000138240 001__ 138240
000138240 005__ 20240711085631.0
000138240 0247_ $$2doi$$a10.1016/j.jeurceramsoc.2013.06.021
000138240 0247_ $$2ISSN$$a1873-619X
000138240 0247_ $$2ISSN$$a0955-2219
000138240 0247_ $$2WOS$$aWOS:000324901800051
000138240 037__ $$aFZJ-2013-04420
000138240 082__ $$a660
000138240 1001_ $$0P:(DE-Juel1)140203$$aEbert, Svenja Maria$$b0$$eCorresponding author
000138240 245__ $$aFailure mechanisms of magnesia alumina spinel abradable coatings under thermal cyclic loading
000138240 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2013
000138240 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1390984526_27215
000138240 3367_ $$2DataCite$$aOutput Types/Journal article
000138240 3367_ $$00$$2EndNote$$aJournal Article
000138240 3367_ $$2BibTeX$$aARTICLE
000138240 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000138240 3367_ $$2DRIVER$$aarticle
000138240 500__ $$3POF3_Assignment on 2016-02-29
000138240 520__ $$aAbradable coatings have been used in low- and high-pressure sections of jet engine compressors for more than 40 years. Today, they are also used in the high-pressure turbine of jet engines and are gaining more interest for applications in industrial gas turbines. They minimise the clearance between the rotating blade tips and the stationary liners. Aside from being abradable, the coatings have to be mechanically stable and withstand high thermo-mechanical loadings. A typical material used in engines today is yttria-stabilised zirconia (YSZ). This material advantageously combines a suitable thermal conductivity with a high thermal expansion coefficient, but shows a temperature capability limited to 1200 °C in long-term applications. Typical abradable coating thicknesses are above 1 mm. With increasing coating thickness and limited cooling efficiency leading to high surface temperatures, there is a risk of premature failure. As a result, new ceramic materials have been developed with better high-temperature capability. The present work investigates an atmospheric plasma sprayed ceramic double-layer coating system composed of 7YSZ as an intermediate layer and magnesia alumina spinel as a top layer.
This double-layer system was sprayed onto disc-shaped Inconel 738 superalloy substrates, which were coated with a vacuum plasma sprayed MCrAlY bondcoat. The lifetime of the coating system was assessed via thermal gradient cycling testing with surface temperatures above 1400 °C. During cycling, the samples showed a typical failure mechanism with exfoliation of thin coating lamellae starting from the coating surface. This failure mechanism was not observed in thermal barrier or abradable coatings in the past. The failure mechanism was analysed and mismatch stress calculations were carried out.
000138240 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000138240 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000138240 7001_ $$0P:(DE-Juel1)129641$$aMücke, Robert$$b1$$ufzj
000138240 7001_ $$0P:(DE-Juel1)129630$$aMack, Daniel Emil$$b2$$ufzj
000138240 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b3
000138240 7001_ $$0P:(DE-Juel1)129666$$aStöver, Detlev$$b4$$ufzj
000138240 7001_ $$0P:(DE-HGF)0$$aWobst, Tanja$$b5
000138240 7001_ $$0P:(DE-HGF)0$$aGebhard, Susanne$$b6
000138240 773__ $$0PERI:(DE-600)2013983-4$$a10.1016/j.jeurceramsoc.2013.06.021$$gVol. 33, no. 15-16, p. 3335 - 3343$$n15-16$$p3335 - 3343$$tJournal of the European Ceramic Society$$v33$$x0955-2219$$y2013
000138240 8564_ $$uhttps://juser.fz-juelich.de/record/138240/files/FZJ-2013-04420.pdf$$yRestricted$$zPublished final document.
000138240 909CO $$ooai:juser.fz-juelich.de:138240$$pVDB
000138240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129641$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000138240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129630$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000138240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000138240 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129666$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000138240 9132_ $$0G:(DE-HGF)POF3-119H$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vAddenda$$x0
000138240 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000138240 9141_ $$y2013
000138240 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000138240 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000138240 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000138240 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000138240 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000138240 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000138240 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000138240 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000138240 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000138240 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000138240 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000138240 980__ $$ajournal
000138240 980__ $$aVDB
000138240 980__ $$aUNRESTRICTED
000138240 980__ $$aI:(DE-Juel1)IEK-1-20101013
000138240 981__ $$aI:(DE-Juel1)IMD-2-20101013