000138059 001__ 138059
000138059 005__ 20230217124351.0
000138059 0247_ $$2doi$$a10.1103/PhysRevE.87.062406
000138059 0247_ $$2ISSN$$a1095-3787
000138059 0247_ $$2ISSN$$a1063-651X
000138059 0247_ $$2ISSN$$a1550-2376
000138059 0247_ $$2ISSN$$a1539-3755
000138059 0247_ $$2WOS$$aWOS:000320771000002
000138059 0247_ $$2Handle$$a2128/5406
000138059 037__ $$aFZJ-2013-04327
000138059 082__ $$a530
000138059 1001_ $$0P:(DE-HGF)0$$aLiu, Fei$$b0
000138059 245__ $$aAtomic force microscopy of confined liquids using the thermal bending fluctuations of the cantilever
000138059 260__ $$aCollege Park, Md.$$bAPS$$c2013
000138059 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2013-06-21
000138059 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2013-06-01
000138059 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s138059
000138059 3367_ $$2DataCite$$aOutput Types/Journal article
000138059 3367_ $$00$$2EndNote$$aJournal Article
000138059 3367_ $$2BibTeX$$aARTICLE
000138059 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138059 3367_ $$2DRIVER$$aarticle
000138059 520__ $$aWe use atomic force microscopy to measure the distance-dependent solvation forces and the dissipation across liquid films of octamethylcyclotetrasiloxane (OMCTS) confined between a silicon tip and a highly oriented pyrolytic graphite substrate without active excitation of the cantilever. By analyzing the thermal bending fluctuations, we minimize possible nonlinearities of the tip-substrate interaction due to finite excitation amplitudes because these fluctuations are smaller than the typical 1 Å, which is much smaller than the characteristic interaction length. Moreover, we avoid the need to determine the phase lag between cantilever excitation and response, which suffers from complications due to hydrodynamic coupling between cantilever and fluid. Consistent results, and especially high-quality dissipation data, are obtained by analyzing the power spectrum and the time autocorrelation of the force fluctuations. We validate our approach by determining the bulk viscosity of OMCTS using tips with a radius of approximately 1 μm at tip-substrate separations >5 nm. For sharp tips we consistently find an exponentially decaying oscillatory tip-substrate interaction stiffness as well as a clearly nonmonotonic variation of the dissipation for tip-substrate distances up to 8 and 6 nm, respectively. Both observations are in line with the results of recent simulations which relate them to distance-dependent transitions of the molecular structure in the liquid.
000138059 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000138059 542__ $$2Crossref$$i2013-06-21$$uhttp://link.aps.org/licenses/aps-default-license
000138059 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138059 7001_ $$0P:(DE-Juel1)145430$$ade Beer, Sissi$$b1$$ufzj
000138059 7001_ $$0P:(DE-HGF)0$$avan den Ende, Dirk$$b2
000138059 7001_ $$0P:(DE-HGF)0$$aMugele, Frieder$$b3
000138059 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.87.062406$$bAmerican Physical Society (APS)$$d2013-06-21$$n6$$p062406$$tPhysical Review E$$v87$$x1539-3755$$y2013
000138059 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.87.062406$$gVol. 87, no. 6, p. 062406$$n6$$p062406$$tPhysical review / E$$v87$$x1539-3755$$y2013
000138059 8564_ $$yPublishers version according to licensing conditions.$$zPublished final document.
000138059 8564_ $$uhttps://juser.fz-juelich.de/record/138059/files/FZJ-2013-04327.pdf$$yOpenAccess$$zPublished final document.
000138059 8564_ $$uhttps://juser.fz-juelich.de/record/138059/files/FZJ-2013-04327.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000138059 8564_ $$uhttps://juser.fz-juelich.de/record/138059/files/FZJ-2013-04327.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000138059 8564_ $$uhttps://juser.fz-juelich.de/record/138059/files/FZJ-2013-04327.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000138059 909CO $$ooai:juser.fz-juelich.de:138059$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000138059 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145430$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138059 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000138059 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000138059 9141_ $$y2013
000138059 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000138059 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138059 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138059 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138059 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138059 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138059 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138059 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138059 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138059 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000138059 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000138059 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000138059 920__ $$lyes
000138059 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000138059 980__ $$ajournal
000138059 980__ $$aUNRESTRICTED
000138059 980__ $$aFullTexts
000138059 980__ $$aI:(DE-Juel1)JSC-20090406
000138059 980__ $$aVDB
000138059 9801_ $$aFullTexts
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1039/b909366b
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10404-004-0012-9
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/16/10/R01
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/0471428019.ch5
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rstl.1886.0005
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.449693
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.84.5796
000138059 999C5 $$1J. Israelachvili$$2Crossref$$oJ. Israelachvili Intermolecular and Surface Forces 1991$$tIntermolecular and Surface Forces$$y1991
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/0009-2614(80)80144-8
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la9801864
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1339997
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0169-4332(01)00975-8
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la035155+
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.91.166104
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/ja045970r
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2196052
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.96.086105
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la060504w
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2950324
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.78.061501
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.80.134104
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.104.218302
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.106101
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/21/32/325703
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/23/11/112206
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/22/48/485502
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.066102
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.459067
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.269.5225.816
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.chemphys.2010.05.008
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la300557u
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.106102
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.363308
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3238484
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3053369
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3050532
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.371894
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.3689815
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.2794426
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.179601
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.195424
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1143970
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la991368g
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.52.R8692
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/15/19/304
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.56.3256
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la8038329
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la2021897
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/29/1/306
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4745781
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02546511
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF01449156
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/23/50/505103
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/97/46001
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la902121x
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.83.041103
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.056101
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.056102
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.368002
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/jp711017n
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JJAP.40.4309
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.41.6830
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0965-0393/18/3/034004
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.84.066311
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/la102120h
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature03700
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature07748
000138059 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s11249-011-9905-4