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Accessing 4f-states in single-molecule spintronics
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Magnetic molecules are potential functional units for molecular and supramolecular spin-
tronic devices. However, their magnetic and electronic properties depend critically on their
interaction with metallic electrodes. Charge transfer and hybridization modify the electronic
structure and thereby influence or even quench the molecular magnetic moment. Yet,
detection and manipulation of the molecular spin state by means of charge transport, that is,
spintronic functionality, mandates a certain level of hybridization of the magnetic orbitals with
electrode states. Here we show how a judicious choice of the molecular spin centres
determines these critical molecule-electrode contact characteristics. In contrast to late lan-
thanide analogues, the 4f-orbitals of single bis(phthalocyaninato)-neodymium(lil) molecules
adsorbed on Cu(100) can be directly accessed by scanning tunnelling microscopy. Hence,
they contribute to charge transport, whereas their magnetic moment is sustained as evident
from comparing spectroscopic data with ab initio calculations. Our results showcase how
tailoring molecular orbitals can yield all-electrically controlled spintronic device concepts.
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olecular spintronics combine the auspicious character-
M istics of molecular electronics’»? and spintronics® to

exploit the rich diversity and functionality of molecules,
and the spin degree of freedom for novel nanoelectronic device
concepts*®. An effective approach to molecular spintronics
is the investigation of discrete magnetic molecules in contact
with metallic leads’. In this context, lanthanide (Ln)-based
bis(phthalocyaninato)-Ln(III) complexes (LnPc,) represent a
promising class of stable and redox-active molecules. For
instance, the magnetic properties of TbPc, were investigated on
non-magnetic®!0 as well as on magnetic!!? surfaces. However,
the 4f-electrons in the late Ln, such as Tb or Dy, lie deep in
energy and are spatially localized around the nucleus and, thus,
do not contribute to charge transport. Access to the 4f-states in
charge-transport experiments thus require them to be closer to
the Fermi level and less localized so as to hybridize with the
molecular orbitals of the ligands, all of which are met only for the
early Ln. Of similar importance is the modification of the
electronic structure and notably the magnetism of a magnetic
molecule caused by the adsorption on an electrode!3~18,

Here we address these key issues and present the results of a
combined experimental and theoretical study of bis(phthalocya-
ninato)-neodymium(III) (NdPc,) adsorbed on the Cu(100)
surface, a successful model system for a molecule-electrode
contact with accessible spin-polarized 4f-states. In contrast to, for
example, a Tb>* ion with an electronic configuration [Xe]4f36s°,
the Nd>* ion ([Xe]4f36so) has a larger ionic radius (112 versus
104 pm) with more delocalized 4f-electrons and, thus, stronger
hybridization with the phthalocyanine ligands. Thereby, the 4f-
orbitals become accessible to transport experiments, while largely
maintaining the relative energetic positions of spin-up/-down
states and consequentially the magnetic moment.

Results
Adsorption configuration of NdPc, on Cu(100). The approxi-
mately Dj4-symmetric double-decker structure of the NdPc,
molecule is shown in Fig. la. One of the two Pc ligands chemi-
sorbs the molecule in a flat geometry on the Cu(100) surface,
whereas the second Pc, exposed to vacuum, retains its molecular-
type electronic features. Figure 1b shows a scanning tunnelling
microscopy (STM) overview image of NdPc, molecules adsorbed
on the Cu(100) surface. The in-house synthesized crystalline
evaporant exclusively consisted of NdPc, as confirmed by
ultraviolet-visible absorption spectroscopy and mass spectro-
metry. Double-decker molecules and single-decker Pc molecules
with or without the central Nd ion were identified by shape and
height. Note that the low stability of NdPc, compared with its late
Ln analogues originates from its larger Ln ionic radius'®. Both
double-decker (label A in Fig. 1b) and single-decker (label B)
species adsorb in two degenerate orientations (marked with or
without a star) on the Cu(100) surface. For single-decker and
double-decker species, the two orientations differ by an in-plane
angle of 52°, in line with results for CuPc (ref. 20). Our ab initio
calculations show that in the energetically most favourable
adsorption geometry, the central Nd ion lies above the Cu(100)
hollow site (Fig. la). In our STM studies, the two adsorption
configurations A and A* are observed as equivalent and exhibit
identical electronic features. In the following, we focus on NdPc,
molecules in the adsorption configuration A shown in Fig. lc.
The NdPc, molecule appears in STM topography images as an
eight-lobe shape with a fourfold symmetry as previously observed
for late lanthanide double-decker species®®. The STM image
mainly reflects the charge distribution of the upper Pc ring. Each
two-lobe feature is attributed to one benzene subgroup® and is
also observed in STM images of non-coordinated Pc molecules

d

Figure 1 | Geometry and adsorption configuration of NdPc; on Cu(100).
(a) Calculated adsorption geometry of the double-decker structure (light
grey, Cu; dark grey, W; magenta, Nd; blue and green, Pc ligands; with N
dark, C medium, H light colour). (b) STM overview showing isolated intact
double-decker NdPc, (A/A*) and decomposed single-decker Pc or NdPc
(B/B*) molecules. Two adsorption sites A/A* and B/B* are identified for
both species, respectively. Scale bar, 20 nm. (¢) STM topography of an
NdPc, molecule and (d) the corresponding calculated STM image. Scale
bars in ¢ and d, Tnm. The used tunnelling parameters are liynne =2 NA,
Viias= — 1V in b and lyynnel =2 A, Vipias= — 0.8 V in €. The topography in
d is calculated for the energy E-Er= — 0.8 €eV.

on insulating surfaces?!. This similarity indicates that for

NdPc,/Cu(100), the chemisorption does not significantly alter
the molecular electronic features of the upper Pc ligand. The
calculated STM image depicted in Fig. 1d reproduces the
experimental topography in detail. For other bias voltages than
in Fig. 1c,d, the STM topography images slightly change, but all
characteristics are reproduced by the corresponding theoretical
STM images (see Fig. 4a-h).

Density of states of NdPc, on Cu(100). The hybrid NdPc,/
Cu(100) electronic states are explored by performing dI/dV
measurements at specific positions of the STM tip above the
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NdPc, molecule. dI/dV curves measured at the centre of the
molecule and above the organic ligand are shown in Fig. 2a. Both
spectra display two clear features near the Fermi energy Ep. For
the interpretation of the experimental dI/dV spectra and the
calculated projected density of states (PDOS) in Fig. 2, it is
important to understand first the electronic structure of the free
neutral NdPc, molecule. A total of three electrons, that is, two 6s-
electrons and one 4f-electron, are formally transferred from the
metal to the ligands, leading to an electrostatic interaction
between Nd> T and the two negatively charged Pc rings. As a
consequence, the Nd** ion remains with three 4f-electrons in
one spin channel, whereas the two Pc ligands share one unpaired
electron.

Spin-polarized first-principles calculations for the adsorbed
NdPc, on Cu(100) in Fig. 2b show for the lower Pc ring broad
hybrid molecule-surface electronic states due to hybridization and
charge transfer!”, causing the magnetic moment on the ligands to
vanish. The PDOS of the upper Pc ring (blue in Fig. 2b-d),
however, keeps sharp molecular-like features similar to those
obtained for NdPc, in the gas phase®. This striking difference
suggests that the two Pc rings are coupled via weak hybridization
with the three 4f-electrons through the Nd ion. This weak
hybridization together with Hund’s rule constrain the Nd** 4f-
electrons to be in the same spin channel, resulting in the spin
magnetic moment. Therefore, the dI/dV peak measured on the
centre site of the molecule (orange curve) for Vi, = — 0.8V can
be unequivocally assigned to an occupied electronic state with
mainly 4f-character in only the spin-down channel at the Nd site.
For the same spectrum, the dI/dV shoulder measured for
Vbias = 1.25V perfectly matches the calculated PDOS for the
unoccupied Nd spin-down 4f-states at the same energy. As a
result, in contrast to previously studied late LnPc, complexes®!2,
the Nd 4f-states can directly be accessed by STM.

Similarly, we obtain good agreement between the dI/dV
shoulder measured at the ligand site (grey curve) for Vi,s=
+ 1.2V and the unoccupied states with sharp PDOS features of
the upper Pc ring. It is important to note that the Hubbard
parameter for the 4f-states (U=2.2 eV) was chosen to reproduce
the experimental dI/dV features for the occupied states in the
centre of the molecule (Fig. 2a). This choice consistently leads to
an exact match for the unoccupied states, too.

Electric field-induced shifting of the ligand states. Intriguingly,
the agreement found for the positions of the 4f-states does not
seem to hold for the broad dI/dV peak measured at the ligand site
for Vpias= — 0.7 V. The corresponding PDOS features, tentatively
assigned to the upper Pc ring, are closer to the Fermi energy
by ~x0.5eV. This apparent mismatch manifests the largely
conserved molecular-like features of the upper Pc ring and can be
resolved by including an external electric field in our first-prin-
ciples calculations, which represents the bias field in STM mea-
surements. To assess the effect of such an electric bias field on the
electronic structure of the NdPc,/Cu(100) system, a uniform field
was taken into account (Fig. 2b-f), where positive (negative)
electric fields are generated by negative (positive) bias voltages.
Remarkably, a positive electric field effectively shifts the PDOS
peak of the upper Pc ring located initially at & — 0.2 eV to lower
energies (black arrows in Fig. 2b-d) until it gradually approaches
the position of the occupied 4f-derived peak. Under the influence
of negative electric fields, the occupied PDOS peak of the upper
Pc ring only shifts towards the Fermi level, but does not cross it.
The unoccupied ligand peak shifts slightly from initially 1.1 to
1.3 eV, where is starts to overlap with the unoccupied 4f-derived
peak. Without electric field, the unoccupied ligand state is
more strongly hybridized with the 4f-state than the occupied
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Figure 2 | Experimental dI/dV spectra and calculated PDOS.

(a) Experimental di/dV spectra measured at ligand (grey) and centre
(orange) sites of the molecule. (b-f) Decomposition of the total spin-
dependent PDOS into contributions from the lower Pc ring (green), the Nd
ion (magenta; only 4f-states contribute in the displayed energy range)
and the upper Pc ring (blue) calculated for different applied electric fields.
Black arrows mark the occupied peak of the upper Pc ring that strongly
shifts under the influence of the electric field. In a, the tip is stabilized

at ltunnel =1 nA, Vbias= — 1 V.

counterpart. The stronger the hybridization, the less susceptible a
state is to the electric field, resulting in a pinning at the energetic
position of the hybridized state.
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Further support for the electric field-induced shifting of the
ligand states stems from dI/dV maps measured at bias voltages
between — 0.6 and 0.8 eV shown in Fig. 3. We do not detect any
significant contribution of unoccupied states on the ligand sites
(Fig. 3a—c) in accordance with the dI/dV versus V curve in Fig. 2a.
In contrast, the dI/dV maps at negative bias (Fig. 3d-f) show
spectral weight, which displays only minor changes in intensity
and spatial distribution when varying the bias between — 0.2 and
—0.6eV. This contribution can thus be related to the tail of the
shifting peak in Fig. 2b-d. It is detectable as a spatial contrast in
the dI/dV maps at bias voltages between 0 and — 0.6 eV, but only
shows up as a peak at —0.7eV in the dI/dV versus V curve in
Fig. 2a, when the corresponding ligand state is pinned by
hybridization. Note, that this experimentally observed inversion
of the dI/dV contrast between the occupied and unoccupied states
in the Vy;,s range from — 0.6 to 0.8 V is reproduced in the first-
principles calculations shown in Fig. 4.

Overall, the ability of the external electric field to shift the
energetic position of the hybrid molecule-surface states with
molecular character at the upper Pc ring is another specific aspect
of the Nd*>* coordination to this ring, which is primarily due to
an electrostatic interaction modulated with a weak, yet significant
hybridization between the 4f and the ligand states. Notably, the
inclusion of the electric field in our density functional theory
simulations barely modified the energy position and the magnetic
moment of the Nd 4f-states, as they are spatially localized around
the Nd core. This is also valid for the states of the lower Pc ring,
which are strongly hybridized!” with the Cu states.

Comparison of measured and calculated dI/dV maps. A direct
contribution of the 4f-states to the tunnelling current is further
evidenced by the remarkable agreement between the experimental
and simulated topography images, as well as the corresponding
dI/dV maps shown Fig. 4. Topography images correspond to

Viias = 0-4 V

Viias = —0-6 V

Vhias =06 V

Unoccupied states

Vpias=—04V

Occupied states

isosurfaces of the local density of states integrated over all states
between Ep and eV, rendering simulated topography images
rather robust. In contrast, the dI/dV maps represent only very few
states in a narrow energy interval and, thus, are highly susceptible
to small changes to relevant states. Note that the simulated dI/dV
maps are evaluated at the isosurface of the corresponding topo-
graphy image without further adjustments. Hence, our conclu-
sions are based on the simultaneously achieved good agreement
for both topographic images (Fig. 4a-d versus Fig. 4e-h) and dI/
dV maps (Fig. 4i-1 versus Fig. 4m-p). Slight changes of the
apparent molecular shape in the experimental topographies for
different energies (Fig. 4a-d) are well reproduced by the calcu-
lations (Fig. 4e-h). Although matching simulated and experi-
mental dI/dV maps is more challenging, in particular the relative
weights of the contributions from the ligand and centre sites are
well reproduced (Fig. 4i-p). Overall, the extensive match between
experiment and simulation confirms that the 4f-states, which
according to the calculated spin-resolved PDOS curves carry the
spin magnetic moment, contribute to the transport through the
molecule.

Discussion

In contrast to extensively studied analogous systems comprising
late lanthanides, the spin-polarized 4f-states are directly involved
in electrical transport through NdPc, molecules in contact with a
Cu(100) surface. The Nd 4f-states are unambiguously identified
based on their spectral position and spatial features by comparing
scanning tunnelling spectroscopy and ab initio calculations. They
are highly spin-polarized and, thus, carry the spin magnetic
moment of the electrode-adsorbed molecule. Accessing these
states by means of transport is expected to be a general feature of
early Ln-based molecular magnets, where the 4f-states are closer
to the Fermi level and can be adjusted via coordination and
surface interactions. This strategy opens up prospects for

Viias = 0.8 V

High

Viias=—-0-2 V

Low

Figure 3 | Experimental dI/dV maps confirm the shifting of the ligand states. The d//dV maps in the bias range from — 0.6 to 0.8V reveal a
contrast inversion between unoccupied (a-¢) and occupied (d-f) states. Scale bar in a, 1Tnm. In a,b,d and e, ly;nne;=1nA, and in ¢ and f,

ltunner = 0.5 nA.
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Figure 4 | Experimental and calculated topography images and di/dV maps. (a-d) Experimental and (e-h) theoretical topography images,
(i-D) experimental and (m-p) theoretical dI/dV maps for various Vi, as indicated. Scale bar in a, Tnm. In a-d and i-l, liynnel =10A.

electrical manipulation and detection of the molecular spin state,
providing the foundation for all-electrically controlled device
concepts in molecular spintronics.

Methods

Molecule synthesis. NdPc, (refs 22,23) was prepared using the procedure reported
by Weiss and coworkers?* for the lutetium analogue and was used by Yamashita
and coworkers®?>2% for the terbium, dysprosium and yttrium complexes, with
modified purification steps. Phthalonitrile (8.0 g, 63 mmol), neodymium acetate
hydrate (1.38 g, 4.0 mmol based on the composition Nd(CH;COO); - 1.1H,O
determined by thermogravimetric analysis) and 1,8-diazabicyclo[5.4.0Jundec-7-ene
(5.1g, 33.5mmol) were refluxed in 200 ml hexan-1-ol for 36 h. The resulting dark
purple solid was washed with 50 ml acetic anhydride, 10 ml ice-cold acetone and
10 ml pentane, then extracted with chloroform (10 x 200 ml). The resulting green
solution was evaporated to yield 320 mg dark green solid, which was purified by
HPLC using 1% methanol in dichloromethane as an eluent to yield dark green
NdPc, (retention time 6.2min, 13 mg, 11 pmol, 0.3% yield). HPLC was performed
on a Waters HPLC system with photodiode array detector equipped with a

250 x 20 mm ProntoSIL 120-10-Si preparative column (10 pm silica particles with a
120-A pore size). The rate flow of the eluent was 10 mlmin ~ !. Alternatively,
purification could be accomplished by two successive chromatography columns on
a silica gel using first 2%, then 1% methanol in dichloromethane as the eluent. The
purity of the product was ascertained by infrared!®, electrospray ionization-mass
spectrometry (m/z=1,168.2Da, M) and ultraviolet-visible (eg7gqm=2.10"M ~!
cm ~ ! in dichloromethane?’). Transmission infrared spectra (KBr pellets) were
recorded on a Bruker Vertex 70 spectrometer. Electrospray ionization-mass spec-
trometry was recorded on the positive mode on a methanol-dichloromethane
solution acidified with trifluoroacetic acid using a ThermoFisher Scientific
LTQ-Orbitrap XL spectrometer. Ultraviolet-visible absorption spectroscopy was
performed on an Analytik Jena Specord S600 spectrometer. Note that the synthesis

yields of NdPc, were consistently much lower than those for late lanthanide
analogues, for example, DyPc,, for which we reached the reported values without
difficulty. The increased difficulty in obtaining LnPc, complexes for early
lanthanides was already recognized 25 years ago!®; the increasing size of the central
ion leads to a decrease of the metal-to-ligand interaction, favouring the formation of
the monophthalocyanine complexe PcNd(OAc); (ref. 19) and the triple-decker
species Ln,Pc; (ref. 28).

Experiments. The experiments have been carried out in a multichamber ultra-
high vacuum system comprising a preparation chamber for substrate cleaning and
molecule deposition and an STM operating at 5K (Omicron LT-STM). STM tips
were electrochemically etched from a polycrystalline W wire in NaOH solution and
in-situ flashed by electron-beam bombardment for several seconds to remove
oxides. The Cu(100) crystal surface was cleaned by several Ar-sputtering and
annealing cycles at 1.5kV and 750K, respectively. Molecules were evaporated
from a Knudsen cell after several days of degassing below the evaporation tem-
perature of 800 K. The evaporation time for single-molecule coverages was 5s.
I(V) spectra and dI/dV maps are recorded by modulating the bias voltage (2.7 kHz,
20 mV) and using lock-in detection. dI/dV maps are measured simultaneously
with constant current topography images. The bias voltage is applied to the sample,
that is, positive bias voltage corresponds to probing unoccupied states.

Calculations. Spin-polarized, first-principles total-energy calculations have been
carried out in the framework of the density functional theory?® in the Kohn-Sham
formulation®® by using the projector augmented wave method>! as implemented in
the Vienna ab initio simulation package code>>%3. In our study, we used the
Perdew-Burke-Ernzerhof** exchange-correlation energy functional and the plane-
wave basis set includes all plane waves up to a kinetic energy of 550 V. To account
properly for the orbital dependence of the Coulomb and exchange interactions of
the Nd 4f-states, we employed the Perdew-Burke-Ernzerhof + U method>. The
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Hubbard parameter for the f-states was set to U=2.2¢eV to reproduce the
experimental dI/dV features, see main text. The NdPc,-Cu(100) system was
modelled within the supercell approach and contains five atomic Cu layers with the
adsorbed molecule on one side of the slab. The ground-state adsorption geomet:
was obtained by including van der Waals interactions at a semi-empirical level®
and by relaxing the uppermost two Cu layers and the molecular degrees of freedom
until the atomic forces were converged to less 0.001eV A~ 1L
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