution with a pixel size of 64um x 64um a whole section
is captured in a single image. For the more detailed resolution with a pixel size of
1.6pm < 1.6um, a polarizing microscope captures a mosaic of about 30 x 30 images
for each section. The mosaic tiles are captured with an overlapping of about 30%.

[PAGT10, AGK™11
(brain removal)

A

mounting on glass shdes\
and cover-slipping

v
(fixation in formalin)
v
‘ (cryoprotection)
blockface image |
| AT Ay (sectioning \
non-linear
deformation

non-linear
deformation

Polarized Light Imaglna

mosaic of i 1mages per section

il ’ﬂﬂfﬁ

) e - w| [) bl

Figure 2.1: Before the brain can be imaged, some preparation steps including the

sectioning have to be done first. [PAG™10, AGK"11]]

Rotating Polarimeter and Imaging 5

2.3 Rotating Polarimeter and Imaging
The image acquisition of PLI is based on an optical property of the myelin sheaths
of nerve fiber axons. The lipid content of the myelin features birefringence whose
impact on the transmitted light is measured to extract the course of nerve fibers.
The measurement setup for Polarized Light Imaging is illustrated in figure 2.2.
The light emitted from the light source is linearly polarized by a first polarizer
before it passes the brain tissue. The axons of the nerve fibers are surrounded by the
birefringent myelin. The linearly polarized light interacts with this radially oriented
myelin thus inducing a phase shift to the light waves. This way the light becomes
elliptically polarized.

camera

linearly polarized
linear polarizer
linearly polarized
quarter-wave retarder

elliptically polarized

brain section

linearly polarized
linear polarizer

unpolarized

light source

ST

Figure 2.2: To capture the images based on PLI, light is linearly polarized by a first
polarizer before it enters the brain section. The birefringent myelin surrounding the
nerve fiber axons changes the polarization state into an elliptical one. Afterwards it
passes a quarter-wave retarder which changes the polarization state again to linear. The
light is then analyzed by a second polarizer whose transmission axis is orthogonal to
the one of the first polarizer. The principal axes of the retarder form a 45 degree angle
with respect to the transmission axes of the polarizers. [AAG™ 11, PAG™10]

6 POLARIZED LIGHT IMAGING (PLI)

The light passes a quarter-wave retarder next. Its principal axes form a 45 degree
angle with respect to the transmission axis of the polarizer. It gets linearly polarized
again leaving the retarder. Before a camera captures the light, it is analyzed by a
second polarizer whose transmission axis is perpendicular to the axis of the first
one.

The spatial 3D-orientation of the nerve fiber axons can be directly measured
from the captured images. It is represented by two angles, the in-plane angle ¢
describing the component of the fiber orientation within the section and the out-
of-section angle o which is the vertical component of the fiber and is also called
inclination.

The brain tissue is scanned systematically to gain the principal axes of the nerve
fibers and hence the 3D-orientation. Each brain section is imaged 18 times. For
each image the polarimeter consisting of the polarizers and the retarder is rotated
by ten degrees so that images from 0°, 10°, 20° up to 170° with respect to a reference
angle are captured. The images are black and white images containing only intensity
information but no colors (see figure 2.3).

polarizer

Figure 2.3: The polarizers and the quarter-wave retarder are rotated 18 times for each
brain section. The pixels containing parts of nerve fibers show a sine wave pattern, here
demonstrated by six of the 18 images. [AAG™11

The intensity distribution of each pixel showing a nerve fiber within the 18 im-
ages is approximately a sine curve. Therefore a sinusoidal curve is fitted through
the measured intensities to estimate the fiber directions. Using a discrete harmonic

3D Reconstruction of the Polarimeter Images 7

Fourier transform, the parameters Iy, ¢ and |sin ¢| can be extracted:

I= %0 - [1 4 sin (2p — 2¢) - sin (9)] (2.1)

I 1s the intensity captured by camera or microscope. [is the so-called transmittance
which is “the intensity of incident light modified by absorption independent of the
birefringence of the material” [PAG™10]. The transmittance image is proportional
to the mean of all 18 images. p is the rotation of the polarimeter, i.e. the polarizing
filters, with respect to a reference angle. ¢ is the in-plane fiber direction and ¢ the
so-called retardation which is “the maximum phase shift between the orthogonally
polarized components of a light ray passing through” the brain tissue within the 18
images [PAG™10].

The fiber inclination «, the out-of-section angle, depends on the thickness of the
brain section d, the birefringence An and the wave length of the light \:

0= ; -d - An - cos® () (2.2)

This way the fiber orientation vectors (FOV) can be estimated for the whole-
section polarimeter images. The course of the nerve fibers within a section can
be extracted out of the FOVs using a streamline algorithm. [AAG™ 11, PAGT10,
TMO04]

2.4 3D Reconstruction of the Polarimeter Images

Without further post-processing, it is only possible to extract fiber orientation vec-
tors and thus the course of nerve fibers through single sections but not three-dimen-
sionally through the whole brain. In case of the microscope image tiles, all tiles
of a section have to be reassembled, too. The intuitive way for the reconstruction
would be to join all mosaic tiles of a section assuming that the offsets of the imag-
ing are well-known. Afterwards, all sections either in low or high resolution can be
interpreted as an image stack and hence as 3D data.

This procedure is not possible due to several reasons: The mechanical precision
of the mobile microscope stage is much lower than the imaging resolution so that
the offset is not known accurately enough. Additionally, as described in section 2.2,
the sections are non-linearly deformed twice during the preparation process, namely
during the cutting and the mounting on glass slides. These deformations have to be
undone in order to track nerve fibers beyond a single section.

Because of these reasons, a 3D reconstruction pipeline has been established to
re-deform the images which can be seen in figure 2.4. A so-called registration is
used for the equalizing of the non-linear deformations.

A registration is “used to align two or more images of the same scene” [GWO08,
p. 89] or, in case of PLI, neighboring sections or slices of the same object. In most

8 POLARIZED LIGHT IMAGING (PLI)

H

polarimeter image

blockface ? %

ey \ it
segmentation by thresholding postprocessmg, Sicacstimaic
transmlttance and retardatlon
registration of per section: segmentatlon of
blockface stack stitching of mosaic tiles mosaic tiles

additional

information
registration

3D-reconstructed PLI stack

reference image

Figure 2.4: This reconstruction pipeline is needed to reverse the non-linear defor-
mations which happened during the preparation of the brain tissue. The polarimeter
images are first post-processed, e.g. the estimations of transmittance and retardation
are calculated. The mosaic tiles are stitched section-wise. For the registration of the
polarimeter images, the already registered blockface images are used as references.
A segmentation of the mosaic tiles is needed as additional information to fasten the
registration and improve the results. [PAG™10

cases, an image is registered against another one, the reference image, provided that
the reference is already well aligned. [GWOS), p. 89f]

Since all polarimeter images are uniquely non-linearly deformed, none of them
can be reasonably used as a reference for the registration. For that reason, a block-
face image has been captured before each cut during the preparation phase “as-
suming the imaging setup unchanged during cutting” (see section 2.2).
However, the brain block is slightly moved between two pictures during the cutting.
Therefrom the blockface images have to be registered among themselves until they
serve as references.

To ease and improve the registration of the blockface images, a check-board
pattern is visible in the background of these images. To extract this pattern and
other non-brain parts of the images, a distinction between brain and background
has to be done first. This differentiation between an object and the background is
called segmentation. In case of these color images, a simple thresholding based
approach is enough to get an adequate quality of the resulting masks. So the brain
can be identified mainly by distinct intervals of intensity and color.

Requirements for the Segmentation 9

The microscope polarimeter images are stored as mosaic tiles which have to be
joined to single images per section before their registration as already mentioned
above. The process to align the tiles correctly is called stitching. If the stitched im-
age tiles and the registered blockface images are generated, the registration of the
polarimeter images can take place. In this step the mayor challenge is the immense
amount of data. Working with the microscope images, there are 1500 to 3000 sec-
tions each with about 30 x 30 tiles. Each image tile has an original resolution of
2048 x 2048 pixels which results in a file size of about 16MB per tile and approx-
imately 14.4GB per section or 21.6 to 43.2TB per human brain depending on the
number of sections. On top of that, there are 18 pictures of each section with dif-
ferent used polarization states which have not been included in this measurement of
memory consumption.

Another problem especially with the microscope images are image noise and ar-
tifacts of the preparation like air bubbles. Since these effects are individual for each
image, the registration has to ignore the affected pixels or regions to not influence
the results.

Both problems, so the amount of data and the influence of noise, can be handled
better if only those parts of the images are taken into account for the registration
which belong to the brain but not to the background. This means that a segmentation
of the polarimeter images differentiating between brain and background has to be
performed before the registration. In general, a “segmentation subdivides an image
into its constituent regions or objects” [GWOS|, p. 689], so in this case into brain and
background regions. Another advantage of the availability of segmentation results
1s, that it can be reused for a 3D visualization of the dataset or extracted information
like FOVs to mask out the background. [PAG™10]

2.5 Requirements for the Segmentation

Since segmentations are important for a lot of use cases like motion capture or
automatic analysis of images, a bunch of different approaches is available. Hence
the requirements for the segmentation induced by the needs of the registration have
to be evaluated in order to choose an appropriate algorithm.

Segmenting images bears always the risk to attach a pixel erroneously to the
wrong part of the image, so an object pixel is assigned to the background or vice
versa. For the further processing of the brain images it is important to avoid cutting
away parts of the brain because this would lead to a loss of information. In par-
ticular, the calculation of statistics needed for the registration would achieve wrong
results if parts of the brain are ignored since they are masked out by the segmenta-
tion. This leads to the first requirement for the segmentation:

Marking brain pixel as background is worse than marking background pixel
as brain.

10 POLARIZED LIGHT IMAGING (PLI)

Another important aspect of the required segmentation is the large number of brain
images to be processed. Many segmentation approaches need manual interaction or
input like setting seed points or defining training data. This amount of interaction
depends on the number of images to be processed. The approach works for use
cases with a manageable number of images but not for the bulk of brain images.
That leads to the second requirement:

The amount of manual input or interaction has to be independent of the
number of images to be segmented which means that an automated seg-
mentation is needed.

A third requirement is the result of the image quality. Because of the preparation
process, the microscope brain images do not show clear edges between brain and
background which can be seen in figure 2.5. Even manually it is not possible to de-
fine the edges with an accurateness of a pixel. This results in the third requirement:

The algorithm has to extract reasonable edges between brain and back-
ground although there is a smooth transition between the regions.

_ background

Figure 2.5: This is an enlarged detail of a microscope image with the size of 100 x 50
pixels. The higher resolution image tiles show smooth transitions between brain and
background. A clear edge with a thickness of a single pixel is not optically visible.

Fourthly, the microscope image tiles should be processed independently because the
memory consumption of a stitched section is too large to be handled in any image
processing. In this case it has to be kept in mind that there are tiles containing parts
of the brain and background. But there are also tiles which show only brain or
background but not the two regions together:

The algorithm has to cope with image tiles containing brain and back-
ground pixels as well as tiles consisting of only one of these two.

The last requirement concerns the handling of artifacts like air bubbles and noise.
Air bubbles exist in form of dark rings or even as filled dark objects which can be
seen in figure 2.6. Image noise in this case is a generic term for pixels which have
an intensity varying a lot from the intensities of adjacent pixels, so for erroneously
colored pixels. It may result from various effects like shooting errors occurring in
every imaging process, from small dirt particles or from the reaction of the tissue
on the polarized light. This last requirement is related to the first one:

Requirements for the Segmentation 11

Artifacts and image noise should be masked in such a way that it does not
result in holes within the brain region.

C]

(a) 3 x 3 stitched tiles (b) single tile

Figure 2.6: The images show artifacts in form of air bubbles which are a result of the
cover-clipping during the preparation. In the background, the bubbles are dark rings
(blue). In the brain, they are either also rings (red) or filled dark regions (yellow).

It means that artifacts within the brain region such as air bubbles should be added to
the brain, which is important for the registration. Hence each bubble is not “contin-
ued” in the neighboring sections and would complicate the registration. Artifacts in
the background region may be assigned to any of the two regions. If it is possible,
artifacts should be classified as such.

Beyond these requirements, there are some further constraints regarding the sub-
sequent implementation: The runtime behavior of the application has to be adequate
in the sense that also a large number of images can be processed in a reasonable
amount of runtime. Possible ways to improve the runtime behavior are a distributed
processing of images, so a multi-core application, and/or a transfer of algorithm
steps to a GPU2.

The 18 polarimeter images, the transmittance and retardation are available as
input data. The microscope image tiles are provided in the stitched and unstitched
version. The application should be able to process a user-defined amount of sections
and microscope image tiles in form of a batch job, so a single program run segments
all required images.

In summary, there are five obligatory requirements and some further constraints
for the segmentation which have to be kept in mind while choosing an algorithm.
This choice is described in the following section.

2Graphics Processing Units

12 POLARIZED LIGHT IMAGING (PLI)

13

3 Choice of the Algorithm

Segmentation is one of the standard but challenging tasks of image processing.
Hence, a lot of different methods have already been invented and optimized. Which
method suits to which images is an important question that has to be answered in
advance to achieve the desired results.

In the following section, the most popular segmentation methods are briefly
introduced. For a comparison, already existing implementations of the methods are
applied to some representative images. Finally, these results are evaluated to choose
a method for the present segmentation task.

3.1 Segmentation Methods
3.1.1 Thresholding

Thresholding is one of the simpler but fast methods in order to segment images. Let
f(x,y) be a function of the image, e.g. the intensity value of the pixel in row x and
column y, and let 7" be a threshold within the range of f. Then an image g holds the
thresholding result and is given as

_Ja iff(x,y)>T
g(x,y)—{b ff(ey) < T (3.1)

The image g is a binary mask with the labels a and b which in general stand for
“object” and “background”. They are typically illustrated as black and white. With
the definition of equation (3.1), the pixels of the original image brighter than 7" will
be marked with a, the others with b, given that f is the intensity function. This
operation can be applied to all pixels of the image independently.

If T is constant for the whole image, the method is called “Global Thresh-
olding”, otherwise “Variable Thresholding”. This approach only works if such a
threshold 7' exists which separates object and background. So thresholding can
be successfully used, if the intensity histogram of the image can be divided into
distinct parts and each part belongs either to object or background. Figure 3.1 il-
lustrates two example images, one can and the other cannot be segmented using a
global thresholding method. [GWOS, p. 738ff]

3.1.2 Region-Based Segmentation

Thresholding attempts to identify various regions of the image, e.g. object and back-
ground, by the analysis of image functions like the intensity histogram. Region-
based methods try to find these regions directly. There are mainly two different
region-based approaches, namely “region growing” and “split and merge”.

14 CHOICE OF THE ALGORITHM

(a) Thresholding possible (b) Thresholding impossible

"

(c) Intensity histogram of 3.1(a) (d) Intensity histogram of 3.1(b)

Figure 3.1: Image 3.1(a) has two clearly separated modes in its intensity histogram
3.1(c). Thus, it can be segmented with any threshold 7" separating these two intensity
intervals. Image 3.1(b) cannot be segmented by thresholding since there are no modes
in its intensity histogram 3.1(d).

Region growing is based on the idea to select a single pixel within an object, the
so-called seed pixel or seed point, and grow a region starting at this point until the
object boundaries are reached. For the other regions of the image, further seeds are
needed. All remaining pixels are marked as background in the end.

Thus, region growing mainly consists of two operations: (1) the growing oper-
ator defining which pixels are analyzed next, and (2) a similarity criterion defining
if a pixel is similar enough to be added to the region or not. The similarity criterion
can be “local” like intensity and color or more advanced like the “likeness of a can-
didate pixel and the pixels grown so far” [GWOS,, p. 764]. This way also images can
be processed successfully which could not be segmented by thresholding because
of the lack of a valid threshold value since also spatial information are used by the
growing operator and optionally also by the similarity criterion.

Split and merge methods are an alternative way to perform a region-based seg-
mentation. An image is first divided into an initial set of disjoint regions. After-
wards the regions are merged and/or split using a similarity criterion. The algorithm
results in a set of regions which are unalike to each other. It is implemented recur-
sively most times. For large images, the recursion depth can be very large. This
method also has problems to cope with image noise because a noise pixel is unalike
compared to the direct neighboring pixels.

In the beginning, the image is divided into four quadrants R;. The predicate Q
defines if a region is uniform (Q(R;) = true) or not. First, each region R; with
O(R;) = false is split into four disjoint quadrants until all regions R; satisfy Q.

Segmentation Methods 15

Afterwards for each pair of adjacent regions R; and Ry is checked, if the condition
O(R; U Ry) = true is fulfilled. In this case the two regions are merged. This step is
repeated till no regions can be merged anymore.

For both region-based methods, the choice of the similarity criterion has a sig-
nificant influence on the quality of the resulting mask. It can consist of pixel-wise
information like color or intensity, or use also data of the direct neighborhood of
a pixel. This value calculated for each pixel can be compared to fix values like
thresholds or to the already marked region. [GWOS, p. 763ff]

3.1.3 Boundary-Driven Techniques

Boundary-driven methods attempt to move an initial boundary curve until it fits
the real object boundaries. A popular sub-class comprises the so-called level set
methods.

The level set algorithms start with an initial boundary curve. This curve is then
evolved using a speed function F' which depends on various information extracted
from the image like intensity or the image gradient. The speed F is defined in a way
that it is zero, if the curve finally coincides with the object boundaries so that then
the evolution stops.

The evolution of the curve is formulated as a partial differential equation. Thus,
the computational effort of this approach is comparably high. [Set99, p. 3ff]

3.1.4 Classification Methods

Contextual image classifications segment an image based on a training set which
has to be defined manually. This training data contains representative information
about the different image regions. Then a feature vector is defined for each pixel
holding the information used for the later classification. It is based on information
like intensity, texture or edges.

There are a lot of different ways how to gain the final labels out of training data
and feature vectors. A popular way is to calculate the contextual classification based
on Bayes minimum error classifier. This statistical approach takes into account the
error induced by misclassification and tries to minimize this error. Therefor the
feature vector of each pixel and the feature vectors and labels of a defined neigh-
borhood around this pixel are taken into account. [SHBO7, chapter 8.4]

The quality of the result depends a lot on the training data and the choice of the
features. The features have to be defined in a way that it can be well differentiated
between the image regions based on this information.

16 CHOICE OF THE ALGORITHM

3.2 Comparison of Segmentation Tools

Since segmentation is one of the most important tasks of image processing, there are
a lot of segmentation tools available. Thus a comparison of different methods can be
done only within a selection of existing ones. In the following section some popular
tools with implementations of different segmentation methods are compared to find
out which works best and with reasonable memory consumption, effort and runtime
for the given brain images.

3.2.1 Images used for the Comparison

The given segmentation tools are compared based on four brain image tiles which
are representative for the whole data set. They have a color depth of 32 bit and are
gray-scale images.

(a) Tile 06-16 (b) Tile 07-16
(¢) Tile 00-00 (d) Tile 08-14

Figure 3.2: The images 06-16 and 07-16 show both brain tissue and background. Tile
00-00 contains only background and tile 08-14 only brain.

Comparison of Segmentation Tools 17

Image tiles 06-16 and 07-16 (see figures 3.2(a) and 3.2(b)) show both brain
tissue and background. The light gray regions in the top left and bottom left corners
respectively on image 06-16 belong to the background, the darker parts to the brain.
The black rings are air bubbles originating from the cover-slipping step during the
preparation as described in section 2.2.

Tile 00-00 (figure 3.2(c)) shows only background with some dirt particles. In
contrast, tile 08-14 (figure 3.2(d)) contains only brain. In this tile a small hole is also
visible within the brain tissue as a result of the sectioning, which is the light gray
speckle in the middle of the lower third of the image. The tools to be tested should
also cope with these two images because tiles with only one of the two regions occur
frequently.

These images illustrate that in principle the intensity histograms of the brain
images can be divided into a light background and a dark brain. Especially the
brain features a large variance in intensity. The lighter parts like in tile 07-16 and
the top left corner of tile 08-14 show the gray matter of the brain. The darker parts
visible in the bottom right corner of tile 08-14 belong to the white matter basically
containing the nerve fibers.

3.2.2 Process of Testing

The evaluated tools have been applied to these four images. They all provide a two-
colored mask as result. To allow an optical evaluation of these masks, they have
been post-processed as follows:

* The edges between the regions are extracted using the edge detection of GIMP
[Thel3]] with an edge size of 1.0 pixel.

* The edges are colored red, all other pixels black also using GIMP.

* Fiji [SACF™12] is used to overlay the original tiles with the extracted edges
while hiding the black background of the edge images. This is done by the
“Image Calculator” using the “Transparent-zero” operator.

The parameters of the given tools have been optimized in an iterative process. The
results presented here all belong to the best configurations which have been figured
out.

3.2.3 Results and Evaluation
Thresholding

GIMP: Threshold

A thresholding segmentation of GIMP [Thel3] (version 2.6.11, Windows 64bit) has
been tested. This tool interprets the pixel intensities as eight bit values. The thresh-
old value has been chosen as 7 = 107, so the intensity interval [0, 107] belongs to
the background and [108, 255] to the brain.

18 CHOICE OF THE ALGORITHM

The result (see figure 3.3) clearly shows that thresholding is prone to noise. The
background contains also dark pixels, the brain also lighter colored ones. These
noise pixels are respectively assigned to the wrong regions of the segmentation
mask. Hence, not only the desired edges between brain and background but also
edges around all noise pixels are gained. Thus a threshold segmentation does not
produce good results.

(a) Tile 06-16 (b) Tile 07-16
(¢) Tile 00-00 (d) Tile 08-14

Figure 3.3: GIMPs thresholding method is prone to noise effects so that no clear edges
between brain tissue and background are gained because the brain images are full of
noise pixels.

Comparison of Segmentation Tools 19

Region-Based Segmentation

Fiji: Seeded Region Growing Tool
Fiji (ImageJ version 1.47k, Windows 7 64bit) provides a bunch of dif-
ferent image processing algorithms, inter alia a “Seeded Region Growing Tool”. It
has been developed by Sasha Jarek based on [[AB94], the first description of
a region growing algorithm using seeds.

The tool has only been applied to the tiles 06-16 and 07-16, so the tiles showing
both brain and background, because this tool requires seeds for at least two different
regions.

(a) Seeds for tile 06-16 (b) Seeds for tile 07-16

Figure 3.4: The red regions are the seeds for the brain, the green ellipses for the
background. It is important to add a seed to each of the not connected parts of an
image belonging to the same region. So in 3.4(a) each background region gets an own
seed.

The seeds can be applied as arbitrarily shaped forms, in this case some ellipses
have been used (see figure 3.4). With each seed, an own region of the image is
marked. The seeds for the brain regions are colored red, the ones for the background
green. If two seeds have the same color like the green ones in seed image 3.4(a), the
tool will join these regions in the resulting mask. Since in this image the background
in the top and bottom left corners is not connected, an own seed for each of these
regions is needed.

The masks created by this tool show clear edges between brain and background
(see figure 3.5). This means that the algorithm can cope with noise in contrast to
thresholding. But in the detail images (see figures 3.5(c) and 3.5(d)) it is visible that
the extracted edges are moved some pixels away from the correct boundary into the
brain region. Anyway, this method seems to work for the brain images with some
adaptations to the given images.

20 CHOICE OF THE ALGORITHM

(a) Tile 06-16 (b) Tile 07-16

(c) Detail of tile 06-16 (d) Detail of tile 07-16

Figure 3.5: The region growing tool of Fiji creates a mask with clear edges between
brain and background. The course of the edge follows the boundary between brain and
background but in detail images (3.5(c) and 3.5(d)) it is visible that the extracted edge
is moved some pixels into the brain region.

ITK Connected Threshold Region Growing

The Insight Segmentation and Registration Toolkit (ITK, version 4.1.0, Linux 64bit)’
is a C++ toolkit for image processing. It provides some different region growing
methods implemented as executable command line tools. The first one which has
been tested is the Connected Threshold Region Growing which is implemented in
ConnectedThresholdImageFilter p. 504ff].

This method gets the position of a seed pixel and an intensity interval of the
region to be masked as input. After an edge-preserving smoothing of the original
image, a single region is then grown starting at the seed point. A neighbor pixel of
the already marked region is added to this region if the criterion (3.2) is fulfilled. 7 is
the intensity of a pixel at position (x,y), [lower, upper| is the user-defined intensity
interval.

I(x,y) € [lower, upper| (3.2)

Thttp://www.itk.org/

Comparison of Segmentation Tools 21

If more than one region should be masked, the tool has to be applied several
times, once for each region. This is necessary if the image contains two or more
not connected parts of the brain. The resulting masks can be joined with an OR
operation. The tool has been started with the following parameters:

Tile Seed Position Intensity Interval Seed Region

06-16 (1024,1024) [0, 3549 brain

07-16 (1215,1353) [0, 3549] brain

00-00 (1024,1024) [3550,65536] background
(666, 1209) [3550,65536] background

08-14 (1024,1024) [0, 3549] brain

Table 3.1: Start parameters for ITK Connected Threshold Region Growing

For all images showing brain, the seeds have been placed in the brain region.
ITK interpretes the images as 32 bit gray-scale so that the intensity intervals have
to be adjusted to this range of possible values. Thus, the intensity interval for the
brain has been chosen as [0, 3549].

Tile 00-00 shows only background but no brain. Therefore the seed has to be
placed in the background together with an intensity interval for the background
which is [3550, 65536]. This tile has been segmented twice to mark also the inside
of an air bubble correctly.

The edges of the resulting masks (see figure 3.6) fit well the actual boundaries
between brain and background. However, the method is prone to noise because it is
based on thresholding and thus has the same problems to cope with noise as simple
thresholding approaches. The effects of noise are only visible in the grown regions
but not in the rest of the image because the noise pixels are not added to the growing
region. The non-grown parts do not show noise since these parts of the image are
connectedly masked after the growing process.

22 CHOICE OF THE ALGORITHM

(a) Tile 06-16 (b) Tile 07-16

(c) Detail of tile 06-16 (d) Detail of tile 07-16

(e) Tile 00-00 (f) Tile 08-14

Figure 3.6: The ITK Connected Threshold method extracts reasonable boundaries. It
is prone to image noise within the grown region. In all tiles except for tile 00-00, the
brain region has been grown. In this tile, the background has been grown because this
image shows only background.

Comparison of Segmentation Tools 23

ITK Neighborhood Connected Region Growing

Another region growing method provided by ITK is the Neighborhood Connected
Region Growing implemented in NeighbourhoodConnectedImageFilter
[ISNCOS, p. 510ff]. It is a variant of ThresholdConnectedImageFilter
which has been tested before.

This algorithm adds a pixel to the region if criterion (3.2) is fulfilled for the
examined pixel and if additionally also all neighboring pixel fit in the user-defined
intensity interval [lower, upper]. Therefore, the tool expects the same parameter list
like the former one. The following configurations have been used for the execution:

Tile Seed Position Intensity Interval Seed Region
06-16 (1024,1024) [0, 3549] brain
(117,1584) [0, 3549] brain
(168,1716) [0, 3549 brain
(80, 1870) [3000, 65536] background
(40,1310) [3000, 65536] background
(40,110) [3000,65536] background
07-16 (1300, 1300) [0, 3700] brain
(960, 720) [0, 3700] brain
(750, 490) [3000, 65536] background
(500, 1210) [3000, 65536] background
00-00 (1024, 1024) [3000,65536] background
08-14 (1024,1024) [0, 3549] brain

Table 3.2: Start parameters for ITK Neighborhood Connected Region Growing

For tiles 06-16 and 07-16, so the tiles showing both brain and background, two
different variants have been tried. First, the seeds have been placed in the brain
region (“‘brain seeds”). As an alternative, the seeds have than be placed in the back-
ground regions (“background seeds”). It should be noticed that in this case the
chosen intervals for brain and background have been chosen as overlapping which
produced the best results. The results can be seen in figures 3.7 and 3.8.

In both variants, the grown regions are influenced by image noise, i.e. they not
only contain the edges between brain and background but also a lot of noise isles
within the brain respectively background. The found boundaries between the two
regions are nearly the expected ones which can be seen in figures 3.7(e) and 3.7(f).
So apart from the noise effects, the results are reasonable and even better than the
ones from the former algorithm. Also the results for the “single labeled” tiles 00-00
and 08-14 are good.

The execution time is slightly larger than for the ITK Connected Threshold
method. In exchange, the choice of seeds seems to be more stable, so a small
change of the seed position does not affect the result.

24 CHOICE OF THE ALGORITHM

(a) Tile 06-16 (brain seeds) (b) Tile 07-16 (brain seeds)
(c) Tile 06-16 (background seeds) (d) Tile 07-16 (background seeds)

(e) Detail of 3.7(¢c) (f) Detail of 3.7(d)

Figure 3.7: The ITK Neighborhood Connected method extracts reasonable bound-
aries. It is influenced by image noise within the grown region. Two variants have been
tested, once with seeds in the brain and once in the background region.

Comparison of Segmentation Tools 25

(a) Tile 00-00 (b) Tile 08-14

Figure 3.8: The ITK Neighborhood Connected method copes with tiles containing
either brain or background but not both regions.

ITK Confidence Connected Region Growing
A third region growing segmentation of the ITK is the Confidence Connected one
implemented in ConfidenceConnectedImageFilter [[SNCO3, p. 514ff].

This method uses a more advanced similarity criterion compared to the former
described ones. After a new pixel has been added to the region, the mean p and
standard deviation o of the intensity of all pixels belonging to the region are com-
puted respectively updated. Another pixel is added to the region, if criterion (3.3)
is fulfilled. I(x,y) is the intensity of a pixel at position (x,y). « is a user-defined
factor. In contrast to the last two ITK methods, the user does not define an inten-
sity interval representing the region but only the factor o which has been chosen as
o = 2.5.

Ix,y)elp—a-o,u+a-0] (3.3)

This criterion is a real similarity criterion because it allows to add a pixel to the
region if the pixel is similar enough to the region instead of similar to a defined
intensity interval. The tool has been used with the following parameter configura-
tions:

Tile Seed Position Seed Region
06-16 (960,720) background
07-16 (750,490) background

(500, 1210) background
00-00 (1024,1024) background
08-14 (1024,1024) brain

Table 3.3: Start parameters for ITK Confidence Connected Region Growing

26 CHOICE OF THE ALGORITHM

For tiles 06-16 and 07-16 again both variants with seeds in brain or background
have been compared. It figured out that for both tiles background seeds produce
better results than brain seeds so that only these results can be found in figure 3.9.

This similarity criterion of this method is prone to image noise especially if the
noise pixels are much lighter or darker than the surrounding region. The parameter
a can be changed to suppress the noise, but an enlargement of o would result in
wrong edges because the intensity boundary between brain and background would
be ignored respectively shifted by too large intervals.

The result for tile 08-14 (see figure 3.10) is the worst one. This image shows
the large intensity variance of the brain tissue. Even if the seed has got the average
of the brain intensities, the tool does not mask the whole brain as brain. The param-
eter o should be chosen equal for all images because the tiles should be processed
batch-like so with the same « for all images. Hence, a manipulation of « is no so-
lution to this problem because it is not known in advance if a tile contains brain or
background.

All in all, this method seems to be inappropriate for the given brain images due
to the kind of image noise they contain and the problem to handle the intensity
variance of brain tissue.

(a) Tile 06-16 (b) Tile 07-16

(c) Detail of tile 06-16 (d) Detail of tile 07-16

Figure 3.9: The ITK Confidence Connected method extracts reasonable boundaries
but it is influenced a lot by image noise.

Comparison of Segmentation Tools 27

(a) Tile 00-00 (b) Tile 08-14

Figure 3.10: The ITK Confidence Connected method cannot cope with the large in-
tensity variance of brain tissue as 3.10(b) shows.

ITK Isolated Connected Region Growing

The last tested region growing method of ITK is Isolated Connected Region Grow-
ing which is implemented as IsolatedConnectedImageFilter
p- S118ff].

This is again a variant of the Connected Threshold method. It requires two
seeds, the first one within the region, the second one outside of it. It is assumed
that the region is lighter colored than the rest so that in addition a lower threshold
for the region has to be provided. The algorithm then determines an intensity value
which could be the upper threshold for the region based on this information. The
value which separates the two seeds best is found using a binary search.

Since this method needs a seed within and one outside of the region, it can-
not be used without modifications for images showing only brain or background.
Therefore it has only been tested for tiles 06-16 and 07-16 with the following con-
figuration:

Tile Seed Position Lower Threshold Seed Position

(Region) (Outside)
06-16 (1024,1024) 0 (960, 720)
07-16 (1300, 1300) 0 (750,490)

Table 3.4: Start parameters for ITK Isolated Connected Region Growing

The results of this method can be found in figure 3.11. It is obvious that this
method has problems to cope with the large intensity variance of the brain tissue
like the former evaluated one. The extracted edges are far away from the correct
ones. In the mask of tile 06-16, there are a lot of large holes within the brain region.

28 CHOICE OF THE ALGORITHM

In the result of tile 07-16, an overflow of the brain region into the background is
visible.

Since a modification of the seed positions does not lead to better results, this
approach also seems inappropriate for the present brain images.

(a) Tile 06-16 (b) Tile 07-16

Figure 3.11: The ITK Isolated Connected method extracts reasonable boundaries but
it is influenced a lot by image noise. As figure 3.11(a) illustrates, this algorithm cannot
cope with the large intensity variance of brain tissue under polarized light.

Boundary-Driven Techniques

MiaLite

MialLite (current version from April, 17th 2013 for Window 7 64bit; no official
version number provided) is a segmentation tool providing a level set algorithm
“for academic users” [Mial2]. The user can choose between a threshold based
and an edge based variant. Since the brain images do not contain clear edges, the
threshold variant achieved better results.

The tool interpretes the images as eight bit gray-scale. Therefore 7 = 107 has
been chosen as threshold value again like for the threshold segmentation of GIMP.
In addition, a smoothing factor can be defined for a prior image smoothing which
has been set to 0.5.

This level set approach works with seed regions which are evolved to the bound-
aries between object and background. Therefore, a single filled circle has been
placed in every brain region. For tile 00-00, so the tile without brain content, the
circle has been placed in the background.

The results of this tool are illustrated in figure 3.12. The gained edges fit well the
boundaries between brain and background. The method is not influenced by image
noise which might be a result of the smoothing used as preprocessing step. How-
ever, this tool has a disadvantage compared with the region growing approaches:
The execution time is much larger than for all tested region growing methods.

Comparison of Segmentation Tools 29

(a) Tile 06-16 (b) Tile 07-16

(c) Detail of tile 06-16 (d) Detail of tile 07-16
(e) Tile 00-00 (f) Tile 08-14

Figure 3.12: The resulting edges created by MiaLite fit well the boundaries between
brain and background.

30 CHOICE OF THE ALGORITHM

ITK-SNAP

ITK provides not only region growing methods but also level set approaches for
image segmentation. The tool ITK-SNAP (version 2.4.0, Windows 7 64bit) [ITK11]
encapsulates these level set methods and provides a Graphical User Interface for
better usage. It is designed to segment 3D images so that the given tiles have to be
duplicated to gain image stacks in advance. Furthermore, it only works with 16 bit
color depth or less.

This tool also requires a preprocessing based on “intensity regions”, so thresh-
olding, which has been done analogue to the other tools. In addition, seed bubbles
have to be placed. The edges of the bubbles are than evolved to the object bound-
aries. Since the execution time for the evolution depends on the size of the region in
which they have been placed, the bubbles have been put into the smaller background
instead of the larger brain region, what can be seen in figure 3.13. A lot of bubbles
are needed to segment the image completely. If less bubbles are placed, parts of the
image stay unsegmented. So this tool is not stable concerning the choice of seeds.

(a) Seeds for tile 06-16 (b) Seeds for tile 07-16

Figure 3.13: The green bubbles have been used as seeds for a level set segmentation
with ITK-SNAP. Although most of the seeds are in the same region of the image, the
tool does not work correctly with less bubbles.

The results of this segmentation tool can be found in figure 3.14. The edges
created by ITK-SNAP are as good as the ones of MiaLite. However, the execution
time of this software is even larger than the time needed by MiaLite. To get results
in a reasonable amount of runtime, the input images have been scaled to a quarter
of the original size, so to 1024 x 1024 pixels. This effect might be caused by the
needed image stack and the consequently larger amount of input data.

The processing of the “single-labeled” images has been stopped due to the im-
mense amount of runtime needed. In principle, the tool segments also these images
correctly.

Comparison of Segmentation Tools 31

Additionally, the tests figured out that this approach is prone to varying inten-
sities, e.g. because of non-uniform illumination during the imaging process. This
results in scraggy edges.

(a) Tile 06-16 (b) tile 07-16

(¢) Detail of tile 06-16 (d) Detail of tile 07-16

Figure 3.14: ITK-SNAP extracts reasonable edges between brain and background.
However, the runtime of this tool is much larger than of all tools tested before.

32 CHOICE OF THE ALGORITHM

Fiji Level Sets

The last, tested level set implementation is Fiji Level Sets [SACFT12]. It has the
same problems which have been detected while working with ITK-SNAP: This
tool also needs a lot of seeds which are in this case seed pixels. All configurable
parameters work well with the default values, so a manipulation did not end in better
segmentation results.

The runtime again depends on the size of the region in which the seeds are
placed. Therefore, for all image tiles it has been tried to set the seeds into the smaller
region of the image. For tile 06-16, the background regions are small, so the seeds
are placed there and the image has been processed in its original resolution. Tile 07-
16 1s approximately divided into two halves; it has been scaled down to 1024 x 1024
pixels. The other two tiles show only brain or background which means that they
consist of a single region. So they had to be scaled down to 512 x 512 pixels to get
the results in a reasonable amount of time.

Figures 3.15 and 3.16 illustrate the results of this segmentation tool. The ex-
tracted edges are reasonable but it has problems with thin brain tissue originating
from rips occurring during the sectioning process (see figure 3.15(d)). It is ex-
pressed through visual effects comparable to the reaction to image noise.

(a) Tile 06-16 (b) Tile 07-16
(c) Detail 1 of tile 06-16 (d) Detail 2 of tile 06-16 (e) Detail of tile 07-16

Figure 3.15: Fiji Level Sets finds reasonable edges but has problems with thin brain
tissue.

Comparison of Segmentation Tools 33

(a) Tile 00-00 (b) Tile 07-16

Figure 3.16: The needed execution time of Fiji Level Sets is comparably large, espe-
cially for tiles like 00-00 and 08-14 showing mainly brain or background.

Classification Methods

ilastik

The software ilastik (version 0.5.12, Windows 7 64bit) has been used to
test classification based segmentations. For classifications, first some features have
to be chosen. In this case, the color in rings of three, five and seven neighboring
pixels has been used. Other features like texture or edges do not seem to work for
the brain images as tests have shown.

Figure 3.17: This training data has been used for the classification based segmentation
of ilastik. The training information for the brain is the green line, for the background
there are two red lines.

After the features have been chosen and evaluated for the images, training data
has to be defined. These are parts of the image representative for each of the labels
to be applied to the image. Ideally, the training data is only masked in some few

34 CHOICE OF THE ALGORITHM

images which are also representative for all other images. In this case, tile 06-16
has been used for training which can be seen in figure 3.17.

The result of this segmentation can be found in figure 3.18. The edges between
brain and background are reasonable but this approach is prone to image noise if
color or intensity are used as features. Other features did not work at all for these
brain images because they cannot be used to identify the different image regions.
The execution time is much smaller than for the level set methods.

(a) Tile 06-16 (b) tile 07-16
(¢) Detail of tile 06-16 (d) Detail of tile 07-16

(e) Tile 00-00 (f) tile 08-14

Figure 3.18: ilastik finds reasonable edges but is influenced by image noise.

Comparison of Segmentation Tools 35

3.2.4 Summarizing Evaluation

In section 2.5 it has been outlined which requirements exist for the segmentation to
be developed. In this section it will be evaluated how they are fulfilled by the tested
tools on the one hand and the underlying methods on the other hand.

The first requirement is that brain should never be masked as background. The
tests described in the last paragraphs have shown that this requirement is fulfilled by
all methods and tools. Only in some cases like the region growing segmentation of
Fiji, the extracted edges were moved some pixels into the brain. This problem can
be solved easily by applying morphological operators like a dilation to the created
mask.

A second reason for erroneously masked pixels is image noise which has be-
come clear especially in case of thresholding based approaches. So it is important
that the method copes well with image noise which has been listed separately as the
fifth requirement. Therefore, these two requirements can be evaluated together.

Another requirement refers to the needed amount of manual input or interaction.
In this case it has to be abstracted from the requirements of the tested tools to the
needs of the approach itself. For some methods like thresholding it is obvious that
only a fixed amount of input is needed independent of the number of images to
be processed, namely the threshold value. Other methods are based on seeds or
training data. Here the required amount of input has to be examined in detail.

The third requirement claims to find reasonable edges which is intrinsic working
with segmentations. Particularly this aspect has already been pointed out in the
evaluation of the resulting masks created by the tested software tools.

Fourthly, the approach has to cope with “single labeled” images, so tiles show-
ing either brain or background but not both. Like with the next-to-last requirement,
it has to be abstracted from the tool to the method to rate this aspect in order to
figure out if a segmentation approach works well for the present brain images.

Another hint in addition to the requirements is to check the approaches for their
parallelization capability in order to facilitate processing the immense amount of
images in reasonable execution time. Furthermore, it should be evaluated if the
tools are stable regarding variations of the configuration parameters and additional
input like seeds. Not least, it has to be kept in mind which effort is needed to
re-implement and adapt the algorithms to the given problem.

In the following, the tested software tools are compared and evaluated based on
these criteria. As listed in table 3.5, a thresholding segmentation does not work well
for the given brain images since this method is prone to image noise, i.e. the images
show a lot of noise pixels. If another method copes with noise it depends a lot on
the question whether it is based on a threshold or not.

In case of region growing segmentations, some of the tested methods cope with
noise like Fiji Region Growing, but others not like ITK Connected Threshold. The
difference between these tools is the way how thresholding is included into the
algorithm. ITK Connected Threshold compares the intensities pixel-wise with a

36 CHOICE OF THE ALGORITHM

threshold value. Fiji Region Growing and ITK Neighborhood Connected take into
account the already marked region respectively the neighborhood of a pixel, too.
This further knowledge softens the effect of noise a lot. So in principle, region
growing segmentations can cope with noise if the implementation is being aware of
this problem.

The tested boundary-driven methods all cope well with noise. The classification
based tool ilastik has the same problems with noise which can be found in some of
the region growing segmentations and the thresholding tool. Since image noise is
present in the images to be processed, this aspect has to be rated as a criterion for ex-
clusion, so the thresholding and classification based methods will not be discussed
further. They are not suitable for the given data.

For the remaining two variants, the needed manual input is of the same dimen-
sion. The region based methods as well as the boundary-driven need a distinct
manual input for each image. In addition, the amount of input per image may
vary. So dealing with this requirement, there is no difference if a region based or
a boundary-driven method is used. Also the edges extracted by both approaches
are equally good, their quality again depends on the implementation details. Both
approaches can be implemented in a way that they can process “single-labeled”
images and are stable concerning variations of input or parameter configurations.

The region based methods can be parallelized in the sense that the images are
processed independently of each other. The boundary-driven approaches can be
parallelized in the same way. Alternatively, all image tiles belonging to the same
brain section can be processed distributed to several processors because mathemati-
cally this means a distributed calculation of partial differential equations. So again,
both methods fulfill this criterion.

Differences between these two methods can be found taking a look at the needed
execution time and the effort required to adapt the tool to the given data. The execu-
tion time of all tested region based segmentations is, with a span in seconds range,
much shorter compared to all used boundary-driven tools which partly need min-
utes to process an image. Moreover, the needed effort to adapt the approach to the
given data, is much higher for boundary-driven than for region based methods.

To sum up, the region based methods are most suitable to be used for a segmen-
tation of the given brain images. They fulfill the requirements as good as others or
better. A particular attention has to be paid for the handling of image noise. A com-
parison of the different region growing tools shows that a simple thresholding based
approach is not sufficient but that the algorithm used in Fiji Region Growing deliv-
ers good results. Taking all these information into account, the development and
implementation of the required segmentation tool should be derived from [AB94]
which was basis for Fiji Region Growing. Nevertheless, a solution has to be found
to reduce the amount of manual input in form of seeds to a dimension indepen-
dent of the number of images to be processed. So an automated choice of seeds is
required.

Comparison of Segmentation Tools 37

Table 3.5: Comparison of the tested software tools

&
I
¢ . & & $
s . & 5 &y
S F 3 g P e s & F
& s £ ¥ FF &I
& S 5 ¥ I & g §F O
& Sy & ; by oS
& g £ £ ¢ §Fy ¥ F 5
§ F & F & F§F F &8
e C N & & I F & K
Thresholding
GIMP X 1 X v VP oo 1 low
Region Based
Fiji RG v 3 o/l o Vi 2 ok
ITK Conn. Thresh. x/o 3 oY v Vvt v 2 ok
ITK Neigh. Conn. o 3 oo v vV* v 3 ok
ITK Confid. Conn. x/o 3 o v Vv 4 ok
ITK Iso. Conn. X 3 X X vi v 5 ok
Boundary-Driven
MialL ite ol 3 o/lv' v VeI 7 high
ITK-SNAP o/l 3 o/ o V3o 8 high
Fiji Level Sets ol 3 o v VP v 8 high
Classification
ilastik o 2 o v VP v 6 high
! (DNone
@Varying but independent of the number of images
(3)Varying per image

2 Independent processing of images
3 Distributed processing of a brain section
4 Time scale for execution times: @(< 1ls) — (minutes)

38 CHOICE OF THE ALGORITHM

39

4 Seeded Region Growing Segmentation

4.1 A basic Algorithm

The previous comparison of different segmentation approaches figured out that the
seeded region growing method of Fiji based on [AB94] produces reasonable results
for the present brain images (see section 3). Thence, the algorithm presented in this
paper is used as basic algorithm for the segmentation tool to be developed. Certainly
it has to be adapted to the needs induced by the given image data.

This region growing segmentation has been the first approach using seeds. Be-
fore, region growing methods were mostly based on “split and merge”. The number
of regions found by these algorithms cannot be influenced directly but only indi-
rectly by modifying parameters. Therefrom, these methods tend to over-segment
the images. In contrast, the seeded region growing provides the opportunity to de-
fine the number of regions explicitly.

The approach presented by Adams and Bischof is based on the constraint to
extract regions “as homogeneous as possible” [AB94, p. 641]. It works for images
of any shape and any dimension, so also for arbitrarily shaped parts of an image and
for three-dimensional data.

The method starts with some seed points which are grouped into n sets
A1,Aq, ..., A,, so each set may contain more than one seed pixel. The algorithm
then tessellates the image into n connected regions whereat each region belongs to
one of the A;.

Afterward, the algorithm repeats one step until all pixels are labeled. In each
iteration, one pixel is assigned to one of the sets A;. Therefore, the set 7" of all non-
labeled pixels is defined as in equation (4.1). It contains all pixels which have not
yet been added to any of the A; but which are directly adjacent to of at least one A;.
N(x) is the set of all direct neighbors of a pixel at position x.

T = {x¢UAi|N(x)mUAi7é@} (4.1)

If pixel x € T borders on exactly one of the A;, let i(x) be the index for which
N(x)NAix) # 2. Otherwise, if x is neighbor of two or more of the A;, the index i(x)
is defined as the index for which N(x) N A,y # @ and a measure ¢ (x) is minimized.
This measure d(x) is a homogeneity or similarity measure defining “how different x
is from the region it adjoins” [AB94, p. 642]. Adams and Bischof use the following
definition of ¢ with g(x) being the gray value of pixel x:

d(x) = |g(x) — mean [g(y)] (4.2)

YEA(x)

40 SEEDED REGION GROWING SEGMENTATION

Alternatively, pixels neighboring two or more of the A; can be assigned to a new set
B containing all boundary pixels.
In the end of each iteration, the pixel z € T with

i(z) = I){lel%l {6(x)} (4.3)
is labeled corresponding to A;.;) and appended to this set. The definitions (4.2) and
(4.3) assure that the regions A; are as homogeneous as possible and, by the use of
N(x), that each of the regions is connected.

Adams and Bischof suggest to use a sequentially sorted list (SSL) for the im-
plementation of their algorithm. This list contains the positions of all pixels x € T
sorted by d(x) so that the first pixel in the list is the one having the largest similarity
to one of the A;. The implementation can be done as follows:

group the seeds into n sets A, As, ..., A,

label the seeds according to the sets they are assigned to
add the neighbors of the seeds to the SSL
SSL is not empty

take the first pixel y from SSL

check < all neighbors n; of y have the same label L; of set A;, no
label or border label Lg?

test neighbors of y: check

true false

set y to label L; set y to the boundary
update the mean of A; label Lg

add all unlabeled r; sorted by ¢ to SSL which

are not yet in this list Z

Figure 4.1: Structure Chart: Seeded Region Growing by Adams and Bischof

It has to be noticed that the entries of the SSL are sorted based on the measure
d(x) and hence based on the means of the A;. Although the means are updated in
each iteration, the SSL is not re-sorted. The authors of the paper suppose that “this
leads to negligible difference in the results, but greatly enhanced speed” [AB9Y4, p.
643]. In addition, they place emphasis on the fact that each pixel is processed only
once apart from the visiting of neighbor pixels.

Adams and Bischof describe different properties of their seeded region growing
segmentation, too. They point out that artifacts are subsumed by the surrounding
regions given that no seed is placed within an artifact. This matches well the fact
that the present brain images show artifacts like air bubbles which should not be
interpreted as own regions.

A basic Algorithm 41

Furthermore, the authors figure out how critical the choice of seeds is. They
come to the conclusion that in general, seeds have to be representative for their
region to achieve reasonable results. Single pixels as seeds may result in incorrect
segmentation masks if image noise is present and a noise pixel is used as seed,
because this pixel is no good estimation for the region’s mean. This problem can be
solved choosing small regions as seeds. If these regions are sufficiently large, they
provide a stable estimation of the regions’ means. The definition of §(x) has to be
more advanced in case that the image noise is not of equal variance in each region.

Adams and Bischof also test the stability of the algorithm with an artificial im-
age containing Gaussian noise. They compare the results of their seeded region
growing method to other known segmentation approaches varying the seed position
as well. It turned out that the seeded region growing tool achieved the best results
among the compared ones. Dealing with a higher level of noise, the results stay
good if also the seed regions are enlarged. The exact positions of the seeds have no
influence on the segmentation result.

Up to this point, the seeded region growing algorithm can be characterized as a
semi-interactive, three-step procedure. First, the seeds have to be chosen. Secondly,
the region growing is performed automatically. In a third, optional step the result
may be corrected, e.g. by splitting one of the extracted regions with another run of
seeded region growing.

Neglecting the third step, the choice of seeds requires the only manual interac-
tion respectively input. The authors of the paper also deal with the question how
to automate this step: If there is further, high-level knowledge of an image to be
segmented, it can be used to find good seeds. The paper provides the example of an
image showing a dark object on a brighter background. So the darkest pixel of the
darkest part of the image respectively the brightest pixel of the brightest part can be
used as seeds for object and background. It is important to ensure that for all sets of
seeds A; the condition A; NA; = @ Vi # j is fulfilled.

In general, automated seeded region growing can be interpreted as the correction
of a previous other segmentation. The resulting mask of this first segmentation can
be post-processed, e.g. by morphological operations like a dilation, to gain seeds
for the region growing which is performed afterward. [AB94]

42 SEEDED REGION GROWING SEGMENTATION

4.2 Adaption of Seeded Region Growing

4.2.1 Automated Choice of Seeds

To adapt the seeded region growing approach by Adams and Bischof to the require-
ments induced by the human brain images on hand (see section 2.5), several aspects
of the algorithm have to be considered. The most important task is to automate the
choice of seeds in order to minimize the required amount of manual input so that it
is independent of the number of image tiles to be processed.

There is already a bunch of different automations to the choice of seeds in liter-
ature. To give some examples, Feng et al. [EEJOS] developed a method for semantic
video object segmentation. They first perform an initial segmentation with a com-
petitive learning neural network. Pixels in the middle between the boundaries ob-
tained by this prior segmentation are then used as seeds for the actual seeded region
growing segmentation. This method is based on the fact that consecutive frames of
a video are very similar.

Fan et al. [FYE"01]] work with color images. They extract colored edges, mark
each connected edge region with an own label and use the centroids between two
adjacent edge regions with different labels as seeds. In a later publication (see
[EZBHOS]), they improve the results of this approach by smoothing and thinning the
edges in advance to avoid over-segmentation. To use this method, it is important to
find reliable and clear edges. If there are also a lot of sharp edges inside the object,
this approach fails and over-segments the images.

Abdelsamea et al. [Abd11] developed a method for 2D biomedical image seg-
mentation. They also use some non-linear image filters to reduce noise. Then an
Otsu segmentation is performed which is a threshold-based approach. Pixels with
the highest similarity within their neighborhood are then taken as candidate seeds.
A K-mean clustering is performed using these candidates to get the best and most
reliable seed points. The mask of the Otsu segmentation is used as training data
for this algorithm. To use this method, the intensity variances within the different
objects have to be in the same order of magnitude.

As shown by these examples, most approaches of automated seeded region
growing are based on further, high-level knowledge of the images to be processed
like specialties of edges, color and intensity. Moreover, in some cases there is not
only one image to be segmented but a list of several images which are interrelated
because they are frames of a video or an image series. Consecutive images are
mostly very similar. Due to this approach based on specific, high-level knowledge,
it is not possible to take on an already existing automated method without adapta-
tions.

Hence, the specialties of the human brain image tiles have to be analyzed in
order to develop an automated choice of seeds. Taking a look at the human brain
image tiles, it is conspicuous that the background is lighter colored than the brain;
the artifacts are even darker. Therefore, it might be possible to use the image his-

Adaption of Seeded Region Growing 43

togram and thus a thresholding approach to find reliable seeds. Another indication
for this is that in the comparison of different segmentation methods (see section 3)
it figured out that in general thresholding works for the present images but that the
mask is too much affected by noise. However, it has to be kept in mind that there
are tiles showing only brain tissue or background but not both. So the simple cal-
culation of the image tile histogram in order to choose a threshold will not lead to
success.

To solve this problem, a joint histogram of all image tiles is computed instead
of individual histograms. This has the positive side effect that also variations of
illumination are balanced.

Figure 4.2 shows the joint histogram of ten sections containing 5356 tiles in to-
tal. The large peek at an intensity of about 3750 belongs to the background because
the brightly colored background has a small variance of intensity which results in
a large peek at a comparably high intensity. The brain intensities vary a lot. Since
the brain is darker than the background, the wide but flat range with the intensities
0 to 3500 corresponds with this object. So the threshold value should be chosen at
about 7 = 3500. This is approximately the same threshold which has been used
by several of the compared segmentation methods. Based on this joint histogram,
the developed automated choice of seeds consists of four steps which will next be
discussed in detail.

3.5e+08

3e+08 .
. 2.5e+08 .
©
X
% 2e+08 -
[
)
é 1.5e+08 -
=
Z

1e+08 .

5e+07 -

0 |
0 1000 2000 3000 4000 5000
Intensity

Figure 4.2: This joint histogram combines the intensity information of ten sections
containing 5356 image tiles.

44 SEEDED REGION GROWING SEGMENTATION

Calculation of the Joint Histogram

The first step on the way to automatically chosen seeds is the calculation of the
joint intensity histogram of a large amount of image tiles showing the same brain.
At best, all available tiles are used to get best results based on reliable statistics.

Structure chart 4.3 outlines the algorithm for the computation of the joint his-
togram of sections Sy, t0 S.,q. The histogram has got BINS bins with a bin width
of BIN_WIDTH. Each section has got size, X size, tiles. Given that the mosaic is
rectangular shaped, the coordinates of the image tiles within the tile mosaic are in
offset,, offset, + size, — 1] X [offsety, offset, + size, — 1].

initialize the array histogram with BINS zeros

for section = Syq4, Section < Senq, section+ = 1

for x = offset,, x < offset, + size,, x+ =1

fory = offset,, y < offset, + size,, y+ =1

read image tile at position (x, y) of section section

for each pixel position in tile

histogram| tile[pixel]/BIN_WIDTH |+ = 1

Figure 4.3: Structure Chart: Computation of the Joint Histogram

Choice of the Threshold Value

If the histogram has been calculated, the threshold value between brain and back-
ground intensities has to be found. This step has to be done manually by the user.
Tests figured out that the local minimum between the flat wide region and the large
peek is a good threshold to start with. Hence, the local minima within the histogram
are computed in addition to the histogram itself to assist the user defining the thresh-
old value. At best, it is sufficient if the user removes all other minima from the list
which might occur in the histogram. The number of local minima depends on the
used histogram bin width and can vary from a double-digit to triple-digit count.

The local minima and the histogram are written to separate files. This allows
to reuse the histogram, e.g. in order to fine-tune the segmentation parameters or
to modify the threshold value without having to wait for another calculation of the
histogram. The choice of the threshold value is the only manual interaction respec-
tively input needed by the developed segmentation tool. This input is independent
of the number of image tiles to be processed. Figure 4.4 shows the joint histogram
of figure 4.2 together will all local minima as the result of this second step on the
way to automatically found seeds.

Adaption of Seeded Region Growing 45

3.5e+08

3e+08 —

2.5e+08 - =

2e+08

1.5e+08

Number of Pixels

le+08

5e+07

O -
0 1000 2000 3000 4000 5000

Intensity

Figure 4.4: This joint histogram combines the intensity information of 10 sections
containing 5356 image tiles. Furthermore, all local minima are plotted as blue crosses.

Initial Choice of Seed Candidates

After the choice of a threshold value, initial seeds, also called seed candidates, are
chosen. The threshold divides the intensities into two intervals. Tests showed that
pixels whose intensity is in the middle of the brain interval with a high probabil-
ity belong to the brain. The same applies to pixels with the medium background
intensity. The only exceptions are noise pixels.

Based on this knowledge, it is reasonable to define pixels as the best seeds for
the classes whose intensity is the medium brain respectively background intensity.
Pixels with an intensity close to the threshold may belong to any of the regions.
The darkest and brightest intensities that can be found in the images belong with a
high probability to noise pixels. Summing up these experimental results, a measure
(equation (4.4)) has been developed which defines how suitable a pixel is to be a
brain or background seed.

i(x)—qo.5 :
=== (X, y) < qo.
m(x,y) = { 90.5—qa (x,¥) < qos

90.5—i(x,y) ;
i y) > qos

_ i(x,y) = qos qos — i(x,y)
e)

dos — qa ’ di1—a — 405

4.4)

This measure is computed individually for each pixel and stored in a measure
image. It uses the median g 5 of the respective intensity interval within the his-
togram as well as the a- and (1 — «)-quantiles with a user-given value . With
these statistics, the measure m is computed for a pixel at position (x, y) with inten-

sity i(x,y).

46 SEEDED REGION GROWING SEGMENTATION

The measure is the normed distance of the pixel’s intensity to the median in-
tensity. Normalization in this case means that the measure is 0 for a pixel with the
median intensity and 1 for pixels with an intensity in the quantile bins. For all pix-
els outside the interval [q,, ¢1_|, the measure value is greater than one. With this
definition, each pixel with m(x,y) < 1is a candidate seed. The candidates with the
smallest values are the comparably best seeds. Pixel with intensities similar to the
threshold are neither seeds for the brain nor for the background region.

There are two different measure images, one based on the brain and one based
on the background intensity interval. If candidate seeds would be chosen based on
these measure images without further modifications, also noise pixels were seed
candidates. An important characteristic of image noise is that it mostly consists of
isolated faulty pixels. So if not only a particular pixel and its intensity were consid-
ered to compute the measure value but also the intensities respectively measures of
pixels in a defined neighborhood around this pixel, the noise pixels could be filtered
out of the candidate set.

To include the neighbor pixels in the calculation of the measure, it is first com-
puted individually for each pixel. Afterward, a linear smoothing operation is ap-
plied to this first measure image. The simplest linear smoothing is an averaging of
a pixel’s and its neighbors’ values. Linear smoothing operations are mathematical
convolutions (see [GWOS, p. 146ff]).

A convolution consists of a convolution kernel or, in terms of image processing,
filter w(x, y) and the function or image f(x,y) with (x,y) being the pixel position.
Interpreting an image as a discrete function, the convolution w * f is defined as in
equation (4.5).

W) = 3 S whk iyt @)

The kernel w has the size m x n with m and n being odd, positive integers. For the
purpose of image smoothing, the kernel is mostly chosen as quadratic, i.e. m = n.
To give an example, the averaging filter mentioned above with m = n = 3 has got
the kernel in figure 4.5. A weighted averaging is also possible, e.g. with a kernel
as in figure 4.6. To avoid a shading or brighten of the image, the sum of all kernel
elements has to be one.

In terms of image processing, a convolution correlates with a linear filter which
works as follows. Since the filter has always an odd number of rows and columns, it
has got a center value. A filter can lay over the image so that each filter value covers
an image pixel. The filter is moved over the image so that its center is located
once at every pixel position of the image. At each position, every entry of the filter
is multiplied with the covered image value, e.g. the intensity of the pixel. The
results of all products for one positioning of the filter are summed up. This sum is
then written to another image at the position of the filter center within the original
image.

Adaption of Seeded Region Growing 47

Nell

Figure 4.5: Filter used for an average smoothing of the image preserving the original
brightness of the image.

11271
L.[2]4
1271

Figure 4.6: Filter used for a weighted average smoothing of the image preserving the
original brightness of the image (Gaussian filter).

The calculation of the initial measure and the following smoothing operation can
be combined to a single convolution. This accelerates the whole program because
the image has to be traversed only once. In addition, less memory accesses are
needed since the image is too large to store it in the cache as a whole. Instead, the
measure value is computed multiple times for each pixel.

The seed measure images are computed using convolution equation (4.6). Here
not the original intensity values are smoothed but the measure function of the image.

W(X,y) *fQ(x7y>: Z Z W(l,k) f2(x+l7y+k)

with f5 (x,y) = max

(f (5,¥) —4qos5 qos —f(x, y>> (4.6)

dos — qa ’ di1—a — 405

It figured out that a weighted averaging filter w works best, if for a central value
p all other entries have the same value % This is equivalent to an average filter
with a higher weighted central value. The central weight has been chosentop = 0.1
andm =n=9asin4.7.

One may notice that applying linear filters does not work directly and without
modifications for border pixels of the image. In case of the given brain images,
all pixels within the m = n pixels wide border of the image can be ignored in the
calculation of the seeds. This is possible due to the large overlapping of the adjacent
image tiles in the mosaic.

Figures 4.8 and 4.9 illustrate the calculated measures for background and brain
seeds of the same example image tiles which have been presented in the previous
chapter. The seeds for the background region in figure 4.9 are all located in the
actual background of the images. But for example in figure 4.8(b) it is visible that
some of the brain seeds can be found in the dirt spots within the background. These
erroneously determined brain seeds have to be eliminated in order to achieve best
segmentation results. This task will be discussed in the following section.

48 SEEDED REGION GROWING SEGMENTATION

olo|o]d|o]d]d]d]é
oo]o]d]d]d]é
6|66 |0[d]d]d]é
6|6 |o]d]d]d]é
ol pld]a]d]é
olo|d|d|o]d]a]d]é
olo|do|do|o]d]a]d]é
olo|o|d|o]d]a]d]é
olo]o]d]o]d]a]d]é
withp =0.1,§ = &8 = 0.01125

Figure 4.7: This filter w is used for the smoothing of the measure image.

In addition, it has to be noticed that the large air bubbles always contain brain
seeds but never background seeds. This way it is guaranteed that the air bubbles
within the brain region are not cut away from the brain and the brain region does
not get holey.

Adaption of Seeded Region Growing 49

(a) Tile 06-16 (b) Tile 07-16
(c) Tile 00-00 (d) Tile 08-14

Figure 4.8: These measure images are calculated for the choice of brain seeds. The
original images are visible in the background. The measure values are illustrated as
overlays. Red pixels correspond to measure value 0, so good seed pixels. For measure
values in]0, 1], a gradient from red to transparent is used. All pixels with measure
values larger than 1 have a transparent color in the overlay.

50 SEEDED REGION GROWING SEGMENTATION

(a) Tile 06-16 (b) Tile 07-16
(c) Tile 00-00 (d) Tile 08-14

Figure 4.9: These measure images are calculated for the choice of background seeds.
The original images are visible in the background. The measure values are illustrated
as overlays. Green pixels correspond to measure value 0, so good seed pixels. For
measure values in |0, 1], a gradient from green to transparent is used. All pixels with
measure values larger than 1 have a transparent color in the overlay.

Adaption of Seeded Region Growing 51

Final Choice of Seeds

As already mentioned, some of the initial seeds chosen by the use of the measure
images have to be sorted out. All these faulty seeds belong to small regions of
adjacent seed pixels located in the background but marked as brain seeds. So a way
has to be found to eliminate these small “seed isles”.

All brain seeds to be erased have in common that there are only few other brain
seeds in the respective neighborhood. Based on this knowledge, the following algo-
rithm in structure chart 4.10 has been developed to eliminate the seed isles.

divisor < (radius - 2 + 1)*
forx =0, x < width, x+ =1

fory =0,y < height, y+ =1

newMeasure(x,y) < measure(x,y)

measure(x,y) < 1.0

true f.
sum < 0.0
count <+ 0
for a = —radius, a < radius, a+ =1

for b = —radius, b < radius, b+ =1
measure(x + a,y + b) < 1.0

true f.
count <— count + 1 @
sum < sum—+ (1.0 —measure(x+a,y—+Db)) 9
count < threshold - divisor
true false
newMeasure(x,y) — newMeasure(x,y) +—
1.0++(1.0—threshold)- 2= 1.0 — e

Figure 4.10: Structure Chart: Final Choice of Seeds

The algorithm computes a new brain measure image (newMeasure) using the
already existing one (measure). If a pixel has a measure value larger than one, so if
it is not a seed for the brain, the measure value is taken over from the old image.

For all other pixels, the number of all seed pixels in within a square neighbor
region with a size of (radius-2+1) x (radius-2+ 1) is determined. Furthermore, the
sum of their inverted measure values is computed for all these neighboring seeds.
So with n seeds in the defined neighborhood, this sum is approximately n- 1.0 given
that the seeds are good with intensities similar to the median intensity, and n - 0.0

52 SEEDED REGION GROWING SEGMENTATION

if the seed intensities are close the threshold between the brain and background
intensity intervals.

If the number of neighboring seeds exceeds a defined threshold, the average
measure value of the used neighborhood is chosen as the new measure value for the

respective pixel which is
sum

divisor
with divisor = (radius -2+ 1)? being the number of pixels within the neighborhood.
This way seeds are rated higher if they have other comparably good seeds in their
surroundings. Otherwise, the new measure value is set to

sum

1.0 + (1.0 — threshold) - Tivisor”
ivisor

It can be proven that this value is always greater than one, so this pixel will not
be used as a seed pixel afterward: As explained above, it applies

sum € [0, n] with n € [0, divisor]

and thus sum
— € [0, 1].
divisor []
If the threshold is chosen in [0, 1],
sum

((1.0 — threshold) -) € [0, 1 — threshold]

divisor
and thus for the whole expression it applies

sum

(1.0 + (1.0 — threshold) -

) € [1,2 — threshold].
1V1SOr

The differences between the initial and the final measure images are illustrated
in figure 4.11. The small brain seed isles in the background are erased. Moreover,
the new measure image is smoother. This is not the effect of a linear smoothing but
of the way to rate seeds as higher reliable if they have a lot of other good seeds in
their neighborhood as described above.

Adaption of Seeded Region Growing 53

(a) Initial Measure (b) Final Measure
(c) Detail of 4.11(a) (d) Detail of 4.11(b)

Figure 4.11: On the left side, the initial brain measure of tile 07-16 is displayed. The
detail image 4.11(c) demonstrates the small “seed isles” which are a result of dirt and
artifacts in the background. The pictures on the right side show the effect of the seed
elimination. The seed isles are vanished, the rest of the measure is smoothed.

54 SEEDED REGION GROWING SEGMENTATION

4.2.2 Similarity Criterion

Region growing algorithms always include a similarity criterion and a growing op-
erator. The definition of these two operations influences the resulting segmentation
mask a lot. In simple region growing approaches as described in [GWOS]], the grow-
ing operator is applied first, so the next pixel to be considered is chosen. Afterward,
the similarity criterion is used to check whether the pixel is similar enough com-
pared to the region to extend it with this pixel.

Adams and Bischof describe in [AB94]] an alternative way how to use a sim-
ilarity criterion as already described in section 4.1. If a pixel has been added to
a region, the growing operator chooses the neighboring pixels. These neighbors
are then inserted into a sequentially sorted list. The similarity criterion is used as
sorting criterion. The algorithm always takes the first element from the list and de-
cides based on the labels of neighboring pixels with which label the respective pixel
should be marked.

This procedure has been adapted to the given needs. Adams and Bischof use a
similarity criterion ¢ to sort the list (see equation (4.3) in section 4.1). This criterion
compares the intensity of a pixel with the mean intensity of the already marked
region. This definition has the disadvantage that the mean has to be updated with
every newly added pixel.

The measures defined above already contain the information of how well a pixel
fits to one of the classes “brain” and “background”. Hence, the two measure images
are used instead of the function ¢ as similarity criterion. This has the additional
advantage that image noise and dirt particles are already filtered out by these dis-
crete image functions so that the segmentation result is less prone to those undesired
effects.

In detail, the measure images are used as follows. The first pixel of the sorted
list is extracted. The labels of the eight adjacent pixels in the resulting mask im-
age, the so-called 8-connected neighborhood, are compared. Possible labels are
undefined, brain, background and border. All pixels are labeled as
undefined in the beginning. A pixel with brain and background neighbors
is marked as border. If only one of these two labels is present in the 8-connected
neighborhood, the pixel gets this label. Every pixel, apart from the seeds, has got at
least one adjacent pixel with the labels brain or background.

If a label has been chosen for the considered pixel, it is written to the mask im-
age. If the label is one of brain or background, the respective corresponding
measure image is used to insert the neighboring pixels chosen by the growing oper-
ator (see section 4.2.3) into the sorted list, e.g. in case of a brain pixel, the brain
measure values of the adjacent pixels are used to add them to the list.

This way, a pixel can occur more than once in the sequentially sorted list be-
cause a pixel is added by different neighbors. There are two ways how to handle
multiple occurrences. Either multiple adding of a pixel is prohibited which results
in additional effort because the list has to be traversed to find out if the pixel has

Adaption of Seeded Region Growing 55

already been added. Or a pixel can be inserted into the list more than once, so that
it has to be checked for each pixel extracted from the list whether this pixel still has
got the undefined label. Otherwise the pixel is skipped because it has already
been handled. Since the effort for the traversal of the list may be high in case of
large images, it has been decided to use the second variant.

4.2.3 Choice of the Growing Operator

Besides the similarity criterion, also the chosen growing operator strongly influ-
ences the quality of the segmentation result. Adams and Bischof use an 8-connected
neighborhood to choose the next pixels to be inserted into the sequentially sorted
list. The same neighborhood definition is used to determine the label of the actually
processed pixel. [AB94]

This definition of a growing operator has been inherited for the labeling case. It
allows the detection of border pixels already during the growing process. However,
using this operator to add further pixels to the list, it may result in two regions which
are only connected at the joint corner of two pixels as it is illustrated in figure 4.12.
If these two regions result from different seed pixels, the mask is correct. If they
originate from the same seed, the illustrated result is worth discussing because it is
subjective to define the white regions as connected or unconnected.

Figure 4.12: The two white regions are only connected to each other at the joint corner
of two pixels but not at a joint edge.

Another reason to re-define the growing operator for this use case is the way
how multiple occurrences of a pixel within the sequentially sorted list are handled.
In the previous section it has been outlined that a multiple adding of a pixel to the
list is allowed. If an 8-connected neighborhood is used, a pixel can be found up to
eight times in the list.

Due to these reasons, it has been decided to use a smaller neighborhood than
Adams and Bischof, namely a 4-connected one. Hence, the pixels above, below, to
the left and right of the actually processed one can be added to the sorted list. This
way each pixel may occur at most four times in the list. Two regions are connected
at least at the joint edge of two pixels.

56 SEEDED REGION GROWING SEGMENTATION

4.3 Processing Pipeline

The various main steps of the developed seeded region growing algorithm have
been outlined in the previous sections. Before one may focus on the review of the
requirements (see section 4.4) and on optimizations of the runtime behavior (see
section 4.5), it has to be examined how these steps are arranged in a processing
pipeline.

Figure 4.13 shows the processing pipeline containing all steps which have been
described so far. It consists of two main parts which are actually two different
executable programs requiring manual interaction in between.

The first part is the calculation of the joint intensity histogram of all image tiles
(step 1) and the local minima within these classed dataset (step 2). After this first
main part, the user has to define a threshold which differentiates between brain
tissue and background intensities (step 3). The local minima serve as a hint for
potentially good thresholds. This user interaction is the reason why the software
tool is divided into two executables. It is the only step requiring manual interaction.

The second main part is executed independently for each image tile. First, the
seed candidates are determined (step 4). To get these seeds, two measure images
per tile are computed. The next step is the choice of final seed points out of the seed
candidates (step 5) which is only done for the brain similarity measure because the
background seeds are already correct.

The intuitive way would be now to choose the best seed out of all, perform the
region growing starting at this pixel and repeat this procedure until the whole image
is segmented or no further seed is available. However, this approach needs a lot of
time for execution. The same result can be reached in a much shorter time if all
available seeds are directly masked (step 6). It is valid to do so because all seeds
would be masked in any case with the corresponding label.

Dealing with the terms introduced in [AB94]], all seeds for the brain tissue are
added to a set Ay, all seeds for the background to another set A;. A pixel is a seed,
if the corresponding value in one of the measure images is in [0, 1]. Due to the
definition of the measures, a pixel can be seed for one of the two classes or for
none, but not for both.

After the seeds have been found and labeled in the output mask, the seeded
region growing is performed as the final step (step 7). Therefore, all pixels which
are in the 4-connected neighborhood of a seed but not marked as such, are added
to a sequentially sorted list. Afterward, the growing is processed until all pixels are
labeled with another label than undefined. Only the edges of the mask image
stay marked with the unde f ined label which has already been discussed before.

Processing Pipeline 57

Joint Histogram of 15 Sections (5356 Tiles) \
T T T T T

(joint histogram of all image tiles)

Number of Pixels

@ 4 1000 2000 3000 4000 5000
Intensity
Joint Histogram of 15 Sections (5356 Tiles) \

(calculate local minima within the histogram)

Number of Pixels

@ 0 1000 2000 3000 4000 5000
Intensity

- user interaction
choice of a threshold between

@ (brain tissue and background intensities J

per image tile:

(choice of seed candidates)

®

per image tile: \
(choice of final seeds J

per image tile:

(label all seeds in the mask)

©

per image tile:

(seeded region growing)

Figure 4.13: The processing pipeline of the developed seeded region growing algo-
rithm consists of two main parts. The first one is the calculation of the joint histogram
of all tiles (step 1) and of the local minima within the histogram (step 2). Afterward,
the user has to choose a threshold between brain tissue and background intensities (step
3) using the minima as a hint for possible thresholds.

The second main part consists of the choice of seed candidates (step 4), the following
choice of final seed points (step 5), labeling the seeds in the output mask (step 6) and
the growing process (step 7).

58 SEEDED REGION GROWING SEGMENTATION

4.4 Review of the Requirements

After the processing pipeline of the developed seeded region growing segmentation
has been described in detail, it has to be analyzed if this tool fulfills the requirements
which have been worked out in section 2.5.

The first requirement to be evaluated is that it has to be rated worse if brain
pixels are marked as background rather than the other way round. This requirement
is connected to the third one, namely that “the algorithm has to extract reasonable
edges between brain and background although there is a smooth transition between
the regions”. To review these two aspects, the created masks have to be checked
optically. Figure 4.14 shows the resulting masks of the four example image tiles. In
figure 4.15, the edges between the black and white mask regions are painted as an
overlay into the original tiles showing both brain tissue and background to ease an
optical evaluation.

The edges found by the developed segmentation definitely follow the actual
object boundaries. They are comparable to or even more precise than the edges
extracted by the formerly tested tools. Thus this requirement is entirely fulfilled.
But it is visible in figure 4.15(c) that by trend the edges have to be moved in some
tiles a few pixels into the background region in order to ensure that also for thinner
cut parts of tissue, no brain tissue is cut away by labeling.

Therefore, an enlargement of the brain region has been added to the processing
pipeline as a last optional step. It is implemented in form of a dilation with a user-
defined range. A dilation is a morphological operation of image processing defined
as

f @ b] (x,y) = max {f(x —i,y —k)} 4.7)
(i,k)€b
with f being the image to be dilated by a structuring element b. A structuring
element is a flat, so two-dimensional shape like a circle or a square. The pixels
within the image are addressed with two-dimensional coordinates (x, y).

This dilation is applicable to black-and-white masks in order to enlarge the white
regions, given that the intensity value of “white” is larger than the one for “black”.
Each pixel of the original mask which has at least one white pixel within the neigh-
borhood defined by the structuring element b will be colored white in the new mask,
too. Only those pixels without any white pixels in their surroundings are colored
black. [GWOS| p. 666f]

Since the masks created by the given algorithm contain at least the three labels
brain, background and border, the dilation operator has to be re-defined
for this purpose as it is illustrated in structure chart 4.16. For each pixel in the
original mask, it is checked in a first step, which of the labels are present in the
neighborhood defined by the structured element. It has been figured out that a circle
works best as a structured element. If at least one brain pixel has been detected,
the considered pixel is marked as brain. Otherwise, it is labeled as border if
one or more border pixels have been detected. If there are only background and

Review of the Requirements 59

(a) Mask 06-16

(c) Tile 06-16

(e) Mask 00-00

() Tile 00-00

(b) Mask 07-16

(d) Tile 07-16

(f) Mask 08-14

(h) Tile 08-14

Figure 4.14: These masks are the result of the developed seeded region growing. The

original tiles are showed as a reference.

60 SEEDED REGION GROWING SEGMENTATION

(a) Tile 06-16 (b) Tile 07-16

(c) Detail of Tile 06-16 (d) Detail of Tile 07-16

Figure 4.15: The yellow lines illustrate the edges between the white brain tissue and
the black background regions in the segmentation masks. They are printed as an overlay
covering the original images to allow a better optical evaluation of the segmentation
quality.

Review of the Requirements 61

unde fined pixels, the current pixel is colored with the background label. If all
pixels within the neighborhood are masked as undefined, the considered pixel
gets this label. This can be the case at the edges of the image if a small structured
element is used.

create empty mask newMask

for each pixel (x,y) within the image

for each neighbor (n, m) of (x,y) defined by the structured element

pixel (n,m) labeled as brain?

true f.

brain < true %]

pixel (n,m) labeled as background?

true f.

backg < true 0]

pixel (n,m) labeled as border?

true f.
border + true @
brain?
true false
border?
true false
newMask(x,y) < £ backg? f
brain label newMask(x,y) < newMask(x,y) <| newMask(x,y) <
border label background undefined
label label

Figure 4.16: Structure Chart: This dilation has been defined to enlarge the brain re-
gions within a mask which also may contain three other labels, namely background,
border and undefined.

The effect of the dilation is illustrated in figure 4.17. Here the radius of the
structured element has been chosen as three pixels. The newly created, blue colored
border ensures that by trend background pixels are marked as brain rather than brain
pixels as background. Hence, with the integration of the dilation in the processing
pipeline also the first requirement is fulfilled.

Another requirement which has to be checked refers to the amount of manual
input or interaction. It has to be independent of the number of images to be pro-
cessed. The only step requiring user input is the choice of seed points. This process
has been successfully automatized so that the user only has to define a threshold

62 SEEDED REGION GROWING SEGMENTATION

(a) Detail of Tile 06-16 (b) Detail of Tile 07-16

Figure 4.17: The yellow lines show the border between brain tissue and background
in the original segmentation mask. The blue lines illustrate the new border created by
the dilation operator.

within the joint intensity histogram of all image tiles. The effort of this procedure
is completely independent of the number of images so that also this requirement is
fulfilled.

The fourth requirement emphasizes that there are image tiles showing both brain
tissue and background but also others with only one of these two classes. The
segmentation tool has to process both types of images correctly. All parts of the
developed algorithm cope with this aspect as it is visible in figure 4.14. The two
different measure images are computed for each image tile. If only one of the two
classes is visible, one of the measure images does not contain any value smaller
than or equal to one. Hence, there are no seeds for the brain tissue or background
region. The respectively other region is then grown until it reaches the edges of the
image, the resulting mask is single-colored. So this requirement is fulfilled, too.

The last requirement claims the correct handling of artifacts and image noise so
that no holes are generated within the brain region. As it is visible in figure 4.14,
this requirement is fulfilled. All large air bubbles are marked as brain, whether in
brain tissue or background. Only small bubbles located in the background are not
labeled as brain which is a result of the smoothing of the measure images.

To conclude, all listed requirements are fulfilled by the developed seeded region
growing segmentation. Only to ensure that no brain tissue is cut away, another
optional step has to be inserted at the end of the processing pipeline, namely the
dilation.

Optimization of the Runtime Behavior 63

4.5 Optimization of the Runtime Behavior

In the last section, the requirements on the segmentation tool to be developed have
been reviewed. It turned out that all of them are fulfilled. In addition to these five
main requirements, some further constraints have been listed up in section 2.5. The
most important one is that the segmentation should be processable in a reasonable
amount of runtime. Hence, the execution time needed to process a section has been
measured. It takes about five hours at an average to segment all tiles of a section.
This execution time consumption is much too high. Projected to a brain with 1500
sections, it results in 295 days per brain.

Therefore, it has to be analyzed which parts of the algorithm consume the main
part of runtime and how these steps can be accelerated. Figure 4.18 illustrates the
proportions of runtime required to execute the different main steps of the algorithm.
The calculation of the measure images and the choice of final seeds together need
93% of the total execution time. The dilation needs an additional 3.8%. On the
contrary, the actual region growing only consumes 3.09% of the total runtime. It
has to be noticed, that for these measurements and all following the time needed
for input and output operations has not been included due to its dependency on not
controllable influences of other processes on the same computer, like a concurrent
memory access of different running programs, and on the hardware characteristics.

measure images

|

\}\ dilation (3.80%)
\\ region growing (3.09%)

mask preparation (0.11%)

/

final seeds

Figure 4.18: This diagram shows the proportions of the different algorithm steps on
the total runtime of the tool measured per section. The main part of runtime is con-
sumed by the choice of seeds which is the calculation of the measure images and the
choice of final seeds. The actual growing process needs about 3% of the total runtime
which is nearly the same amount as for the dilation. The labeling of the seeds in the
mask, so the mask preparation, requires only 0.1% of the runtime.

64 SEEDED REGION GROWING SEGMENTATION

4.5.1 Multi-core Application

To speed up the segmentation, two different levels of parallelization have been es-
tablished. In a first step, the tool is ported to a multi-core platform. For this pur-
pose, the image tiles of a section are cyclically distributed to all available processes.
The same distribution is used for the computation of the joint histogram as well as
for the segmentation itself. This parallelization is possible because all tiles can be
processed independently of the others. Structure chart 4.19 describes how the dis-
tribution of the tiles is done in detail for the calculation of the joint histogram. The
parallelization of the region growing is done the same way.

for section € [Sgary Send|

for tile € [rank, size, * size,|, incremented in steps of #proc

x < tile%size, + offset,

y < tile/size, + offset,

read image tile at position (x, y) of section section

for each pixel position in tile

histo | tile [pixel | / BIN_WIDTH |+ = 1
master process collects all histos

Figure 4.19: Structure Chart: Parallelized Computation of the Joint Histogram

The Message Passing Interface (MPI)! is used for the inter-process communi-
cation. The tiles of a section are traversed with a single loop instead of two nested
loops as in the sequential variant in structure chart 4.3 (see page 44). This single
loop can be used under the condition that a rectangular, regular grid of image tiles
is present. It runs through the numbers from 0 to size, * size, which is the number
of tiles per section.

Every process handles each #proc-th tile of a section starting at tile number
rank, the rank of a process within the MPI communicator. Before the image can
be read, the actual (x,y) grid coordinates of the tile have to be computed based
on the loop index and using the grid dimensions size, and size, as well as the grid
coordinate offsets offset, and offset,. Thus, the first tile of the image tile grid has the
coordinates (offset,, offset,) and is addressed by loop index 0. The last one can be
identified as (offset, + size, — 1, offset, + size, — 1). The calculation of the histogram
is performed as formerly described.

This way #proc distributed parts of the joint histogram are computed, each one
covering the whole intensity range but only the information of a disjoint subset
of all images. They have to be collected to gain the global joint histogram. A
defined master process is responsible to gather the distributed histogram data, to

Thttp://www.mcs.anl.gov/research/projects/mpi/, accessed at 10/06/2013

Optimization of the Runtime Behavior 65

combine them and to write the global joint histogram to an output file. This final
MPI communication is not needed in case of the seeded region growing.

4.5.2 Data Parallelism and GPUs

In addition to the porting to a multi-core platform, another level of parallelism has
been introduced into the seeded region growing method. As it is visible in figure
4.18, the steps that consume the major part of runtime are the calculation of the
measure images, the choice of final seeds and - with a larger runtime difference -
the dilation.

These three operations have in common that they can be computed indepen-
dently for each pixel, so they can be executed data parallel. Data parallelism in
general means “the simultaneous execution of the same operations across a set of
data” [HQO1, p. 13f].

The only processors which can exploit data parallelism are those who allow
the concept of Single Instruction Multiple Data (SIMD) [HQ91, p.14]. These pro-
cessors compute an instruction on multiple data at the same time. A well-known
representative of SIMD processors are Graphics Processing Units (GPUs) which
are built in the majority of all offered computers including laptops and worksta-
tions. They have thousands of parallel processing units and are originally designed
to execute the same instruction on thousands of pixels in the same processor cycle
[NVI10].

There are several frameworks available to perform General Purpose Computa-
tion on GPUs (GPGPU), so to directly use a GPU for computations, like OpenCL>
and CUDA?. It has been decided to use CUDA version 4.0 due to its comparably
simple syntax and easy usage in order to compute the three steps on a GPU that
consume the major part of runtime.

CUDA Kernels and Threads

To redefine the three steps of the seeded region growing using CUDA, it is impor-
tant to understand its concept of kernels and threads first. A portion of code to
be executed on a GPU has to be defined as a so-called kernel which is a specially
marked method. Each kernel is executed on the GPU by up to thousands of threads.
A program using GPGPU has to be started on a CPU, the so-called “host”, which
then invokes the kernel on the GPU, the “device”.

The kernel is executed by an array of threads that has to be defined manually.
A grid of thread blocks is launched for the execution of a kernel, whereas a thread
block itself is an array of threads (see figure 4.20). The threads in the same block
have shared memory and are able to synchronize. Different thread blocks cannot
cooperate but all can use the same global memory.

Zhttp://www.khronos.org/opencl/, accessed at 10/06/2013
3http://www.nvidia.de/object/what_is_cuda_new_de.html, accessed at 10/06/2013

66 SEEDED REGION GROWING SEGMENTATION

Grid

Block || Block || Block
(0,0) 0,1) 0,2)

Block "'B}ock
(1,0) (I';'l.) (1,2)

Block (1,1)

Thread | Thread | Thread | Thread
0,00 | O,1) | (0,2) | (0,3)

Thread | Thread | Thread | Thread
(1,00 | (1,1 | (1,2) | (1,3)

Thread | Thread | Thread | Thread
2,0 | @D | 22) | 23

Figure 4.20: The threads running on a GPU are organized in blocks of threads which
are arranged as a grid of blocks. In this example, there are twelve threads per block and
six thread blocks, so 72 threads in total.

Each thread block is executed on one of the multiprocessors of the GPU. A
multiprocessor can execute a defined number of threads respectively thread blocks
concurrently. If there are more blocks than units on the multiprocessors, it is up to
the GPU to schedule the blocks, i.e. to decide which blocks are directly executed
on which processor and which have to wait. Therefore, it is important that the work
package of a thread block has to be independent of all others, also by means of the
execution order.

Host and device have separate memories. Two steps have to be done before a
kernel can be executed on the device. First, the required memory is allocated in the
global memory of the GPU. Afterwards, the data is copied from host to device. Then
the kernel can be executed. To get the results, they have to be copied from device
to host after the execution and the device memory is freed. Since these additional
copy operations consume a significant amount of time, the number of instructions
to be handled by each thread has to be large enough. Otherwise the runtime gain by
the use of the GPU is compensated by the copy operations. [Rue08,, NVIOS]|

Implementation

To describe how the data parallel implementation of the measure images, the choice
of final seeds and of the dilation is done using CUDA, it is sufficient to take a glance
at one of the three methods since the principle is always the same. The following
listing 4.1 contains the CUDA kernel used for the dilation. It is marked as a kernel
executed on the device and invoked by the host using the keyword __global_ .

Optimization of the Runtime Behavior 67

i| __global__ void dilation (mask_pixel+* newMask, mask_pixel
* mask, unsigned int width, unsigned int height) {

2 int i = blockDim.x % blockldx.x + threadldx.x;

3 int x = i / width; //2D-coordinates (row)

4 int y = i % width; //2D—-coordinates (column)

5 int a, b; //indices to traverse the struct. elem.

6 unsigned int pixel; //actual pixel to be considered

7 int count[4] = {0, 0, 0, 0};

8 int min = (BACKG<BRAIN) ? BACKG : BRAIN;

9 min = (BORDER < min) ? BORDER : min;

10 min = (UNDEF< min) ? UNDEF : min;

1 int offset = —1 % radius;

12 int squareRadius = radius % radius;

13

14 if (1 < widthxheight) {

15 pixel = x % width + y;

16 if(x >= radius && y >= radius &&

17 y < width—radius && x < height—radius) {

18 for(a = offset; a <= offsetx—1; ++a) {

19 for(b = offset; b <= offsetx—1; ++b) {

20 // structured element: circle

21 if ((axa+bxb)>squareRadius)

2 continue;

23 (count[mask[(x+a) % width + (y+b)] — min]) ++;

24 }

25 }

26 if (count[BRAIN — min]) {

27 newMask [pixel] = BRAIN;

28 } else {

29 if (count[BORDER — min]) {

30 newMask|[pixel] = BORDER;

31 } else {

2 if (count [BACKG — min]) {

33 newMask [pixel] = BACKG;

34 } else {

35 newMask [pixel] = UNDEF;

36 }

37 }

38 }

39 }

40 }

a1| }

Listing 4.1: CUDA Kernel of the Dilation

In lines two to four, the portion of data to be handled by the invoking thread
is determined which is in this case a single pixel of the mask. The three variables
blockDim, blockIdx and threadIdx are defined by CUDA. The value of
blockDim. x is the dimension of the grid of blocks in x-direction, blockIdx . x

68 SEEDED REGION GROWING SEGMENTATION

is the index of the actual thread block within this direction. With threadIdx. x,
the index of the thread within its thread block can be found out. Using this formula,
a global index within the threads of all thread blocks is calculated. This index is
then used to address the work package of each pixel. Therefore, the thread index
is interpreted as a one-dimensional pixel coordinate in [0, width * height|. In lines
three and four, the two-dimensional pixel coordinates are computed out of the one-
dimensional one.

In lines eight to ten, it is searched for the minimum integer value of the four
possible mask entries BACKG, BRAIN, BORDER and UNDEF. The if condition in
line fourteen checks whether there is work to do for the calling thread or not. It is
needed in case that the user-defined grid of threads does not fit the dimensions of the
mask image so that there are some idle threads without work packages because the
thread grid has to be larger or equally dimensioned than the “grid” of work. From
line 18 to 25, the labels in the structured element of the actual pixel are traversed as
described in the last section so that from line 26 to 38, the considered pixel can be
masked in a new mask image.

This kernel is called by the instructions in listing 4.2. It has been decided to use
a one-dimensional alignment of threads within a block and also a one-dimensional
grid of blocks because it matches the one-dimensional alignment of the pixels in
memory. The number of threads per block can be defined by the user since it should
be adapted to the dimensions of the images so that it does not result in too many
idle threads. It is stored in the variable BLOCK_SIZE. In line two, the dimensions
of each thread block are defined. The number of blocks required to cover the whole
image with threads is computed and stored in the grid dimensions gridDim (see
line three). In case that the number of threads within a block is not a divider of
the image size in pixels, an additional and partly idle block has to be added to the
grid. The kernel is called in line four. The dimensions of thread blocks and grid are
passed to CUDA with <<<gridDim, blockDim>>>.

unsigned int size = width=height;

dim3 blockDim (BLOCK_SIZE) ;

3l dim3 gridDim ((size \% BLOCK_SIZE) ? size/blockDim.x : size/
blockDim .x+1);

dilation <<<gridDim , blockDim>>>(newMask, mask, width, height);

Listing 4.2: Invocation of the Dilation Kernel

The two other steps, so the calculation of measure images and the choice of
final seeds, are CUDA-parallelized the same way. To sum this process up, the loop
traversing all pixels of an image is replaced by the CUDA instructions so that there
is a one-to-one assignment between threads and pixels. The rest of the methods is
unchanged.

Optimization of the Runtime Behavior 69

4.5.3 Evaluation of the Parallelization
Juelich Dedicated GPU Environment (JUDGE)

To combine both levels of parallelism, i.e. the multi-core implementation and the
data parallel execution of some steps on a GPU, the supercomputer JUDGE has
been used, which is one of the supercomputers hosted by the JSC. It consists of 206
compute nodes, each with two Intel Xeon X5650 (Westmere) six-core processors
and two NVIDIA Tesla GPUs. There are nodes available with either NVIDIA Tesla
M2050 (Fermi) or NVIDIA Tesla M2070 (Fermi) GPUs. These two only differ
regarding the available memory. The memory of both GPU types is with 3GB
respectively 6GB sufficient for the present application.

All twelve cores of a node have access to both GPUs. It has to be defined how
many processes and GPUs per node are used during the job submission. The GPUs
are exclusively assigned to a job. Hence, all processes of the same job on a node
can use the requested GPUs but not other jobs at the same time since the nodes
are not provided exclusively per job. The implementation of the seeded region
growing described in this chapter has been done in C++ (for further configurations
see appendix A). [JSC13]]

Runtime Measurements: Multi-core Implementation

The effect of the porting to a multi-core platform can be seen in figures 4.21 for the
histogram and 4.22 for the region growing in form of speedup curves. To gain these
speedup measures, the applications have been executed using between one and 64
processes on JUDGE for the same amount of image tiles, so the strong scaling is
examined. To make these results comparable to later ones, only two cores per node
are used.

In case of the histogram, the speedup curve is linear for small numbers of pro-
cesses but flattens out as their number grows. This can be explained by the raising
influence of MPI communication needed to collect and combine the distributed his-
tograms. It can be seen that the communication effort significantly grows from 16
to 32 processes.

The seeded region growing does not include any MPI communication so that
a linear speedup is reached given that the number of image tiles per section can
be equally distributed to the processes. An equal distribution in this case means
not only that each CPU processes the same number of tiles but also that the effort
needed to segment the tiles is comparable. For tiles showing only brain tissue or
background but not both, the majority of pixels is already labeled during the mask
preparation happening after the choice of final seeds as it is visible in figures 4.8(d)
(see page 49) and 4.9(c) (see page 50). Thus, the region growing is finished in a
shorter time than for tiles showing both classes.

Due to this reason, the image tiles are rearranged before the runtime measure-
ments have been done to gain the speedup plots. This way it is guaranteed that a

70 SEEDED REGION GROWING SEGMENTATION

load balance is reached and thus the optimal scaling behavior is measured not in-
fluenced by effects observable because of the random assignment of image tiles to
processes.

60 - -

Speedup

20 7

0 10 20 30 40 50 60
CPUs

Figure 4.21: The graph shows the speedup per section of the histogram calculation
reached by porting it to a multi-core computer. The flattening out of this curve can be
explained by the growing effort for MPI communication.

60 -
50 - -

40 - |

Speedup

0 10 20 30 40 50 60
CPUs

Figure 4.22: The seeded region growing does not include any MPI communication
so that a linear speedup is reached given that the tiles are equally distributed to the
processes.

Optimization of the Runtime Behavior 71

Runtime Measurements: GPU Parallelization

It is to be expected that the speedup curve gained by the seeded region growing
is the same if the calculation of measure images, the choice of final seeds and the
dilation are calculated on a GPU. This presumption is assumed due to the fact that
no inter-process communication is needed in these steps by porting them to CUDA
but only a data exchange between process and GPU. The time needed to copy data
to and from the graphics unit is always the same, independent of the content of the
image tiles.

To run the seeded region growing on JUDGE, the communication structure illus-
trated in figure 4.23 is used. Two of the twelve cores and both GPUs are requested
on each node which is the reason why in the former speedup measurements also
only two cores per node have been used. All cores can directly communicate via
MPI as described in the former section even if it is not needed for this tool. They
address the GPUs in a one-to-one assignment. Thus, the image tiles of a section
are distributed among all requested processes. Each process then sources the three
steps out to “its” GPU.

[G [CICIEICICIC CICICICICIC] G
[G [CICICICICIC CICICICICIC] [F
[G [CICICICICIC CICICICICIC] [E
[G [CICICICIEIC] CICICICEICIC] [F
[G] CICICICICI]] [G
[G] CICICICICIC] [E

Figure 4.23: On each requested node, two of the twelve cores and both GPUs are
used. All cores can directly communicate with each other using MPI. Every allocated
core accesses one of the two GPUs so that a one-to-one assignment is reached which is
illustrated by the yellow and orange marked compute units and the light blue lines.

To measure only the effect of the GPU parallelization but not of the multi-core
approach, the seeded region growing is executed using one process and one GPU.
In a first step, the optimal thread configuration has to be figured out. The number
of threads per thread block is varied to gain the minimal runtime. The results are
illustrated in figures 4.24 and 4.25. It shows the measured runtimes of the three
GPU parallelized steps for sizes of thread blocks from 128 to 768 in steps of 64
threads as well as the added runtime of these steps. It is visible that mainly the
calculation of the measure images can be accelerated by the optimal parametrization

72 SEEDED REGION GROWING SEGMENTATION

of the thread block size. The other steps reach approximately the same runtime in
all configurations. One of the shortest added runtimes is reached at a thread block
size of 256.

200 I I | | I I

i I v S VA VIS St S S T A
2
5 160 - ‘ n
Q
< 140 .
2 120 S R
g 100 - BB —®& — & — . S ,.77717771*' ———— A _
=
Z 80 » -
B 60 -
j==)
2 40 i
[}
= 20 .

0 | | | | | |

100 200 300 400 500 600 700 800

Threads/Block

All GPU-parallelized Steps >k Final Seeds
Measure Images M Dilation

Figure 4.24: These are the runtimes of the GPU-parallelized steps using different sizes
of the thread blocks. The major effect is observable for the calculation of the measure
images.

182
180 F]
=}
g
2 178 -]
5 176 =
E
5
2 174 B
=]
g
S 12 - : B
g

170 : : B

168 | | | | | |

100 200 300 400 500 600 700 800

Threads/Block

Figure 4.25: This curve shows again the summed up runtime of all three steps which
are moved to the GPU to figure out the best configuration of the thread block size. The
shortest runtimes are reached with block sizes of 192, 256 and 384 threads.

Optimization of the Runtime Behavior 73

Using this configuration, the proportions of the different algorithm steps on the
total runtime can be compared to the ones gained in the sequential implementation.
Figure 4.26 depicts the differences between these proportions executing the seeded
region growing with and without the usage of a GPU.

measure images

[

§~ dilation (3.80%)
= region growing (3.09%)
mask preparation (0.11%)

/

final seeds

(a) All steps are computed on the CPU.

mask preparation (3.28%)
[final seeds* (5.54%)

_— measure images*

————— 1 dilation* (0.78%)

region

growing
(b) The methods marked with an astersik (*) are computed on a GPU.

Figure 4.26: The added proportion of runtime of the three steps “measure images”,
“final seeds” and “dilation” is reduced from 96.8% to 16.11% if they are computed on
a GPU instead of a CPU.

While in the CPU-only variant the two seed steps marked in red and orange
consume 93% of the added runtime, their proportion is reduced to 15.33% in the
GPU implementation. The proportion of runtime for the dilation (green) is reduced
from 3.8% to 0.78%. The execution time of the three steps is reduced from about
4.58h to 140s which is a factor of about 120 by the use of a GPU. Due to the
acceleration of these steps, the proportion of the region growing (blue) on the total
execution time grows from 3.09% to 80.61% whereby the runtime of this step stays

74 SEEDED REGION GROWING SEGMENTATION

the same because it has not been modified. This means that the total runtime of the
seeded region growing decreases if a GPU is used.

Using the CUDA implementations of the three steps instead of the CPU vari-
ants, the runtime is mainly influenced by the implementation of the seeded region
growing because it consumes the major part of runtime. To compare the scaling
behavior of both variants, the tool has been executed again on the rearranged tiles
with numbers of processes between one and 64 and the CUDA variants of the three
methods. These times are then compared to the ones measured for the CPU-only
speedup curve in figure 4.22. The result is illustrated in figure 4.27. It is visible
that the use of GPUs does not influence the scaling behavior of the seeded region
growing since the curves have the same course. The runtime curve of the CPU-only
variant is the same as the GPU curve with an upwards shift.

1e+06 E I T E
F CPUsonly & 1
L GPU-CPU pairs @
’\ 4
= 100000 =
= F K‘]
2 RN]
: e]
v
5 10000 i ¢ -
o C — |
Q C]
£ ; d
‘a‘ L 4
=]
2 1000 E
100 | | | | | |
0 10 20 30 40 50 60

CPUs / GPU-CPU pairs

Figure 4.27: The runtime behavior of the seeded region growing using GPUs in addi-
tion to the CPUs is the same as for the variant using only CPUs but with a downwards
shift.

In the beginning of this section, it has been assumed that the porting of some
steps to CUDA does not affect the speedup curve. Figure 4.28 proves this presump-
tion. The speedup of the seeded region growing is linear in the multi-core variant
as well as in the multi-core variant with the additional use of GPUs. Nevertheless,
it has to be given that an equal balancing of work between the processes can be
reached to gain a linear speedup.

To sum up, the calculation of the joint histogram can be implemented as a multi-
core application showing a reasonable scaling behavior. In case of the seeded region
growing, even a linear speedup is reached because no inter-process communication
is needed, given that the image tiles and the effort to process them are equally
distributed between the processes. An additional porting of the data parallel steps

Optimization of the Runtime Behavior 75

40 - _ E

30

Speedup
|
2
\
|

20 —

T
\

10 - ~ E

0 Pid \ \ \ \ \ \
0 10 20 30 40 50 60

GPU-CPU pairs

Figure 4.28: A linear speedup is (still) reached even if both levels of parallelism are
combined. So the image tiles are distributed among the available processes. Each CPU
then sources three steps out to a dedicated GPU.

to the GPU using CUDA reduces the runtime of these steps by a factor of about
120. The linear speedup is still reached in this case. All in all, the tool provides
a well scaling, GPU-accelerated segmentation fulfilling all given requirements and
constraints.

76 SEEDED REGION GROWING SEGMENTATION

77

5 Conclusion and Outlook

This thesis deals with the development and implementation of a segmentation tool
for high-resolution human brain images acquired with the technique of Polarized
Light Imaging. The segmentation has the aim to create masks differentiating be-
tween brain tissue and background in the original images. This step is important as
additional knowledge for other steps in the processing pipeline of the PLI data.

To understand the characteristics of these brain images, the technique of PLI has
been briefly introduced in a first step. With that in mind, a list of requirements has
been worked out which have to be fulfilled by the segmentation tool to be developed.
These are, to give some examples, the need for reasonable edges between brain and
background which should tend more to extend into the background than into the
brain region, and a minimized required amount of manual input independent of the
number of images to be processed.

Based on these requirements, the most appropriate segmentation approach has
been chosen out of the wide range of existing ones. Therefore a selection of tools
has been applied to four example images. It has become clear that a seeded re-
gion growing application based on [AB94] achieved the most reasonable masks and
fulfills the requirements best among all compared tools.

Nevertheless, this algorithm had to be adopted to the given needs. Above all,
the amount of manual effort for the choice of seed points had to be reduced from a
dependency to the number of images to a fixed quantity. This has been reached using
the joint intensity histogram of all brain images. With this statistic it is possible to
select seeds for the brain and background regions in a way that the user has to define
a threshold within the histogram as the only manual input. With an additional choice
of final seeds out of these seed candidates, reasonable start points for the region
growing can be achieved.

In addition to the choice of seeds, also other aspects of the seeded region grow-
ing have been modified in comparison to the paper mentioned above, namely the
similarity criterion and the growing operator. This results in a processing pipeline
which consists of two separate tools. The first one computes the joint histogram of a
defined set of images. Afterwards, the threshold is defined manually. This input, i.e.
the histogram and the threshold, are reusable for multiple executions of the second
tool, the actual seeded region growing.

After the seeded region growing has been developed and implemented, it has to
be checked whether the formerly defined requirements are fulfilled. It turns out that
the newly developed segmentation achieves results of the same or an even better
quality than the previously tested ones. To fulfill also the requirement that no edge
extends into the brain region, an additional and optional dilation has been added to
the processing pipeline. With this extra step, all five needs are satisfied.

Besides the requirements, some further constrains had been defined. The most
important one concerns the runtime behavior of the segmentation. Without further

78 CONCLUSION AND OUTLOOK

improvements, the processing time for a section would have been too long. There-
fore, a two-level parallelization has been applied to the seeded region growing. On
the first level, the tool is ported to a multi-core computer, so the image tiles of a
section are distributed among the available processes. The region growing achieves
a linear speedup with this parallelization if all processes have the same amount of
work because no inter-process communication is needed.

The second level of parallelism considers the three steps which consume the
major proportion of runtime, namely the calculation of measure images, so the se-
lection of seed candidates, the choice of final seeds and the dilation. Since these
three steps can be executed data parallel, they are re-implemented using CUDA.
This way they are now executed on a GPU instead of the CPU. This approach leads
to an acceleration of these steps by a factor of 120. The linear scaling behavior of
the seeded region growing is not influenced by this second level of parallelism.

In future, some aspects can be improved respectively added to the tool. First
of all, it is envisaged to provide the option of marking artifacts with an own label
given that they can be identified by their intensity. Especially the black colored air
bubbles can be characterized by their intensity and shapes. It is also possible to use
another two labels, depending on the region the artifact would normally be added
to by the region growing. This additional information can be used as a hint for the
registration of the sections among each other since the air bubbles are unique for
each section.

Another improvement deals with the distribution of image tiles in the multi-
core variant of the region growing. Even if all processes have the same number
of tiles to be segmented, the required runtime does not need to be the same. Tiles
showing only brain tissue or background but not both are segmented much faster
than mixed images because the final seeds already cover nearly the whole mask. If
some processes get more of these single-colored tiles than others, they are finished
earlier and thus idle for the rest of the execution. Therefore, it can be tested to add a
load balancing which dynamically distributes the tiles in order to minimize the idle
times. However, it has to be kept in mind that the additional communication effort
for the load balancing may compensate or even exceed the runtime gain.

The third aspect refers to the future use of the segmentation. If an entire brain
has been segmented by the developed tool, stitched and registered, it may be wished
to segment the images once more with a higher precision what is possible due to the
now three-dimensional information. In this case, the masks created by the devel-
oped seeded region growing can be used as a start constellation, e.g. for a level set
segmentation which needs an initial mask. For this purpose, the operations applied
to the original images always have to be applied to the masks, too.

To sum up, the developed seeded region growing fulfills all requirements in-
duced by the given image data. The resulting masks contain reasonable edges and
are processed in an acceptable amount of runtime due to the two ways of paral-
lelization that can be used in combination or separately - depending on the num-
ber of images to be segmented and the available hardware. The tool can be used

79

semi-automatic with a fixed amount of manual input independent of the number
of image tiles to be processed. There are some ways to improve the results of the
developed segmentation and further future use cases. However, the improvements
are not mandatory since the developed seeded region growing segmentation already
produces good results.

80 CONCLUSION AND OUTLOOK

BIBLIOGRAPHY 81

Bibliography

[AAGT11]

[AB94]

[Abd11]

[AGK*11]

[Bral3]

[FFJOS5]

[FYE*01]

[FZBHO5]

[GWO08]

[HQ91]

M. Axer, K. Amunts, D. Griflel, C. Palm, J. Dammers, H. Axer,
U. Pietrzyk, and K. Zilles. A novel approach to the human connec-
tome: ultra-high resolution mapping of fiber tracts in the brain. Neu-
rolmage, 54:1091 — 1101, 2011.

R. Adams and L. Bischof. Seeded Region Growing. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 16(6):641-647,
1994.

M. M. Abdelsamea. An Automatic Seeded Region Growing for 2D
Biomedical Image Segmentation. In International Conference of Ex-
trusion and Benchmarking, volume 21. IACSIT Press, 2011.

Markus Axer, David Grif3el, Melanie Kleiner, Jiirgen Dammers, Timo
Dickscheid, Julia Reckfort, Tim Hiitz, Bjorn Eiben, Uwe Pietrzyk,
Karl Zilles, and Katrin Amunts. High-resolution fiber tract reconstruc-
tion in the human brain by means of three-dimensional polarized light
imaging (3D-PLI). Frontiers in Neuroinformatics, 5(34), 2011.

Brain Tumor Center Piedmont. Fiber Tract Mapping.
http://www.piedmontbraintumorcenter.orqg/BrainTumor/
FiberTractMapping.aspx, 2013. Accessed: 05/04/2013.

Yue Feng, Hui Fang, and Jianmin Jiang. Region Growing with Auto-
matic Seeding for Semantic Video Object Segmentation. In Proceed-
ings of the Third international conference on Pattern Recognition and
Image Analysis - Volume Part II, ICAPR’05, pages 542-549, Berlin,
Heidelberg, 2005. Springer-Verlag.

Jianping Fan, David K. Y. Yau, Ahmed K. Elmagarmid, Senior Mem-
ber, and Walid G. Aref. Automatic Image Segmentation by Integrating
Color-Edge Extraction And Seeded Region Growing. IEEE Transac-
tions On Image Processing, 10:1454-1466, 2001.

Jianping Fan, Guihua Zeng, Mathurin Body, and Mohand-Said Hacid.
Seeded region growing: an extensive and comparative study. Pattern
Recogn. Lett., 26(8):1139—-1156, June 2005.

R.C. Gonzdlez and R.E. Woods. Digital Image Processing. Pearson
Education. Pearson/Prentice Hall, 2008.

Philip J. Hatcher and Michael J. Quinn. Data-parallel programming
on MIMD computers. Scientific and engineering computation. MIT
Press, 1991.

http://www.piedmontbraintumorcenter.org/BrainTumor/FiberTractMapping.aspx
http://www.piedmontbraintumorcenter.org/BrainTumor/FiberTractMapping.aspx

82 BIBLIOGRAPHY

[ISNCO5]

[ITK11]

[JSC13]

[KJ11]

[Mial2]

[NVIOS]

[NVI10]

[PAGT10]

[Rue08]

[SACF'12]

Luis Ibafiez, Will Schroder, Lydia Ng, and Josh Cates. The ITK Soft-
ware Guide. |http://www.itk.org/ItkSoftwareGuide.pdf,
November 2005. Accessed: 09/04/2013.

ITK-SNAP Team. ITK-SNAP 2.4. http://www.itksnap.
org/pmwiki/pmwiki.php?n=Main.HomePage, 2011. Accessed
11/04/2013.

JSC Webpage. Juelich Dedicated GPU Environment (JuDGE).
http://www.fz—juelich.de/ias/Jjsc/EN/Expertise/
Supercomputers/JUDGE/JUDGE_node.html, 2013. Accessed:
03/06/2013.

Karl-Heinz Kunzelmann and Sasha Jarek. Seeded Region Growing
(ImageJ Plugin). http://www.dent.med.uni-muenchen.de/

~kkunzelm/exponent-0.96.3/index.php?section=71, 2011.
Accessed: 12/04/2013.

Mia Solution. MiaL.ite — ultra-fast level set based segmentation in 3D.
http://www.mia-solution.com/index.html, 2012. Accessed:
10/04/2013.

NVIDIA Corporation. CUDA Programming Model Overview.
http://www.sdsc.edu/us/training/assets/docs/
NVIDIA-02-BasicsOfCUDA.pdf, 2008. Accessed: 03/06/2013.

NVIDIA Corporation. Was ist GPU Computing? http://www.

nvidia.de/object/gpu-computing-de.html), 2010. Accessed:
03/06/2013.

C. Palm, M. Axer, D. Griflel, J. Dammers, J. Lindemeyer, K. Zilles,
U. Pietrzyk, and K. Amunts. Towards ultra-high resolution fibre tract
mapping of the human brain - registration of polarised light images

and reorientation of fibre vectors. Frontiers in human neuroscience,
4:1-16, 2010.

Ruetsch, Greg and Oster,Brent. = Getting Started with CUDA.
http://www.nvidia.com/content/cudazone/download/
Getting_Started_w_CUDA_Training_NVISIONOS8.pdf, 2008.
Accessed: 03/06/2013.

Johannes Schindelin, Ignacio Arganda-Carreras, Erwin Frise, Ver-
ena Kaynig, Mark Longair, Tobias Pietzsch, Stephan Preibisch, Cur-
tis Rueden, Stephan Saalfeld, Benjamin Schmid, Jean-Yves Tinevez,
Daniel James White, Volker Hartenstein, Kevin Eliceiri, Pavel Toman-
cak, and Albert Cardona. Fiji: an open-source platform for biological-
image analysis. Nature Methods, 9:676-682, 2012.

http://www.itk.org/ItkSoftwareGuide.pdf
http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
http://www.itksnap.org/pmwiki/pmwiki.php?n=Main.HomePage
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUDGE/JUDGE_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUDGE/JUDGE_node.html
http://www.dent.med.uni-muenchen.de/~kkunzelm/exponent-0.96.3/index.php?section=71
http://www.dent.med.uni-muenchen.de/~kkunzelm/exponent-0.96.3/index.php?section=71
http://www.mia-solution.com/index.html
http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf
http://www.sdsc.edu/us/training/assets/docs/NVIDIA-02-BasicsOfCUDA.pdf
http://www.nvidia.de/object/gpu-computing-de.html
http://www.nvidia.de/object/gpu-computing-de.html
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf
http://www.nvidia.com/content/cudazone/download/Getting_Started_w_CUDA_Training_NVISION08.pdf

BIBLIOGRAPHY 83

[Set99]

[SHBO7]

[SSKH11]

[Thel3]

[TMO4]

J.A. Sethian. Level Set Methods and Fast Marching Methods: Evolving
Interfaces in Computational Geometry, Fluid Mechanics, Computer
Vision, and Materials Science. Cambridge Monographs on Applied
and Computational Mathematics. Cambridge University Press, 1999.

Milan Sonka, Vaclav Hlavac, and Roger Boyle. Image Processing,
Analysis, and Machine Vision. Thomson-Engineering, 2007.

Christoph Sommer, Christoph Straehle, Ullrich Koethe, and Fred A.
Hamprecht. ilastik: Interactive Learning and Segmentation ToolKkit.

In 8th IEEE International Symposium on Biomedical Imaging (ISBI
2011),2011.

The GIMP Team. GNU Image Manipulation Program 2.6. http:
//www.gimp.orqg/, 2001-2013. Accessed: 11/04/2013.

Paul A. Tipler and Gene Mosca. Physik: fiir Wissenschaftler und In-
genieure. Elsevier, Spektrum Akademischer Verlag, Miinchen, 2nd
edition, 2004.

http://www.gimp.org/
http://www.gimp.org/

84 BIBLIOGRAPHY

A JUDGE Configuration

The following configuration of JUDGE! has been used:

206 Compute Nodes
Per Node:

GPU M2050 (Fermi)
GPU M2070 (Fermi)

Hardware

2 Intel Xeon X5650 (Westmere) 6-core processors

2 NVIDIA Tesla GPUs (M2050 or M2070)

96GB Main Memory

1.15GHz, 448 cores, 3GB memory, used on 54 nodes
1.15GHz, 448 cores, 6GB memory, used on 152 nodes

Inter-Node Communication Infiniband

Operating System
CUDA

Graphics Driver
MPI Implementation
C++ Compilers

CMAKE
MAKE

Operating System and Software

SUSE Linux Enterprise Server 11 (x86_64)
Version 4.0

NVIDIA driver version 304.54

MPICH2 version 1.2.1p1

gcc version 4.3.4

mpicxx for MPICH2 version 1.2.1p1
Version 2.8.5

GNU Make 3.81

"http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JTUDGE/JUDGE_node.html,

accessed at 18/06/2013

Jul-4365
September 2013

ISSN 0944-2952 \’) J l.J L I C H

FORSCHUNGSZENTRUM

	Introduction
	Polarized Light Imaging (PLI)
	Motivation for PLI
	Preparation of a Brain
	Rotating Polarimeter and Imaging
	3D Reconstruction of the Polarimeter Images
	Requirements for the Segmentation

	Choice of the Algorithm
	Segmentation Methods
	Thresholding
	Region-Based Segmentation
	Boundary-Driven Techniques
	Classification Methods

	Comparison of Segmentation Tools
	Images used for the Comparison
	Process of Testing
	Results and Evaluation
	Summarizing Evaluation

	Seeded Region Growing Segmentation
	A basic Algorithm
	Adaption of Seeded Region Growing
	Automated Choice of Seeds
	Similarity Criterion
	Choice of the Growing Operator

	Processing Pipeline
	Review of the Requirements
	Optimization of the Runtime Behavior
	Multi-core Application
	Data Parallelism and GPUs
	Evaluation of the Parallelization

	Conclusion and Outlook
	Bibliography
	JUDGE Configuration

